51
|
Huang T, Perez-Cordon G, Shi L, Li G, Sun X, Wang X, Wang J, Feng H. Clostridium difficile toxin B intoxicated mouse colonic epithelial CT26 cells stimulate the activation of dendritic cells. Pathog Dis 2015; 73:ftv008. [PMID: 25743476 PMCID: PMC4435672 DOI: 10.1093/femspd/ftv008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/08/2015] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis mainly through two exotoxins TcdA and TcdB that target intestinal epithelial cells. Dendritic cells (DCs) play an important role in regulating intestinal inflammatory responses. In the current study, we explored the interaction of TcdB-intoxicated epithelial cells with mouse bone marrow-derived DCs. TcdB induced cell death and heat shock protein translocation in mouse intestinal epithelial CT26 cells. The intoxicated epithelial cells promoted the phagocytosis and the TNF-α secretion by DCs. Incubation with TcdB-intoxicated CT26 cells stimulated DC maturation. Moreover, TcdB-treated CT26 cells induced DC immigration when they were injected into mice subcutaneously. Taken together, these data demonstrate that TcdB-intoxicated intestinal epithelial cells are able to stimulate DC activation in vitro and attract DCs in vivo, indicating that epithelial cells may be able to regulate DC activation under the exposure of TcdB during C. difficile infection.
Collapse
Affiliation(s)
- Tuxiong Huang
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 51006, China Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21021, USA
| | - Gregorio Perez-Cordon
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21021, USA
| | - Lianfa Shi
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21021, USA
| | - Guangchao Li
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 51006, China
| | - Xingmin Sun
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Xiaoning Wang
- Institute of Life Science, General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 51006, China
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21021, USA
| |
Collapse
|
52
|
Sun C, Wang H, Mao S, Liu J, Li S, Wang J. Reactive oxygen species involved in CT26 immunogenic cell death induced by Clostridium difficile toxin B. Immunol Lett 2015; 164:65-71. [DOI: 10.1016/j.imlet.2015.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/26/2015] [Accepted: 02/15/2015] [Indexed: 11/15/2022]
|
53
|
Lobet E, Letesson JJ, Arnould T. Mitochondria: a target for bacteria. Biochem Pharmacol 2015; 94:173-85. [PMID: 25707982 DOI: 10.1016/j.bcp.2015.02.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 01/12/2023]
Abstract
Eukaryotic cells developed strategies to detect and eradicate infections. The innate immune system, which is the first line of defence against invading pathogens, relies on the recognition of molecular patterns conserved among pathogens. Pathogen associated molecular pattern binding to pattern recognition receptor triggers the activation of several signalling pathways leading to the establishment of a pro-inflammatory state required to control the infection. In addition, pathogens evolved to subvert those responses (with passive and active strategies) allowing their entry and persistence in the host cells and tissues. Indeed, several bacteria actively manipulate immune system or interfere with the cell fate for their own benefit. One can imagine that bacterial effectors can potentially manipulate every single organelle in the cell. However, the multiple functions fulfilled by mitochondria especially their involvement in the regulation of innate immune response, make mitochondria a target of choice for bacterial pathogens as they are not only a key component of the central metabolism through ATP production and synthesis of various biomolecules but they also take part to cell signalling through ROS production and control of calcium homeostasis as well as the control of cell survival/programmed cell death. Furthermore, considering that mitochondria derived from an ancestral bacterial endosymbiosis, it is not surprising that a special connection does exist between this organelle and bacteria. In this review, we will discuss different mitochondrial functions that are affected during bacterial infection as well as different strategies developed by bacterial pathogens to subvert functions related to calcium homeostasis, maintenance of redox status and mitochondrial morphology.
Collapse
Affiliation(s)
- Elodie Lobet
- Laboratory of Biochemistry and Cellular Biology (URBC), NAmur Research Institute for LIfe Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium.
| | - Jean-Jacques Letesson
- Research Unit in Microorganisms Biology, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium.
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology (URBC), NAmur Research Institute for LIfe Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
54
|
Santos AS, Finlay BB. Bringing down the host: enteropathogenic and enterohaemorrhagic Escherichia coli effector-mediated subversion of host innate immune pathways. Cell Microbiol 2015; 17:318-32. [PMID: 25588886 DOI: 10.1111/cmi.12412] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 12/14/2022]
Abstract
Enteric bacterial pathogens commonly use a type III secretion system (T3SS) to successfully infect intestinal epithelial cells and survive and proliferate in the host. Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC; EHEC) colonize the human intestinal mucosa, form characteristic histological lesions on the infected epithelium and require the T3SS for full virulence. T3SS effectors injected into host cells subvert cellular pathways to execute a variety of functions within infected host cells. The EPEC and EHEC effectors that subvert innate immune pathways--specifically those involved in phagocytosis, host cell survival, apoptotic cell death and inflammatory signalling--are all required to cause disease. These processes are reviewed within, with a focus on recent work that has provided insights into the functions and host cell targets of these effectors.
Collapse
Affiliation(s)
- Andrew S Santos
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
55
|
Sun C, Wang H, Chen S, Li Z, Li S, Wang J. Recombinant Clostridium difficile toxin B induces endoplasmic reticulum stress in mouse colonal carcinoma cells. Acta Biochim Biophys Sin (Shanghai) 2014; 46:973-81. [PMID: 25274332 DOI: 10.1093/abbs/gmu091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Clostridium difficile is the main cause of antibiotic-associated diarrhea and pseudomembranous colitis in humans and animals. Its pathogenicity is primarily linked to the secretion of two exotoxins (TcdA and TcdB). Although great progress in the toxic mechanism of TcdA and TcdB has been achieved, there are many conflicting reports about the apoptotic mechanism. More importantly, apoptotic endoplasmic reticulum (ER) stress has been reported in cells treated with Shiga toxins-another kind of cytotoxins that can cause diarrhea and colitis. Herein we checked whether TcdB can induce ER stress. The results showed that recombinant TcdB (rTcdB) activated molecular markers of unfolded protein response, suggesting that rTcdB induced ER stress in CT26 cells. However, rTcdB did not induce the up-regulation of C/EBP homologous protein (CHOP), a classic mediator of apoptotic ER stress, but it activated the precursor of cysteine aspartic acid-specific protease 12 (caspase-12), a controversial mediator of apoptotic ER stress. Besides, glucosyltransferase activity-deficient mutant recombinant TcdB induced ER stress, though it has no cytotoxic or cytopathic effect on CT26 cells. Altogether, these data demonstrated that ER stress induced by rTcdB is glucosyltransferase-independent, indicating that ER stress induced by rTcdB is non-apoptotic. This work also offers us a new insight into the molecular mechanism of CHOP protein expression regulation and the role of CHOP expression in ER stress.
Collapse
Affiliation(s)
- Chunli Sun
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Haiying Wang
- School of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510006, China
| | - Shuyi Chen
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Zhendong Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Shan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China School of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
56
|
Wong Fok Lung T, Pearson JS, Schuelein R, Hartland EL. The cell death response to enteropathogenic Escherichia coli infection. Cell Microbiol 2014; 16:1736-45. [PMID: 25266336 DOI: 10.1111/cmi.12371] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 12/13/2022]
Abstract
Given the critical roles of inflammation and programmed cell death in fighting infection, it is not surprising that many bacterial pathogens have evolved strategies to inactivate these defences. The causative agent of infant diarrhoea, enteropathogenic Escherichia coli (EPEC), is an extracellular, intestinal pathogen that blocks both inflammation and programmed cell death. EPEC attaches to enterocytes, remains in the gut lumen and utilizes a type III secretion system (T3SS) to inject multiple virulence effector proteins directly into the infected cell, many of which subvert host antimicrobial processes through the disruption of signalling pathways. Recently, T3SS effector proteins from EPEC have been identified that inhibit death receptor-induced apoptosis. Here we review the mechanisms used by EPEC T3SS effectors to manipulate apoptosis and promote host cell survival and discuss the role of these activities during infection.
Collapse
Affiliation(s)
- Tania Wong Fok Lung
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Australia
| | | | | | | |
Collapse
|
57
|
Sun X, Hirota SA. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol Immunol 2014; 63:193-202. [PMID: 25242213 DOI: 10.1016/j.molimm.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 02/08/2023]
Abstract
Clostridium difficile (C. difficile) is the most common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous colitis. The clinical manifestation of C. difficile infection (CDI) is highly variable, from asymptomatic carriage, to mild self-limiting diarrhea, to the more severe pseudomembranous colitis. Furthermore, in extreme cases, colonic inflammation and tissue damage can lead to toxic megacolon, a condition requiring surgical intervention. C. difficile expresses two key virulence factors; the exotoxins, toxin A (TcdA) and toxin B (TcdB), which are glucosyltransferases that target host-cell monomeric GTPases. In addition, some hypervirulent strains produce a third toxin, binary toxin or C. difficile transferase (CDT), which may contribute to the pathogenesis of CDI. More recently, other factors such as surface layer proteins (SLPs) and flagellin have also been linked to the inflammatory responses observed in CDI. Although the adaptive immune response can influence the severity of CDI, the innate immune responses to C. difficile and its toxins play crucial roles in CDI onset, progression, and overall prognosis. Despite this, the innate immune responses in CDI have drawn relatively little attention from clinical researchers. Targeting these responses may prove useful clinically as adjuvant therapies, especially in refractory and/or recurrent CDI. This review will focus on recent advances in our understanding of how C. difficile and its toxins modulate innate immune responses that contribute to CDI pathogenesis.
Collapse
Affiliation(s)
- Xingmin Sun
- Tufts University Cummings School of Veterinary Medicine, Department of Infectious Diseases and Global Health, North Grafton, MA 01536, USA; Tufts University, Clinical and Translational Science Institute, Boston, MA 02111, USA.
| | - Simon A Hirota
- University of Calgary, Snyder Institute for Chronic Diseases, Departments of Physiology & Pharmacology and Microbiology, Immunology & Infectious Diseases, Calgary, AB T2N4N1, Canada
| |
Collapse
|
58
|
Wohlan K, Goy S, Olling A, Srivaratharajan S, Tatge H, Genth H, Gerhard R. Pyknotic cell death induced byClostridium difficile TcdB: chromatin condensation and nuclear blister are induced independently of the glucosyltransferase activity. Cell Microbiol 2014; 16:1678-92. [DOI: 10.1111/cmi.12317] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Katharina Wohlan
- Institute of Toxicology; Medical School Hannover; Hannover Germany
| | - Sebastian Goy
- Institute of Toxicology; Medical School Hannover; Hannover Germany
| | - Alexandra Olling
- Institute of Toxicology; Medical School Hannover; Hannover Germany
| | | | - Helma Tatge
- Institute of Toxicology; Medical School Hannover; Hannover Germany
| | - Harald Genth
- Institute of Toxicology; Medical School Hannover; Hannover Germany
| | - Ralf Gerhard
- Institute of Toxicology; Medical School Hannover; Hannover Germany
| |
Collapse
|
59
|
The P2Y6 receptor mediates Clostridium difficile toxin-induced CXCL8/IL-8 production and intestinal epithelial barrier dysfunction. PLoS One 2013; 8:e81491. [PMID: 24278446 PMCID: PMC3838400 DOI: 10.1371/journal.pone.0081491] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023] Open
Abstract
C. difficile is a Gram-positive spore-forming anaerobic bacterium that is the leading cause of nosocomial diarrhea in the developed world. The pathogenesis of C. difficile infections (CDI) is driven by toxin A (TcdA) and toxin B (TcdB), secreted factors that trigger the release of inflammatory mediators and contribute to disruption of the intestinal epithelial barrier. Neutrophils play a key role in the inflammatory response and the induction of pseudomembranous colitis in CDI. TcdA and TcdB alter cytoskeletal signaling and trigger the release of CXCL8/IL-8, a potent neutrophil chemoattractant, from intestinal epithelial cells; however, little is known about the surface receptor(s) that mediate these events. In the current study, we sought to assess whether toxin-induced CXCL8/IL-8 release and barrier dysfunction are driven by the activation of the P2Y6 receptor following the release of UDP, a danger signal, from intoxicated Caco-2 cells. Caco-2 cells express a functional P2Y6 receptor and release measurable amounts of UDP upon exposure to TcdA/B. Toxin-induced CXCL8/IL-8 production and release were attenuated in the presence of a selective P2Y6 inhibitor (MRS2578). This was associated with inhibition of TcdA/B-induced activation of NFκB. Blockade of the P2Y6 receptor also attenuated toxin-induced barrier dysfunction in polarized Caco-2 cells. Lastly, pretreating mice with the P2Y6 receptor antagonists (MSR2578) attenuated TcdA/B-induced inflammation and intestinal permeability in an intrarectal toxin exposure model. Taken together these data outline a novel role for the P2Y6 receptor in the induction of CXCL8/IL-8 production and barrier dysfunction in response to C. difficile toxin exposure and may provide a new therapeutic target for the treatment of CDI.
Collapse
|
60
|
Camilleri A, Zarb C, Caruana M, Ostermeier U, Ghio S, Högen T, Schmidt F, Giese A, Vassallo N. Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2532-43. [PMID: 23817009 DOI: 10.1016/j.bbamem.2013.06.026] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease and Parkinson's disease are neurodegenerative disorders characterised by the misfolding of proteins into soluble prefibrillar aggregates. These aggregate complexes disrupt mitochondrial function, initiating a pathophysiological cascade leading to synaptic and neuronal degeneration. In order to explore the interaction of amyloid aggregates with mitochondrial membranes, we made use of two in vitro model systems, namely: (i) lipid vesicles with defined membrane compositions that mimic those of mitochondrial membranes, and (ii) respiring mitochondria isolated from neuronal SH-SY5Y cells. External application of soluble prefibrillar forms, but not monomers, of amyloid-beta (Aβ42 peptide), wild-type α-synuclein (α-syn), mutant α-syn (A30P and A53T) and tau-441 proteins induced a robust permeabilisation of mitochondrial-like vesicles, and triggered cytochrome c release (CCR) from isolated mitochondrial organelles. Importantly, the effect on mitochondria was shown to be dependent upon cardiolipin, an anionic phospholipid unique to mitochondria and a well-known key player in mitochondrial apoptosis. Pharmacological modulators of mitochondrial ion channels failed to inhibit CCR. Thus, we propose a generic mechanism of thrilling mitochondria in which soluble amyloid aggregates have the intrinsic capacity to permeabilise mitochondrial membranes, without the need of any other protein. Finally, six small-molecule compounds and black tea extract were tested for their ability to inhibit permeation of mitochondrial membranes by Aβ42, α-syn and tau aggregate complexes. We found that black tea extract and rosmarinic acid were the most potent mito-protectants, and may thus represent important drug leads to alleviate mitochondrial dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Camilleri
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Zeiser J, Gerhard R, Just I, Pich A. Substrate specificity of clostridial glucosylating toxins and their function on colonocytes analyzed by proteomics techniques. J Proteome Res 2013; 12:1604-18. [PMID: 23387933 DOI: 10.1021/pr300973q] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clostridium difficile is the major cause of intestinal infections in hospitals. The major virulence factors are toxin A (TcdA) and toxin B (TcdB), which belong to the group of clostridial glucosylating toxins (CGT) that inactivate small GTPases. After a 24 h incubation period with TcdA or a glucosyltransferase-deficient mutant TcdA (gdTcdA), quantitative changes in the proteome of colonic cells (Caco-2) were analyzed using high-resolution LC-MS/MS and the SILAC technique. The changes in abundance of more than 5100 proteins were quantified. Nearly 800 toxin-responsive proteins were identified that were involved in cell cycle, cell structure, and adhesion as well as metabolic processes. Several proteins localized to mitochondria or involved in lipid metabolism were consistently of higher abundance after TcdA treatment. All changes of protein abundance depended on the glucosyltransferase activity of TcdA. Glucosylation of the known targets of TcdA such as RhoA, RhoC, RhoG was detected by LC-MS/MS. In addition, an almost complete glucosylation of Rap1(A/B), Rap2(A/B/C) and a partial glucosylation of Ral(A/B) and (H/K/N)Ras were detected. The glucosylation pattern of TcdA was compared to that of other CGT like TcdB, the variant TcdB from C. difficile strain VPI 1470 (TcdBF), and lethal toxin from C. sordellii (TcsL).
Collapse
Affiliation(s)
- Johannes Zeiser
- Hannover Medical School, Institute of Toxicology , Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | |
Collapse
|
62
|
Buret AG, Bhargava A. Modulatory mechanisms of enterocyte apoptosis by viral, bacterial and parasitic pathogens. Crit Rev Microbiol 2013; 40:1-17. [PMID: 23297858 DOI: 10.3109/1040841x.2012.746952] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
63
|
Chumbler NM, Farrow MA, Lapierre LA, Franklin JL, Haslam D, Goldenring JR, Lacy DB. Clostridium difficile Toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism. PLoS Pathog 2012; 8:e1003072. [PMID: 23236283 PMCID: PMC3516567 DOI: 10.1371/journal.ppat.1003072] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/22/2012] [Indexed: 01/21/2023] Open
Abstract
Clostridium difficile is the most common cause of antibiotic-associated nosocomial infection in the United States. C. difficile secretes two homologous toxins, TcdA and TcdB, which are responsible for the symptoms of C. difficile associated disease. The mechanism of toxin action includes an autoprocessing event where a cysteine protease domain (CPD) releases a glucosyltransferase domain (GTD) into the cytosol. The GTD acts to modify and inactivate Rho-family GTPases. The presumed importance of autoprocessing in toxicity, and the apparent specificity of the CPD active site make it, potentially, an attractive target for small molecule drug discovery. In the course of exploring this potential, we have discovered that both wild-type TcdB and TcdB mutants with impaired autoprocessing or glucosyltransferase activities are able to induce rapid, necrotic cell death in HeLa and Caco-2 epithelial cell lines. The concentrations required to induce this phenotype correlate with pathology in a porcine colonic explant model of epithelial damage. We conclude that autoprocessing and GTD release is not required for epithelial cell necrosis and that targeting the autoprocessing activity of TcdB for the development of novel therapeutics will not prevent the colonic tissue damage that occurs in C. difficile – associated disease. Clostridium difficile is an anaerobic spore-forming bacterium that infects the human colon and causes diarrhea, pseudomembranous colitis, and toxic megacolon. Most people that develop disease symptoms have undergone antibiotic treatment, which alters the normal gut flora and allows C. difficile to flourish. C. difficile secretes two toxins, TcdA and TcdB, that are responsible for the fluid secretion, inflammation, and colonic tissue damage associated with disease. The emergence of hypervirulent strains of C. difficile that are linked to increased morbidity and mortality highlights the need for new therapeutic strategies. One strategy is to inhibit the function of the toxins, thereby decreasing damage to the colon while the patient clears the infection with antibiotics. Toxin function is thought to depend on an autoprocessing event that releases a catalytic ‘effector’ portion of the toxin into the host cell. In the course of trying to identify small molecules that would inhibit such a function, we found that TcdB induces a rapid necrosis in epithelial cells that is not dependent on autoprocessing. The physiological relevance of this observation is confirmed in colonic explants and suggests that inhibiting TcdB autoprocessing will not prevent the colonic tissue damage observed in C. difficile associated diseases.
Collapse
Affiliation(s)
- Nicole M. Chumbler
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Melissa A. Farrow
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Lynne A. Lapierre
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jeffrey L. Franklin
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - David Haslam
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James R. Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
64
|
Abstract
The gastrointestinal system is a common entry point for pathogenic microbes to access the inner environment of the body. Anti-microbial factors produced by the intestinal mucosa limit the translocation of both commensal and pathogenic microbes across the intestinal epithelial cell barrier. The regulation of these host defense mechanisms largely depends on the activation of innate immune receptors by microbial molecules. Under steady-state conditions, the microbiota provides constitutive signals to the innate immune system, which helps to maintain a healthy inflammatory tone within the intestinal mucosa and, thus, enhances resistance to infection with enteric pathogens. During an acute infection, the intestinal epithelial cell barrier is breached, and the detection of microbial molecules in the intestinal lamina propria rapidly stimulates innate immune signaling pathways that coordinate early defense mechanisms. Herein, we review how microbial molecules shed by both commensal and pathogenic microbes direct host defenses at the intestinal mucosa. We highlight the signaling pathways, effector molecules, and cell populations that are activated by microbial molecule recognition and, thereby, are involved in the maintenance of homeostatic levels of host defense and in the early response to acute enteric infection. Finally, we discuss how manipulation of these host defense pathways by stimulating innate immune receptors is a potential therapeutic strategy to prevent or alleviate intestinal disease.
Collapse
Affiliation(s)
- Melissa A Kinnebrew
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
65
|
Jiang JH, Tong J, Gabriel K. Hijacking Mitochondria: Bacterial Toxins that Modulate Mitochondrial Function. IUBMB Life 2012; 64:397-401. [DOI: 10.1002/iub.1021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
66
|
Pruitt RN, Lacy DB. Toward a structural understanding of Clostridium difficile toxins A and B. Front Cell Infect Microbiol 2012; 2:28. [PMID: 22919620 PMCID: PMC3417631 DOI: 10.3389/fcimb.2012.00028] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/27/2012] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile is a toxin-producing bacterium that is a frequent cause of hospital-acquired and antibiotic-associated diarrhea. The incidence, severity, and costs associated with C. difficile associated disease are substantial and increasing, making C. difficile a significant public health concern. The two primary toxins, TcdA and TcdB, disrupt host cell function by inactivating small GTPases that regulate the actin cytoskeleton. This review will discuss the role of these two toxins in pathogenesis and the structural and molecular mechanisms by which they intoxicate cells. A focus will be placed on recent publications highlighting mechanistic similarities and differences between TcdA, TcdB, and different TcdB variants.
Collapse
Affiliation(s)
- Rory N Pruitt
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville TN, USA
| | | |
Collapse
|
67
|
D'Auria KM, Donato GM, Gray MC, Kolling GL, Warren CA, Cave LM, Solga MD, Lannigan JA, Papin JA, Hewlett EL. Systems analysis of the transcriptional response of human ileocecal epithelial cells to Clostridium difficile toxins and effects on cell cycle control. BMC SYSTEMS BIOLOGY 2012; 6:2. [PMID: 22225989 PMCID: PMC3266197 DOI: 10.1186/1752-0509-6-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/06/2012] [Indexed: 12/12/2022]
Abstract
Background Toxins A and B (TcdA and TcdB) are Clostridium difficile's principal virulence factors, yet the pathways by which they lead to inflammation and severe diarrhea remain unclear. Also, the relative role of either toxin during infection and the differences in their effects across cell lines is still poorly understood. To better understand their effects in a susceptible cell line, we analyzed the transciptome-wide gene expression response of human ileocecal epithelial cells (HCT-8) after 2, 6, and 24 hr of toxin exposure. Results We show that toxins elicit very similar changes in the gene expression of HCT-8 cells, with the TcdB response occurring sooner. The high similarity suggests differences between toxins are due to events beyond transcription of a single cell-type and that their relative potencies during infection may depend on differential effects across cell types within the intestine. We next performed an enrichment analysis to determine biological functions associated with changes in transcription. Differentially expressed genes were associated with response to external stimuli and apoptotic mechanisms and, at 24 hr, were predominately associated with cell-cycle control and DNA replication. To validate our systems approach, we subsequently verified a novel G1/S and known G2/M cell-cycle block and increased apoptosis as predicted from our enrichment analysis. Conclusions This study shows a successful example of a workflow deriving novel biological insight from transcriptome-wide gene expression. Importantly, we do not find any significant difference between TcdA and TcdB besides potency or kinetics. The role of each toxin in the inhibition of cell growth and proliferation, an important function of cells in the intestinal epithelium, is characterized.
Collapse
Affiliation(s)
- Kevin M D'Auria
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Oropesa M, de la Mata M, Maraver JG, Cordero MD, Cotán D, Rodríguez-Hernández A, Domínguez-Moñino I, de Miguel M, Navas P, Sánchez-Alcázar JA. Apoptotic microtubule network organization and maintenance depend on high cellular ATP levels and energized mitochondria. Apoptosis 2011; 16:404-24. [PMID: 21311976 DOI: 10.1007/s10495-011-0577-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microtubule cytoskeleton is reformed during apoptosis, forming a cortical structure beneath plasma membrane, which plays an important role in preserving cell morphology and plasma membrane integrity. However, the maintenance of the apoptotic microtubule network (AMN) during apoptosis is not understood. In the present study, we examined apoptosis induced by camptothecin (CPT), a topoisomerase I inhibitor, in human H460 and porcine LLCPK-1α cells. We demonstrate that AMN was organized in apoptotic cells with high ATP levels and hyperpolarized mitochondria and, on the contrary, was dismantled in apoptotic cells with low ATP levels and mitochondrial depolarization. AMN disorganization after mitochondrial depolarization was associated with increased plasma membrane permeability assessed by enhancing LDH release and increased intracellular calcium levels. Living cell imaging monitoring of both, microtubule dynamics and mitochondrial membrane potential, showed that AMN persists during apoptosis coinciding with cycles of mitochondrial hyperpolarization. Eventually, AMN was disorganized when mitochondria suffered a large depolarization and cell underwent secondary necrosis. AMN stabilization by taxol prevented LDH release and calcium influx even though mitochondria were depolarized, suggesting that AMN is essential for plasma membrane integrity. Furthermore, high ATP levels and mitochondria polarization collapse after oligomycin treatment in apoptotic cells suggest that ATP synthase works in "reverse" mode during apoptosis. These data provide new explanations for the role of AMN and mitochondria during apoptosis.
Collapse
Affiliation(s)
- Manuel Oropesa
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km. 1, Seville, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Zeiser JJ, Klodmann J, Braun HP, Gerhard R, Just I, Pich A. Effects of Clostridium difficile Toxin A on the proteome of colonocytes studied by differential 2D electrophoresis. J Proteomics 2011; 75:469-79. [PMID: 21890007 DOI: 10.1016/j.jprot.2011.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/19/2011] [Accepted: 08/15/2011] [Indexed: 02/04/2023]
Abstract
Clostridium difficile is a spore-forming anaerobic pathogen, commonly associated with severe diarrhea or life-threatening pseudomembraneous colitis. Its main virulence factors are the single-chain, multi-domain toxin A (TcdA) and B (TcdB). Their glucosyltransferase domain selectively inactivates Rho proteins leading to a reorganization of the cytoskeleton. To study exclusively glucosyltransferase-dependent molecular effects of TcdA, human colonic cells (Caco-2) were treated with recombinant wild type TcdA and the glucosyltransferase deficient variant of the toxin, TcdA(gd) for 24h. Changes in the protein pattern of the colonic cells were investigated by 2-D DIGE and LCMS/MS methodology combined with detailed proteome mapping. gdTcdA did not induce any detectable significant changes in the protein pattern. Comparing TcdA-treated cells with a control group revealed seven spots of higher and two of lower intensity (p<0.05). Three proteins are involved in the assembly of the cytoskeleton (β-actin, ezrin, and DPYL2) and four are involved in metabolism and/or oxidative stress response (ubiquitin, DHE3, MCCB, FABPL) and two in regulatory processes (FUBP1, AL1A1). These findings correlate well to known effects of TcdA like the reorganization of the cytoskeleton and stress the importance of Rho protein glucosylation for the pathogenic effects of TcdA.
Collapse
Affiliation(s)
- Johannes J Zeiser
- Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
70
|
Jochim N, Gerhard R, Just I, Pich A. Impact of clostridial glucosylating toxins on the proteome of colonic cells determined by isotope-coded protein labeling and LC-MALDI. Proteome Sci 2011; 9:48. [PMID: 21849038 PMCID: PMC3176154 DOI: 10.1186/1477-5956-9-48] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/17/2011] [Indexed: 01/05/2023] Open
Abstract
Background The anaerobe Clostridium difficile produces two major virulence factors toxin A and B that inactivate Rho proteins by glucosylation of a pivotal threonine residue. Purified toxins induce reorganization of the cytoskeleton and cell death in colonic cells. Whether all toxin effects on target cells depend on catalytic glucosyltransferase activity is unclear at present. Thus, we conducted a proteome approach to compare the protein profile of target cells treated either with wild type toxin A (rTcdA wt) or with a catalytically inactive mutant toxin A (mutant rTcdA). Relative protein quantification was feasible using isotope-coded protein labeling techniques (ICPL) and mass spectrometry (LC-MALDI). Results Altogether we found a significant differential expression of thirty proteins after treatment with rTcdA wt or mutant rTcdA. Mutant rTcdA caused up-regulation of seven proteins and sixteen proteins were responsive to rTcdA wt after 5 h. Long-term effect of rTcdA wt on protein expression was the down-regulation of eleven proteins. Up- or down-regulation of several proteins was verified by western blot analysis confirming the MS results. Conclusion Our results indicate incubation time-dependent effects of the clostridial glucosylating toxin A on colonic cells. The rTcdA wt impact more cellular functions than actin cytoskeleton reorganization and apoptosis. Furthermore, these data give insight into glucosyltransferase independent effects of clostridial glucosylating toxins on target cells after short incubation time. Additionally, our data reveal pro-inflammatory and proliferative effects of mutant rTcdA after short-term incubation.
Collapse
Affiliation(s)
- Nelli Jochim
- Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Str, 1, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
71
|
Identification of a novel virulence factor in Clostridium difficile that modulates toxin sensitivity of cultured epithelial cells. Infect Immun 2011; 79:3810-20. [PMID: 21746858 DOI: 10.1128/iai.00051-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two glucosylating toxins named toxins A and B play a role in the pathogenesis of Clostridium Difficile infection. The interaction of the toxins with host cell factors proceeds to downstream stages of cytotoxic effects in cells, in which involvement of other C. difficile factors remains unknown. We utilized culture filtrate of C. difficile with a low dilution to characterize the influence of putative minor proteins on the organization of the actin cytoskeleton in cultured epithelial cells and found a previously uncharacterized F-actin aggregated structure, termed "actin aggregate," at the juxtanuclear region. We reasoned that formation of actin aggregate was due to an additional factor(s) in the culture filtrate rather than the glucosylating toxins, because treatment of purified toxins rarely caused actin aggregate in cells. We focused on a previously uncharacterized hypothetical protein harboring a KDEL-like sequence as a candidate. The product of the candidate gene was detected in culture filtrate of C. difficile ATCC 9689 and was renamed Srl. Purified glutathione S-transferase-tagged Srl triggered formation of actin aggregate in the cells in the presence of either toxin A or B and enhanced cytotoxicity of each of the two toxins, including decreases in both cell viability and transepithelial resistance of cultured epithelial monolayer, although the recombinant Srl alone did not show detectable cytotoxicity. Srl-neutralized culture filtrate partially inhibited morphological changes of the cells in parallel with decreased actin aggregate formation in the cells. Thus, Srl might contribute to the modulation of toxin sensitivity of intestinal epithelial cells by enhancing cytotoxicity of C. difficile toxins.
Collapse
|
72
|
Popoff MR, Geny B. Rho/Ras-GTPase-dependent and -independent activity of clostridial glucosylating toxins. J Med Microbiol 2011; 60:1057-1069. [PMID: 21349986 DOI: 10.1099/jmm.0.029314-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Clostridial glucosylating toxins are the main virulence factors of clostridia responsible for gangrene and/or colitis. These toxins have been well characterized to inactivate Rho/Ras-GTPases through glucosylation. However, the signalling pathways downstream of Rho/Ras-GTPases leading to the intracellular effects of these toxins are only partially known. Rac-dependent modification of focal adhesion complexes and phosphoinositide metabolism seem to be key processes involved in actin filament depolymerization and disorganization of intercellular junctions. In addition, clostridial glucosylating toxins induce Rho/Ras-independent intracellular effects such as activation of mitogen-activated protein kinase pathways, which are used by some of these toxins to trigger an inflammatory response.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Bladine Geny
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 rue du Dr Roux, 75724 Paris cedex 15, France
| |
Collapse
|
73
|
Difference in the biological effects of Clostridium difficile toxin B in proliferating and non-proliferating cells. Naunyn Schmiedebergs Arch Pharmacol 2011; 383:275-83. [PMID: 21212934 DOI: 10.1007/s00210-010-0595-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 12/21/2010] [Indexed: 02/07/2023]
Abstract
Toxin A (TcdA) and toxin B (TcdB) from Clostridium difficile are the causative agents of the C. difficile-associated diarrhea (CDAD) and its severe form, the pseudomembranous colitis. TcdA and TcdB both glucosylate and thereby inactivate low molecular weight GTP-binding proteins of the Rho, Rac, and Cdc42 subfamilies. In cultured cell lines, TcdB induces actin re-organization and bi-nucleation ("cytopathic effects") and cell death ("cytotoxic effects"). In this study, the role of cell cycle progression in the cytopathic and the cytotoxic effects of TcdB is evaluated by a differential analysis of these effects in proliferating and non-proliferating cells. Density-synchronized murine fibroblasts and confluent HT29 colonocytes are exploited as cell culture models for non-proliferating cells. Cell death is analyzed in terms of a loss of cell viability, phosphatidylserine exposure, and DNA fragmentation. In proliferating cells, TcdB blocks cell proliferation and induces apoptotic cell death. In contrast, TcdB induces non-apoptotic cell death in non-proliferating cells. TcdB-induced cell rounding turns out to be independent of cell cycle progression. Cell cycle progression is an important determinant in the biological effects of TcdB. With respect to the pathology of CDAD, this study leads to the new hypothesis that necrotic cell death of terminally differentiated colonocytes and inhibition of epithelial renewal of the colon contribute to the pathogenesis of CDAD.
Collapse
|
74
|
Functional implications of lethal toxin-catalysed glucosylation of (H/K/N)Ras and Rac1 in Clostridium sordellii-associated disease. Eur J Cell Biol 2010; 90:959-65. [PMID: 21134703 DOI: 10.1016/j.ejcb.2010.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 11/20/2022] Open
Abstract
Clostridium sordellii-based diseases in humans and livestock rely on the activity of the major virulence factors, the single-chain protein toxins TcsL and TcsH, both belonging to the large clostridial glucosylating toxins. TcsL exclusively glucosylates Rho and Ras low molecular weight GTP-binding proteins. TcsL-induced loss of barrier function in epithelial (diarrhoea) and endothelial cells (extravasation of blood fluid) is based on Rac glucosylation whereas induction of apoptosis results from glucosylation of Ras. Intracellular glucosylation of Rac and Ras can be tracked by immunoblot applying the glucosylation-sensitive antibodies Rac1(Mab 102) and Ras(Mab 27H5). Induction of apoptosis especially of phagocytotic cells is crucial for the severity of C. sordellii-associated disease. The inhibition of TcsL-induced apoptosis by tauroursodeoxycholic acid (TUDCA) may be a promising therapeutic option.
Collapse
|
75
|
Interactions between bacterial pathogens and mitochondrial cell death pathways. Nat Rev Microbiol 2010; 8:693-705. [PMID: 20818415 DOI: 10.1038/nrmicro2421] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The modulation of host cell death pathways by bacteria has been recognized as a major pathogenicity mechanism. Among other strategies, bacterial pathogens can hijack the cell death machinery of host cells by influencing the signalling pathways that converge on the mitochondria. In particular, many bacterial proteins have evolved to interact in a highly specific manner with host mitochondria, thereby modulating the decision between cell life and death. In this Review, we explore the intimate interactions between bacterial pathogens and mitochondrial cell death pathways.
Collapse
|
76
|
Inhibition of Rho-ROCK signaling induces apoptotic and non-apoptotic PS exposure in cardiomyocytes via inhibition of flippase. J Mol Cell Cardiol 2010; 49:781-90. [PMID: 20691698 DOI: 10.1016/j.yjmcc.2010.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 07/12/2010] [Accepted: 07/28/2010] [Indexed: 02/06/2023]
Abstract
Subsequent to myocardial infarction, cardiomyocytes within the infarcted areas and border zones expose phosphatidylserine (PS) in the outer plasma membrane leaflet (flip-flop). We showed earlier that in addition to apoptosis, this flip-flop can be reversible in cardiomyocytes. We now investigated a possible role for Rho and downstream effector Rho-associated kinase (ROCK) in the process of (reversible) PS exposure and apoptosis in cardiomyocytes. In rat cardiomyoblasts (H9c2 cells) and isolated adult ventricular rat cardiomyocytes Clostridium difficile Toxin B (TcdB), a Rho GTPase family inhibitor, C3 transferase (C3), a Rho(A,B,C) inhibitor and the ROCK inhibitors Y27632 and H1152 were used to inhibit Rho-ROCK signaling. PS exposure was assessed via flow cytometry and fluorescent digital imaging microscopy using annexin V. Akt expression and phosphorylation were analyzed via Western blot, and Akt activity was inhibited by wortmannin. The cellular concentration activated caspase 3 was determined as a measure of apoptosis, and flippase activity was assessed via flow cytometry using NBD-labeled PS. TcdB, C3, Y27632 and H1152 all significantly increased PS exposure. TcdB, Y27632 and H1152 all significantly inhibited phosphorylation of the anti-apoptotic protein Akt and Akt inhibition by wortmannin lead to increased PS exposure. However, only TcdB and C3, but not ROCK- or Akt inhibition led to caspase 3 activation and thus apoptosis. Notably, pancaspase inhibitor zVAD only partially inhibited TcdB-induced PS exposure indicating the existence of apoptotic and non-apoptotic PS exposure. The induced PS exposure coincided with decreased flippase activity as measured with NBD-labeled PS flip-flop. In this study, we show a regulatory role for a novel signaling route, Rho-ROCK-flippase signaling, in maintaining asymmetrical membrane phospholipid distribution in cardiomyocytes.
Collapse
|
77
|
Sun X, Savidge T, Feng H. The enterotoxicity of Clostridium difficile toxins. Toxins (Basel) 2010; 2:1848-80. [PMID: 22069662 PMCID: PMC3153265 DOI: 10.3390/toxins2071848] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 06/23/2010] [Accepted: 07/09/2010] [Indexed: 02/06/2023] Open
Abstract
The major virulence factors of Clostridium difficile infection (CDI) are two large exotoxins A (TcdA) and B (TcdB). However, our understanding of the specific roles of these toxins in CDI is still evolving. It is now accepted that both toxins are enterotoxic and proinflammatory in the human intestine. Both purified TcdA and TcdB are capable of inducing the pathophysiology of CDI, although most studies have focused on TcdA. C. difficile toxins exert a wide array of biological activities by acting directly on intestinal epithelial cells. Alternatively, the toxins may target immune cells and neurons once the intestinal epithelial barrier is disrupted. The toxins may also act indirectly by stimulating cells to produce chemokines, proinflammatory cytokines, neuropeptides and other neuroimmune signals. This review considers the mechanisms of TcdA- and TcdB-induced enterotoxicity, and recent developments in this field.
Collapse
Affiliation(s)
- Xingmin Sun
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA;
| | - Tor Savidge
- The University of Texas Medical Branch, Galveston, TX, 77555, USA;
| | - Hanping Feng
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA;
- Author to whom correspondence should be addressed; ; Tel.: +1-508-887-4252; Fax: +1-508-839-7911
| |
Collapse
|
78
|
Dreger SC, Schulz F, Huelsenbeck J, Gerhard R, Hofmann F, Just I, Genth H. Killing of rat basophilic leukemia cells by lethal toxin from Clostridium sordellii: critical role of phosphatidylinositide 3'-OH kinase/Akt signaling. Biochemistry 2010; 48:1785-92. [PMID: 19199813 DOI: 10.1021/bi800708b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clostridium sordellii lethal toxin (TcsL) belongs to the family of clostridial glucosylating toxins. TcsL exhibits glucosyltransferase activity to inactivate Rho and Ras proteins. On cultured cells, TcsL causes actin reorganization ("cytopathic effect") and apoptotic cell death ("cytotoxic effect"). This study is based on the concept that the cytotoxic effects of TcsL depend on the glucosylation of critical substrate proteins rather than on the glucosyltransferase activity per se. The cytotoxic effects of TcsL depend on the glucosyltransferase activity of TcsL, as neither chemically inactivated TcsL nor a glucosyltransferase-deficient mutant version of TcsL caused it. The TcsL homologous toxin B from Clostridium difficile serotype F strain 1470 (TcdBF) also failed to cause cytotoxic effects. Correlation of the toxins' respective protein substrate specificities highlighted (H/K/N)Ras as critical substrate proteins for the cytotoxic effects. (H/K/N)Ras are critical upstream regulators of phosphatidylinositide 3'-OH kinase (PI3K)/Akt survival signaling. Tauroursodeoxycholic acid (TUDCA) classified to activate PI3K/Akt signaling downstream of apoptosis-inducing stimuli prevented the cytotoxic effects of TcsL. In conclusion, (H/K/N)Ras glucosylation and subsequent inhibition of PI3K/Akt signaling are critical for the cytotoxic effects of TcsL.
Collapse
Affiliation(s)
- Stefanie C Dreger
- Institut für Toxikologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
79
|
Robinson KS, Mousnier A, Hemrajani C, Fairweather N, Berger CN, Frankel G. The enteropathogenic Escherichia coli effector NleH inhibits apoptosis induced by Clostridium difficile toxin B. MICROBIOLOGY-SGM 2010; 156:1815-1823. [PMID: 20223805 PMCID: PMC3068670 DOI: 10.1099/mic.0.037259-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile is a leading cause of nosocomial infections, causing a spectrum of diseases ranging from diarrhoea to pseudomembranous colitis triggered by a range of virulence factors including C. difficile toxins A (TcdA) and B (TcdB). TcdA and TcdB are monoglucosyltransferases that irreversibly glycosylate small Rho GTPases, inhibiting their ability to interact with their effectors, guanine nucleotide exchange factors, and membrane partners, leading to disruption of downstream signalling pathways and cell death. In addition, TcdB targets the mitochondria, inducing the intrinsic apoptotic pathway resulting in TcdB-mediated apoptosis. Modulation of apoptosis is a common strategy used by infectious agents. Recently, we have shown that the enteropathogenic Escherichia coli (EPEC) type III secretion system effector NleH has a broad-range anti-apoptotic activity. In this study we examined the effects of NleH on cells challenged with TcdB. During infection with wild-type EPEC, NleH inhibited TcdB-induced apoptosis at both low and high toxin concentrations. Transfected nleH1 alone was sufficient to block TcdB-induced cell rounding, nuclear condensation, mitochondrial swelling and lysis, and activation of caspase-3. These results show that NleH acts via a global anti-apoptotic pathway.
Collapse
Affiliation(s)
- Keith S Robinson
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Aurelie Mousnier
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Cordula Hemrajani
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Neil Fairweather
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Cedric N Berger
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
80
|
Kisiela DI, Aulik NA, Atapattu DN, Czuprynski CJ. N-terminal region of Mannheimia haemolytica leukotoxin serves as a mitochondrial targeting signal in mammalian cells. Cell Microbiol 2010; 12:976-87. [PMID: 20109159 DOI: 10.1111/j.1462-5822.2010.01445.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mannheimia haemolytica leukotoxin (LktA) is a member of the RTX toxin family that specifically kills ruminant leukocytes. Previous studies have shown that LktA induces apoptosis in susceptible cells via a caspase-9-dependent pathway that involves binding of LktA to mitochondria. In this study, using the bioinformatics tool MitoProt II we identified an N-terminal amino acid sequence of LktA that represents a mitochondrial targeting signal (MTS). We show that expression of this sequence, as a GFP fusion protein within mammalian cells, directs GFP to mitochondria. By immunoprecipitation we demonstrate that LktA interacts with the Tom22 and Tom40 components of the translocase of the outer mitochondrial membrane (TOM), which suggests that import of this toxin into mitochondria involves a classical import pathway for endogenous proteins. We also analysed the amino acid sequences of other RTX toxins and found a MTS in the N-terminal region of Actinobacillus pleuropneumoniae ApxII and enterohaemorrhagic Escherichia coli EhxA, but not in A. pleuropneumoniae ApxI, ApxIII, Aggregatibacter actinomycetemcomitans LtxA or the haemolysin (HlyA) from uropathogenic strains of E. coli. These findings provide a new evidence for the importance of the N-terminal region in addressing certain RTX toxins to mitochondria.
Collapse
Affiliation(s)
- Dagmara I Kisiela
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
81
|
Abstract
Clostridia produce the highest number of toxins of any type of bacteria and are involved in severe diseases in humans and other animals. Most of the clostridial toxins are pore-forming toxins responsible for gangrenes and gastrointestinal diseases. Among them, perfringolysin has been extensively studied and it is the paradigm of the cholesterol-dependent cytolysins, whereas Clostridium perfringens epsilon-toxin and Clostridium septicum alpha-toxin, which are related to aerolysin, are the prototypes of clostridial toxins that form small pores. Other toxins active on the cell surface possess an enzymatic activity, such as phospholipase C and collagenase, and are involved in the degradation of specific cell-membrane or extracellular-matrix components. Three groups of clostridial toxins have the ability to enter cells: large clostridial glucosylating toxins, binary toxins and neurotoxins. The binary and large clostridial glucosylating toxins alter the actin cytoskeleton by enzymatically modifying the actin monomers and the regulatory proteins from the Rho family, respectively. Clostridial neurotoxins proteolyse key components of neuroexocytosis. Botulinum neurotoxins inhibit neurotransmission at neuromuscular junctions, whereas tetanus toxin targets the inhibitory interneurons of the CNS. The high potency of clostridial toxins results from their specific targets, which have an essential cellular function, and from the type of modification that they induce. In addition, clostridial toxins are useful pharmacological and biological tools.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 75724 Paris cedex 15, France.
| | | |
Collapse
|
82
|
Malorni W, Farrace MG, Matarrese P, Tinari A, Ciarlo L, Mousavi-Shafaei P, D'Eletto M, Di Giacomo G, Melino G, Palmieri L, Rodolfo C, Piacentini M. The adenine nucleotide translocator 1 acts as a type 2 transglutaminase substrate: implications for mitochondrial-dependent apoptosis. Cell Death Differ 2009; 16:1480-92. [PMID: 19644512 DOI: 10.1038/cdd.2009.100] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In this study we provide in vitro and in vivo evidence showing that the protein disulphide isomerase (PDI) activity of type 2 transglutaminase (TG2) regulates the correct assembly and function of the mitochondrial ADP/ATP transporter adenine nucleotide translocator 1 (ANT1). We demonstrate, by means of biochemical and morphological analyses, that ANT1 and TG2 physically interact in the mitochondria. Under physiological conditions, TG2's PDI activity regulates the ADP/ATP transporter function by controlling the oligomerization of ANT1. In fact, mitochondria isolated from hearts of TG2(-/-) mice exhibit increased polymerization of ANT1, paralleled by an enhanced ADP/ATP carrier activity, as compared to mitochondria belonging to TG2(+/+) mice. Interestingly, upon cell-death induction, ANT1 becomes a substrate for TG2's cross-linking activity and the lack of TG2 results in a reduction of apoptosis as well as in a marked sensitivity to the ADP/ATP exchange inhibition by atractyloside. These findings suggest a complex TG2-dependent regulation of the ADP/ATP transporter and reveal new important avenues for its potential applications in the treatment of some mitochondrial-dependent diseases, including cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- W Malorni
- Department of Therapeutic Research and Medicine Evaluation, National Institute of Health, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Schulz F, Just I, Genth H. Prevention of Clostridium sordellii lethal toxin-induced apoptotic cell death by tauroursodeoxycholic acid. Biochemistry 2009; 48:9002-10. [PMID: 19691300 DOI: 10.1021/bi900964c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Virulent strains of Clostridium sordellii cause gangrenous myonecrosis in humans. The released lethal toxin (TcsL) and hemorrhagic toxin (TcsH) are regarded as the major virulence factors. TcsL inactivates low molecular weight GTP-binding proteins of the Rho/Ras subfamilies by monoglucosylation. In cultured cell lines, glucosylation, i.e., inactivation of Rho/Ras proteins, results in actin reorganization ("cytopathic effect") and apoptotic cell death ("cytotoxic effect"). Apoptotic cell death induced by TcsL is suggested to be based on inhibition of the phosphoinositide 3-kinase (PI3K)/Akt-survival pathway. In this study, we analyze the critical role of PI3K/Akt signaling in TcsL-induced apoptosis using the antiapoptotic bile acid tauroursodeoxycholic acid (TUDCA) as the pharmacological tool. TUDCA preserved the TcsL-induced decrease of the cellular level of phospho-Akt, suggesting that TUDCA activated PI3K/Akt signaling downstream of inhibited Ras signaling. TcsL-induced apoptosis was prevented by TUDCA treatment. The antiapoptotic effect of TUDCA was abolished by the PI3K inhibitor LY294002 and the Akt inhibitor, showing that the antiapoptotic effect depends on PI3K/Akt signaling. Inhibition of Ras/Rho signaling by TcsL resulted in activation of p38 MAP kinase. Inhibition of p38 MAP kinase by SB203580 protected cells from TcsL-induced apoptosis. TUDCA induced activation of p38 MAP kinase as well, an aspect of the TUDCA effects that most likely did not contribute to its antiapoptotic activity. Due to its antiapoptotic activity, TUDCA is under investigation for its potential application as a therapeutic modulator of apoptosis-related diseases. TUDCA may represent a new concept for the treatment of disease associated with toxigenic C. sordellii.
Collapse
Affiliation(s)
- Florian Schulz
- Institut für Toxikologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | | | | |
Collapse
|
84
|
Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. PLoS Pathog 2009; 5:e1000603. [PMID: 19798427 PMCID: PMC2745580 DOI: 10.1371/journal.ppat.1000603] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 09/04/2009] [Indexed: 12/14/2022] Open
Abstract
Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host. The gram-negative bacterium Helicobacter pylori is the main causative agent of peptic ulcer and gastric cancer in humans. Our work sheds light on a new molecular mechanism by which H. pylori would exert its highly efficient colonization strategy of the human host. In this paper, we show that the H. pylori CagA protein counteracts, by two distinct non-overlapping mechanisms, the apoptotic activity of the H. pylori VacA toxin on human gastric epithelial cells so as to allow a protection of the bacterium niche against VacA, giving a rationale for the association of these two virulence factors in the most pathogenic H. pylori strains. This is a new, highly ingenious mechanism by which a bacterium locally protects its ecological niche against the action of one of its own virulence factors. However, while exerting a beneficial role for survival and growth of the bacterium by counteracting VacA toxin, CagA injection in the gastric epithelial cells triggers proinflammatory and anti-apoptotic responses which are detrimental for the human host in the long-term and favor the development of ulcer and cancer.
Collapse
|
85
|
Sorice M, Matarrese P, Tinari A, Giammarioli AM, Garofalo T, Manganelli V, Ciarlo L, Gambardella L, Maccari G, Botta M, Misasi R, Malorni W. Raft component GD3 associates with tubulin following CD95/Fas ligation. FASEB J 2009; 23:3298-308. [PMID: 19509307 DOI: 10.1096/fj.08-128140] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In a previous investigation, we demonstrated that after CD95/Fas triggering, raft-associated GD3 ganglioside, normally localized at the plasma membrane of T cells, can be detected in mitochondria, where they contribute to apoptogenic events. Here, we show the association of the glycosphingolipid GD3 with microtubular cytoskeleton at very early time points following Fas ligation. This was assessed by different methodological approaches, including fluorescence resonance energy transfer, immunoelectron microscopy, and coimmunoprecipitation. Furthermore, docking analysis also showed that GD3 has a high affinity for the pore formed by 4 tubulin heterodimers (type I pore), thus suggesting a possible direct interaction between tubulin and GD3. Finally, time-course analyses indicated that the relocalization of GD3 to the mitochondria was time related with the alterations of the mitochondrial membrane potential. Hence, microtubules could act as tracks for ganglioside redistribution following apoptotic stimulation, possibly contributing to the mitochondrial alterations leading to cell death.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
|
87
|
Yang G, Zhou B, Wang J, He X, Sun X, Nie W, Tzipori S, Feng H. Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium. BMC Microbiol 2008; 8:192. [PMID: 18990232 PMCID: PMC2586027 DOI: 10.1186/1471-2180-8-192] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 11/06/2008] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Major Clostridium difficile virulence factors are the exotoxins TcdA and TcdB. Due to the large size and poor stability of the proteins, the active recombinant TcdA and TcdB have been difficult to produce. RESULTS The toxin genes tcdA and tcdB were amplified by PCR using chromosomal DNA from a toxigenic strain as a template, and cloned into a shuttle vector pHis1522. The sequences of both tcdA and tcdB genes in the vector have been verified by DNA sequencing. The constructs were transformed into B. megaterium protoplasts and the protein expression was controlled under a xylose promoter. The recombinant toxins (rTcdA and rTcdB) were purified from bacterial crude extracts. Approximately 5 - 10 mg of highly purified recombinant toxins were obtained from one liter of bacterial culture. The resulting rTcdA and rTcdB had similar molecular masses to the native toxins, and their biological activities were found to be similar to their native counterparts after an extensive examination. CONCLUSION We have generated the full length and active recombinant TcdA and TcdB in Bacillus megaterium.
Collapse
Affiliation(s)
- Guilin Yang
- Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA
- Institute of Hepatology, Shenzhen East Lake Hospital, Shenzhen518020, PR China
| | - Boping Zhou
- Institute of Hepatology, Shenzhen East Lake Hospital, Shenzhen518020, PR China
| | - Jufang Wang
- The Department of Biochemical Engineering, School of Bioscience and Biotechnology, South China University of Technology (SCUT), Guangzhou 510006, PR China
| | - Xiangyun He
- Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| | - Xingmin Sun
- Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| | - Weijia Nie
- Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| | - Saul Tzipori
- Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| | - Hanping Feng
- Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| |
Collapse
|
88
|
Inhibition of apoptosis in Bacteroides fragilis enterotoxin-stimulated intestinal epithelial cells through the induction of c-IAP-2. Eur J Immunol 2008; 38:2190-9. [PMID: 18624297 DOI: 10.1002/eji.200838191] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enterotoxigenic Bacteroides fragilis produces an approximately 20-kDa heat-labile enterotoxin (BFT) that plays an essential role in generating mucosal inflammation. Although it is well known that proinflammatory signals are expressed in BFT-stimulated intestinal epithelial cells, cell death processes have not been elucidated. BFT induced apoptosis in HT-29 cells, but the apoptosis was first apparent 36 h after stimulation. During the early period of BFT stimulation, expression of cellular inhibitor of apoptosis protein-2 (c-IAP2) increased, and inhibition of c-IAP2 augmented the apoptotic cell death. Inhibition of BFT-induced COX-2 expression decreased prostaglandin E(2) (PGE(2)) production, which led not only to a decrease of c-IAP2 activity but also to an enhancement of DNA fragmentation in the early period of BFT stimulation. Furthermore, apoptosis inhibition through PGE(2) and c-IAP2 was mainly regulated by a p38 mitogen-activated protein kinase (MAPK). These results suggest that the inhibition of apoptosis may be mediated by a sequential pathway, including MAPK, COX-2, PGE(2) and c-IAP2, in the early period of stimulation. The delay in the onset of epithelial cell apoptosis after enterotoxigenic B. fragilis infection may be important to the host since it can provides sufficient time for epithelial cells to generate signals for the activation of mucosal inflammation and it may increase the chances of bacterial colonization.
Collapse
|
89
|
Tattoli I, Lembo-Fazio L, Nigro G, Carneiro LAM, Ferraro E, Rossi G, Martino MC, de Stefano ME, Cecconi F, Girardin SE, Philpott DJ, Bernardini ML. Intracellular bacteriolysis triggers a massive apoptotic cell death in Shigella-infected epithelial cells. Microbes Infect 2008; 10:1114-23. [PMID: 18606244 DOI: 10.1016/j.micinf.2008.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 11/22/2022]
Abstract
Infected epithelial cells, which act as a first barrier against pathogens, seldom undergo apoptosis. Rather, infected epithelial cells undergo a slow cell death that displays hallmarks of necrosis. Here, we demonstrate that rapid intracellular lysis of Shigella flexneri, provoked by either the use of a diaminopimelic acid auxotroph mutant or treatment of infected cells with antibiotics of the beta-lactam family, resulted in a massive and rapid induction of apoptotic cell death. This intracellular bacteriolysis-mediated apoptotic death (IBAD) was characterized by the specific involvement of the mitochondrial-dependent cytochrome c/Apaf-1 axis that resulted in the activation of caspases-3, -6 and -9. Importantly, Bcl-2 family members and the NF-kappaB pathway seemed to be critical modulators of IBAD. Finally, we identified that IBAD was also triggered by Salmonella enterica serovar Typhimurium but not by the Gram-positive bacteria, Listeria monocytogenes. Together, our results demonstrate that, contrary to previous findings, epithelial cells are intrinsically able to mount an efficient apoptotic cell death response following infection. Indeed, apoptosis in normal circumstances is masked by powerful anti-apoptotic mechanisms, which are overcome in IBAD. Our results also uncover an unexpected consequence of the treatment of infected cells with certain classes of antibiotics.
Collapse
Affiliation(s)
- Ivan Tattoli
- Dipartimento di Biologia Cellulare e dello Sviluppo, Sapienza-Università di Roma, Via dei Sardi 70, 00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Bobak DA. The molecular pathogenesis of Clostridium difficile-associated disease. Curr Infect Dis Rep 2008; 10:111-5. [DOI: 10.1007/s11908-008-0020-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
91
|
Kozjak-Pavlovic V, Ross K, Rudel T. Import of bacterial pathogenicity factors into mitochondria. Curr Opin Microbiol 2008; 11:9-14. [PMID: 18280201 DOI: 10.1016/j.mib.2007.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 12/22/2022]
Abstract
Recent research on the mechanism underlying the interaction of bacterial pathogens with their host has shifted the focus to secreted microbial proteins affecting the physiology and innate immune response of the target cell. These proteins either traverse the plasma membrane via specific entry pathways involving host cell receptors or are directly injected via bacterial secretion systems into the host cell, where they frequently target mitochondria. The import routes of bacterial proteins are mostly unknown, whereas the effect of mitochondrial targeting by these proteins has been investigated in detail. For a number of them, classical leader sequences recognized by the mitochondrial protein import machinery have been identified. Bacterial outer membrane beta-barrel proteins can also be recognized and imported by mitochondrial transporters. Besides an obvious importance in pathogenicity, understanding import of bacterial proteins into mitochondria has a highly relevant evolutionary aspect, considering the endosymbiotic, proteobacterial origin of mitochondria. The review covers the current knowledge on the mitochondrial targeting and import of bacterial pathogenicity factors.
Collapse
Affiliation(s)
- Vera Kozjak-Pavlovic
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Research Group for Molecular Infection and Cancer Biology, Charitéplatz 1, Berlin, Germany.
| | | | | |
Collapse
|
92
|
Clostridium difficile toxins: more than mere inhibitors of Rho proteins. Int J Biochem Cell Biol 2008; 40:592-7. [PMID: 18289919 DOI: 10.1016/j.biocel.2007.12.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 11/23/2022]
Abstract
Toxin A (TcdA) and Toxin B (TcdB) are the major pathogenicity factors of the Clostridium difficile-associated diarrhoea (CDAD). The single-chained protein toxins enter their target cells by receptor-mediated endocytosis. New data show the critical role of auto-catalytic processing for target cell entry. Inside the cell, the toxins mono-glucosylate and thereby inactivate low molecular mass GTP-binding proteins of the Rho subfamily. Toxin-treated cells respond to RhoA glucosylation with up-regulation and activation of the pro-apoptotic Rho family protein RhoB. These data reinforce the critical role of the glucosyltransferase activity for programmed cell death and show that TcdA and TcdB, generally classified as broad-spectrum inhibitors of Rho proteins, are also capable of activating Rho proteins.
Collapse
|
93
|
Choi CH, Hyun SH, Lee JY, Lee JS, Lee YS, Kim SA, Chae JP, Yoo SM, Lee JC. Acinetobacter baumannii outer membrane protein A targets the nucleus and induces cytotoxicity. Cell Microbiol 2007; 10:309-19. [PMID: 17760880 DOI: 10.1111/j.1462-5822.2007.01041.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acinetobacter baumannii is an emerging opportunistic pathogen responsible for healthcare-associated infections. The outer membrane protein A of A. baumannii (AbOmpA) is the most abundant surface protein that has been associated with the apoptosis of epithelial cells through mitochondrial targeting. The nuclear translocation of AbOmpA and the subsequent pathology on host cells were further investigated. AbOmpA directly binds to eukaryotic cells. AbOmpA translocates to the nucleus by a novel monopartite nuclear localization signal (NLS). The introduction of rAbOmpA into the cells or a transient expression of AbOmpA-EGFP causes the nuclear localization of these proteins, while the fusion proteins of AbOmpADeltaNLS-EGFP and AbOmpA with substitutions in residues lysine to alanine in the NLS sequences represent an exclusively cytoplasmic distribution. The nuclear translocation of AbOmpA induces cell death in vitro. Furthermore, the microinjection of rAbOmpA into the nucleus of Xenopus laevis embryos fails to develop normal embryogenesis, thus leading to embryonic death. We propose a novel pathogenic mechanism of A. baumannii regarding the nuclear targeting of the bacterial structural protein AbOmpA.
Collapse
Affiliation(s)
- Chul Hee Choi
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|