51
|
Chikazawa M, Yoshitake J, Lim SY, Iwata S, Negishi L, Shibata T, Uchida K. Glycolaldehyde is an endogenous source of lysine N-pyrrolation. J Biol Chem 2020; 295:7697-7709. [PMID: 32332094 DOI: 10.1074/jbc.ra120.013179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Indexed: 11/06/2022] Open
Abstract
Lysine N-pyrrolation converts lysine residues to N ϵ-pyrrole-l-lysine (pyrK) in a covalent modification reaction that significantly affects the chemical properties of proteins, causing them to mimic DNA. pyrK in proteins has been detected in vivo, indicating that pyrrolation occurs as an endogenous reaction. However, the source of pyrK remains unknown. In this study, on the basis of our observation in vitro that pyrK is present in oxidized low-density lipoprotein and in modified proteins with oxidized polyunsaturated fatty acids, we used LC-electrospray ionization-MS/MS coupled with a stable isotope dilution method to perform activity-guided separation of active molecules in oxidized lipids and identified glycolaldehyde (GA) as a pyrK source. The results from mechanistic experiments to study GA-mediated lysine N-pyrrolation suggested that the reactions might include GA oxidation, generating the dialdehyde glyoxal, followed by condensation reactions of lysine amino groups with GA and glyoxal. We also studied the functional significance of GA-mediated lysine N-pyrrolation in proteins and found that GA-modified proteins are recognized by apolipoprotein E, a binding target of pyrrolated proteins. Moreover, GA-modified proteins triggered an immune response to pyrrolated proteins, and monoclonal antibodies generated from mice immunized with GA-modified proteins specifically recognized pyrrolated proteins. These findings reveal that GA is an endogenous source of DNA-mimicking pyrrolated proteins and may provide mechanistic insights relevant for innate and autoimmune responses associated with glucose metabolism and oxidative stress.
Collapse
Affiliation(s)
- Miho Chikazawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Yoshitake
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Sei-Young Lim
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shiori Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Lumi Negishi
- Central Laboratory, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takahiro Shibata
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan .,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
52
|
Abokyi S, To CH, Lam TT, Tse DY. Central Role of Oxidative Stress in Age-Related Macular Degeneration: Evidence from a Review of the Molecular Mechanisms and Animal Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7901270. [PMID: 32104539 PMCID: PMC7035553 DOI: 10.1155/2020/7901270] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 01/18/2020] [Indexed: 11/17/2022]
Abstract
Age-related macular degeneration (AMD) is a common cause of visual impairment in the elderly. There are very limited therapeutic options for AMD with the predominant therapies targeting vascular endothelial growth factor (VEGF) in the retina of patients afflicted with wet AMD. Hence, it is important to remind readers, especially those interested in AMD, about current studies that may help to develop novel therapies for other stages of AMD. This study, therefore, provides a comprehensive review of studies on human specimens as well as rodent models of the disease, to identify and analyze the molecular mechanisms behind AMD development and progression. The evaluation of this information highlights the central role that oxidative damage in the retina plays in contributing to major pathways, including inflammation and angiogenesis, found in the AMD phenotype. Following on the debate of oxidative stress as the earliest injury in the AMD pathogenesis, we demonstrated how the targeting of oxidative stress-associated pathways, such as autophagy and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, might be the futuristic direction to explore in the search of an effective treatment for AMD, as the dysregulation of these mechanisms is crucial to oxidative injury in the retina. In addition, animal models of AMD have been discussed in great detail, with their strengths and pitfalls included, to assist inform in the selection of suitable models for investigating any of the molecular mechanisms.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
- Department of Optometry, University of Cape Coast, Ghana
| | - Chi-Ho To
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Tim T. Lam
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Dennis Y. Tse
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
53
|
Nguyen DD, Lai JY. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polym Chem 2020. [DOI: 10.1039/d0py00919a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent exploitations of stimuli-responsive polymers as ophthalmic drug delivery systems for the treatment of eye diseases are summarized and discussed.
Collapse
Affiliation(s)
- Duc Dung Nguyen
- Graduate Institute of Biomedical Engineering
- Chang Gung University
- Taoyuan 33302
- Republic of China
| | - Jui-Yang Lai
- Graduate Institute of Biomedical Engineering
- Chang Gung University
- Taoyuan 33302
- Republic of China
- Department of Ophthalmology
| |
Collapse
|
54
|
Tomko N, Kluever M, Wu C, Zhu J, Wang Y, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic acid lactone is a potent inducer of brain cancer cell invasiveness that may contribute to the failure of anti-angiogenic therapies. Free Radic Biol Med 2020; 146:234-256. [PMID: 31715381 DOI: 10.1016/j.freeradbiomed.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Previously, we discovered that free radical-induced oxidative fragmentation of the docosahexaenoate ester of 2-lysophosphatidylcholine produces 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone that, in turn, promotes the migration and invasion of endothelial cells. This suggested that HOHA lactone might similarly promote migration and invasion of glioblastoma multiformae (GBM) brain cancer stem cells (CSCs). A bioinformatics analysis of clinical cancer genomic data revealed that matrix metalloproteinase (MMP)1 and three markers of oxidative stress - superoxide dismutase 2, NADPH oxidase 4, and carbonic anhydrase 9 - are upregulated in human mesenchymal GBM cancer tissue, and that MMP1 is positively correlated to all three of these oxidative stress markers. In addition, elevated levels of MMP1 are indicative of GBM invasion, while low levels of MMP1 indicate survival. We also explored the hypothesis that the transition from the proneural to the more aggressive mesenchymal phenotype, e.g., after treatment with an anti-angiogenic therapy, is promoted by the effects of lipid oxidation products on GBM CSCs. We found that low micromolar concentrations of HOHA lactone increase the cell migration velocity of cultured GBM CSCs, and induce the expression of MMP1 and two protein biomarkers of the proneural to mesenchymal transition (PMT): p65 NF-κβ and vimentin. Exposure of cultured GBM CSCs to HOHA lactone causes an increase in phosphorylation of mitogen-activated protein kinases and Akt kinases that are dependent on both protease-activated receptor 1 (PAR1) and MMP1 activity. We conclude that HOHA lactone promotes the PMT in GBM through the activation of PAR1 and MMP1. This contributes to a fatal flaw in antiangiogenic, chemo, and radiation therapies: they promote oxidative stress and the generation of HOHA lactone in the tumor that fosters a change from the proliferative proneural to the migratory mesenchymal GBM CSC phenotype that seeds new tumor growth. Inhibition of PAR1 and HOHA lactone are potential new therapeutic targets for impeding GBM tumor recurrence.
Collapse
Affiliation(s)
- Nicholas Tomko
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark Kluever
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chunying Wu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yanming Wang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
55
|
Blond F, Léveillard T. Functional Genomics of the Retina to Elucidate its Construction and Deconstruction. Int J Mol Sci 2019; 20:E4922. [PMID: 31590277 PMCID: PMC6801968 DOI: 10.3390/ijms20194922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
The retina is the light sensitive part of the eye and nervous tissue that have been used extensively to characterize the function of the central nervous system. The retina has a central position both in fundamental biology and in the physiopathology of neurodegenerative diseases. We address the contribution of functional genomics to the understanding of retinal biology by reviewing key events in their historical perspective as an introduction to major findings that were obtained through the study of the retina using genomics, transcriptomics and proteomics. We illustrate our purpose by showing that most of the genes of interest for retinal development and those involved in inherited retinal degenerations have a restricted expression to the retina and most particularly to photoreceptors cells. We show that the exponential growth of data generated by functional genomics is a future challenge not only in terms of storage but also in terms of accessibility to the scientific community of retinal biologists in the future. Finally, we emphasize on novel perspectives that emerge from the development of redox-proteomics, the new frontier in retinal biology.
Collapse
Affiliation(s)
- Frédéric Blond
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| | - Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
56
|
Bis-allylic Deuterated DHA Alleviates Oxidative Stress in Retinal Epithelial Cells. Antioxidants (Basel) 2019; 8:antiox8100447. [PMID: 31581525 PMCID: PMC6826779 DOI: 10.3390/antiox8100447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a crucial role in developing and accelerating retinal diseases including age-related macular degeneration (AMD). Docosahexaenoic acid (DHA, C22:6, n-3), the main lipid constituent of retinal epithelial cell membranes, is highly prone to radical and enzymatic oxidation leading to deleterious or beneficial metabolites for retinal tissue. To inhibit radical oxidation while preserving enzymatic metabolism, deuterium was incorporated at specific positions of DHA, resulting in D2-DHA when incorporated at position 6 and D4-DHA when incorporated at the 6,9 bis-allylic positions. Both derivatives were able to decrease DHAs’ toxicity and free radical processes involved in lipid peroxidation, in ARPE-19 cells (Adult Retinal Pigment Epithelial cell line), under pro-oxidant conditions. Our positive results encouraged us to prepare lipophenolic-deuterated-DHA conjugates as possible drug candidates for AMD treatment. These novel derivatives proved efficient in limiting lipid peroxidation in ARPE-19 cells. Finally, we evaluated the underlying mechanisms and the enzymatic conversion of both deuterated DHA. While radical abstraction was affected at the deuterium incorporation sites, enzymatic conversion by the lipoxygenase 15s-LOX was not impacted. Our results suggest that site-specifically deuterated DHA could be used in the development of DHA conjugates for treatment of oxidative stress driven diseases, or as biological tools to study the roles, activities and mechanisms of DHA metabolites.
Collapse
|
57
|
Cui K, Podolnikova NP, Bailey W, Szmuc E, Podrez EA, Byzova TV, Yakubenko VP. Inhibition of integrin α Dβ 2-mediated macrophage adhesion to end product of docosahexaenoic acid (DHA) oxidation prevents macrophage accumulation during inflammation. J Biol Chem 2019; 294:14370-14382. [PMID: 31395659 PMCID: PMC6768641 DOI: 10.1074/jbc.ra119.009590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Indexed: 11/06/2022] Open
Abstract
A critical step in the development of chronic inflammatory diseases is the accumulation of proinflammatory macrophages in the extracellular matrix (ECM) of peripheral tissues. The adhesion receptor integrin αDβ2 promotes the development of atherosclerosis and diabetes by supporting macrophage retention in inflamed tissue. We recently found that the end product of docosahexaenoic acid (DHA) oxidation, 2-(ω-carboxyethyl)pyrrole (CEP), serves as a ligand for αDβ2 CEP adduct with ECM is generated during inflammation-mediated lipid peroxidation. The goal of this project was to identify a specific inhibitor for αDβ2-CEP interaction that can prevent macrophage accumulation. Using a specially designed peptide library, Biacore-detected protein-protein interaction, and adhesion of integrin-transfected HEK 293 cells, we identified a sequence (called P5 peptide) that significantly and specifically inhibited αD-CEP binding. In the model of thioglycollate-induced peritoneal inflammation, the injection of cyclic P5 peptide reduced 3-fold the macrophage accumulation in WT mice but had no effect in αD-deficient mice. The tracking of adoptively transferred, fluorescently labeled WT and αD-/- monocytes in the model of peritoneal inflammation and in vitro two-dimensional and three-dimensional migration assays demonstrated that P5 peptide does not affect monocyte transendothelial migration or macrophage efflux from the peritoneal cavity but regulates macrophage migration through the ECM. Moreover, the injection of P5 peptide into WT mice on a high-fat diet prevents macrophage accumulation in adipose tissue in an αDβ2-dependent manner. Taken together, these results demonstrate the importance of αDβ2-mediated macrophage adhesion for the accumulation of infiltrating macrophages in the inflamed ECM and propose P5 peptide as a potential inhibitor of atherogenesis and diabetes.
Collapse
Affiliation(s)
- Kui Cui
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Nataly P Podolnikova
- Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University, Tempe, Arizona 85281
| | - William Bailey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Eric Szmuc
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Eugene A Podrez
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106
| | - Tatiana V Byzova
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106
| | - Valentin P Yakubenko
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| |
Collapse
|
58
|
Hussain AA, Lee Y, Marshall J. Understanding the complexity of the matrix metalloproteinase system and its relevance to age-related diseases: Age-related macular degeneration and Alzheimer's disease. Prog Retin Eye Res 2019; 74:100775. [PMID: 31473329 DOI: 10.1016/j.preteyeres.2019.100775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/26/2023]
Abstract
Extracellular matrices (ECMs) are maintained by tightly coupled processes of continuous synthesis and degradation. The degradative arm is mediated by a family of proteolytic enzymes called the matrix metalloproteinases (MMPs). These enzymes are released as latent proteins (pro-MMPs) and on activation are capable of degrading most components of an ECM. Activity of these enzymes is checked by the presence of tissue inhibitors of MMPs (TIMPs) and current opinion holds that the ratio of TIMPs/MMPs determines the relative rate of degradation. Thus, elevated ratios are thought to compromise degradation leading to the accumulation of abnormal ECM material, whilst diminished ratios are thought to lead to excessive ECM degradation (facilitating angiogenesis and the spread of cancer cells). Our recent work has shown this system to be far more complex. MMP species tend to undergo covalent modification leading to homo- and hetero-dimerization and aggregation resulting in the formation of very large macromolecular weight MMP complexes (LMMCs). In addition, the various MMP species also show a bound-free compartmentalisation. The net result of these changes is to reduce the availability of the latent forms of MMPs for the activation process. An assessment of the degradation potential of the MMP system in any tissue must therefore take into account the degree of sequestration of the latent MMP species, a protocol that has not previously been addressed. Taking into consideration the complexities already described, we will present an analysis of the MMP system in two common neurodegenerative disorders, namely age-related macular degeneration (AMD) and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Ali A Hussain
- Department of Genetics, UCL Institute of Ophthalmology, London, UK.
| | - Yunhee Lee
- Alt-Regen Co., Ltd, Heungdeok IT Valley, Yongin, Republic of Korea.
| | - John Marshall
- Department of Genetics, UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
59
|
Complement C3 Inhibitor Pegcetacoplan for Geographic Atrophy Secondary to Age-Related Macular Degeneration: A Randomized Phase 2 Trial. Ophthalmology 2019; 127:186-195. [PMID: 31474439 DOI: 10.1016/j.ophtha.2019.07.011] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Geographic atrophy (GA), a late stage of age-related macular degeneration (AMD), is a major cause of blindness. Even while central visual acuity remains relatively well preserved, GA often causes considerable compromise of visual function and quality of life. No treatment currently exists. We evaluated the safety and efficacy of pegcetacoplan, a complement C3 inhibitor, for treatment of GA. DESIGN Prospective, multicenter, randomized, sham-controlled phase 2 study. PARTICIPANTS Two hundred forty-six patients with GA. METHODS Patients with GA were assigned randomly in a 2:2:1:1 ratio to receive intravitreal injections of 15 mg pegcetacoplan monthly or every other month (EOM) or sham intravitreal injections monthly or EOM for 12 months with follow-up at months 15 and 18. Area and growth of GA were measured using fundus autofluorescence imaging. MAIN OUTCOME MEASURES The primary efficacy end point was mean change in square root GA lesion area from baseline to month 12. Secondary outcome measures included mean change from baseline in GA lesion area without the square root transformation, distance of GA lesion from the fovea, best-corrected visual acuity (BCVA), low-luminance BCVA, and low-luminance visual acuity deficit. The primary safety end point was the number and severity of treatment-emergent adverse events. RESULTS In patients receiving pegcetacoplan monthly or EOM, the GA growth rate was reduced by 29% (95% confidence interval [CI], 9-49; P = 0.008) and 20% (95% CI, 0-40; P = 0.067) compared with the sham treatment group. Post hoc analysis showed that the effect was greater in the second 6 months of treatment, with observed reductions of 45% (P = 0.0004) and 33% (P = 0.009) for pegcetacoplan monthly and EOM, respectively. Two cases of culture-positive endophthalmitis and 1 case of culture-negative endophthalmitis occurred in the pegcetacoplan monthly group. New-onset investigator-determined exudative AMD was reported more frequently in pegcetacoplan-treated eyes (18/86 eyes [20.9%] and 7/79 eyes [8.9%] in monthly and EOM groups, respectively) than in sham-treated eyes (1/81 eyes [1.2%]). CONCLUSIONS Local C3 inhibition with pegcetacoplan resulted in statistically significant reductions in the growth of GA compared with sham treatment. Phase 3 studies will define the efficacy and safety profile further.
Collapse
|
60
|
Schnabolk G. Systemic Inflammatory Disease and AMD Comorbidity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:27-31. [PMID: 31884584 DOI: 10.1007/978-3-030-27378-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prevalence of age-related macular degeneration (AMD), the leading cause of blindness in the United States, increases greatly with age. While age is the greatest risk factor of AMD, other risks such as smoking, family history, complement pathway activation, and race exist. Various systemic inflammatory diseases share many of these risk factors with AMD, as well as a similar inflammatory profile. Due to these similarities, patient database studies analyzing the association between patients with various systemic diseases and AMD have been performed. In this review we will summarize recent finding on this subject and discuss the implications on AMD diagnosis. By gaining greater insight into the association between chronic systemic inflammation and AMD, implications for novel therapeutic approaches to treat AMD pathology may be identified.
Collapse
Affiliation(s)
- Gloriane Schnabolk
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
61
|
Brown CN, Green BD, Thompson RB, den Hollander AI, Lengyel I. Metabolomics and Age-Related Macular Degeneration. Metabolites 2018; 9:metabo9010004. [PMID: 30591665 PMCID: PMC6358913 DOI: 10.3390/metabo9010004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Age-related macular degeneration (AMD) leads to irreversible visual loss, therefore, early intervention is desirable, but due to its multifactorial nature, diagnosis of early disease might be challenging. Identification of early markers for disease development and progression is key for disease diagnosis. Suitable biomarkers can potentially provide opportunities for clinical intervention at a stage of the disease when irreversible changes are yet to take place. One of the most metabolically active tissues in the human body is the retina, making the use of hypothesis-free techniques, like metabolomics, to measure molecular changes in AMD appealing. Indeed, there is increasing evidence that metabolic dysfunction has an important role in the development and progression of AMD. Therefore, metabolomics appears to be an appropriate platform to investigate disease-associated biomarkers. In this review, we explored what is known about metabolic changes in the retina, in conjunction with the emerging literature in AMD metabolomics research. Methods for metabolic biomarker identification in the eye have also been discussed, including the use of tears, vitreous, and aqueous humor, as well as imaging methods, like fluorescence lifetime imaging, that could be translated into a clinical diagnostic tool with molecular level resolution.
Collapse
Affiliation(s)
- Connor N Brown
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Brian D Green
- Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast BT9 6AG, UK.
| | - Richard B Thompson
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen 6525 EX, The Netherlands.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
62
|
Chen M, Luo C, Zhao J, Devarajan G, Xu H. Immune regulation in the aging retina. Prog Retin Eye Res 2018; 69:159-172. [PMID: 30352305 DOI: 10.1016/j.preteyeres.2018.10.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
The retina is an immune privileged tissue, which is protected from external and internal insults by its blood-retina barriers and immune suppressive microenvironment. Apart from the avoidance and tolerance strategies, the retina is also protected by its own defense system, i.e., microglia and the complement system. The immune privilege and defense mechanisms work together to maintain retinal homeostasis. During aging, the retina is at an increased risk of developing various degenerative diseases such as age-related macular degeneration, diabetic retinopathy, and glaucomatous retinopathy. Previously, we have shown that aging induces a para-inflammatory response in the retina. In this review, we explore the impact of aging on retinal immune regulation and the connection between homeostatic control of retinal immune privilege and para-inflammation under aging conditions and present a view that may explain why aging puts the retina at risk of developing degenerative diseases.
Collapse
Affiliation(s)
- Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, UK
| | - Chang Luo
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, UK; Aier Eye Institute, Aier School of Ophthalmology, Central South University, China
| | - Jiawu Zhao
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, UK
| | | | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, UK; Aier Eye Institute, Aier School of Ophthalmology, Central South University, China.
| |
Collapse
|
63
|
Light-induced generation and toxicity of docosahexaenoate-derived oxidation products in retinal pigmented epithelial cells. Exp Eye Res 2018; 181:325-345. [PMID: 30296412 DOI: 10.1016/j.exer.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Oxidative cleavage of docosahexaenoate (DHA) in retinal pigmented epithelial (RPE) cells produces 4-hydroxy-7-oxohept-5-enoic acid (HOHA) esters of 2-lysophosphatidylcholine (PC). HOHA-PC spontaneously releases a membrane-permeant HOHA lactone that modifies primary amino groups of proteins and ethanolamine phospholipids to produce 2-(ω-carboxyethyl)pyrrole (CEP) derivatives. CEPs have significant pathological relevance to age-related macular degeneration (AMD) including activation of CEP-specific T-cells leading to inflammatory M1 polarization of macrophages in the retina involved in "dry AMD" and TLR2-dependent induction of angiogenesis that characterizes "wet AMD". RPE cells accumulate DHA from shed rod photoreceptor outer segments through phagocytosis and from plasma lipoproteins secreted by the liver through active uptake from the choriocapillaris. As a cell model of light-induced oxidative damage of DHA phospholipids in RPE cells, ARPE-19 cells were supplemented with DHA, with or without the lipofuscin fluorophore A2E. In this model, light exposure, in the absence of A2E, promoted the generation HOHA lactone-glutathione (GSH) adducts, depletion of intracellular GSH and a competing generation of CEPs. While DHA-rich RPE cells exhibit an inherent proclivity toward light-induced oxidative damage, photosensitization by A2E nearly doubled the amount of lipid oxidation and expanded the spectral range of photosensitivity to longer wavelengths. Exposure of ARPE-19 cells to 1 μM HOHA lactone for 24 h induced massive (50%) loss of lysosomal membrane integrity and caused loss of mitochondrial membrane potential. Using senescence-associated β-galactosidase (SA β-gal) staining that detects lysosomal β-galactosidase, we determined that exposure to HOHA lactone induces senescence in ARPE-19 cells. The present study shows that products of light-induced oxidative damage of DHA phospholipids in the absence of A2E can lead to RPE cell dysfunction. Therefore, their toxicity may be especially important in the early stages of AMD before RPE cells accumulate lipofuscin fluorophores.
Collapse
|
64
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
65
|
Jiao H, Rutar M, Fernando N, Yednock T, Sankaranarayanan S, Aggio-Bruce R, Provis J, Natoli R. Subretinal macrophages produce classical complement activator C1q leading to the progression of focal retinal degeneration. Mol Neurodegener 2018; 13:45. [PMID: 30126455 PMCID: PMC6102844 DOI: 10.1186/s13024-018-0278-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of the alternative complement pathway and its mediation by retinal microglia and macrophages, is well-established in the pathogenesis of Age-Related Macular Degeneration (AMD). However, the contribution of the classical complement pathway towards the progression of retinal degenerations is not fully understood, including the role of complement component 1q (C1q) as a critical activator molecule of the classical pathway. Here, we investigated the contribution of C1q to progressive photoreceptor loss and neuroinflammation in retinal degenerations. METHODS Wild-type (WT), C1qa knockout (C1qa-/-) and mice treated with a C1q inhibitor (ANX-M1; Annexon Biosciences), were exposed to photo-oxidative damage (PD) and were observed for progressive lesion development. Retinal function was assessed by electroretinography, followed by histological analyses to assess photoreceptor degeneration. Retinal inflammation was investigated through complement activation, macrophage recruitment and inflammasome expression using western blotting, qPCR and immunofluorescence. C1q was localised in human AMD donor retinas using immunohistochemistry. RESULTS PD mice had increased levels of C1qa which correlated with increasing photoreceptor cell death and macrophage recruitment. C1qa-/- mice did not show any differences in photoreceptor loss or inflammation at 7 days compared to WT, however at 14 days after the onset of damage, C1qa-/- retinas displayed less photoreceptor cell death, reduced microglia/macrophage recruitment to the photoreceptor lesion, and higher visual function. C1qa-/- mice displayed reduced inflammasome and IL-1β expression in microglia and macrophages in the degenerating retina. Retinal neutralisation of C1q, using an intravitreally-delivered anti-C1q antibody, reduced the progression of retinal degeneration following PD, while systemic delivery had no effect. Finally, retinal C1q was found to be expressed by subretinal microglia/macrophages located in the outer retina of early AMD donor eyes, and in mouse PD retinas. CONCLUSIONS Our data implicate subretinal macrophages, C1q and the classical pathway in progressive retinal degeneration. We demonstrate a role of local C1q produced by microglia/macrophages as an instigator of inflammasome activation and inflammation. Crucially, we have shown that retinal C1q neutralisation during disease progression may slow retinal atrophy, providing a novel strategy for the treatment of complement-mediated retinal degenerations including AMD.
Collapse
Affiliation(s)
- Haihan Jiao
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia
| | - Ted Yednock
- Annexon Biosciences, South San Francisco, CA, USA
| | | | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia.,ANU Medical School, The Australian National University, ACT, Canberra, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia. .,ANU Medical School, The Australian National University, ACT, Canberra, Australia.
| |
Collapse
|
66
|
Kapphahn RJ, Richards MJ, Ferrington DA, Fliesler SJ. Lipid-derived and other oxidative modifications of retinal proteins in a rat model of Smith-Lemli-Opitz syndrome. Exp Eye Res 2018; 178:247-254. [PMID: 30114413 DOI: 10.1016/j.exer.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
Abstract
Oxidative modification of proteins can perturb their structure and function, often compromising cellular viability. Such modifications include lipid-derived adducts (e.g., 4-hydroxynonenal (HNE) and carboxyethylpyrrole (CEP)) as well as nitrotyrosine (NTyr). We compared the retinal proteome and levels of such modifications in the AY9944-treated rat model of Smith-Lemli-Opitz syndrome (SLOS), in comparison to age-matched controls. Retinas harvested at 3 months of age were either subjected to proteomic analysis or to immuno-slot blot analysis, the latter probing blots with antibodies raised against HNE, CEP, and NTyr, followed by quantitative densitometry. HNE modification of retinal proteins was markedly (>9-fold) higher in AY9944-treated rats compared to controls, whereas CEP modification was only modestly (≤2-fold) greater, and NTyr modification was minimal and exhibited no difference as a function of AY9944 treatment. Anti-HNE immunoreactivity was greatest in the plexiform and ganglion cell layers, but also present in the RPE, choroid, and photoreceptor outer segment layer in AY9944-treated rats; control retinas showed minimal HNE labeling. 1D-PAGE/Western blot analysis of rod outer segment (ROS) membranes revealed HNE modification of both opsin and β-transducin. Proteomic analysis revealed the differential expression of several retinal proteins as a consequence of AY9944 treatment. Upregulated proteins included those involved in chaperone/protein folding, oxidative and cellular stress responses, transcriptional regulation, and energy production. βA3/A1 Crystallin, which has a role in regulation of lysosomal acidification, was down-regulated. Hence, oxidative modification of retinal proteins occurs in the SLOS rat model, in addition to the previously described oxidation of lipids. The results are discussed in the context of the histological and physiological changes that occur in the retina in the SLOS rat model.
Collapse
Affiliation(s)
- Rebecca J Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Richards
- Department of Ophthalmology, Saint Louis University, School of Medicine, St. Louis, MO, USA
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Steven J Fliesler
- Department of Ophthalmology, Saint Louis University, School of Medicine, St. Louis, MO, USA; Departments of Ophthalmology and Biochemistry and the Neuroscience Graduate Program, The State University of New York (SUNY)- University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Administration Western New York Healthcare System (VAWNYHS), Buffalo, NY, USA.
| |
Collapse
|
67
|
Ebrahimi KB, Cano M, Rhee J, Datta S, Wang L, Handa JT. Oxidative Stress Induces an Interactive Decline in Wnt and Nrf2 Signaling in Degenerating Retinal Pigment Epithelium. Antioxid Redox Signal 2018; 29:389-407. [PMID: 29186981 PMCID: PMC6025703 DOI: 10.1089/ars.2017.7084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Cells have evolved a highly sophisticated web of cytoprotective systems to neutralize unwanted oxidative stress, but are challenged by unique modern day stresses such as cigarette smoking and ingestion of a high-fat diet (HFD). Age-related disease, such as age-related macular degeneration (AMD), the most common cause of blindness among the elderly in Western societies, develops in part, when oxidative stress overwhelms cytoprotective systems to injure tissue. Since most studies focus on the protection by a single protective system, the aim of this study was to investigate the impact of more than one cytoprotective system against oxidative stress. RESULTS Wingless (Wnt) and nuclear factor-erythroid 2-related factor 2 (Nrf2), two fundamental signaling systems that are vital to cell survival, decline after mice are exposed to chronic cigarette smoke and HFD, two established AMD risk factors, in a bidirectional feedback loop through phosphorylated glycogen synthase kinase 3 beta. Decreased Wnt and Nrf2 signaling leads to retinal pigment epithelial dysfunction and apoptosis, and a phenotype that is strikingly similar to geographic atrophy (GA), an advanced form of AMD with no effective treatment. INNOVATION This study is the first to show that chronic oxidative stress from common modern day environmental exposures reduces two fundamental and vital cytoprotective networks in a bidirectional feedback loop, and their decline leads to advanced disease phenotype. CONCLUSION Our data offer new insights into how combined modern oxidative stresses of cigarette smoking and HFD contribute to GA through an interactive decline in Wnt and Nrf2 signaling. Antioxid. Redox Signal. 29, 389-407.
Collapse
Affiliation(s)
- Katayoon B Ebrahimi
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Marisol Cano
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - John Rhee
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sayantan Datta
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lei Wang
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - James T Handa
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
68
|
Copland DA, Theodoropoulou S, Liu J, Dick AD. A Perspective of AMD Through the Eyes of Immunology. ACTA ACUST UNITED AC 2018; 59:AMD83-AMD92. [DOI: 10.1167/iovs.18-23893] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- David A. Copland
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
| | - Sofia Theodoropoulou
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
| | - Jian Liu
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
| | - Andrew D. Dick
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
- University College London–Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
69
|
Linetsky M, Bondelid KS, Losovskiy S, Gabyak V, Rullo MJ, Stiadle TI, Munjapara V, Saxena P, Ma D, Cheng YS, Howes AM, Udeigwe E, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic Acid Lactone Is a Potent Inducer of the Complement Pathway in Human Retinal Pigmented Epithelial Cells. Chem Res Toxicol 2018; 31:666-679. [PMID: 29883119 DOI: 10.1021/acs.chemrestox.8b00028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We previously discovered that oxidative cleavage of docosahexaenoate (DHA), which is especially abundant in the retinal photoreceptor rod outer segments and retinal pigmented endothelial (RPE) cells, generates 4-hydroxy-7-oxo-5-heptenoate (HOHA) lactone, and that HOHA lactone can enter RPE cells that metabolize it through conjugation with glutathione (GSH). The consequent depletion of GSH results in oxidative stress. We now find that HOHA lactone induces upregulation of the antioxidant transcription factor Nrf2 in ARPE-19 cells. This leads to expression of GCLM, HO1, and NQO1, three known Nrf2-responsive antioxidant genes. Besides this protective response, HOHA lactone also triggers a countervailing inflammatory activation of innate immunity. Evidence for a contribution of the complement pathway to age-related macular degeneration (AMD) pathology includes the presence of complement proteins in drusen and Bruch's membrane from AMD donor eyes, and the identification of genetic susceptibility loci for AMD in the complement pathway. In eye tissues from a mouse model of AMD, accumulation of complement protein in Bruch's membrane below the RPE suggested that the complement pathway targets this interface, where lesions occur in the RPE and photoreceptor rod outer segments. In animal models of AMD, intravenous injection of NaIO3 to induce oxidative injury selectively destroys the RPE and causes secretion of factor C3 from the RPE into areas directly adjacent to sites of RPE damage. However, a molecular-level link between oxidative injury and complement activation remained elusive. We now find that sub-micromolar concentrations of HOHA lactone foster expression of C3, CFB, and C5 in ARPE-19 cells and induce a countervailing upregulation of CD55, an inhibitor of C3 convertase production and complement cascade amplification. Ultimately, HOHA lactone causes membrane attack complex formation on the plasma membrane. Thus, HOHA lactone provides a molecular-level connection between free-radical-induced oxidative cleavage of DHA and activation of the complement pathway in AMD pathology.
Collapse
Affiliation(s)
- Mikhail Linetsky
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Karina S Bondelid
- Department of Biochemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Sofiya Losovskiy
- Department of Chemistry , Cleveland State University , Cleveland , Ohio 44115 , United States
| | - Vadym Gabyak
- Department of Biological, Geological, and Environmental Sciences , Cleveland State University , Cleveland , Ohio 44115 , United States
| | - Mario J Rullo
- Department of Biochemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Thomas I Stiadle
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Vasu Munjapara
- Department of Biochemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Priyali Saxena
- Department of Biochemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Duoming Ma
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Yu-Shiuan Cheng
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Andrew M Howes
- Department of Biochemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Emeka Udeigwe
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Robert G Salomon
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States.,Department of Ophthalmology & Visual Sciences , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
70
|
Yakubenko VP, Cui K, Ardell CL, Brown KE, West XZ, Gao D, Stefl S, Salomon RG, Podrez EA, Byzova TV. Oxidative modifications of extracellular matrix promote the second wave of inflammation via β 2 integrins. Blood 2018; 132:78-88. [PMID: 29724896 PMCID: PMC6034644 DOI: 10.1182/blood-2017-10-810176] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Early stages of inflammation are characterized by extensive oxidative insult by recruited and activated neutrophils. Secretion of peroxidases, including the main enzyme, myeloperoxidase, leads to the generation of reactive oxygen species. We show that this oxidative insult leads to polyunsaturated fatty acid (eg, docosahexaenoate), oxidation, and accumulation of its product 2-(ω-carboxyethyl)pyrrole (CEP), which, in turn, is capable of protein modifications. In vivo CEP is generated predominantly at the inflammatory sites in macrophage-rich areas. During thioglycollate-induced inflammation, neutralization of CEP adducts dramatically reduced macrophage accumulation in the inflamed peritoneal cavity while exhibiting no effect on the early recruitment of neutrophils, suggesting a role in the second wave of inflammation. CEP modifications were abundantly deposited along the path of neutrophils migrating through the 3-dimensional fibrin matrix in vitro. Neutrophil-mediated CEP formation was markedly inhibited by the myeloperoxidase inhibitor, 4-ABH, and significantly reduced in myeloperoxidase-deficient mice. On macrophages, CEP adducts were recognized by cell adhesion receptors, integrin αMβ2 and αDβ2 Macrophage migration through CEP-fibrin gel was dramatically augmented when compared with fibrin alone, and was reduced by β2-integrin deficiency. Thus, neutrophil-mediated oxidation of abundant polyunsaturated fatty acids leads to the transformation of existing proteins into stronger adhesive ligands for αMβ2- and αDβ2-dependent macrophage migration. The presence of a carboxyl group rather than a pyrrole moiety on these adducts, resembling characteristics of bacterial and/or immobilized ligands, is critical for recognition by macrophages. Therefore, specific oxidation-dependent modification of extracellular matrix, aided by neutrophils, promotes subsequent αMβ2- and αDβ2-mediated migration/retention of macrophages during inflammation.
Collapse
Affiliation(s)
- Valentin P Yakubenko
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Kui Cui
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Christopher L Ardell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Kathleen E Brown
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Xiaoxia Z West
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Detao Gao
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Samantha Stefl
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | - Eugene A Podrez
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Tatiana V Byzova
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| |
Collapse
|
71
|
Damage-associated molecular pattern recognition is required for induction of retinal neuroprotective pathways in a sex-dependent manner. Sci Rep 2018; 8:9115. [PMID: 29904087 PMCID: PMC6002365 DOI: 10.1038/s41598-018-27479-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022] Open
Abstract
Retinal degeneration is a common cause of irreversible blindness and is caused by the death of retinal light-sensitive neurons called photoreceptors. At the onset of degeneration, stressed photoreceptors cause retinal glial cells to secrete neuroprotective factors that slow the pace of degeneration. Leukemia inhibitory factor (LIF) is one such factor that is required for endogenous neuroprotection. Photoreceptors are known to release signals of cellular stress, called damage-associated molecular patterns (DAMPs) early in degeneration, and we hypothesized that receptors for DAMPs or pattern recognition receptors (PRRs) play a key role in the induction of LIF and neuroprotective stress responses in retinal glial cells. Toll-like receptor 2 (TLR2) is a well-established DAMP receptor. In our experiments, activation of TLR2 protected both male and female mice from light damage, while the loss of TLR2 in female mice did not impact photoreceptor survival. In contrast, induction of protective stress responses, microglial phenotype and photoreceptor survival were strongly impacted in male TLR2−/− mice. Lastly, using publicly available gene expression data, we show that TLR2 is expressed highly in resting microglia prior to injury, but is also induced in Müller cells in inherited retinal degeneration.
Collapse
|
72
|
Fisher CR, Ferrington DA. Perspective on AMD Pathobiology: A Bioenergetic Crisis in the RPE. Invest Ophthalmol Vis Sci 2018; 59:AMD41-AMD47. [PMID: 30025108 PMCID: PMC5989860 DOI: 10.1167/iovs.18-24289] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AMD is the leading cause of blindness in developed countries. The dry form of AMD, also known as atrophic AMD, is characterized by the death of RPE and photoreceptors. Currently, there are no treatments for this form of the disease due in part to our incomplete understanding of the mechanism causing AMD. Strong experimental evidence from studies of human donors with AMD supports the emerging hypothesis that defects in RPE mitochondria drive AMD pathology. These studies, using different experimental methods, have shown disrupted RPE mitochondrial architecture and decreased mitochondrial number and mass, altered content of multiple mitochondrial proteins, increased mitochondrial DNA damage that correlates with disease severity, and defects in bioenergetics for primary RPE cultures from AMD donors. Herein, we discuss a model of metabolic uncoupling that alters bioenergetics in the diseased retina and drives AMD pathology. These data provide the rationale for targeting the mitochondria in the RPE as the most efficacious intervention strategy if administered early, before vision loss and cell death.
Collapse
Affiliation(s)
- Cody R. Fisher
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
,Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
,Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
73
|
Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in healthy and diseased retina. Prog Neurobiol 2018; 173:18-40. [PMID: 29864456 DOI: 10.1016/j.pneurobio.2018.05.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Microglia, the resident immune cells of the brain and retina, are constantly engaged in the surveillance of their surrounding neural tissue. During embryonic development they infiltrate the retinal tissues and participate in the phagocytosis of redundant neurons. The contribution of microglia in maintaining the purposeful and functional histo-architecture of the adult retina is indispensable. Within the retinal microenvironment, robust microglial activation is elicited by subtle changes caused by extrinsic and intrinsic factors. When there is a disturbance in the cell-cell communication between microglia and other retinal cells, for example in retinal injury, the activated microglia can manifest actions that can be detrimental. This is evidenced by activated microglia secreting inflammatory mediators that can further aggravate the retinal injury. Microglial activation as a harbinger of a variety of retinal diseases is well documented by many studies. In addition, a change in the microglial phenotype which may be associated with aging, may predispose the retina to age-related diseases. In light of the above, the focus of this review is to highlight the role played by microglia in the healthy and diseased retina, based on findings of our own work and from that of others.
Collapse
Affiliation(s)
- Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, United States
| | - Wallace S Foulds
- Singapore Eye Research Institute Level 6, The Academia, Discovery Tower, 20 College Road, 169856, Singapore; University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore.
| |
Collapse
|
74
|
van Leeuwen EM, Emri E, Merle BMJ, Colijn JM, Kersten E, Cougnard-Gregoire A, Dammeier S, Meester-Smoor M, Pool FM, de Jong EK, Delcourt C, Rodrigez-Bocanegra E, Biarnés M, Luthert PJ, Ueffing M, Klaver CCW, Nogoceke E, den Hollander AI, Lengyel I. A new perspective on lipid research in age-related macular degeneration. Prog Retin Eye Res 2018; 67:56-86. [PMID: 29729972 DOI: 10.1016/j.preteyeres.2018.04.006] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
There is an urgency to find new treatment strategies that could prevent or delay the onset or progression of AMD. Different classes of lipids and lipoproteins metabolism genes have been associated with AMD in a multiple ways, but despite the ever-increasing knowledge base, we still do not understand fully how circulating lipids or local lipid metabolism contribute to AMD. It is essential to clarify whether dietary lipids, systemic or local lipoprotein metabolismtrafficking of lipids in the retina should be targeted in the disease. In this article, we critically evaluate what has been reported in the literature and identify new directions needed to bring about a significant advance in our understanding of the role for lipids in AMD. This may help to develop potential new treatment strategies through targeting the lipid homeostasis.
Collapse
Affiliation(s)
- Elisabeth M van Leeuwen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eszter Emri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Benedicte M J Merle
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Johanna M Colijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Audrey Cougnard-Gregoire
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Sascha Dammeier
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Magda Meester-Smoor
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Eiko K de Jong
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Cécile Delcourt
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | | | | | | | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Everson Nogoceke
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Imre Lengyel
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
75
|
Pleiotropic Effects of Risk Factors in Age-Related Macular Degeneration and Seemingly Unrelated Complex Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:247-255. [PMID: 29721950 DOI: 10.1007/978-3-319-75402-4_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Age-related macular degeneration (AMD) is a complex disease with both environmental and genetic factors influencing disease risk. Genome-wide case-control association studies, candidate gene analyses, and epidemiological studies reinforced the notion that AMD is predominantly a disease of an impaired complement system and an altered high-density lipoprotein (HDL) metabolism. Recent reports demonstrated the pleiotropic role of the complement system and HDL in complex diseases such as cardiovascular disease, autoimmune disorders, cancer, and Alzheimer's disease. In light of these findings, we explore current evidence for a shared genetic and environmental risk of AMD and unrelated complex diseases based on epidemiological studies. Shared risk factors may indicate common pathways in disease pathology and thus may have implications for novel treatment options of AMD pathology.
Collapse
|
76
|
Tode J, Richert E, Koinzer S, Klettner A, von der Burchard C, Brinkmann R, Lucius R, Roider J. Thermal Stimulation of the Retina Reduces Bruch's Membrane Thickness in Age Related Macular Degeneration Mouse Models. Transl Vis Sci Technol 2018; 7:2. [PMID: 29736323 PMCID: PMC5931258 DOI: 10.1167/tvst.7.3.2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/16/2018] [Indexed: 01/04/2023] Open
Abstract
Purpose To investigate the effect of thermal stimulation of the retina (TS-R) on Bruch's membrane (BrM) thickness in age-related macular degeneration (AMD) mouse models as a novel concept for the prophylaxis and treatment of dry AMD. Methods Two knockout AMD mouse models, B6.129P2-Apoetm1Unc/J (ApoE−/−) and B6.129X1-Nfe2I2tm1Ywk/J (NRF2−/−), were chosen. One randomized eye of each mouse in four different groups (two of different age, two of different genotype) of five mice was treated by TS-R (532 nm, 10-ms duration, 50-μm spot size), the fellow eye served as control. Laser power was titrated to barely visible laser burns, then reduced by 70% to guarantee for thermal elevation without damage to the neuroretina, then applied uniformly to the murine retina. Fundus, optical coherence tomography (OCT), and fluorescein angiography (FLA) images were obtained at the day of treatment and 1 month after treatment. Eyes were enucleated thereafter to analyze BrM thickness by transmission electron microscopy (TEM) in a standardized blinded manner. Results Fundus images revealed that all ApoE−/− and NRF2−/− mice had AMD associated retinal alterations. BrM thickness was increased in untreated controls of both mouse models. Subvisible TS-R laser spots were not detectable by fundus imaging, OCT, or FLA 2 hours or 1 month after laser treatment. TEM revealed a significant reduction of BrM thickness in laser-treated eyes of all four groups compared to their fellow control eyes. Conclusions TS-R reduces BrM thickness in AMD mouse models ApoE−/− and NRF2−/− without damage to the neuroretina. It may become a prophylactic or even therapeutic treatment option for dry AMD. Translational Relevance TS-R may become a prophylactic or even therapeutic treatment option for dry AMD.
Collapse
Affiliation(s)
- Jan Tode
- Christian-Albrechts-University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany
| | - Elisabeth Richert
- Christian-Albrechts-University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany
| | - Stefan Koinzer
- Christian-Albrechts-University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany
| | - Alexa Klettner
- Christian-Albrechts-University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany
| | - Claus von der Burchard
- Christian-Albrechts-University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany
| | - Ralf Brinkmann
- Institute for Biomedical Optics, University of Lübeck, and Medical Laser Center Lübeck GmbH, Lübeck, Germany
| | - Ralph Lucius
- Christian-Albrechts-University of Kiel, Institute of Anatomy, Kiel, Germany
| | - Johann Roider
- Christian-Albrechts-University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany
| |
Collapse
|
77
|
Askou AL, Alsing S, Holmgaard A, Bek T, Corydon TJ. Dissecting microRNA dysregulation in age-related macular degeneration: new targets for eye gene therapy. Acta Ophthalmol 2018; 96:9-23. [PMID: 28271607 DOI: 10.1111/aos.13407] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression in humans. Overexpression or depletion of individual miRNAs is associated with human disease. Current knowledge suggests that the retina is influenced by miRNAs and that dysregulation of miRNAs as well as alterations in components of the miRNA biogenesis machinery are involved in retinal diseases, including age-related macular degeneration (AMD). Furthermore, recent studies have indicated that the vitreous has a specific panel of circulating miRNAs and that this panel varies according to the specific pathological stress experienced by the retinal cells. MicroRNA (miRNA) profiling indicates subtype-specific miRNA profiles for late-stage AMD highlighting the importance of proper miRNA regulation in AMD. This review will describe the function of important miRNAs involved in inflammation, oxidative stress and pathological neovascularization, the key molecular mechanisms leading to AMD, and focus on dysregulated miRNAs as potential therapeutic targets in AMD.
Collapse
Affiliation(s)
| | - Sidsel Alsing
- Department of Biomedicine; Aarhus University; Aarhus C Denmark
| | | | - Toke Bek
- Department of Ophthalmology; Aarhus University Hospital; Aarhus C Denmark
| | | |
Collapse
|
78
|
Ao J, Wood JP, Chidlow G, Gillies MC, Casson RJ. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy? Clin Exp Ophthalmol 2018; 46:670-686. [PMID: 29205705 DOI: 10.1111/ceo.13121] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
Abstract
The retinal pigment epithelium (RPE) comprises a monolayer of cells located between the neuroretina and the choriocapillaries. The RPE serves several important functions in the eye: formation of the blood-retinal barrier, protection of the retina from oxidative stress, nutrient delivery and waste disposal, ionic homeostasis, phagocytosis of photoreceptor outer segments, synthesis and release of growth factors, reisomerization of all-trans-retinal during the visual cycle, and establishment of ocular immune privilege. Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. Dysfunction of the RPE has been associated with the pathogenesis of AMD in relation to increased oxidative stress, mitochondrial destabilization and complement dysregulation. Photobiomodulation or near infrared light therapy which refers to non-invasive irradiation of tissue with light in the far-red to near-infrared light spectrum (630-1000 nm), is an intervention that specifically targets key mechanisms of RPE dysfunction that are implicated in AMD pathogenesis. The current evidence for the efficacy of photobiomodulation in AMD is poor but its safety profile and proposed mechanisms of action motivate further research as a novel therapy for AMD.
Collapse
Affiliation(s)
- Jack Ao
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - John Pm Wood
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - Glyn Chidlow
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark C Gillies
- The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Robert J Casson
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
79
|
Parmar VM, Parmar T, Arai E, Perusek L, Maeda A. A2E-associated cell death and inflammation in retinal pigmented epithelial cells from human induced pluripotent stem cells. Stem Cell Res 2018; 27:95-104. [PMID: 29358124 PMCID: PMC5877810 DOI: 10.1016/j.scr.2018.01.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/28/2017] [Accepted: 01/10/2018] [Indexed: 01/12/2023] Open
Abstract
Accumulation of lipofuscin in the retinal pigmented epithelium (RPE) is observed in retinal degenerative diseases including Stargardt disease and age-related macular degeneration. Bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E) is a major component of lipofuscin. A2E has been implicated in RPE atrophy and retinal inflammation; however, mice with A2E accumulation display only a mild retinal phenotype. In the current study, human iPSC-RPE (hiPSC-RPE) cells were generated from healthy individuals to examine effects of A2E in human RPE cells. hiPSC-RPE cells displayed RPE-specific features, which include expression of RPE-specific genes, tight junction formation and ability to carry out phagocytosis. hiPSC-RPE cells demonstrated cell death and increased VEGF-A production in a time-dependent manner when they were cocultured with 10 μM of A2E. PCR array analyses revealed upregulation of 26 and 12 pro-inflammatory cytokines upon A2E and H2O2 exposure respectively, indicating that A2E and H2O2 can cause inflammation in human retinas. Notably, identified gene profiles were different between A2E- and H2O2-treated hiPSC-RPE cells. A2E caused inflammatory changes observed in retinal degenerative diseases more closely as compared to H2O2. Collectively, these data obtained with hiPSC-RPE cells provide evidence that A2E plays an important role in pathogenesis of retinal degenerative diseases in humans.
Collapse
Affiliation(s)
- Vipul M Parmar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Tanu Parmar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Eisuke Arai
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Lindsay Perusek
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, United States; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
80
|
Abstract
Age-related Macular Degeneration (AMD) is a multifactorial disease that occurs only in senior population. According to Harman's theory (1956), senescence happens due to excessive accumulation and reduced elimination of free radicals in tissues. At the young age, intensive metabolic processes in the outer layers of the retina and pigment epithelium do not lead to the disease because the pigment epithelium itself and the antioxidant protection function well. If they do not work, the immune system becomes involved. Macrophages, microglia, complement system all contribute to the removal of toxic products. R. Medzhidov in 2008 proposed to call this phenomenon 'para-inflammation'. With aging, this protection may fail, especially if there is a genetic predisposition or aggravating environmental factors. Although AMD cannot be truly called an inflammatory disease, the factors of chronic inflammation are present in it. This is especially true for the alternative complement pathway. People carrying polymorphism of the H gene that normally blocks excessive complement activity are reliably known to have AMD more often. The normal functioning of the complement system contributes to para-inflammation, while its hyperactivation leads to more tissue damage inducing the disease. The impairment of the hemo-ophthalmic barrier caused by the defeat of RPE makes antigens of the outer layers of the retina accessible. Depending on the genetic characteristics of the patient, these antigens are represented differently to his immune system, and since they do not have immune tolerance, varying degrees of autoimmune reaction should be expected. The treatment should be aimed at reduction of the oxidative stress, and injection of inhibitors of vascular endothelial growth factors, glucocorticoids, etc. The study of para-inflammation and inflammation in AMD will help create a new generation of effective drugs that affect the key links in these processes.
Collapse
Affiliation(s)
- N A Ermakova
- Institute of Advanced Training of the Federal Medical-Biological Agency, Department of Opthalmology, 30/1 Volokolamskoe highway, Moscow, Russian Federation, 123182
| |
Collapse
|
81
|
Nag TC, Kumar P, Wadhwa S. Age related distribution of 4-hydroxy 2-nonenal immunoreactivity in human retina. Exp Eye Res 2017; 165:125-135. [PMID: 28986146 DOI: 10.1016/j.exer.2017.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/26/2017] [Accepted: 09/28/2017] [Indexed: 12/21/2022]
Abstract
The retina is prone to be damaged by oxidative stress (OS), owing to its constant exposure to light, high rate of oxygen consumption and high membrane lipid content. Lipid peroxidation in aging human retina has been shown by biochemical means. However, information on the cellular sites of OS and antioxidant responses in aging human retina remains limited. Here, we show distribution of immunoreactivity (IR) to a marker of lipid peroxidation (4-hydroxy 2-nonenal [HNE] and antioxidant enzymes involved in counteracting lipid peroxidation (glutathione S-transferase-π1 and glutarexoxin-1) in donor human retinas at different ages (35-91 years; N = 24). Initially, HNE-IR was present in few macular cone outer segments (COS, sixth decade). With aging, IR appeared in many COS and peaked at ninth decade (14 vs 62 per 3850 μm2 area between 6 and 9 decade; p < 0.001) in the parafovea then seen elsewhere (perifoveal, mid-peripheral and nasal). IR was seen in the parafovea of all retinas, whereas it was present in 8/24 of perifoveal and 6/24 of mid-peripheral retinas, indicating that the parafovea is susceptible to undergo lipid peroxidation. Foveolar COS were immunonegative until 81 years, which developed IR later (>83 years). IR to glutathione S-transferase-π1 was moderate until eight decade and then showed a decrease in photoreceptor cells between ninth and tenth decade, while glutaredoxin-1 maintained a steady expression with aging. Damaged COS were present in aged retinas, and inner segments and photoreceptor nuclei also showed some degree of alterations. Although there was increased lipid peroxidation with aging, cone death was minimal in those retinas. The two antioxidant enzymes studied here, may play a role in protecting photoreceptors against OS with advanced aging.
Collapse
Affiliation(s)
- Tapas C Nag
- Department of Anatomy, Neurobiology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Pankaj Kumar
- Department of Anatomy, Neurobiology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shashi Wadhwa
- Department of Anatomy, Neurobiology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
82
|
Feng L, Ju M, Lee KYV, Mackey A, Evangelista M, Iwata D, Adamson P, Lashkari K, Foxton R, Shima D, Ng YS. A Proinflammatory Function of Toll-Like Receptor 2 in the Retinal Pigment Epithelium as a Novel Target for Reducing Choroidal Neovascularization in Age-Related Macular Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2208-2221. [PMID: 28739342 DOI: 10.1016/j.ajpath.2017.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/16/2017] [Accepted: 06/08/2017] [Indexed: 11/28/2022]
Abstract
Current treatments for choroidal neovascularization, a major cause of blindness for patients with age-related macular degeneration, treat symptoms but not the underlying causes of the disease. Inflammation has been strongly implicated in the pathogenesis of choroidal neovascularization. We examined the inflammatory role of Toll-like receptor 2 (TLR2) in age-related macular degeneration. TLR2 was robustly expressed by the retinal pigment epithelium in mouse and human eyes, both normal and with macular degeneration/choroidal neovascularization. Nuclear localization of NF-κB, a major downstream target of TLR2 signaling, was detected in the retinal pigment epithelium of human eyes, particularly in eyes with advanced stages of age-related macular degeneration. TLR2 antagonism effectively suppressed initiation and growth of spontaneous choroidal neovascularization in a mouse model, and the combination of anti-TLR2 and antivascular endothelial growth factor receptor 2 yielded an additive therapeutic effect on both area and number of spontaneous choroidal neovascularization lesions. Finally, in primary human fetal retinal pigment epithelium cells, ligand binding to TLR2 induced robust expression of proinflammatory cytokines, and end products of lipid oxidation had a synergistic effect on TLR2 activation. Our data illustrate a functional role for TLR2 in the pathogenesis of choroidal neovascularization, likely by promoting inflammation of the retinal pigment epithelium, and validate TLR2 as a novel therapeutic target for reducing choroidal neovascularization.
Collapse
Affiliation(s)
- Lili Feng
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Meihua Ju
- University College of London Institute of Ophthalmology, London, United Kingdom; Department of Ocular Biology and Therapeutics, University College of London Institute of Ophthalmology, London, United Kingdom
| | - Kei Ying V Lee
- University College of London Institute of Ophthalmology, London, United Kingdom; Department of Ocular Biology and Therapeutics, University College of London Institute of Ophthalmology, London, United Kingdom
| | - Ashley Mackey
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Mariasilvia Evangelista
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Daiju Iwata
- University College of London Institute of Ophthalmology, London, United Kingdom; Department of Ocular Biology and Therapeutics, University College of London Institute of Ophthalmology, London, United Kingdom
| | - Peter Adamson
- University College of London Institute of Ophthalmology, London, United Kingdom
| | - Kameran Lashkari
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Richard Foxton
- University College of London Institute of Ophthalmology, London, United Kingdom; Department of Ocular Biology and Therapeutics, University College of London Institute of Ophthalmology, London, United Kingdom
| | - David Shima
- University College of London Institute of Ophthalmology, London, United Kingdom; Department of Ocular Biology and Therapeutics, University College of London Institute of Ophthalmology, London, United Kingdom
| | - Yin Shan Ng
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
83
|
Mitra RN, Gao R, Zheng M, Wu MJ, Voinov MA, Smirnov AI, Smirnova TI, Wang K, Chavala S, Han Z. Glycol Chitosan Engineered Autoregenerative Antioxidant Significantly Attenuates Pathological Damages in Models of Age-Related Macular Degeneration. ACS NANO 2017; 11:4669-4685. [PMID: 28463509 DOI: 10.1021/acsnano.7b00429] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Age-related macular degeneration (AMD) is the foremost cause of irreversible blindness in people over the age of 65 especially in developing countries. Therefore, an exploration of effective and alternative therapeutic interventions is an unmet medical need. It has been established that oxidative stress plays a key role in the pathogenesis of AMD, and hence, neutralizing oxidative stress is an effective therapeutic strategy for treatment of this serious disorder. Owing to autoregenerative properties, nanoceria has been widely used as a nonenzymatic antioxidant in the treatment of oxidative stress related disorders. Yet, its potential clinical implementation has been greatly hampered by its poor water solubility and lack of reliable tracking methodologies/processes and hence poor absorption, distribution, and targeted delivery. The water solubility and surface engineering of a drug with biocompatible motifs are fundamental to pharmaceutical products and precision medicine. Here, we report an engineered water-soluble, biocompatible, trackable nanoceria with enriched antioxidant activity to scavenge intracellular reactive oxygen species (ROS). Experimental studies with in vitro and in vivo models demonstrated that this antioxidant is autoregenerative and more active in inhibiting laser-induced choroidal neovascularization by decreasing ROS-induced pro-angiogenic vascular endothelial growth factor (VEGF) expression, cumulative oxidative damage, and recruitment of endothelial precursor cells without exhibiting any toxicity. This advanced formulation may offer a superior therapeutic effect to deal with oxidative stress induced pathogeneses, such as AMD.
Collapse
Affiliation(s)
| | - Ruijuan Gao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, China
| | | | | | - Maxim A Voinov
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Tatyana I Smirnova
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | - Sai Chavala
- North Texas Eye Research Institute at University of North Texas Health Science Center , Fort Worth, Texas 76107, United States
| | | |
Collapse
|
84
|
Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc Natl Acad Sci U S A 2017; 114:E4472-E4481. [PMID: 28507131 DOI: 10.1073/pnas.1702302114] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is the major cause of blindness in developed nations. AMD is characterized by retinal pigmented epithelial (RPE) cell dysfunction and loss of photoreceptor cells. Epidemiologic studies indicate important contributions of dietary patterns to the risk for AMD, but the mechanisms relating diet to disease remain unclear. Here we investigate the effect on AMD of isocaloric diets that differ only in the type of dietary carbohydrate in a wild-type aged-mouse model. The consumption of a high-glycemia (HG) diet resulted in many AMD features (AMDf), including RPE hypopigmentation and atrophy, lipofuscin accumulation, and photoreceptor degeneration, whereas consumption of the lower-glycemia (LG) diet did not. Critically, switching from the HG to the LG diet late in life arrested or reversed AMDf. LG diets limited the accumulation of advanced glycation end products, long-chain polyunsaturated lipids, and their peroxidation end-products and increased C3-carnitine in retina, plasma, or urine. Untargeted metabolomics revealed microbial cometabolites, particularly serotonin, as protective against AMDf. Gut microbiota were responsive to diet, and we identified microbiota in the Clostridiales order as being associated with AMDf and the HG diet, whereas protection from AMDf was associated with the Bacteroidales order and the LG diet. Network analysis revealed a nexus of metabolites and microbiota that appear to act within a gut-retina axis to protect against diet- and age-induced AMDf. The findings indicate a functional interaction between dietary carbohydrates, the metabolome, including microbial cometabolites, and AMDf. Our studies suggest a simple dietary intervention that may be useful in patients to arrest AMD.
Collapse
|
85
|
Kersten E, Paun CC, Schellevis RL, Hoyng CB, Delcourt C, Lengyel I, Peto T, Ueffing M, Klaver CCW, Dammeier S, den Hollander AI, de Jong EK. Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Surv Ophthalmol 2017; 63:9-39. [PMID: 28522341 DOI: 10.1016/j.survophthal.2017.05.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
Abstract
Biomarkers can help unravel mechanisms of disease and identify new targets for therapy. They can also be useful in clinical practice for monitoring disease progression, evaluation of treatment efficacy, and risk assessment in multifactorial diseases, such as age-related macular degeneration (AMD). AMD is a highly prevalent progressive retinal disorder for which multiple genetic and environmental risk factors have been described, but the exact etiology is not yet fully understood. Many compounds have been evaluated for their association with AMD. We performed an extensive literature review of all compounds measured in serum, plasma, vitreous, aqueous humor, and urine of AMD patients. Over 3600 articles were screened, resulting in more than 100 different compounds analyzed in AMD studies, involved in neovascularization, immunity, lipid metabolism, extracellular matrix, oxidative stress, diet, hormones, and comorbidities (such as kidney disease). For each compound, we provide a short description of its function and discuss the results of the studies in relation to its usefulness as AMD biomarker. In addition, biomarkers identified by hypothesis-free techniques, including metabolomics, proteomics, and epigenomics, are covered. In summary, compounds belonging to the oxidative stress pathway, the complement system, and lipid metabolism are the most promising biomarker candidates for AMD. We hope that this comprehensive survey of the literature on systemic and ocular fluid compounds as potential biomarkers in AMD will provide a stepping stone for future research and possible implementation in clinical practice.
Collapse
Affiliation(s)
- Eveline Kersten
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Constantin C Paun
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rosa L Schellevis
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cécile Delcourt
- Université de Bordeaux, ISPED, Bordeaux, France; INSERM, U1219-Bordeaux Population Health Research Center, Bordeaux, France
| | - Imre Lengyel
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Tunde Peto
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Marius Ueffing
- Department for Ophthalmology and Medical Bioanalytics Centre Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sascha Dammeier
- Department for Ophthalmology and Medical Bioanalytics Centre Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
86
|
The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res 2017; 60:201-218. [PMID: 28336424 DOI: 10.1016/j.preteyeres.2017.03.002] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized, unique epithelial cell that interacts with photoreceptors on its apical side and with Bruch's membrane and the choriocapillaris on its basal side. Due to vital functions that keep photoreceptors healthy, the RPE is essential for maintaining vision. With aging and the accumulated effects of environmental stresses, the RPE can become dysfunctional and die. This degeneration plays a central role in age-related macular degeneration (AMD) pathobiology, the leading cause of blindness among the elderly in western societies. Oxidative stress and inflammation have both physiological and potentially pathological roles in RPE degeneration. Given the central role of the RPE, this review will focus on the impact of oxidative stress and inflammation on the RPE with AMD pathobiology. Physiological sources of oxidative stress as well as unique sources from photo-oxidative stress, the phagocytosis of photoreceptor outer segments, and modifiable factors such as cigarette smoking and high fat diet ingestion that can convert oxidative stress into a pathological role, and the negative impact of impairing the cytoprotective roles of mitochondrial dynamics and the Nrf2 signaling system on RPE health in AMD will be discussed. Likewise, the response by the innate immune system to an inciting trigger, and the potential role of local RPE production of inflammation, as well as a potential role for damage by inflammation with chronicity if the inciting trigger is not neutralized, will be debated.
Collapse
|
87
|
Adamus G. Can innate and autoimmune reactivity forecast early and advance stages of age-related macular degeneration? Autoimmun Rev 2017; 16:231-236. [PMID: 28137479 PMCID: PMC5334174 DOI: 10.1016/j.autrev.2017.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/03/2016] [Indexed: 01/17/2023]
Abstract
Age-related macular degeneration (AMD) is a major cause of central vision loss in persons over 55years of age in developed countries. AMD is a complex disease in which genetic, environmental and inflammatory factors influence its onset and progression. Elevation in serum anti-retinal autoantibodies, plasma and local activation of complement proteins of the alternative pathway, and increase in secretion of proinflammatory cytokines have been seen over the course of disease. Genetic studies of AMD patients confirmed that genetic variants affecting the alternative complement pathway have a major influence on AMD risk. Because the heterogeneity of this disease, there is no sufficient strategy to identify the disease onset and progression sole based eye examination, thus identification of reliable serological biomarkers for diagnosis, prognosis and response to treatment by sampling patient's blood is necessary. This review provides an outline of the current knowledge on possible serological (autoantibodies, complement factors, cytokines, chemokines) and related genetic biomarkers relevant to the pathology of AMD, and discusses their application for prediction of disease activity and prognosis in AMD.
Collapse
Affiliation(s)
- Grazyna Adamus
- Ocular Immunology Laboratory, Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
88
|
Miller YI, Shyy JYJ. Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation. Trends Endocrinol Metab 2017; 28:143-152. [PMID: 27931771 PMCID: PMC5253098 DOI: 10.1016/j.tem.2016.11.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 01/13/2023]
Abstract
Oxidized low-density lipoprotein (OxLDL), which contains hundreds of different oxidized lipid molecules, is a hallmark of hyperlipidemia and atherosclerosis. The same oxidized lipids found in OxLDL are also formed in apoptotic cells, and are present in tissues as well as in the circulation under pathological conditions. In many disease contexts, oxidized lipids constitute damage signals, or patterns, that activate pattern-recognition receptors (PRRs) and significantly contribute to inflammation. Here, we review recent discoveries and emerging trends in the field of oxidized lipids and the regulation of inflammation, focusing on oxidation products of polyunsaturated fatty acids esterified into cholesteryl esters (CEs) and phospholipids (PLs). We also highlight context-dependent activation and biased agonism of Toll-like receptor-4 (TLR4) and the NLRP3 inflammasome, among other signaling pathways activated by oxidized lipids.
Collapse
Affiliation(s)
- Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - John Y-J Shyy
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
89
|
Kuda O. Bioactive metabolites of docosahexaenoic acid. Biochimie 2017; 136:12-20. [PMID: 28087294 DOI: 10.1016/j.biochi.2017.01.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 12/13/2022]
Abstract
Docosahexaenoic acid (DHA) is an essential fatty acid that is recognized as a beneficial dietary constituent and as a source of the anti-inflammatory specialized proresolving mediators (SPM): resolvins, protectins and maresins. Apart from SPMs, other metabolites of DHA also exert potent biological effects. This article summarizes current knowledge on the metabolic pathways involved in generation of DHA metabolites. Over 70 biologically active metabolites have been described, but are often discussed separately within specific research areas. This review follows DHA metabolism and attempts to integrate the diverse DHA metabolites emphasizing those with identified biological effects. DHA metabolites could be divided into DHA-derived SPMs, DHA epoxides, electrophilic oxo-derivatives (EFOX) of DHA, neuroprostanes, ethanolamines, acylglycerols, docosahexaenoyl amides of amino acids or neurotransmitters, and branched DHA esters of hydroxy fatty acids. These bioactive metabolites have pleiotropic effects that include augmenting energy expenditure, stimulating lipid catabolism, modulating the immune response, helping to resolve inflammation, and promoting wound healing and tissue regeneration. As a result they have been shown to exert many beneficial actions: neuroprotection, anti-hypertension, anti-hyperalgesia, anti-arrhythmia, anti-tumorigenesis etc. Given the chemical structure of DHA, the number and geometry of double bonds, and the panel of enzymes metabolizing DHA, it is also likely that novel bioactive derivatives will be identified in the future.
Collapse
Affiliation(s)
- Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
90
|
Iannaccone A, Hollingsworth TJ, Koirala D, New DD, Lenchik NI, Beranova-Giorgianni S, Gerling IC, Radic MZ, Giorgianni F. Retinal pigment epithelium and microglia express the CD5 antigen-like protein, a novel autoantigen in age-related macular degeneration. Exp Eye Res 2016; 155:64-74. [PMID: 27989757 DOI: 10.1016/j.exer.2016.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/19/2022]
Abstract
We report on a novel autoantigen expressed in human macular tissues, identified following an initial Western blot (WB)-based screening of sera from subjects with age-related macular degeneration (AMD) for circulating auto-antibodies (AAbs) recognizing macular antigens. Immunoprecipitation, 2D-gel electrophoresis (2D-GE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), direct enzyme-linked immunosorbent assays (ELISA), WBs, immunohistochemistry (IHC), human primary and ARPE-19 immortalized cell cultures were used to characterize this novel antigen. An approximately 40-kDa autoantigen in AMD was identified as the scavenger receptor CD5 antigen-like protein (CD5L), also known as apoptosis inhibitor of macrophage (AIM). CD5L/AIM was localized to human RPE by IHC and WB methods and to retinal microglial cells by IHC. ELISAs with recombinant CD5L/AIM on a subset of AMD sera showed a nearly 2-fold higher anti-CD5L/AIM reactivity in AMD vs. Control sera (p = 0.000007). Reactivity ≥0.4 was associated with 18-fold higher odds of having AMD (χ2 = 21.42, p = 0.00063). Circulating CD5L/AIM levels were also nearly 2-fold higher in AMD sera compared to controls (p = 0.0052). The discovery of CD5L/AIM expression in the RPE and in retinal microglial cells adds to the known immunomodulatory roles of these cells in the retina. The discovery of AAbs recognizing CD5L/AIM identifies a possible novel disease biomarker and suggest a potential role for CD5L/AIM in the pathogenesis of AMD in situ. The possible mechanisms via which anti-CD5L/AIM AAbs may contribute to AMD pathogenesis are discussed. In particular, since CD5L is known to stimulate autophagy and to participate in oxidized LDL uptake in macrophages, we propose that anti-CD5L/AIM auto-antibodies may play a role in drusen biogenesis and inflammatory RPE damage in AMD.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, USA.
| | - T J Hollingsworth
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA
| | - Diwa Koirala
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - David D New
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA
| | - Nataliya I Lenchik
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; University of Tennessee Health Science Center, Department of Medicine, Division of Endocrinology, Memphis, TN, USA
| | - Sarka Beranova-Giorgianni
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Ivan C Gerling
- University of Tennessee Health Science Center, Department of Medicine, Division of Endocrinology, Memphis, TN, USA
| | - Marko Z Radic
- University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, TN, USA
| | - Francesco Giorgianni
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| |
Collapse
|
91
|
Guo J, Linetsky M, Yu AO, Zhang L, Howell SJ, Folkwein HJ, Wang H, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic Acid Lactone Induces Angiogenesis through Several Different Molecular Pathways. Chem Res Toxicol 2016; 29:2125-2135. [PMID: 27806561 DOI: 10.1021/acs.chemrestox.6b00233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress and angiogenesis have been implicated not only in normal phenomena such as tissue healing and remodeling but also in many pathological processes. However, the relationships between oxidative stress and angiogenesis still remain unclear, although oxidative stress has been convincingly demonstrated to influence the progression of angiogenesis under physiological and pathological conditions. The retina is particularly susceptible to oxidative stress because of its intensive oxygenation and high abundance of polyunsaturated fatty acyls. In particular, it has high levels of docosahexanoates, whose oxidative fragmentation produces 4-hydroxy-7-oxo-5-heptenoic acid lactone (HOHA-lactone). Previously, we found that HOHA-lactone is a major precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives, which are tightly linked to age-related macular degeneration (AMD). CEPs promote the pathological angiogenesis of late-stage AMD. We now report additional mechanisms by which HOHA-lactone promotes angiogenesis. Using cultured ARPE-19 cells, we observed that HOHA-lactone induces secretion of vascular endothelial growth factor (VEGF), which is correlated to increases in reactive oxygen species and decreases in intracellular glutathione (GSH). Wound healing and tube formation assays provided, for the first time, in vitro evidence that HOHA-lactone induces the release of VEGF from ARPE-19 cells, which promotes angiogenesis by human umbilical vein endothelial cells (HUVEC) in culture. Thus, HOHA-lactone can stimulate vascular growth through a VEGF-dependent pathway. In addition, results from MTT and wound healing assays as well as tube formation experiments showed that GSH-conjugated metabolites of HOHA-lactone stimulate HUVEC proliferation and promote angiogenesis in vitro. Previous studies demonstrated that HOHA-lactone, through its CEP derivatives, promotes angiogenesis in a novel Toll-like receptor 2-dependent manner that is independent of the VEGF receptor or VEGF expression. The new studies show that HOHA-lactone also participates in other angiogenic signaling pathways that include promoting the secretion of VEGF from retinal pigmented epithelial cells.
Collapse
Affiliation(s)
- Junhong Guo
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Annabelle O Yu
- Department of Biology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Liang Zhang
- Department of Biochemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Scott J Howell
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Heather J Folkwein
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Hua Wang
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
92
|
Salomon RG. Carboxyethylpyrroles: From Hypothesis to the Discovery of Biologically Active Natural Products. Chem Res Toxicol 2016; 30:105-113. [PMID: 27750413 DOI: 10.1021/acs.chemrestox.6b00304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our research on the roles of lipid oxidation in human disease is guided by chemical intuition. For example, we postulated that 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amines would be produced through covalent adduction of a γ-hydroxyalkenal generated, in turn, through oxidative fragmentation of docosahexaenoates. Our studies confirmed the natural occurrence of this chemistry, and the biological activities of these natural products and their extensive involvements in human physiology (wound healing) and pathology (age-related macular degeneration, autism, atherosclerosis, sickle cell disease, and tumor growth) continue to emerge. This perspective recounts these discoveries and proposes new frontiers where further developments are likely. Perhaps more significantly, it depicts an effective chemistry-based approach to the discovery of novel biochemistry.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
93
|
Yakubenko VP, Byzova TV. Biological and pathophysiological roles of end-products of DHA oxidation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:407-415. [PMID: 27713004 DOI: 10.1016/j.bbalip.2016.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFA) are known to be present and/or enriched in vegetable and fish oils. Among fatty acids, n-3 PUFA are generally considered to be protective in inflammation-related diseases. The guidelines for substituting saturated fatty acids for PUFAs have been highly publicized for decades by numerous health organizations. Recently, however, the beneficial properties of n-3 PUFA are questioned by detailed analyses of multiple randomized controlled clinical trials. The reported heterogeneity of results is likely due not only to differential effects of PUFAs on various pathological processes in humans, but also to the wide spectrum of PUFA's derived products generated in vivo. SCOPE OF REVIEW The goal of this review is to discuss the studies focused on well-defined end-products of PUFAs oxidation, their generation, presence in various pathological and physiological conditions, their biological activities and known receptors. Carboxyethylpyrrole (CEP), a DHA-derived oxidized product, is especially emphasized due to recent data demonstrating its pathophysiological significance in many inflammation-associated diseases, including atherosclerosis, hyperlipidemia, thrombosis, macular degeneration, and tumor progression. MAJOR CONCLUSIONS CEP is a product of radical-based oxidation of PUFA that forms adducts with proteins and lipids in blood and tissues, generating new powerful ligands for TLRs and scavenger receptors. The interaction of CEP with these receptors affects inflammatory response, angiogenesis, and wound healing. GENERAL SIGNIFICANCE The detailed understanding of CEP-mediated cellular responses may provide a basis for the development of novel therapeutic strategies and dietary recommendations.
Collapse
Affiliation(s)
- Valentin P Yakubenko
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tatiana V Byzova
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
94
|
Guo J, Hong L, West XZ, Wang H, Salomon RG. Bioactive 4-Oxoheptanedioic Monoamide Derivatives of Proteins and Ethanolaminephospholipids: Products of Docosahexaenoate Oxidation. Chem Res Toxicol 2016; 29:1706-1719. [PMID: 27618287 DOI: 10.1021/acs.chemrestox.6b00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidative stress causes lipid-derived oxidative modification of biomolecules that has been implicated in many pathological states. Phospholipids containing polyunsaturated fatty acids are major targets of free radical-initiated oxidation. Phospholipids that incorporate docosahexaenoate (DHA) are highly enriched in important neural structures including the brain and retina, where DHA comprises 40% and 60% of total fatty acids, respectively. Oxidative fragmentation of 2-docosahexaenoyl-1-palmityl-sn-glycerophosphocholine generates esters of 4-hydroxy-7-oxohept-5-enoic acid (HOHA) and 4-keto-7-oxohept-5-enoic acid (KOHA) with 2-lysophosphatidylcholine, HOHA-PC, and KOHA-PC. Covalent HOHA adducts that incorporate the primary amino groups of proteins and ethanolamine phospholipids in carboxyethylpyrrole (CEP) derivatives were detected immunologically with anti-CEP antibodies in human tumors, retina, and blood. Now, we generated an anti-OHdiA antibody to test the hypothesis that KOHA adducts, which incorporate the primary amino groups of proteins or ethanolamine phospholipids in 4-oxo-heptanedioic (OHdiA) monoamide derivatives, are present in vivo. However, whereas the anti-CEP antibody is highly specific and does not cross-react with the OHdiA monoamide epitope, the anti-OHdiA monoamide antibody cross-reacted with CEP epitopes making it of little value as an analytical tool for OHdiA monoamides but suggesting the possibility that OHdiA monoamides would exhibit receptor-mediated biological activity similar to that of CEP. An LC-MS/MS method was developed that allows quantification of OHdiA derivatives in biological samples. We now find that KOHA-PC forms OHdiA monoamide adducts of proteins and ethanolamine phospholipids and that OHdiA-protein levels are significantly higher than OHdiA-ethanloamine phospholipid levels in blood from healthy human subjects, 0.45 μM and 0.18 μM, respectively (n = 3, and p = 0.027). OHdiA monoamide epitopes are angiogenic, causing TLR2-dependent adhesion and tube formation by human umbilical vein endothelial cells. OHdiA monoamide epitopes are only slightly less potent than CEP epitopes that contribute to the pathological angiogenesis of age-related macular degeneration and tumor growth.
Collapse
Affiliation(s)
- Junhong Guo
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Li Hong
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Xiaoxia Z West
- Department of Molecular Cardiology, Cleveland Clinic , Cleveland, Ohio 44195, United States
| | - Hua Wang
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
95
|
Handa JT, Cano M, Wang L, Datta S, Liu T. Lipids, oxidized lipids, oxidation-specific epitopes, and Age-related Macular Degeneration. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:430-440. [PMID: 27480216 DOI: 10.1016/j.bbalip.2016.07.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/25/2022]
Abstract
Age-related Macular Degeneration (AMD) is the leading cause of blindness among the elderly in western societies. While antioxidant micronutrient treatment is available for intermediate non-neovascular disease, and effective anti-vascular endothelial growth factor treatment is available for neovascular disease, treatment for early AMD is lacking due to an incomplete understanding of the early molecular events. The role of lipids, which accumulate in the macula, and their oxidation, has emerged as an important factor in disease development. These oxidized lipids can either directly contribute to tissue injury or react with amine on proteins to form oxidation-specific epitopes, which can induce an innate immune response. If inadequately neutralized, the inflammatory response from these epitopes can incite tissue injury during disease development. This review explores how the accumulation of lipids, their oxidation, and the ensuing inflammatory response might contribute to the pathogenesis of AMD. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder .
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Sayantan Datta
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Tongyun Liu
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|
96
|
Wang H, Linetsky M, Guo J, Yu AO, Salomon RG. Metabolism of 4-Hydroxy-7-oxo-5-heptenoic Acid (HOHA) Lactone by Retinal Pigmented Epithelial Cells. Chem Res Toxicol 2016; 29:1198-210. [PMID: 27355557 DOI: 10.1021/acs.chemrestox.6b00153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
4-Hydroxy-7-oxo-5-heptenic acid (HOHA)-lactone is a biologically active oxidative truncation product released (t1/2 = 30 min at 37 °C) by nonenzymatic transesterification/deacylation from docosahexaenoate lipids. We now report that HOHA-lactone readily diffuses into retinal pigmented epithelial (RPE) cells where it is metabolized. A reduced glutathione (GSH) Michael adduct of HOHA-lactone is the most prominent metabolite detected by LC-MS in both the extracellular medium and cell lysates. This molecule appeared inside of ARPE-19 cells within seconds after exposure to HOHA-lactone. The intracellular level reached a maximum concentration at 30 min and then decreased with concomitant increases in its level in the extracellular medium, thus revealing a unidirectional export of the reduced GSH-HOHA-lactone adduct from the cytosol to extracellular medium. This metabolism is likely to modulate the involvement of HOHA-lactone in the pathogenesis of human diseases. HOHA-lactone is biologically active, e.g., low concentrations (0.1-1 μM) induce secretion of vascular endothelial growth factor (VEGF) from ARPE-19 cells. HOHA-lactone is also a precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amino groups in proteins and ethanolamine phospholipids that have significant pathological and physiological relevance to age-related macular degeneration (AMD), cancer, and wound healing. Both HOHA-lactone and the derived CEP can contribute to the angiogenesis that defines the neovascular "wet" form of AMD and that promotes the growth of tumors. While GSH depletion can increase the lethality of radiotherapy, because it will impair the metabolism of HOHA-lactone, the present study suggests that GSH depletion will also increase levels of HOHA-lactone and CEP that may promote recurrence of tumor growth.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Junhong Guo
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Annabelle O Yu
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
97
|
Hanus J, Anderson C, Sarraf D, Ma J, Wang S. Retinal pigment epithelial cell necroptosis in response to sodium iodate. Cell Death Discov 2016; 2:16054. [PMID: 27551542 PMCID: PMC4979458 DOI: 10.1038/cddiscovery.2016.54] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/05/2016] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a degenerative disease of the retina and the leading cause of blindness in the elderly in developed countries. The late stage of dry AMD, or geographic atrophy (GA), is characterized by extensive retinal pigment epithelium (RPE) degeneration. The underlying molecular mechanism for RPE cell death in GA remains unclear. Our previous study has established that RPE cells die predominantly from necroptosis in response to oxidative stress in vitro. Here, we extend our study and aim to characterize the nature of RPE cell death in response to sodium iodate (NaIO3) in vitro and in a NaIO3-induced retina degeneration mouse model. We found that NaIO3 induces RPE necroptosis in vitro by using a combination of molecular hallmarks. By using TUNEL assays, active caspase-3 and HMGB1 immunostaining, we confirmed that photoreceptor cells die mainly from apoptosis and RPE cells die mainly from necroptosis in response to NaIO3in vivo. RPE necroptosis in this model is also supported by use of the RIPK1 inhibitor, Necrostatin-1. Furthermore, using novel RIPK3-GFP transgenic mouse lines, we detected RIPK3 aggregation, a hallmark of necroptosis, in the RPE cells in vivo after NaIO3 injection. Our findings suggest the necessity of re-evaluating RPE cell death mechanism in AMD models and have the potential to influence therapeutic development for dry AMD, especially GA.
Collapse
Affiliation(s)
- J Hanus
- Department of Cell and Molecular Biology, Tulane University , 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA 70118, USA
| | - C Anderson
- Department of Cell and Molecular Biology, Tulane University , 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA 70118, USA
| | - D Sarraf
- Department of Cell and Molecular Biology, Tulane University , 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA 70118, USA
| | - J Ma
- Department of Cell and Molecular Biology, Tulane University , 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA 70118, USA
| | - S Wang
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA 70118, USA; Department of Ophthalmology, Tulane University, 1430 Tulane Avenue, SL-69, New Orleans, LA 70112, USA
| |
Collapse
|
98
|
Guo J, Wang H, Hrinczenko B, Salomon RG. Efficient Quantitative Analysis of Carboxyalkylpyrrole Ethanolamine Phospholipids: Elevated Levels in Sickle Cell Disease Blood. Chem Res Toxicol 2016; 29:1187-97. [PMID: 27341308 DOI: 10.1021/acs.chemrestox.6b00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
γ-Hydroxy-α,β-unsaturated aldehydes, generated by oxidative damage of polyunsaturated phospholipids, form pyrrole derivatives that incorporate the ethanolamine phospholipid (EP) amino group such as 2-pentylpyrrole (PP)-EP and 2-(ω-carboxyalkyl)pyrrole (CAP)-EP derivatives: 2-(ω-carboxyethyl)pyrrole (CEP)-EP, 2-(ω-carboxypropyl)pyrrole (CPP)-EP, and 2-(ω-carboxyheptyl)pyrrole (CHP)-EP. Because EPs occur in vivo in various forms, a complex mixture of pyrrole-modified EPs with different molecular weights is expected to be generated. To provide a sensitive index of oxidative stress, all of the differences in mass related to the glycerophospholipid moieties were removed by releasing a single CAP-ethanolamine (ETN) or PP-ETN from each mixture by treatment with phospholipase D. Accurate quantization was achieved using the corresponding ethanolamine-d4 pyrroles as internal standards. The product mixture obtained by phospholipolysis of total blood phospholipids from sickle cell disease (SCD) patients was analyzed by LC-MS/MS. The method was applied to measure CAP-EP and PP-EP levels in blood plasma from clinical monitoring of SCD patients. We found uniformly elevated blood levels of CEP-EP (63.9 ± 9.7 nM) similar to mean levels in blood from age-related macular degeneration (AMD) patients (56.3 ± 37.1 nM), and 2-fold lower levels (27.6 ± 3.6 nM, n = 5) were detected in plasma from SCD patients hospitalized to treat a sickle cell crisis, although mean levels remain higher than those (12.1 ± 10.5 nM) detected in blood from healthy controls. Plasma levels of CPP-EPs from SCD clinic patients were 4-fold higher than those of SCD patients hospitalized to treat a sickle cell crisis (45.1 ± 10.9 nM, n = 5 versus 10.9 ± 3.4 nM, n = 6; p < 0.002). PP-EP concentration in plasma from SCD clinic patients is nearly 4.8-fold higher than its level in plasma samples from SCD patients hospitalized to treat a sickle cell crisis (7.06 ± 4.05 vs 1.48 ± 0.92 nM; p < 0.05). Because CAP-EPs promote angiogenesis and platelet activation, the elevated levels present in SCD blood can contribute to the hypercoaguability and vaso-occlusive events that are critical pathophysiologic features of SCD.
Collapse
Affiliation(s)
- Junhong Guo
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Hua Wang
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Borys Hrinczenko
- Division of Hematology and Oncology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
99
|
Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 2016; 73:1765-86. [PMID: 26852158 PMCID: PMC4819943 DOI: 10.1007/s00018-016-2147-8] [Citation(s) in RCA: 479] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/05/2023]
Abstract
Inflammation is a cellular response to factors that challenge the homeostasis of cells and tissues. Cell-associated and soluble pattern-recognition receptors, e.g. Toll-like receptors, inflammasome receptors, and complement components initiate complex cellular cascades by recognizing or sensing different pathogen and damage-associated molecular patterns, respectively. Cytokines and chemokines represent alarm messages for leukocytes and once activated, these cells travel long distances to targeted inflamed tissues. Although it is a crucial survival mechanism, prolonged inflammation is detrimental and participates in numerous chronic age-related diseases. This article will review the onset of inflammation and link its functions to the pathogenesis of age-related macular degeneration (AMD), which is the leading cause of severe vision loss in aged individuals in the developed countries. In this progressive disease, degeneration of the retinal pigment epithelium (RPE) results in the death of photoreceptors, leading to a loss of central vision. The RPE is prone to oxidative stress, a factor that together with deteriorating functionality, e.g. decreased intracellular recycling and degradation due to attenuated heterophagy/autophagy, induces inflammation. In the early phases, accumulation of intracellular lipofuscin in the RPE and extracellular drusen between RPE cells and Bruch's membrane can be clinically detected. Subsequently, in dry (atrophic) AMD there is geographic atrophy with discrete areas of RPE loss whereas in the wet (exudative) form there is neovascularization penetrating from the choroid to retinal layers. Elevations in levels of local and systemic biomarkers indicate that chronic inflammation is involved in the pathogenesis of both disease forms.
Collapse
Affiliation(s)
- Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland.
| | - Jussi J Paterno
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
100
|
Connecting the innate and adaptive immune responses in mouse choroidal neovascularization via the anaphylatoxin C5a and γδT-cells. Sci Rep 2016; 6:23794. [PMID: 27029558 PMCID: PMC4814842 DOI: 10.1038/srep23794] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/10/2016] [Indexed: 01/12/2023] Open
Abstract
Neovascular age-related macular degeneration (AMD) is characterized by choroidal neovascularization (CNV). An overactive complement system is associated with AMD pathogenesis, and serum pro-inflammatory cytokines, including IL-17, are elevated in AMD patients. IL-17 is produced by complement C5a-receptor-expressing T-cells. In murine CNV, infiltrating γδT- rather than Th17-cells produce the IL-17 measurable in lesioned eyes. Here we asked whether C5a generated locally in response to CNV recruits IL-17-producing T-cells to the eye. CNV lesions were generated using laser photocoagulation and quantified by imaging; T-lymphocytes were characterized by QRT-PCR. CNV resulted in an increase in splenic IL-17-producing γδT- and Th17-cells; yet in the CNV eye, only elevated levels of γδT-cells were observed. Systemic administration of anti-C5- or anti-C5a-blocking antibodies blunted the CNV-induced production of splenic Th17- and γδT-cells, reduced CNV size and eliminated ocular γδT-cell infiltration. In ARPE-19 cell monolayers, IL-17 triggered a pro-inflammatory state; and splenocyte proliferation was elevated in response to ocular proteins. Thus, we demonstrated that CNV lesions trigger a systemic immune response, augmenting local ocular inflammation via the infiltration of IL-17-producing γδT-cells, which are presumably recruited to the eye in a C5a-dependent manner. Understanding the complexity of complement-mediated pathological mechanisms will aid in the development of an AMD treatment.
Collapse
|