51
|
Wang XD, Wang BE, Soriano R, Zha J, Zhang Z, Modrusan Z, Cunha GR, Gao WQ. Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis. Differentiation 2006; 75:219-34. [PMID: 17288544 DOI: 10.1111/j.1432-0436.2006.00135.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mice have been used extensively for studying normal prostate development and for generation of transgenic or knock-out prostate cancer animal models. To understand systematically and thoroughly the androgen responsive program in the mouse prostate, we carried out microarray analysis to profile gene expression changes during prostate involution and re-growth triggered by castration and subsequent hormone replacement. Genes with significant changes in these two processes were identified and gene ontology analyses revealed that they were mainly involved in response mechanisms, cell adhesion, metabolism, protein metabolism, and cell-cycle progression. The changes observed during prostate involution were largely reversed during re-growth. Sixty-four genes, including Nkx3.1 and probasin, and 65 other genes, including insulin-like growth factor binding protein 3 and H-cadherin (H-Cad), were further identified respectively as androgen-responsive genes and genes inversely correlated with androgen, based on their down- or up-regulation following castration and up- or down-regulation following androgen replacement. Potential androgen-responsive elements were found in the 5' upstream promoter region of 47 of those 65 genes, suggesting a potential suppression mechanism by androgen receptor. Of these, the role of H-Cad in tumorigenesis was further evaluated. Reduction of H-Cad transcript level was found in the majority of human prostate cancer cell lines and prostatic adenocarcinoma samples examined. Furthermore, induced H-Cad expression in DU145 cells, and knock-down of H-Cad expression in BPH1 cells inhibited and facilitated tumorigenicity, respectively. Taken together, our study provides a molecular understanding of the mouse prostate involution and re-growth processes and identifies a set of genes that are inversely correlated with androgen and may be potentially suppressive for tumorigenesis.
Collapse
Affiliation(s)
- Xi-De Wang
- Department of Molecular Biology, MS 72, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 2006; 124:218-29. [PMID: 17223324 PMCID: PMC2583263 DOI: 10.1016/j.mod.2006.11.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/26/2006] [Accepted: 11/30/2006] [Indexed: 11/16/2022]
Abstract
In order to generate a zebrafish model of beta cell regeneration, we have expressed an Escherichia coli gene called nfsB in the beta cells of embryonic zebrafish. This bacterial gene encodes a nitroreductase (NTR) enzyme, which can convert prodrugs such as metronidazole (Met) to cytotoxins. By fusing nfsB to mCherry, we can simultaneously render beta cells susceptible to prodrug and visualize Met dependent cell ablation. We show that the neighboring alpha and delta cells are unaffected by prodrug treatment and that ablation is beta cell specific. Following drug removal and 36h of recovery, beta cells regenerate. Using ptf1a morphants, it is clear that this beta cell recovery occurs independently of the presence of the exocrine pancreas. Also, by using photoconvertible Kaede to cell lineage trace and BrdU incorporation to label proliferation, we investigate mechanisms for beta regeneration. Therefore, we have developed a unique resource for the study of beta cell regeneration in a living vertebrate organism, which will provide the opportunity to conduct large-scale screens for pharmacological and genetic modifiers of beta cell regeneration.
Collapse
Affiliation(s)
- Harshan Pisharath
- Department of Comparative Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, U.S.A
| | - Jerry M. Rhee
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, U.S.A
| | - Michelle A. Swanson
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, U.S.A
| | - Steven D. Leach
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, U.S.A
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, U.S.A
| | - Michael J. Parsons
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, U.S.A
- #corresponding author , 720 Rutland Avenue, Ross 771, Baltimore, MD 21205, phone 410 502 2982, Fax 410 614 2913
| |
Collapse
|
53
|
Scorey N, Fraser SP, Patel P, Pridgeon C, Dallman MJ, Djamgoz MBA. Notch signalling and voltage-gated Na+ channel activity in human prostate cancer cells: independent modulation of in vitro motility. Prostate Cancer Prostatic Dis 2006; 9:399-406. [PMID: 16832382 DOI: 10.1038/sj.pcan.4500894] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 05/26/2006] [Accepted: 06/02/2006] [Indexed: 11/09/2022]
Abstract
This study tested the possible functional relationship of two signalling mechanisms shown previously to be involved in human prostate cancer (PCa), Notch and voltage-gated sodium channel. Notch1 and Notch2 were differentially expressed in PCa cell lines of varying metastatic potential (LNCaP, PC-3, PC-3M) in comparison to a normal prostate cell line (PNT2), whereas Notch3 and Notch4 were not expressed. The Notch ligand Jagged1, but not Jagged2, was increased in all cell lines, whereas the Notch downstream target Deltex was not expressed. In comparison to the LNCaP cell line, Hes1, another downstream target, showed elevated expression in the metastatic PC-3 and PC-3M cells and promoted lateral motility. In contrast, the Notch ligand Delta-like1 (Dll1) levels were higher in LNCaP compared with PC-3 and PC-3M cells. Importantly, decreasing Dll1 expression increased the lateral motility of PC-3 cells, whereas blocking voltage-gated Na(+) channel activity with tetrodotoxin decreased motility. However, the effect of Dll1 was independent of Notch signalling through Hes1 and voltage-gated Na(+) channel expression/activity.
Collapse
MESH Headings
- Amyloid Precursor Protein Secretases/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Calcium-Binding Proteins/metabolism
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Dimethyl Sulfoxide/pharmacology
- Enzyme Inhibitors/pharmacology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Homeodomain Proteins/metabolism
- Humans
- Intercellular Signaling Peptides and Proteins/metabolism
- Ion Channel Gating/drug effects
- Jagged-1 Protein
- Male
- Membrane Proteins/metabolism
- Poisons/pharmacology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor, Notch1/metabolism
- Receptor, Notch2/metabolism
- Receptor, Notch3
- Receptor, Notch4
- Receptors, Notch/drug effects
- Receptors, Notch/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serrate-Jagged Proteins
- Signal Transduction/drug effects
- Sodium Channels/drug effects
- Sodium Channels/metabolism
- Solvents/pharmacology
- Tetrodotoxin/pharmacology
- Transcription Factor HES-1
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- N Scorey
- Neuroscience Solutions to Cancer Research Group, Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, London, UK
| | | | | | | | | | | |
Collapse
|
54
|
Heer R, Collins AT, Robson CN, Shenton BK, Leung HY. KGF suppresses alpha2beta1 integrin function and promotes differentiation of the transient amplifying population in human prostatic epithelium. J Cell Sci 2006; 119:1416-24. [PMID: 16554439 DOI: 10.1242/jcs.02802] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prostate epithelial stem cells are self-renewing cells capable of differentiation into prostate epithelium, and are thought to contribute towards both benign and malignant conditions in the human prostate. We have previously demonstrated that prostate epithelial basal cells express high levels of integrin alpha2beta1 and this population can be subdivided into stem (alpha2beta1(hi) CD133+) and transient-amplifying population (TAP) cells (alpha2beta1(hi) CD133-). However, the molecular mechanism(s) controlling the commitment and regulation of these cells towards differentiated epithelium remains unclear. Here, we demonstrate that beta1 integrin function is required for the maintenance of basal prostatic epithelial cells and suppression of its function by either methylcellulose or, more specifically, beta1-blocking antibody (80 microg/ml) induces differentiation, with associated expression of the differentiation-specific markers prostate acid phosphatase (PAP) and cytokeratin 18 (CK18). Keratinocyte growth factor (KGF), a stromal-derived growth factor, has previously been implicated in prostate organogenesis using in vitro tissue recombination experiments. We show that treatment with KGF (10 ng/ml) potently induces epithelial differentiation with concomitant suppression of alpha2beta1 integrin expression as well as the induction of androgen receptor expression. Specifically, p38-MAPK appears to be involved and the presence of SB202190, a p38 inhibitor, significantly blocks KGF-induced differentiation. Furthermore, the expression of the high-affinity receptor tyrosine kinase to KGF (FGFR2) is predominantly detectable in alpha2beta1(hi) CD133- TAP cells when compared with stem cells (alpha2beta1(hi) CD133+), which would therefore be relatively unresponsive to the differentiating effect of KGF. Taken together, using a human primary culture model, we have demonstrated key roles for interactions between KGF and integrin-mediated function in the regulation of prostate epithelial differentiation.
Collapse
Affiliation(s)
- Rakesh Heer
- Urology Research Group, Northern Institute for Cancer Research, University of Newcastle, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | | | | | | | |
Collapse
|
55
|
Belandia B, Parker MG. Nuclear receptor regulation gears up another Notch. NUCLEAR RECEPTOR SIGNALING 2006; 4:e001. [PMID: 16604164 PMCID: PMC1402210 DOI: 10.1621/nrs.04001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 11/15/2005] [Indexed: 11/26/2022]
Abstract
In this perspective we describe examples of crosstalk between nuclear receptors (NRs) and Notch signaling by means of direct functional interactions between components of both pathways. This crosstalk may provide eukaryotic organisms with molecular mechanisms for the coordination of llong-distance endocrine signals with cell-to-cell juxtacrine communication.
Collapse
Affiliation(s)
- Borja Belandia
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029 Madrid, Spain.
| | | |
Collapse
|
56
|
Wang XD, Leow CC, Zha J, Tang Z, Modrusan Z, Radtke F, Aguet M, de Sauvage FJ, Gao WQ. Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation. Dev Biol 2006; 290:66-80. [PMID: 16360140 DOI: 10.1016/j.ydbio.2005.11.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 11/05/2005] [Accepted: 11/07/2005] [Indexed: 12/22/2022]
Abstract
Notch pathway is crucial for stem/progenitor cell maintenance, growth and differentiation in a variety of tissues. Using a transgenic cell ablation approach, we found in our previous study that cells expressing Notch1 are crucial for prostate early development and re-growth. Here, we further define the role of Notch signaling in regulating prostatic epithelial cell growth and differentiation using biochemical and genetic approaches in ex vivo or in vivo systems. Treatment of developing prostate grown in culture with inhibitors of gamma-secretase/presenilin, which is required for Notch cleavage and activation, caused a robust increase in proliferation of epithelial cells co-expressing cytokeratin 8 and 14, lack of luminal/basal layer segregation and dramatically reduced branching morphogenesis. Using conditional Notch1 gene deletion mouse models, we found that inactivation of Notch1 signaling resulted in profound prostatic alterations, including increased tufting, bridging and enhanced epithelial proliferation. Cells within these lesions co-expressed both luminal and basal cell markers, a feature of prostatic epithelial cells in predifferentiation developmental stages. Microarray analysis revealed that the gene expression in a number of genetic networks was altered following Notch1 gene deletion in prostate. Furthermore, expression of Notch1 and its effector Hey-1 gene in human prostate adenocarcinomas were found significantly down-regulated compared to normal control tissues. Taken together, these data suggest that Notch signaling is critical for normal cell proliferation and differentiation in the prostate, and deregulation of this pathway may facilitate prostatic tumorigenesis.
Collapse
Affiliation(s)
- Xi-De Wang
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
The prostate gland is the site of the most commonly diagnosed cancer in men in USA and UK, accounting for one in five of new cases of male cancer. Common with many other cancer types, prostate cancer is believed to arise from a stem cell that shares characteristics with the normal stem cell. Normal prostate epithelial stem cells were recently identified and found to have a basal cell phenotype together with expression of CD133. Preliminary data have now emerged for a prostate cancer stem cell that also expresses cell surface CD133 but lacks expression of the androgen receptor. Here we examine the evidence supporting the existence of prostate cancer stem cells and discuss possible mechanisms of stem cell maintenance.
Collapse
Affiliation(s)
- S Rizzo
- The Bob Champion Prostate Stem Cell Laboratory, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, UK, SM2 5NG
| | | | | |
Collapse
|
58
|
Zhang TJ, Hoffman BG, Ruiz de Algara T, Helgason CD. SAGE reveals expression of Wnt signalling pathway members during mouse prostate development. Gene Expr Patterns 2005; 6:310-24. [PMID: 16378759 DOI: 10.1016/j.modgep.2005.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 07/05/2005] [Accepted: 07/15/2005] [Indexed: 12/29/2022]
Abstract
To identify genes and pathways not previously implicated in the mesenchymal-epithelial (M/E) interactions that are critical for normal mouse prostate development, we constructed six serial analysis of gene expression (SAGE) libraries. Bioinformatic analyses revealed expression of various members of numerous signalling pathways and the differential expression of several members of the wingless-related MMTV integration site (Wnt) signalling pathway. This pathway has not been previously implicated in prostate development thus expression of selected Wnt pathway members in the developing prostate was confirmed by RT-qPCR. Of particular interest, an antagonist of the Wnt pathway, secreted frizzled related protein 2 (Sfrp2), was highly expressed in the early prostate libraries and down regulated at later developmental stages. The expression levels of four Wnt ligands reported to interact with Sfrp2 were, therefore, examined by RT-qPCR. We found that only Wnt4 transcripts were detectable in the developing prostate. Expression of Sfrp2 was validated using RT-qPCR and localization of Sfrp2 transcripts and protein was carried out using in situ hybridization and immunofluorescence, respectively. These studies provide the first evidence that Wnt pathway members are expressed in the developing prostate. Functional analyses are now required to establish the biological significance of this observation.
Collapse
Affiliation(s)
- Tian-Jiao Zhang
- Department of Cancer Endocrinology, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | | | | | | |
Collapse
|
59
|
Azuma M, Hirao A, Takubo K, Hamaguchi I, Kitamura T, Suda T. A quantitative matrigel assay for assessing repopulating capacity of prostate stem cells. Biochem Biophys Res Commun 2005; 338:1164-70. [PMID: 16286093 DOI: 10.1016/j.bbrc.2005.10.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
Homeostasis of prostate tissue is maintained by stem cells, although such cells have not been well characterized. Here, we report establishment of such a method using matrigel. Matrigel containing a single-cell suspension from adult prostatic cells was subcutaneously grafted into the flank of nude mice. Prostatic duct-like structures derived from donor tissue were observed in the gel 2 weeks after transplantation. Luminal and basal cells observed in the gel expressed several markers characteristic of prostatic and/or epithelial cells. When a mixture with both EGFP-positive and negative prostate cells was transplanted, prostatic ducts consisted of either EGFP-positive or negative cells and chimeric patterns were rarely observed, suggesting that ducts were reconstituted from a single cell. Stem cell number and function were also evaluated by competition with control cells. Overall this method revealed that cells localized in the proximal portion in prostate ducts had higher reconstitution capacity than those in the distal portion. We conclude that prostate stem/progenitor cells exist and that our method is applicable to analysis of prostate stem cells, epithelial mesenchyme interactions, and prostate cancer stem cells.
Collapse
Affiliation(s)
- Masaki Azuma
- Department of Cell Differentiation, Keio University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
60
|
Dalrymple S, Antony L, Xu Y, Uzgare AR, Arnold JT, Savaugeot J, Sokoll LJ, De Marzo AM, Isaacs JT. Role of Notch-1 and E-Cadherin in the Differential Response to Calcium in Culturing Normal versus Malignant Prostate Cells. Cancer Res 2005; 65:9269-79. [PMID: 16230388 DOI: 10.1158/0008-5472.can-04-3989] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A panel of expression markers was validated and used to document that, when radical prostatectomy specimens are cultured in low (i.e., <260 micromol/L)-calcium (Ca2+)-serum-free, growth factor-defined (SFD) medium, what grows out are not prostatic cancer cells but basally derived normal transit-amplifying prostatic epithelial cells. The selective outgrowth of the normal transit-amplifying versus prostatic cancer cells is due to the differential effect of low-Ca2+ medium on the structure of Notch-1 and E-cadherin signaling molecules. In low-Ca2+ medium, Notch-1 receptor is conformationally in a constitutively active, cell autonomous form not requiring reciprocal cell-cell (i.e., ligand) interaction for signaling. Such signaling is required for survival of transit-amplifying cells as shown by the death of transit-amplifying cells induced by treatment with a series of chemically distinct gamma-secretase inhibitors to prevent Notch-1 signaling. Conversely, in low-Ca2+ medium, E-cadherin is conformationally inactive preventing cell-cell homotypic interaction, but low cell density nonaggregated transit-amplifying cells still survived because Notch-1 is able to signal cell autonomously. In contrast, when medium Ca2+ is raised to >400 micromol/L, Notch-1 conformationally is no longer constitutively active but requires cell-cell contact for reciprocal binding of Jagged-1 ligands and Notch-1 receptors between adjacent transit-amplifying cells to activate their survival signaling. Such cell-cell contact is enhanced by the elevated Ca2+ inducing an E-cadherin conformation allowing homotypic interaction between transit-amplifying cells. Such Ca(2+)-dependent, E-cadherin-mediated interaction, however, results in cell aggregation, stratification, and inhibition of proliferation of transit-amplifying cells via contact inhibition-induced up-regulation of p27/kip1 protein. In addition, transit-amplifying cells not contacting other cells undergo squamous differentiation into cornified (i.e., 1% SDS insoluble) envelopes and death in the elevated Ca2+ medium. Stratification and contact inhibition induced by elevated Ca2+ are dependent on E-cadherin-mediated homotypic interaction between transit-amplifying cells as shown by their prevention in the presence of a cell-impermanent, E-cadherin neutralizing antibody. In contrast to growth inhibition of normal transit-amplifying cells, supplementation of low-Ca(2+)-SFD medium with 10% FCS and raising the Ca2+ to >600 micromol/L stimulates the growth of all prostate cancer cell lines tested. Additional results document that, at physiologic levels of Ca2+ (i.e., >600 micromol/L), prostatic cancer cells are not contact inhibited by E-cadherin interactions and Notch-1 signaling is no longer required for survival but instead becomes one of multiple signaling pathways for proliferation of prostatic cancer cells. These characteristic changes are consistent with prostate cancer cells' ability to metastasize to bone, a site of high-Ca2+ levels.
Collapse
Affiliation(s)
- Susan Dalrymple
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and Departments of Urology and Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21231-1000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Gao N, Ishii K, Mirosevich J, Kuwajima S, Oppenheimer SR, Roberts RL, Jiang M, Yu X, Shappell SB, Caprioli RM, Stoffel M, Hayward SW, Matusik RJ. Forkhead box A1 regulates prostate ductal morphogenesis and promotes epithelial cell maturation. Development 2005; 132:3431-43. [PMID: 15987773 DOI: 10.1242/dev.01917] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have previously shown that a forkhead transcription factor Foxa1 interacts with androgen signaling and controls prostate differentiated response. Here, we show the mouse Foxa1 expression marks the entire embryonic urogenital sinus epithelium (UGE), contrasting with Shh and Foxa2, which are restricted to the basally located cells during prostate budding. The Foxa1-deficient mouse prostate shows a severely altered ductal pattern that resembles primitive epithelial cords surrounded by thick stromal layers. Characterization of these mutant cells indicates a population of basal-like cells similar to those found in the embryonic UGE, whereas no differentiated or mature luminal epithelial cells are found in Foxa1-deficient epithelium. These phenotypic changes are accompanied with molecular aberrations, including focal epithelial activation of Shh and elevated Foxa2 and Notch1 in the null epithelium. Perturbed epithelial-stromal interactions induced by Foxa1-deficient epithelium is evident, as demonstrated by the expansion of surrounding smooth muscle and elevated levels of stromal factors (Bmp4, Fgf7, Fgf10 and Gli). The prostatic homeobox protein Nkx3.1, a known proliferation inhibitor, was downregulated in Foxa1-deficient epithelial cells, while several prostate-specific androgen-regulated markers, including a novel Foxa1 target, are absent in the null prostate. These data indicate that Foxa1 plays a pivotal role in controlling prostate morphogenesis and cell differentiation.
Collapse
Affiliation(s)
- Nan Gao
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Libbrecht L, Spinner NB, Moore EC, Cassiman D, Van Damme-Lombaerts R, Roskams T. Peripheral Bile Duct Paucity and Cholestasis in the Liver of a Patient With Alagille Syndrome. Am J Surg Pathol 2005; 29:820-6. [PMID: 15897750 DOI: 10.1097/01.pas.0000161325.36348.25] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alagille syndrome (AGS) is a developmental, multiorgan disease caused by mutations of the Jagged1 gene. The liver is one of the major organs affected in AGS, and the hallmark of liver pathology in AGS is an age-related increase in the proportion of portal tracts that have no bile duct, but without evidence of prominent bile duct damage. The pathogenesis of this bile duct paucity is currently not well understood. (Immuno)histochemical and molecular analyses were performed on several liver biopsies that were taken during macroscopic examination of the explant liver of a 17-year-old AGS patient. The liver periphery was macroscopically pale and was microscopically characterized by complete absence of bile ducts and presence of severe cholestasis, but there was no ductular reaction. Conversely, the central, hilar portion contained normally developed bile ducts showing no or minimal damage and cholestasis. A missense mutation in the Jagged1 gene was present in both parts of the liver, indicating that mosaicism did not cause this peculiar picture. There was also a hypertrophy of the hepatic arterial branches in the liver periphery. Together with previous indirect findings, the current study of the explant liver of an AGS patient strongly suggests that a lack of branching and elongation of bile ducts during postnatal liver growth is the mechanism by which peripheral bile duct paucity and cholestasis develops in AGS. Our findings also suggest that anomalies of the intrahepatic arterial branches may be part of AGS in some patients.
Collapse
Affiliation(s)
- Louis Libbrecht
- Department of Pathology, University Hospitals of Leuven, Minderbroedersstraat 12, 3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
63
|
Belandia B, Powell SM, García-Pedrero JM, Walker MM, Bevan CL, Parker MG. Hey1, a mediator of notch signaling, is an androgen receptor corepressor. Mol Cell Biol 2005; 25:1425-36. [PMID: 15684393 PMCID: PMC548017 DOI: 10.1128/mcb.25.4.1425-1436.2005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 09/14/2004] [Accepted: 11/29/2004] [Indexed: 01/02/2023] Open
Abstract
Hey1 is a member of the basic helix-loop-helix-Orange family of transcriptional repressors that mediate Notch signaling. Here we show that transcription from androgen-dependent target genes is inhibited by Hey1 and that expression of a constitutively active form of Notch is capable of repressing transactivation by the endogenous androgen receptor (AR). Our results indicate that Hey1 functions as a corepressor for AF1 in the AR, providing a mechanism for cross talk between Notch and androgen-signaling pathways. Hey1 colocalizes with AR in the epithelia of patients with benign prostatic hyperplasia, where it is found in both the cytoplasm and the nucleus. In marked contrast, we demonstrate that Hey1 is excluded from the nucleus in most human prostate cancers, raising the possibility that an abnormal Hey1 subcellular distribution may have a role in the aberrant hormonal responses observed in prostate cancer.
Collapse
Affiliation(s)
- Borja Belandia
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
64
|
Lawson DA, Xin L, Lukacs R, Xu Q, Cheng D, Witte ON. Prostate stem cells and prostate cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 70:187-96. [PMID: 16869753 DOI: 10.1101/sqb.2005.70.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Understanding prostate stem cells (PSCs) may provide insight for the design of therapeutics for prostate cancer. We have developed a quantitative in vivo colony-forming assay and have demonstrated that the Sca-1 antigen is present on the surface of a prostate cell subpopulation that possesses multiple stem cell properties. Immunofluorescent analysis demonstrates that Sca-1 is expressed by both basal and luminal cells in the proximal region of the adult prostate, but is not expressed by either lineage in more distal regions. The proximal region has been suggested as the PSC niche based on BrdU label-retention studies and the presence of distinct smooth-muscle cells that produce high levels of TGF-beta. Sca-1 is also expressed by nearly all cells within fetal prostate epithelial chords, suggesting Sca-1 may be conserved on PSCs throughout development. Malignant epithelial cells from TRAMP mice, as well as normal prostate cells with lentiviral-mediated alteration of the PTEN/AKT signaling pathway, give rise to PIN lesions and prostate cancer in vivo. Alteration of PTEN/AKT signaling in Sca-1-enriched PSCs also results in PIN lesions, suggesting that PSCs can serve as one target for prostate carcinogenesis.
Collapse
Affiliation(s)
- D A Lawson
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, 90095-1662, USA
| | | | | | | | | | | |
Collapse
|
65
|
Abstract
Benign prostatic hyperplasia and prostate cancer arise as a consequence of changes in the balance between cell division and differentiation. Little, however, is known about the control of this process. Stem cells are a small population of cells that divide occasionally to produce transit-amplifying cells that in turn produce the differentiated cell types of the tissue. It is believed that cancer cell proliferation is also driven by stem cells. We have shown that around one in 200 prostate epithelial cells have characteristics of stem cells and that these cells are contained within a population with a distinct keratin expression pattern. Work is now ongoing to identify markers for these cells that will allow us to study the role they play in prostatic disease.
Collapse
Affiliation(s)
- D L Hudson
- Bob Champion Prostate Stem Cell Laboratory, Male Urological Cancer Research Centre, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| |
Collapse
|