51
|
Poulsen RC, Loots DT, Moughan PJ, Kruger MC. Ileal and faecal digestibility of daidzein and genistein and plasma bioavailability of these isoflavones and their bioactive metabolites in the ovariectomised rat. Mol Nutr Food Res 2009; 53 Suppl 1:S27-35. [PMID: 19156712 DOI: 10.1002/mnfr.200800080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Consumption of the soya isoflavones genistein and daidzein may provide protection against postmenopausal bone loss. The purpose of this study was to determine ileal and faecal digestibility of daidzein and genistein and the extent of formation of metabolites in the gastrointestinal (GI) tract in the ovariectomised rat, a model for postmenopausal bone loss. Twenty female rats were ovariectomised and fed either genistein or daidzein (0.026% of diet) for 4 wks. Genistein, daidzein and their GI-derived metabolites were quantitatively determined in plasma, urine, faeces and ileal digesta using GC/MS. Ileal and faecal digestibility of genistein (93 and 99.9%, respectively) were significantly greater than that of daidzein (32 and 77.5%, respectively). In genistein-supplemented animals, 4-ethylphenol was present in plasma in relatively high concentrations. The bioactivity of 4-ethylphenol may contribute to the physiological effects attributed to genistein consumption. The daidzein metabolite equol, was present in relatively high amounts in ileal digesta indicating substantial biotransformation of daidzein occurred in the small intestine presumably as a result of the activity of the resident microbiota. Further studies are required to determine whether 4-ethylphenol is a major metabolite of genistein in humans and the extent of biotransformation of daidzein to equol in the small intestine in humans.
Collapse
Affiliation(s)
- Raewyn C Poulsen
- Institute of Food Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
52
|
Ng LT, Ko HH, Lu TM. Potential antioxidants and tyrosinase inhibitors from synthetic polyphenolic deoxybenzoins. Bioorg Med Chem 2009; 17:4360-6. [PMID: 19481947 DOI: 10.1016/j.bmc.2009.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/08/2009] [Accepted: 05/09/2009] [Indexed: 10/20/2022]
|
53
|
Pfitscher A, Reiter E, Jungbauer A. Receptor binding and transactivation activities of red clover isoflavones and their metabolites. J Steroid Biochem Mol Biol 2008; 112:87-94. [PMID: 18809497 DOI: 10.1016/j.jsbmb.2008.08.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 08/22/2008] [Accepted: 08/28/2008] [Indexed: 11/21/2022]
Abstract
Red clover extracts contain a variety of isoflavones, which have affinity toward estrogen receptor alpha (ERalpha), estrogen receptor beta (ERbeta), androgen receptor (AR), and progesterone receptor (PR). Upon ingestion, they undergo various metabolic transformations. For a complete evaluation of red clover extracts and possible health benefits, the resulting metabolites should also be investigated. Biochanin A, formononetin, genistein, daidzein, dihydrobiochanin A, dihydroformononetin, dihydrogenistein, dihydrodaidzein, 3'-hydroxygenistein, 6-hydroxydaidzein, 6-hydroxydesmethylangolensin, equol, O-desmethylangolensin, angolensin, and p-ethylphenol were tested for their transactivation potential toward ERalpha, AR, and PR in yeast. Competitive binding assays with radiolabeled 17beta-estradiol, 17alpha-methyltrienolone or progesterone assessed binding to the respective ERalpha and ERbeta, AR, and PR. The compounds showed only weak binding affinity to AR and PR, with IC(50) values being greater (i.e., lesser affinity) than 10(-5)M for the respective receptor. So far, beneficial health effects have been attributed to the production of equol. We propose that other metabolites can also contribute to these effects. However, more detailed information for the formation of these metabolites in humans and for bioavailability data are required to confirm our assumptions.
Collapse
Affiliation(s)
- Angelika Pfitscher
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
54
|
Yap IKS, Li JV, Saric J, Martin FP, Davies H, Wang Y, Wilson ID, Nicholson JK, Utzinger J, Marchesi JR, Holmes E. Metabonomic and Microbiological Analysis of the Dynamic Effect of Vancomycin-Induced Gut Microbiota Modification in the Mouse. J Proteome Res 2008; 7:3718-28. [DOI: 10.1021/pr700864x] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ivan K. S. Yap
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Drug Metabolism and Pharmacokinetics, AstraZeneca,
| | - Jia V. Li
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Drug Metabolism and Pharmacokinetics, AstraZeneca,
| | - Jasmina Saric
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Drug Metabolism and Pharmacokinetics, AstraZeneca,
| | - Francois-Pierre Martin
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Drug Metabolism and Pharmacokinetics, AstraZeneca,
| | - Huw Davies
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Drug Metabolism and Pharmacokinetics, AstraZeneca,
| | - Yulan Wang
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Drug Metabolism and Pharmacokinetics, AstraZeneca,
| | - Ian D. Wilson
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Drug Metabolism and Pharmacokinetics, AstraZeneca,
| | - Jeremy K. Nicholson
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Drug Metabolism and Pharmacokinetics, AstraZeneca,
| | - Jürg Utzinger
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Drug Metabolism and Pharmacokinetics, AstraZeneca,
| | - Julian R. Marchesi
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Drug Metabolism and Pharmacokinetics, AstraZeneca,
| | - Elaine Holmes
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Drug Metabolism and Pharmacokinetics, AstraZeneca,
| |
Collapse
|
55
|
Abstract
Due to their ability to mimic the actions of mammalian estrogens, soy phytoestrogens have been proposed as potential therapeutic agents to aid in preventing postmenopausal bone loss. In vitro, phytoestrogens promote osteoblastogenesis and inhibit osteoclastogenesis. Although a relatively large number of intervention studies have been undertaken in animals and humans, the efficacy of phytoestrogens as bone-protective agents in vivo remains unclear. Differences in the bioactivities of individual phytoestrogens, differences in phytoestrogen metabolism and bioavailability within different study populations, and imprecise reporting of the dose of phytoestrogens administered in intervention studies may have contributed to the disparity in study findings.
Collapse
Affiliation(s)
- Raewyn C Poulsen
- Institute of Food Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
56
|
Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl Environ Microbiol 2008; 74:4847-52. [PMID: 18539813 DOI: 10.1128/aem.00555-08] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolism of isoflavones by gut bacteria plays a key role in the availability and bioactivation of these compounds in the intestine. Daidzein and genistein are the most common dietary soy isoflavones. While daidzein conversion yielding equol has been known for some time, the corresponding formation of 5-hydroxy-equol from genistein has not been reported previously. We isolated a strictly anaerobic bacterium (Mt1B8) from the mouse intestine which converted daidzein via dihydrodaidzein to equol as well as genistein via dihydrogenistein to 5-hydroxy-equol. Strain Mt1B8 was a gram-positive, rod-shaped bacterium identified as a member of the Coriobacteriaceae. Strain Mt1B8 also transformed dihydrodaidzein and dihydrogenistein to equol and 5-hydroxy-equol, respectively. The conversion of daidzein, genistein, dihydrodaidzein, and dihydrogenistein in the stationary growth phase depended on preincubation with the corresponding isoflavonoid, indicating enzyme induction. Moreover, dihydrogenistein was transformed even more rapidly in the stationary phase when strain Mt1B8 was grown on either genistein or daidzein. Growing the cells on daidzein also enabled conversion of genistein. This suggests that the same enzymes are involved in the conversion of the two isoflavones.
Collapse
|
57
|
Larkin T, Price WE, Astheimer L. The key importance of soy isoflavone bioavailability to understanding health benefits. Crit Rev Food Sci Nutr 2008; 48:538-52. [PMID: 18568859 DOI: 10.1080/10408390701542716] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Research over the past two decades has provided significant epidemiological and other evidence for the health benefits of the consumption of soy-based foods. A large number of dietary intervention studies have examined the effects of soy isoflavones on risk factors for cardiovascular disease and hormone-dependent cancers. However, these report large variability in outcome measures, very limited reproducibility between studies, and in some cases, controversy between the results of clinical trials using dietary soy or soy protein and isoflavone supplementation. This highlights a major gap in our understanding of soy isoflavone uptake, metabolism, distribution, and overall bioavailability. There are many potential factors that may influence bioavailability and a better knowledge is necessary to rationalize the inconsistencies in the intervention and clinical studies. This review focuses attention on our current state of knowledge in this area and highlights the importance of metabolism of the parent soy isoflavones and the critical role of gut microbiota on the bioavailability of these compounds and their metabolites.
Collapse
Affiliation(s)
- Theresa Larkin
- Smart Food Centre, University of Wollongong, NSW, Australia
| | | | | |
Collapse
|
58
|
Lee HC, Jenner AM, Low CS, Lee YK. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 2006; 157:876-84. [PMID: 16962743 DOI: 10.1016/j.resmic.2006.07.004] [Citation(s) in RCA: 486] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/06/2006] [Accepted: 07/18/2006] [Indexed: 12/20/2022]
Abstract
Tea is rich in polyphenols and other phenolics that have been widely reported to have beneficial health effects. However, dietary polyphenols are not completely absorbed from the gastrointestinal tract and are metabolized by the gut microflora so that they and their metabolites may accumulate to exert physiological effects. In this study, we investigated the influence of the phenolic components of a tea extract and their aromatic metabolites upon bacterial growth. Fecal homogenates containing bacteria significantly catalyzed tea phenolics, including epicatechin, catechin, 3-O-methyl gallic acid, gallic acid and caffeic acid to generate aromatic metabolites dependent on bacterial species. Different strains of intestinal bacteria had varying degrees of growth sensitivity to tea phenolics and metabolites. Growth of certain pathogenic bacteria such as Clostridium perfringens, Clostridium difficile and Bacteroides spp. was significantly repressed by tea phenolics and their derivatives, while commensal anaerobes like Clostridium spp., Bifidobacterium spp. and probiotics such as Lactobacillus sp. were less severely affected. This indicates that tea phenolics exert significant effects on the intestinal environment by modulation of the intestinal bacterial population, probably by acting as metabolic prebiotics. Our observations provide further evidence for the importance of colonic bacteria in the metabolism, absorption and potential activity of phenolics in human health and disease. The bioactivity of different phenolics may play an important role in the maintenance of gastrointestinal health.
Collapse
Affiliation(s)
- Hui Cheng Lee
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore 117597, Republic of Singapore
| | | | | | | |
Collapse
|
59
|
Bektic J, Guggenberger R, Eder IE, Pelzer AE, Berger AP, Bartsch G, Klocker H. Molecular effects of the isoflavonoid genistein in prostate cancer. ACTA ACUST UNITED AC 2006; 4:124-9. [PMID: 16197614 DOI: 10.3816/cgc.2005.n.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differences in diet have been proposed to be at least partially responsible for the low rate of prostate cancer in Asian populations compared with men in Western countries. One of the compounds that occurs in a greater quantity in the Eastern diet is genistein, an isoflavonoid found in high concentrations in serum after ingestion of soy-rich foods. Extensive molecular studies have been performed to determine its potential health benefits. The mechanism of action of genistein is complex and includes several cellular pathways. In addition to its estrogenic and/or antiestrogenic activities, genistein has been reported to inhibit steroidogenesis and block several protein tyrosine kinases, including epidermal growth factor receptor and src tyrosine kinases. Moreover, it arrests the cell cycle, induces apoptosis, and has antiangiogenic and antimetastatic properties and antioxidant activity. Herein, we review the current literature on the molecular mechanisms of genistein in relation to its effects on prostate cancer cells.
Collapse
Affiliation(s)
- Jasmin Bektic
- Department of Urology, Innsbruck Medical University, Austria
| | | | | | | | | | | | | |
Collapse
|
60
|
Simons AL, Renouf M, Hendrich S, Murphy PA. Metabolism of glycitein (7,4'-dihydroxy-6-methoxy-isoflavone) by human gut microflora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:8519-25. [PMID: 16248547 DOI: 10.1021/jf051546d] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Gut microbial disappearance and metabolism of the soy isoflavone glycitein, 7,4'-dihydroxy-6-methoxyisoflavone, were investigated by incubating glycitein anaerobically with feces from 12 human subjects. The subjects' ages ranged from 24 to 53 years with a body mass index (BMI) of 20.9-25.8 kg/m(2) (mean BMI = 24.0 +/- 1.1 kg/m(2)). Glycitein disappearance followed an apparent first-order rate loss. Fecal glycitein disappearance rates for the subjects segregated into three different groups described as high (k = 0.67 +/- 0.14/h), moderate (k = 0.34 +/- 0.04/h), and low (k = 0.15 +/- 0.07/h) glycitein degraders (p < 0.0001). There was no dose effect on the disappearance rates for each subject from 10 to 250 microM glycitein (average k = 0.32 +/- 0.03/h, p > 0.05). Four putative glycitein metabolites, characterized by liquid chromatography-mass spectrometry (electrospray ionization using positive ionization mode), were dihydroglycitein, dihydro-6,7,4'-trihydroxyisoflavone, and 5'-O-methyl-O-desmethylangolensin. Two subjects produced a metabolite tentatively identified as 6-O-methyl-equol, and one subject produced daidzein as an additional metabolite of glycitein. These results show that glycitein is metabolized by human gut microorganisms and may follow metabolic pathways similar to other soy isoflavones.
Collapse
Affiliation(s)
- Andrean L Simons
- Department of Food Science and Human Nutrition, 2312 Food Sciences Building, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
61
|
Kachlicki P, Marczak L, Kerhoas L, Einhorn J, Stobiecki M. Profiling isoflavone conjugates in root extracts of lupine species with LC/ESI/MSn systems. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1088-103. [PMID: 15971291 DOI: 10.1002/jms.884] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extracts obtained from roots of three lupine species (Lupinus albus, L. angustifolius, L. luteus) were analysed using LC/UV and LC/ESI/MS(n). The experiments were performed using two mass spectrometric systems, equipped with the triple quadrupole or ion trap analysers. Thirteen to twenty isomeric isoflavone conjugates were identified in roots of the investigated lupine species. These were di- and monoglycosides of genistein and 2'-hydroxygenistein with different patterns of glycosylation, both at oxygen and carbon atoms; some glycosides were acylated with malonic acid. It was not possible to establish the glycosylation sites of the aglycone only on the basis of the registered mass spectra; however, it was possible to differentiate C- and O-glucosides of isoflavones. Only comparison of retention times with those of standard compounds permitted to indicate the correct glycosylation pattern. In the case of diglycosides, the glycosylation pattern (O-diglucoside or O-glucosylglucoside) was distinguishable on the basis of the relative intensities of daughter ions in the mass spectra of protonated molecular ions. It was not possible to elucidate the site of malonylation on the sugar moiety from mass spectra, however, protonated molecules [M + H](+) of isoflavone glucosides with different placement of the malonyl group on the sugar ring were recognized in the extracts. In addition to the isoflavone glycosides, some flavone or flavonol glycosides were identified in the samples on the basis of collision-induced daughter ion spectra of the aglycone ions. A comparison of results obtained with the triple quadrupole and ion trap analysers was done in the course of the investigations.
Collapse
Affiliation(s)
- Piotr Kachlicki
- Institute of Plant Genetics PAS, Strzeszyńska 34, 60-479 Poznań, Poland
| | | | | | | | | |
Collapse
|
62
|
Roseiro L, Viala D, Besle J, Carnat A, Fraisse D, Chezal J, Lamaison J. Preliminary observations of flavonoid glycosides from the vegetable coagulant Cynara L. in protected designation of origin cheeses. Int Dairy J 2005. [DOI: 10.1016/j.idairyj.2004.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
63
|
Jenner AM, Rafter J, Halliwell B. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free Radic Biol Med 2005; 38:763-72. [PMID: 15721987 DOI: 10.1016/j.freeradbiomed.2004.11.020] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 11/03/2004] [Accepted: 11/15/2004] [Indexed: 12/23/2022]
Abstract
Phenolic compounds are not completely absorbed in the small intestine and so enter the colon, where they might exert physiological effects. To identify phenolics that are present in normal human colon, fecal water was prepared from 5 free-living volunteers with no dietary restrictions and analyzed by gas chromatography-mass spectrometry. Daily measurements were also performed on a single individual to examine the variation more closely. Levels of polyphenols were variable between individuals. Naringenin and quercetin had mean concentrations of 1.20 and 0.63 microM. All other flavonoids examined were present < or =0.17 microM. Simple phenolic and other aromatic acids were present at much higher concentrations. The major components were phenylacetic acid, 479 microM; 3-phenylpropionic acid, 166 microM; 3-(4-hydroxy)-phenylpropionic acid, 68 microM; 3,4-dihydroxycinnamic acid, 52 microM; benzoic acid, 51 microM; 3-hydroxyphenylacetic acid, 46 microM; and 4-hydroxyphenylacetic acid, 19 microM. Other phenolic acids ranged from 0.04 to 7 microM. Decreased dietary phenolic intake caused a decrease in polyphenol and monophenolic acid concentration in fecal water 24 h later. This study is the first to measure the range of aromatic compounds in human fecal water and demonstrates that phenolic acid concentrations are high. The biological effects of phenolics may play an important role in colon function.
Collapse
Affiliation(s)
- Andrew M Jenner
- Biochemistry Department, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597.
| | | | | |
Collapse
|
64
|
McVey MJ, Cooke GM, Curran IHA. Altered testicular microsomal steroidogenic enzyme activities in rats with lifetime exposure to soy isoflavones. J Steroid Biochem Mol Biol 2004; 92:435-46. [PMID: 15698548 DOI: 10.1016/j.jsbmb.2004.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 08/26/2004] [Indexed: 11/17/2022]
Abstract
Androgen production in the testis is carried out by the Leydig cells, which convert cholesterol into androgens. Previously, isoflavones have been shown to affect serum androgen levels and steroidogenic enzyme activities. In this study, the effects of lifelong exposure to dietary soy isoflavones on testicular microsomal steroidogenic enzyme activities were examined in the rat. F1 male rats were obtained from a multi-generational study where the parental generation was fed diets containing alcohol-washed soy protein supplemented with increasing amounts of Novasoy, a commercially available isoflavone supplement. A control group was maintained on a soy-free casein protein-based diet (AIN93G). The diets were designed to approximate human consumption levels and ranged from 0 to 1046.6 mg isoflavones/kg pelleted feed, encompassing exposures representative of North American and Asian diets as well as infant fed soy-based formula. Activities of testicular 3beta-hydroxysteroid dehydrogenase (3beta-HSD), P450c17 (CYP17), 17beta-hydroxysteroid dehydrogenase (17beta-HSD) were assayed on post natal day (PND) 28, 70, 120, 240 and 360 while 5alpha-reducatase was assayed on PND 28. At PND 28, 3beta-HSD activity was elevated by approximately 50% in rats receiving 1046.6 mg total isoflavones/kg feed compared to those on the casein only diet. A similar increase in activity was observed for CYP17 in rats receiving 235.6 mg total isoflavones/kg feed, a level representative of infant exposure through formula, compared to those receiving 0mg isoflavones from the casein diet. These results demonstrate that rats fed a mixture of dietary soy isoflavones showed significantly altered enzyme activity profiles during development at PND 28 as a result of early exposure to isoflavones at levels obtainable by humans.
Collapse
Affiliation(s)
- Mark J McVey
- Department of Cellular and Molecular Medicine and Obstetrics and Gynecology, Reproductive Biology Unit, University of Ottawa, Ont., Canada
| | | | | |
Collapse
|
65
|
Wiseman H, Casey K, Bowey EA, Duffy R, Davies M, Rowland IR, Lloyd AS, Murray A, Thompson R, Clarke DB. Influence of 10 wk of soy consumption on plasma concentrations and excretion of isoflavonoids and on gut microflora metabolism in healthy adults. Am J Clin Nutr 2004; 80:692-9. [PMID: 15321810 DOI: 10.1093/ajcn/80.3.692] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Little information is currently available on the role of the gut microflora in modulating isoflavone bioavailability or on sex differences in isoflavone metabolism and bioavailability. OBJECTIVE We sought to determine whether chronic soy consumption influences isoflavone bioavailability as judged by plasma isoflavone concentrations and modified gut microflora activities [beta-glucoside hydrolysis and equol and O-desmethylangolensin (O-DMA) production]. We also examined whether sex differences in isoflavone metabolism exist. DESIGN A randomized, parallel, controlled study design was used to compare a high-soy diet (104 +/- 24 mg total isoflavones/d) with a low-soy diet (0.54 +/- 0.58 mg total isoflavones/d) in 76 healthy young adults for 10 wk. RESULTS Concentrations of isoflavones and their gut microflora metabolites in the plasma, urine, and feces were significantly higher in the subjects who consumed the high-soy diet than in those who consumed the low-soy diet. Concentrations of O-DMA in plasma and urine were higher in the men than in the women. Fecal bacteria from subjects consuming both diets could convert daidzein to equol ex vivo. Fecal beta-glucosidase activity was significantly higher in the subjects who consumed the high-soy diet than in those who consumed the low-soy diet. CONCLUSIONS Although interindividual variation in isoflavone metabolism was high, intraindividual variation was low. Only concentrations of O-DMA in plasma and urine appeared to be influenced by sex. Chronic soy consumption does not appear to induce many significant changes to the gut metabolism of isoflavones other than higher beta-glucosidase activity.
Collapse
Affiliation(s)
- Helen Wiseman
- Nutrition, Food and Health Research Centre, the Department of Nutrition and Dietetics, King's College London, 150 Stamford Street, London SE1 9NN, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Di Virgilio AL, Iwami K, Wätjen W, Kahl R, Degen GH. Genotoxicity of the isoflavones genistein, daidzein and equol in V79 cells. Toxicol Lett 2004; 151:151-62. [PMID: 15177650 DOI: 10.1016/j.toxlet.2004.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hormonally active chemicals in the human diet, such as man-made estrogenic chemicals or plant-derived compounds (phytoestrogens), have become a matter of public concern. A significant part of human exposure to phytoestrogens is attributable to soy isoflavones. Besides their estrogenic properties, soy isoflavones also exert genotoxic actions. In this paper, the micronucleus (MN) assay in V79 cells was used to study chromosomal genotoxicity. Genistein caused a clear dose-related induction of MN within the range of 5-25 microM; MN rates were declining at higher genistein concentrations. This was probably due to cytotoxicity of genistein since reduced neutral red uptake and MTT formation with an IC(50) of about 75 microM occurred. Daidzein induced a comparatively shallow increase in the number of MN between 25 and 100 microM. In contrast, the daidzein metabolite equol caused an increase in the number of MN up to 25 microM with no further increase at higher concentrations. Additional staining with anti-kinetochore (CREST) antibodies served to determine if the micronuclei contain whole chromosomes or acentric fragments. Genistein induced mostly CREST(-) micronuclei, i.e. MN with chromosomal fragments, thus indicative of a clastogenic mode of action. MN induced by high concentrations of daidzein were partly CREST(+) and CREST(-), whilst equol induced mostly CREST(+) micronuclei indicative of an aneugenic action. These results point to a differential genotoxicity of phytoestrogens.
Collapse
Affiliation(s)
- Ana Laura Di Virgilio
- Institut für Arbeitsphysiologie an der Universität Dortmund, Ardeystr, 67, D-44139 Dortmund, Germany
| | | | | | | | | |
Collapse
|
67
|
Choi EJ, Lee BH. Evidence for genistein mediated cytotoxicity and apoptosis in rat brain. Life Sci 2004; 75:499-509. [PMID: 15147835 DOI: 10.1016/j.lfs.2004.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 01/15/2004] [Indexed: 10/26/2022]
Abstract
The effects of chronic treatment with high doses of genistein, a major isoflavone of soybeans and soy-based products, have yet to be determined and what is known remains controversial. The present study was undertaken to investigate the cytotoxic effects of chronic ingestion of genistein on rat brain in vivo and the observations were compared with results from in vitro studies with primary cultures of cortical neurons. Sprague-Dawley rats were given 2 or 20 mg/day genistein (p.o.) for four weeks. The high dose of genistein (20 mg/day) significantly increased lactate dehydrogenase (LDH) in rat brain tissue homogenates, whereas the low dose of genistein (2 mg/day) decreased LDH. In addition, DNA fragmentation was detected in homogenates of brain tissue from rats receiving either dose of genistein. These results are consistent with those of in vitro studies indicating that high concentrations of genistein caused cytotoxicity and DNA ladder formation in primary cultures of cortical neurons. Genistein decreased the expression of the 32 kDa caspase-3 precursor and increased the levels of cleaved caspase-3 (18 kDa) in both rat brain tissue homogenates and in primary cultures of cortical neurons. Furthermore, expression of poly (ADP-ribose) polymerase (PARP) was also decreased in both experimental systems. These results suggest that chronic administration of genistein at high doses may induce cytotoxicity and apoptosis in the rat brain.
Collapse
Affiliation(s)
- Eun Jeong Choi
- Medicinal Science Division, Korea Research Institute of Chemical Technology, #100, Jang-dong, Yusong, Taejon 305-343, South Korea
| | | |
Collapse
|
68
|
Heinonen SM, Wähälä K, Liukkonen KH, Aura AM, Poutanen K, Adlercreutz H. Studies of the in vitro intestinal metabolism of isoflavones aid in the identification of their urinary metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:2640-2646. [PMID: 15113171 DOI: 10.1021/jf030681s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Soy isoflavones have recently gained considerable interest due to their possible health benefits. However, detailed studies on the metabolism of isoflavones are lacking. The aims of the investigation presented here were (1) to study the in vitro intestinal metabolism of isoflavones and their hydroxylated analogues 3'-OH-daidzein, 6-OH-daidzein, 8-OH-daidzein, and 3'-OH-genistein and (2) to characterize the structures of some earlier identified urinary metabolites of soy isoflavones, for which no authentic reference compounds have been available. Isoflavone standards (1-2 mg) were fermented with human fecal flora (16.7%) for 24 h. Metabolites formed during the fermentation were tentatively identified by interpretation of the mass spectra of trimethylsilylated compounds obtained by GC-MS. Compounds having hydroxyl groups at 5-position (i.e., genistein and 3'-OH-genistein) were completely converted to metabolites that could not be detected by the methods used in this study. The metabolism of daidzein and its hydroxylated analogues, 3'-OH-daidzein, 6-OH-daidzein, and 8-OH-daidzein, occurred to a much lesser extent. Minor amounts of reduced metabolites (i.e., isoflavanones and alpha-methyldeoxybenzoins) of these compounds were tentatively identified in fermentation extracts. The retention times and the mass spectra of reduced isoflavone metabolites, obtained from in vitro fermentations of pure compounds, were utilized to identify unknown urinary metabolites of soy isoflavones. Four novel isoflavone metabolites were identified in human urine collected after soy supplementation: 3' '-OH-O-desmethylangolensin, 3',4',7-trihydroxyisoflavanone, 4',7,8-trihydroxyisoflavanone, and 4',6,7-trihydroxyisoflavanone.
Collapse
Affiliation(s)
- Satu-Maarit Heinonen
- Folkhälsan Research Center and Department of Clinical Chemistry, Biomedicum, P.O. Box 63, FIN-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
69
|
PUUPPONEN-PIMIA R, AURA AM, KARPPINEN S, OKSMAN-CALDENTEY KM, POUTANEN K. Interactions between Plant Bioactive Food Ingredients and Intestinal Flora—Effects on Human Health. Biosci Microflora 2004. [DOI: 10.12938/bifidus.23.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
70
|
Heinonen SM, Hoikkala A, Wähälä K, Adlercreutz H. Metabolism of the soy isoflavones daidzein, genistein and glycitein in human subjects. Identification of new metabolites having an intact isoflavonoid skeleton. J Steroid Biochem Mol Biol 2003; 87:285-99. [PMID: 14698210 DOI: 10.1016/j.jsbmb.2003.09.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent diseases. Soy and soy foods are rich sources of isoflavones, which have been shown to possess several biological activities. In this study, the metabolism of soy isoflavones daidzein, genistein and glycitein was investigated in human subjects. The aim was to find and identify urinary phase I metabolites of isoflavones, which have an intact isoflavonoid skeleton, and which might possess some bioactivity. Six volunteers included three soy bars per day into their normal western diet for a 2-week period. Daily urine samples were collected before, and after the supplementation period. Urine samples were hydrolyzed with Helix pomatia, extracted with diethyl ether, purified with Sephadex LH-20 chromatography, and analyzed as trimethylsilyl derivatives using gas chromatography-mass spectrometry (GC-MS). The structures of the isoflavone metabolites were identified using authentic reference compounds. The metabolites, for which authentic reference compounds were not available, were identified by the interpretation of mass spectra. Several new isoflavone metabolites were identified, and the presence of previously reported metabolites confirmed. The metabolic pathways of daidzein, genistein and glycitein are presented on the basis of the identification of the metabolites in human urine after soy supplementation.
Collapse
Affiliation(s)
- Satu Maarit Heinonen
- Department of Clinical Chemistry, Biomedicum, Folkhälsan Research Centre, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
71
|
Singh B, Bhat TK, Singh B. Potential therapeutic applications of some antinutritional plant secondary metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:5579-5597. [PMID: 12952405 DOI: 10.1021/jf021150r] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant-based formulations have been used since ancient times as remedial measures against various human and animal ailments. Over the past 20 years interest in traditional medicines has increased considerably in many parts of the world. Whereas modifications in lifestyles, including diet, have had a profound effect on the increased risks of various diseases, there is considerable scientific evidence, both epidemiological and experimental, regarding vegetables and fruits as key features of diets associated with reduced risks of diseases such as cancers and infections. This has led to the use of a number of phytometabolites as anticarcinogenic and cardioprotective agents, promoting a dramatic increase in their consumption as dietary supplements. There are changing perceptions regarding the therapeutic potential of various plant secondary metabolites (PSMs), some of which have also been known to possess certain antinutritional qualities. The knowledge gained at the cellular and molecular levels, and biological activities of PSMs including tannin-polyphenols, saponins, mimosine, flavonoids, terpenoids, and phytates, would be useful in planning for future epidemiological studies and human cancer prevention trials, especially when a large pure dosage is not the option to deliver the active compounds to many tissues. It is well observed that alteration of cell cycle regulatory gene expression is frequently found in tumor tissues or cancer cell lines, and studies have suggested that the herbal-based or plant-originated cell cycle regulators might represent a new set of potential targets for anticancer drugs. The recent upsurge of interest in this area of research and advances made therein indicate that the impact of a number of diseases affecting humans and animals may be lessened, if not prevented, by simple dietary intake of PSMs with putative therapeutic properties.
Collapse
Affiliation(s)
- Birbal Singh
- Indian Veterinary Research Institute, Regional Station, Palampur 176 061, H. P., India.
| | | | | |
Collapse
|
72
|
Rimbach G, De Pascual-Teresa S, Ewins BA, Matsugo S, Uchida Y, Minihane AM, Turner R, VafeiAdou K, Weinberg PD. Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica 2003; 33:913-25. [PMID: 14514441 DOI: 10.1080/0049825031000150444] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. Soy isoflavones have been extensively studied because of their possible health-promoting effects. Genistein and daidzein, the major isoflavone aglycones, have received most attention; however, they undergo extensive metabolism in the gut and liver, which might affect their biological properties. 2. The antioxidant activity, free radical-scavenging properties and selected cellular effects of the isoflavone metabolites equol, 8-hydroxydaidzein, O-desmethylangiolensin, and 1,3,5 trihydroxybenzene were investigated in comparison with their parent aglycones, genistein and daidzein. 3. Electron spin resonance spectroscopy indicated that 8-hydroxydaidzein was the most potent scavenger of hydroxyl and superoxide anion radicals. Isoflavone metabolites also exhibited higher antioxidant activity than parent compounds in standard antioxidant (FRAP and TEAC) assays. However, for the suppression of nitric oxide production by activated macrophages, genistein showed the highest potency, followed by equol and daidzein. 4. The metabolism of isoflavones affects their free radical scavenging and antioxidant properties, and their cellular activity, but the effects are complex.
Collapse
Affiliation(s)
- G Rimbach
- Hugh Sinclar Human Nutrition Unit, School of Food Biosciences, University of Reading, RG6 6AP UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Walsh KR, Zhang YC, Vodovotz Y, Schwartz SJ, Failla ML. Stability and bioaccessibility of isoflavones from soy bread during in vitro digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:4603-4609. [PMID: 14705884 DOI: 10.1021/jf0342627] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The impact of simulated digestion on the stability and bioaccessibility of isoflavonoids from soy bread was examined using simulated oral, gastric, and small intestinal digestion. The aqueous (bioaccessible) fraction was isolated from digesta by centrifugation, and samples were analyzed by high-performance liquid chromatography (HPLC). Isoflavonoids were stable during simulated digestion. Partitioning of aglycones, acetylgenistin, and malonylgenistin into the aqueous fraction was significantly (P < 0.01) affected by the concentration of bile present during small intestinal digestion. Omission of bile resulted in nondetectable genistein and <40% of total daidzein, glycitein, and acetylgenistin in the aqueous fraction of digesta. Partitioning of these compounds into the aqueous fraction was increased by physiological concentrations of bile extract. These results suggest that micellarization is required for optimal bioaccessibility of isoflavonoid aglycones. We propose that the bioavailability of isoflavones from foods containing fat and protein may exceed that of supplements due to enhanced bile secretion.
Collapse
Affiliation(s)
- Kelly R Walsh
- Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
74
|
Coldham NG, Horton R, Byford MF, Sauer MJ. A binary screening assay for pro-oestrogens in food: metabolic activation using hepatic microsomes and detection with oestrogen sensitive recombinant yeast cells. FOOD ADDITIVES AND CONTAMINANTS 2002; 19:1138-47. [PMID: 12623674 DOI: 10.1080/0265203021000014789] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An assay, employing microsomes prepared from rat liver and a recombinant cell bioassay (RCBA) expressing the human oestrogen receptor (alpha) linked to a reporter gene, was evaluated for the detection of pro-oestrogens in food using methoxychlor and mestranol as model compounds. Bio-activation of the hop phytoestrogen isoxanthohumol to the potent oestrogen 8-prenylnaringenin was also investigated. The oestrogenic potency values for reference standards determined with the RCBA (17beta-oestradiol = 100%) were: methoxychlor 0.0025%, mestranol 1.3%, isoxanthohumol 0.001%, and for their potential respective metabolites were: bishydroxymethoxychlor 0.015%, 17alpha-ethynyl oestradiol 69% and 8-prenylnaringenin 0.4%. Incubation of methoxychlor and mestranol (10 microM) with microsomes prepared from the liver of rats treated with Aroclor 1254 significantly increased (p < 0.001) their oestrogenic potency from 0.0021 and 2.4% to 0.015 and 8.3%, respectively. In contrast, the potency of the hop phytoestrogen isoxanthohumol was unchanged. Metabolites were identified by UV-HPLC-MS/MS as monohydroxy methoxychlor and HPTE from methoxychlor, and the major metabolite of mestranol was 17alpha-ethynyl oestradiol. There was no evidence for the metabolism of isoxanthohumol. Mestranol was also activated by microsomes induced with saline (control), beta-napthoflavone, 3-methylcholantherene, isoniazid or pregnenolone-16alpha-carbonitrile, but not phenobarbitone. These studies demonstrate the principle for use of a binary assay system for the detection of pro-oestrogens and indicate the potential value for risk assessment of endocrine disrupting chemicals.
Collapse
Affiliation(s)
- N G Coldham
- Department of Risk Research, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK.
| | | | | | | |
Collapse
|
75
|
Coldham NG, Zhang AQ, Key P, Sauer MJ. Absolute bioavailability of [14C] genistein in the rat; plasma pharmacokinetics of parent compound, genistein glucuronide and total radioactivity. Eur J Drug Metab Pharmacokinet 2002; 27:249-58. [PMID: 12587954 DOI: 10.1007/bf03192335] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The systemic plasma pharmacokinetics of genistein were determined in rats to evaluate the absolute oral bioavailability and make comparison with similar data in the literature derived from humans subjects. The plasma concentrations of genistein, genistein glucuronide and carbon-14 were determined by LC-MS/MS and liquid scintillation counting following oral and intravenous dosing with [14C]genistein (4 mg kg(-1) body weight). The absorption of total radioactivity from the gut, (parent compound and metabolites), was 56 and 111% in male and female rats, respectively. In contrast, the absolute oral bioavailability of genistein in male and female rats was 7 and 15%. There was a significant (P<0.001) difference between Cmax of genistein after intravenous (6921 and 4392 ng/ml) and oral (21 and 22 ng/ml) dosing in male and female rats, respectively. After oral administration, the concentration profile of genistein glucuronide in plasma greatly exceeded that of parent compound during the absorption/distribution phase suggesting extensive first pass metabolism, and provided evidence of entero-hepatic circulation. Selective plasma analysis by LC-MS/MS, without prior enzymatic hydrolysis, enabled ready discrimination between parent and conjugated metabolites and prevented gross overestimation of genistein bioavailability. Pharmacokinetic parameters Cmax, Tmax and AUC were similar to those reported in humans, which supports the use of the rat model for genistein toxicity studies.
Collapse
Affiliation(s)
- Nick G Coldham
- Department of Risk Research, Veterinary Laboratories Agency, Addlestone, Surrey, KT15 3NB, U.K
| | | | | | | |
Collapse
|