51
|
Identification of GBF1 as a cellular factor required for hepatitis C virus RNA replication. J Virol 2009; 84:773-87. [PMID: 19906930 DOI: 10.1128/jvi.01190-09] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In infected cells, hepatitis C virus (HCV) induces the formation of membrane alterations referred to as membranous webs, which are sites of RNA replication. In addition, HCV RNA replication also occurs in smaller membrane structures that are associated with the endoplasmic reticulum. However, cellular mechanisms involved in the formation of HCV replication complexes remain largely unknown. Here, we used brefeldin A (BFA) to investigate cellular mechanisms involved in HCV infection. BFA acts on cell membranes by interfering with the activation of several members of the family of ADP-ribosylation factors (ARF), which can lead to a wide range of inhibitory actions on membrane-associated mechanisms of the secretory and endocytic pathways. Our data show that HCV RNA replication is highly sensitive to BFA. Individual knockdown of the cellular targets of BFA using RNA interference and the use of a specific pharmacological inhibitor identified GBF1, a guanine nucleotide exchange factor for small GTPases of the ARF family, as a host factor critically involved in HCV replication. Furthermore, overexpression of a BFA-resistant GBF1 mutant rescued HCV replication in BFA-treated cells, indicating that GBF1 is the BFA-sensitive factor required for HCV replication. Finally, immunofluorescence and electron microscopy analyses indicated that BFA does not block the formation of membranous web-like structures induced by expression of HCV proteins in a nonreplicative context, suggesting that GBF1 is probably involved not in the formation of HCV replication complexes but, rather, in their activity. Altogether, our results highlight a functional connection between the early secretory pathway and HCV RNA replication.
Collapse
|
52
|
Boonstra A, van der Laan LJW, Vanwolleghem T, Janssen HLA. Experimental models for hepatitis C viral infection. Hepatology 2009; 50:1646-55. [PMID: 19670425 DOI: 10.1002/hep.23138] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease. The majority of infected individuals develop a persistent infection, which is associated with a high risk of liver cirrhosis and hepatocellular carcinoma. Since its discovery 20 years ago, progress in our understanding of this virus has been suboptimal due to the lack of good model systems. However, in the past decade this has greatly accelerated with the development of various in vitro cell culture systems and in vivo small-animal models. These systems have made a major impact on the field of HCV research, and have provided important breakthroughs in our understanding of HCV infection and replication. Importantly, the in vitro cell culture systems and the small-animal models have allowed preclinical testing of numerous novel antiviral compounds for the treatment of chronic HCV infection. In this article, we give an overview of current models, discuss their limitations, and provide future perspectives for research directed at the prevention and cure of hepatitis C.
Collapse
Affiliation(s)
- Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | |
Collapse
|
53
|
Abstract
HCV (hepatitis C virus) represents a major global health problem. A consistent body of evidence has been accumulating, suggesting a peculiar overlap between the HCV life cycle and lipid metabolism. This association becomes evident both for the clinical symptoms of HCV infection and the molecular mechanisms underlying the morphogenesis and entry process of this virus. The HCV core-lipid droplets association seems to be central to the HCV morphogenesis process. Moreover, the biogenesis pathway of very-low-density lipoproteins has been shown to be involved in HCV morphogenesis with MTP (microsomal triacylglycerol transfer protein), ApoB (apolipoprotein B) and ApoE (apolipoprotein E) as essential elements in the production of infectious HCV particles. HCV infectivity also correlates with the lipidation status of the particles. Furthermore, some HCV cellular receptors and the regulation of the entry process are also connected to lipoproteins and lipid metabolism. Specifically, lipoproteins modulate the entry process and the cholesterol transporter SR-BI (scavenger receptor class B type I) is a cellular entry factor for HCV. The present review aims to summarize the advances in our understanding of the HCV-lipid metabolism association, which may open new therapeutic avenues.
Collapse
|
54
|
The hepatitis C virus and its hepatic environment: a toxic but finely tuned partnership. Biochem J 2009; 423:303-14. [PMID: 19807698 DOI: 10.1042/bj20091000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Twenty years after its discovery, HCV (hepatitis C virus) still infects 170 million people worldwide and cannot be properly treated due to the lack of efficient medication. Its life cycle must be better understood to develop targeted pharmacological arsenals. HCV is an enveloped virus bearing two surface glycoproteins, E1 and E2. It only infects humans through blood transmission, and hepatocytes are its only target cells. Hepatic trabeculae are formed by hepatocyte rows surrounded by sinusoid capillaries, irrigating hepatic cells. Hepatocytes are polarized and have basolateral and apical poles, separated by tight junctions in contact with blood and bile respectively. In blood, HCV remains in contact with lipoproteins. It then navigates through hepatic microenvironment and extracellular matrix, composed of glycosaminoglycans and proteins. HCV then encounters the hepatocyte basolateral membrane, where it interacts with its entry factors: the low-density lipoprotein receptor, CD81 tetraspanin, and the high-density lipoprotein (scavenger) receptor SR-BI (scavenger receptor BI). How these molecules interact with HCV remains unclear; however, a tentative sequence of events has been proposed. Two essential factors of HCV entry are the tight junction proteins claudin-1 and occludin. Cell polarity therefore seems to be a key for HCV entry. This raises several exciting questions on the HCV internalization pathway. Clathrin-dependent endocytosis is probably the route of HCV transport to intracellular compartments, and the ultimate step of its entry is fusion, which probably takes place within endosomes. The mechanisms of HCV membrane fusion are still unclear, notably the nature of the fusion proteins is unknown and the contribution of HCV-associated lipoproteins to this event is currently under investigation.
Collapse
|
55
|
Identification and characterization of broadly neutralizing human monoclonal antibodies directed against the E2 envelope glycoprotein of hepatitis C virus. J Virol 2009; 83:12473-82. [PMID: 19759151 DOI: 10.1128/jvi.01138-09] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nearly all livers transplanted into hepatitis C virus (HCV)-positive patients become infected with HCV, and 10 to 25% of reinfected livers develop cirrhosis within 5 years. Neutralizing monoclonal antibody could be an effective therapy for the prevention of infection in a transplant setting. To pursue this treatment modality, we developed human monoclonal antibodies (HuMAbs) directed against the HCV E2 envelope glycoprotein and assessed the capacity of these HuMAbs to neutralize a broad panel of HCV genotypes. HuMAb antibodies were generated by immunizing transgenic mice containing human antibody genes (HuMAb mice; Medarex Inc.) with soluble E2 envelope glycoprotein derived from a genotype 1a virus (H77). Two HuMAbs, HCV1 and 95-2, were selected for further study based on initial cross-reactivity with soluble E2 glycoproteins derived from genotypes 1a and 1b, as well as neutralization of lentivirus pseudotyped with HCV 1a and 1b envelope glycoproteins. Additionally, HuMAbs HCV1 and 95-2 potently neutralized pseudoviruses from all genotypes tested (1a, 1b, 2b, 3a, and 4a). Epitope mapping with mammalian and bacterially expressed proteins, as well as synthetic peptides, revealed that HuMAbs HCV1 and 95-2 recognize a highly conserved linear epitope spanning amino acids 412 to 423 of the E2 glycoprotein. The capacity to recognize and neutralize a broad range of genotypes, the highly conserved E2 epitope, and the fully human nature of the antibodies make HuMAbs HCV1 and 95-2 excellent candidates for treatment of HCV-positive individuals undergoing liver transplantation.
Collapse
|
56
|
Adaptive immunity to hepatitis C virus. Viruses 2009; 1:276-97. [PMID: 21994550 PMCID: PMC3185498 DOI: 10.3390/v1020276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/14/2009] [Accepted: 08/25/2009] [Indexed: 12/23/2022] Open
Abstract
The precise role of adaptive immune responses in the clinical outcome of HCV infection is still only partially defined. Recent studies suggest that viral-host cell interactions during the acute phase of infection are essential for viral clearance or progression into chronic HCV infection. This review focuses on different aspects of the adaptive immune responses as determinants of the different outcomes of HCV infection, clearance or persistent infection, and outlines current concepts of HCV evasion strategies. Unravelling these important mechanisms of virus-host interaction will contribute to the development of novel strategies to prevent and control HCV infection.
Collapse
|
57
|
Zeisel MB, Baumert TF. HCV entry and neutralizing antibodies: lessons from viral variants. Future Microbiol 2009; 4:511-7. [PMID: 19492962 PMCID: PMC2898794 DOI: 10.2217/fmb.09.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Evaluation of: Grove J, Nielsen S, Zhong J et al.: Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. J. Virol. 82 (24), 12020-12029 (2008). Recent data suggest that a strong, early, broad neutralizing antibody response may contribute to the control of HCV in the acute phase of infection. However, the majority of individuals fail to clear HCV during the first months following infection and develop chronic infection despite the presence of anti-HCV antibodies. A prerequisite of the understanding behind the mechanisms of viral escape from antibody-mediated neutralization is the identification of various host-entry factors mediating the first steps of viral infection - binding and entry of HCV is believed to be a multistep process involving HCV envelope glycoproteins E1 and E2 as well as several host-cell surface molecules such as CD81, scavenger receptor class B type I, members of the claudin family and occludin. In this article, Grove et al. describe a single mutation in the HCV envelope glycoprotein E2 that alters glycoprotein structure thereby modulating viral interaction with scavenger receptor class B type I and CD81, and increasing sensitivity to neutralizing antibodies. The results of this study highlight the importance of the characterization of the interplay between HCV particles and host-cell factors for the understanding of virus neutralization by host-immune responses and pathogenesis of HCV infection.
Collapse
|
58
|
Intercellular Junctional Proteins as Receptors and Barriers to Virus Infection and Spread. Cell Host Microbe 2009; 5:517-21. [DOI: 10.1016/j.chom.2009.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
59
|
Stoll-Keller F, Barth H, Fafi-Kremer S, Zeisel MB, Baumert TF. Development of hepatitis C virus vaccines: challenges and progress. Expert Rev Vaccines 2009; 8:333-45. [PMID: 19249975 DOI: 10.1586/14760584.8.3.333] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of an effective vaccine against the hepatitis C virus (HCV) has long been defined as a difficult challenge due to the considerable variability of this RNA virus and the observation that convalescent humans and chimpanzees could be re-infected after re-exposure. On the other hand, progress in the understanding of antiviral immune responses in patients with viral clearance has elucidated key mechanisms playing a role in the control of viral infection. Studies investigating prophylactic vaccine approaches in chimpanzees have confirmed that the induction and maintenance of strong helper and cytotoxic T-cell immune responses against multiple viral epitopes is necessary for protection against viral clearance and chronic infection. A multispecific B-cell response, resulting in rapid induction of cross-neutralizing antibodies may assist cellular responses. Therapeutic vaccine formulations currently being evaluated in clinical trials are facing the fact that the immune system of chronic carriers is impaired and needs the restoration of T-cell functions to enhance their efficacy.
Collapse
Affiliation(s)
- Françoise Stoll-Keller
- Inserm, U748 et Laboratoire de Virologie des Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé 67000 Strasbourg, France.
| | | | | | | | | |
Collapse
|
60
|
Burlone ME, Budkowska A. Hepatitis C virus cell entry: role of lipoproteins and cellular receptors. J Gen Virol 2009; 90:1055-1070. [PMID: 19264629 DOI: 10.1099/vir.0.008300-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV), a major cause of chronic liver disease, is a single-stranded positive sense virus of the family Flaviviridae. HCV cell entry is a multi-step process, involving several viral and cellular factors that trigger virus uptake into the hepatocyte. Tetraspanin CD81, human scavenger receptor SR-BI, and tight junction molecules Claudin-1 and occludin are the main receptors that mediate HCV entry. In addition, the virus may use glycosaminoglycans and/or low density receptors on host cells as initial attachment factors. A unique feature of HCV is the dependence of virus replication and assembly on host cell lipid metabolism. Most notably, during HCV assembly and release from the infected cells, virus particles associate with lipids and very-low-density lipoproteins. Thus, infectious virus circulates in patient sera in the form of triglyceride-rich particles. Consequently, lipoproteins and lipoprotein receptors play an essential role in virus uptake and the initiation of infection. This review summarizes the current knowledge about HCV receptors, mechanisms of HCV cell entry and the role of lipoproteins in this process.
Collapse
Affiliation(s)
- Michela E Burlone
- University of Eastern Piedmont 'A. Avogadro', Department of Clinical and Experimental Medicine, Via Solaroli 17, 28100 Novara, Italy.,Pasteur Institute, Hepacivirus and Innate Immunity, 25/28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Agata Budkowska
- Pasteur Institute, Hepacivirus and Innate Immunity, 25/28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
61
|
Hsu CS, Liu CH, Liu CJ, Wang CC, Chen CL, Lai MY, Chen PJ, Chen DS, Kao JH. Association of lipid profiles with hepatitis C viral load in chronic hepatitis C patients with genotype 1 or 2 infection. Am J Gastroenterol 2009; 104:598-604. [PMID: 19262519 DOI: 10.1038/ajg.2008.125] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Metabolic profiles correlate with hepatitis C virus (HCV) infection and are known to be predictors of virologic responses in chronic hepatitis C patients on interferon-based treatment. However, little is known about the differential association of lipid profiles with hepatitis C viral load between genotype 1 and 2 infections. The aim of this study was to evaluate the impact of lipid profiles on HCV RNA levels in patients with genotypes 1 and 2. METHODS A total of 531 chronic hepatitis C patients infected patients with HCV genotype 1 or 2 were consecutively enrolled. Univariate and multivariate approaches were used to estimate the associations between demographic, metabolic, and viral variables and HCV RNA levels. RESULTS Higher serum triglyceride, total cholesterol, and low-density lipoprotein levels correlated with higher HCV RNA levels. In multivariate analysis, genotype 1 infection, severe hepatitis activity, milder hepatic fibrosis, higher homeostasis model assessment of insulin resistance (HOMA-IR) index and triglyceride levels are associated with higher HCV viral loads (P<0.05). Subanalysis on patients with lower body mass index values showed higher HCV viral load was associated with higher HOMA-IR index and total cholesterol level (P<0.05). After stratification by HCV genotype, lipid profiles were significantly associated with HCV viral load in genotype 2 infection (P<0.05), but not genotype 1 infection. CONCLUSIONS A proportional relationship is found between serum lipid profiles and hepatitis C viral load in patients with genotype 2 infection; however, whether manipulation of lipid profiles would improve the response to current anti-HCV therapy is to be determined in further studies.
Collapse
Affiliation(s)
- Ching-Sheng Hsu
- Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Dreux M, Dao Thi VL, Fresquet J, Guérin M, Julia Z, Verney G, Durantel D, Zoulim F, Lavillette D, Cosset FL, Bartosch B. Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains. PLoS Pathog 2009; 5:e1000310. [PMID: 19229312 PMCID: PMC2636890 DOI: 10.1371/journal.ppat.1000310] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/23/2009] [Indexed: 12/11/2022] Open
Abstract
HCV entry into cells is a multi-step and slow process. It is believed that the
initial capture of HCV particles by glycosaminoglycans and/or lipoprotein
receptors is followed by coordinated interactions with the scavenger receptor
class B type I (SR-BI), a major receptor of high-density lipoprotein (HDL), the
CD81 tetraspanin, and the tight junction protein Claudin-1, ultimately leading
to uptake and cellular penetration of HCV via low-pH endosomes.
Several reports have indicated that HDL promotes HCV entry through interaction
with SR-BI. This pathway remains largely elusive, although it was shown that HDL
neither associates with HCV particles nor modulates HCV binding to SR-BI. In
contrast to CD81 and Claudin-1, the importance of SR-BI has only been addressed
indirectly because of lack of cells in which functional complementation assays
with mutant receptors could be performed. Here we identified for the first time
two cell types that supported HCVpp and HCVcc entry upon ectopic SR-BI
expression. Remarkably, the undetectable expression of SR-BI in rat hepatoma
cells allowed unambiguous investigation of human SR-BI functions during HCV
entry. By expressing different SR-BI mutants in either cell line, our results
revealed features of SR-BI intracellular domains that influence HCV infectivity
without affecting receptor binding and stimulation of HCV entry induced by
HDL/SR-BI interaction. Conversely, we identified positions of SR-BI ectodomain
that, by altering HCV binding, inhibit entry. Finally, we characterized
alternative ectodomain determinants that, by reducing SR-BI cholesterol uptake
and efflux functions, abolish HDL-mediated infection-enhancement. Altogether, we
demonstrate that SR-BI is an essential HCV entry factor. Moreover, our results
highlight specific SR-BI determinants required during HCV entry and
physiological lipid transfer functions hijacked by HCV to favor infection. More than 180 million people are chronically infected by hepatitis C virus (HCV),
a leading cause of liver failure and cancer, stimulating the need to fully
define the biology of HCV infection for developing novel and effective
therapeutics. During the first steps of infection, the virus is taken up and
penetrates hepatocytes. HCV entry is thought to be a coordinated multi-step
process mediated by specific factors, including CD81, Claudin-1, and the
scavenger receptor BI (SR-BI). Whereas the involvement of CD81 and Claudin-1 was
demonstrated by rendering susceptible cells that are otherwise refractory, SR-BI
complementation assays were lacking, raising questions as to its functions
during HCV entry. Here, we identify one hepatoma rat cell line, in which SR-BI
complementation assay and targeted mutagenesis could be performed. We therefore
demonstrate that SR-BI is an essential HCV entry factor. Our results shed light
on SR-BI intracellular domain functions in HCV entry, and, further, emphasize
the remarkable capacity of HCV to hijack the lipid transfer function of SR-BI,
hence favoring infection.
Collapse
Affiliation(s)
- Marlène Dreux
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - Viet Loan Dao Thi
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - Judith Fresquet
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | | | | | - Géraldine Verney
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - David Durantel
- Université de Lyon, UCB-Lyon1, IFR62; INSERM, U871; Hospices
civils de Lyon (HCL), Lyon, France
| | - Fabien Zoulim
- Université de Lyon, UCB-Lyon1, IFR62; INSERM, U871; Hospices
civils de Lyon (HCL), Lyon, France
| | - Dimitri Lavillette
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - François-Loïc Cosset
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| | - Birke Bartosch
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
63
|
Witteveldt J, Evans MJ, Bitzegeio J, Koutsoudakis G, Owsianka AM, Angus AGN, Keck ZY, Foung SKH, Pietschmann T, Rice CM, Patel AH. CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells. J Gen Virol 2009; 90:48-58. [PMID: 19088272 PMCID: PMC2885024 DOI: 10.1099/vir.0.006700-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infects cells by the direct uptake of cell-free virus following virus engagement with specific cell receptors such as CD81. Recent data have shown that HCV is also capable of direct cell-to-cell transmission, although the role of CD81 in this process is disputed. Here, we generated cell culture infectious strain JFH1 HCV (HCVcc) genomes carrying an alanine substitution of E2 residues W529 or D535 that are critical for binding to CD81 and infectivity. Co-cultivation of these cells with naïve cells expressing enhanced green fluorescent protein (EGFP) resulted in a small number of cells co-expressing both EGFP and HCV NS5A, showing that the HCVcc mutants are capable of cell-to-cell spread. In contrast, no cell-to-cell transmission from JFH1ΔE1E2-transfected cells occurred, indicating that the HCV glycoproteins are essential for this process. The frequency of cell-to-cell transmission of JFH1W529A was unaffected by the presence of neutralizing antibodies that inhibit E2–CD81 interactions. By using cell lines that expressed little or no CD81 and that were refractive to infection with cell-free virus, we showed that the occurrence of viral cell-to-cell transmission is not influenced by the levels of CD81 on either donor or recipient cells. Thus, our results show that CD81 plays no role in the cell-to-cell spread of HCVcc and that this mode of transmission is shielded from neutralizing antibodies. These data suggest that therapeutic interventions targeting the entry of cell-free HCV may not be sufficient in controlling an ongoing chronic infection, but need to be complemented by additional strategies aimed at disrupting direct cell-to-cell viral transmission.
Collapse
Affiliation(s)
- Jeroen Witteveldt
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, Rice CM. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 2009; 457:882-6. [PMID: 19182773 PMCID: PMC2762424 DOI: 10.1038/nature07684] [Citation(s) in RCA: 723] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/05/2008] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. The development of much needed specific antiviral therapies and an effective vaccine has been hampered by the lack of a convenient small animal model. The determinants restricting HCV tropism to human and chimpanzee hosts are unknown. Replication of the viral RNA has been demonstrated in mouse cells1,2, but these cells are not infectable with either lentiviral particles bearing HCV glycoproteins (HCVpp)3 or HCV produced in cell culture (HCVcc)(unpublished data), suggesting a block at the level of entry. Through an iterative cDNA library screening approach we have identified human occludin (OCLN) as an essential HCV cell entry factor that is able to render murine cells infectable with HCVpp. Similarly, OCLN is required for HCV-susceptibility of human cells, since its overexpression in uninfectable cells specifically enhanced HCVpp uptake while its silencing in permissive cells impaired both HCVpp and HCVcc infection. In addition to OCLN, HCVpp infection of murine cells required expression of the previously identified HCV entry factors, CD814, scavenger receptor class B type I (SR-BI)5, and claudin-1 (CLDN1)6. While the mouse versions of SR-BI and CLDN1 function at least as well as the human proteins for promoting HCV entry; both OCLN and CD81, however, must be of human origin to allow efficient infection. The species-specific determinants of OCLN were mapped to its second extracellular loop. The identification of OCLN as a new HCV entry factor further highlights the importance of the tight junction complex in the viral entry process and provides a major advance towards efforts to develop small animal models for HCV.
Collapse
Affiliation(s)
- Alexander Ploss
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Meanwell NA, Kadow JF, Scola PM. Chapter 20 Progress towards the Discovery and Development of Specifically Targeted Inhibitors of Hepatitis C Virus. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2009. [DOI: 10.1016/s0065-7743(09)04420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
66
|
Régeard M, Trotard M, Lepère C, Gripon P, Le Seyec J. Entry of pseudotyped hepatitis C virus into primary human hepatocytes depends on the scavenger class B type I receptor. J Viral Hepat 2008; 15:865-70. [PMID: 19087225 DOI: 10.1111/j.1365-2893.2008.01048.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Entry of the hepatitis C virus (HCV) into the cell seems to be a complex multi-step process involving several cellular factors such as the scavenger class B type I receptor (SRBI). Until now, all investigations conducted to assess the involvement of SRBI have been based on in vitro infection models which use human hepatoma-derived cell lines. However, the HCV entry pathway may be altered in these types of cells because of the impairment of some hepatic characteristics. In this study, we showed that SRBI also plays an essential role in HCV entry into primary human hepatocytes with two distinct approaches: gene extinction and antibodies neutralization assays.
Collapse
Affiliation(s)
- M Régeard
- Institut National de la Santé Et de la Recherche Médicale, Unité 522, Rennes, France
| | | | | | | | | |
Collapse
|
67
|
Grove J, Nielsen S, Zhong J, Bassendine MF, Drummer HE, Balfe P, McKeating JA. Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. J Virol 2008; 82:12020-9. [PMID: 18829747 PMCID: PMC2593310 DOI: 10.1128/jvi.01569-08] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 09/25/2008] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is dependent on at least three coreceptors: CD81, scavenger receptor BI (SR-BI), and claudin-1. The mechanism of how these molecules coordinate HCV entry is unknown. In this study we demonstrate that a cell culture-adapted JFH-1 mutant, with an amino acid change in E2 at position 451 (G451R), has a reduced dependency on SR-BI. This altered receptor dependency is accompanied by an increased sensitivity to neutralization by soluble CD81 and enhanced binding of recombinant E2 to cell surface-expressed and soluble CD81. Fractionation of HCV by density gradient centrifugation allows the analysis of particle-lipoprotein associations. The cell culture-adapted mutation alters the relationship between particle density and infectivity, with the peak infectivity occurring at higher density than the parental virus. No association was observed between particle density and SR-BI or CD81 coreceptor dependence. JFH-1 G451R is highly sensitive to neutralization by gp-specific antibodies, suggesting increased epitope exposure at the virion surface. Finally, an association was observed between JFH-1 particle density and sensitivity to neutralizing antibodies (NAbs), suggesting that lipoprotein association reduces the sensitivity of particles to NAbs. In summary, mutation of E2 at position 451 alters the relationship between particle density and infectivity, disrupts coreceptor dependence, and increases virion sensitivity to receptor mimics and NAbs. Our data suggest that a balanced interplay between HCV particles, lipoprotein components, and viral receptors allows the evasion of host immune responses.
Collapse
Affiliation(s)
- Joe Grove
- Division of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
68
|
Fenouillet E, Lavillette D, Loureiro S, Krashias G, Maurin G, Cosset FL, Jones IM, Barbouche R. Contribution of redox status to hepatitis C virus E2 envelope protein function and antigenicity. J Biol Chem 2008; 283:26340-8. [PMID: 18667425 PMCID: PMC3258924 DOI: 10.1074/jbc.m805221200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Indexed: 01/30/2023] Open
Abstract
Disulfide bonding contributes to the function and antigenicity of many viral envelope glycoproteins. We assessed here its significance for the hepatitis C virus E2 envelope protein and a counterpart deleted for hypervariable region-1 (HVR1). All 18 cysteine residues of the antigens were involved in disulfides. Chemical reduction of up to half of these disulfides was compatible with anti-E2 monoclonal antibody reaction, CD81 receptor binding, and viral entry, whereas complete reduction abrogated these properties. The addition of 5,5'-dithiobis-2-nitrobenzoic acid had no effect on viral entry. Thus, E2 function is only weakly dependent on its redox status, and cell entry does not require redox catalysts, in contrast to a number of enveloped viruses. Because E2 is a major neutralizing antibody target, we examined the effect of disulfide bonding on E2 antigenicity. We show that reduction of three disulfides, as well as deletion of HVR1, improved antibody binding for half of the patient sera tested, whereas it had no effect on the remainder. Small scale immunization of mice with reduced E2 antigens greatly improved serum reactivity with reduced forms of E2 when compared with immunization using native E2, whereas deletion of HVR1 only marginally affected the ability of the serum to bind the redox intermediates. Immunization with reduced E2 also showed an improved neutralizing antibody response, suggesting that potential epitopes are masked on the disulfide-bonded antigen and that mild reduction may increase the breadth of the antibody response. Although E2 function is surprisingly independent of its redox status, its disulfide bonds mask antigenic domains. E2 redox manipulation may contribute to improved vaccine design.
Collapse
|
69
|
Subcellular forms and biochemical events triggered in human cells by HCV polyprotein expression from a viral vector. Virol J 2008; 5:102. [PMID: 18793431 PMCID: PMC2553408 DOI: 10.1186/1743-422x-5-102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/15/2008] [Indexed: 12/16/2022] Open
Abstract
To identify the subcellular forms and biochemical events induced in human cells after HCV polyprotein expression, we have used a robust cell culture system based on vaccinia virus (VACV) that efficiently expresses in infected cells the structural and nonstructural proteins of HCV from genotype 1b (VT7-HCV7.9). As determined by confocal microscopy, HCV proteins expressed from VT7-HCV7.9 localize largely in a globular-like distribution pattern in the cytoplasm, with some proteins co-localizing with the endoplasmic reticulum (ER) and mitochondria. As examined by electron microscopy, HCV proteins induced formation of large electron-dense cytoplasmic structures derived from the ER and containing HCV proteins. In the course of HCV protein production, there is disruption of the Golgi apparatus, loss of spatial organization of the ER, appearance of some "virus-like" structures and swelling of mitochondria. Biochemical analysis demonstrate that HCV proteins bring about the activation of initiator and effector caspases followed by severe apoptosis and mitochondria dysfunction, hallmarks of HCV cell injury. Microarray analysis revealed that HCV polyprotein expression modulated transcription of genes associated with lipid metabolism, oxidative stress, apoptosis, and cellular proliferation. Our findings demonstrate the uniqueness of the VT7-HCV7.9 system to characterize morphological and biochemical events related to HCV pathogenesis.
Collapse
|
70
|
Harris HJ, Farquhar MJ, Mee CJ, Davis C, Reynolds GM, Jennings A, Hu K, Yuan F, Deng H, Hubscher SG, Han JH, Balfe P, McKeating JA. CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J Virol 2008; 82:5007-20. [PMID: 18337570 PMCID: PMC2346731 DOI: 10.1128/jvi.02286-07] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/27/2008] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is an enveloped positive-stranded RNA hepatotropic virus. HCV pseudoparticles infect liver-derived cells, supporting a model in which liver-specific molecules define HCV internalization. Three host cell molecules have been reported to be important entry factors or receptors for HCV internalization: scavenger receptor BI, the tetraspanin CD81, and the tight junction protein claudin-1 (CLDN1). None of the receptors are uniquely expressed within the liver, leading us to hypothesize that their organization within hepatocytes may explain receptor activity. Since CD81 and CLDN1 act as coreceptors during late stages in the entry process, we investigated their association in a variety of cell lines and human liver tissue. Imaging techniques that take advantage of fluorescence resonance energy transfer (FRET) to study protein-protein interactions have been developed. Aequorea coerulescens green fluorescent protein- and Discosoma sp. red-monomer fluorescent protein-tagged forms of CD81 and CLDN1 colocalized, and FRET occurred between the tagged coreceptors at comparable frequencies in permissive and nonpermissive cells, consistent with the formation of coreceptor complexes. FRET occurred between antibodies specific for CD81 and CLDN1 bound to human liver tissue, suggesting the presence of coreceptor complexes in liver tissue. HCV infection and treatment of Huh-7.5 cells with recombinant HCV E1-E2 glycoproteins and anti-CD81 monoclonal antibody modulated homotypic (CD81-CD81) and heterotypic (CD81-CLDN1) coreceptor protein association(s) at specific cellular locations, suggesting distinct roles in the viral entry process.
Collapse
Affiliation(s)
- Helen J Harris
- University of Birmingham, Division of Infection and Immunity, Institute for Biomedical Research, Vincent Dr., Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Bovine viral diarrhea virus (BVDV) is a positive-strand RNA virus and a member of the genus Pestivirus in the family Flaviviridae. To identify and characterize essential factors required for BVDV replication, a library expressing random fragments of the BVDV genome was screened for sequences that act as transdominant inhibitors of viral replication by conferring resistance to cytopathic BVDV-induced cell death. We isolated a BVDV-nonpermissive MDBK cell clone that harbored a 1.2-kb insertion spanning the carboxy terminus of the envelope glycoprotein 1 (E1), the envelope glycoprotein E2, and the amino terminus of p7. Confirming the resistance phenotype conferred by this library clone, naïve MDBK cells expressing this fragment were found to be 100- to 1,000-fold less permissive to both cytopathic and noncytopathic BVDV infection compared to parental MDBK cells, although these cells remained fully permissive to vesicular stomatitis virus. This restriction could be overcome by electroporation of BVDV RNA, indicating a block at one or more steps in viral entry prior to translation of the viral RNA. We determined that the E2 ectodomain was responsible for the inhibition to BVDV entry and that this block occurred downstream from BVDV interaction with the cellular receptor CD46 and virus binding, suggesting interference with a yet-unidentified BVDV entry factor.
Collapse
|