51
|
Degrassi G, Devescovi G, Kim J, Hwang I, Venturi V. Identification, characterization and regulation of two secreted polygalacturonases of the emerging rice pathogen Burkholderia glumae. FEMS Microbiol Ecol 2008; 65:251-62. [DOI: 10.1111/j.1574-6941.2008.00516.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
52
|
Hegedus DD, Li R, Buchwaldt L, Parkin I, Whitwill S, Coutu C, Bekkaoui D, Rimmer SR. Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment. PLANTA 2008; 228:241-53. [PMID: 18431596 DOI: 10.1007/s00425-008-0733-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 03/31/2008] [Indexed: 05/04/2023]
Abstract
Most plants encode a limited set of polygalacturonase inhibitor (PGIP) genes that may be involved in aspects of plant development, but more importantly in the inactivation of polygalacturonases (PG) secreted by pathogens. Previously, we characterized two Brassica napus PGIP genes, BnPgip1 and BnPgip2, which were differentially expressed in response to pathogen infection and wounding. Here we report that the B. napus genome encodes a set of at least 16 PGIP genes that are similar to BnPgip1 or BnPgip2. This is the largest Pgip gene family reported to date. Comparison of the BnPGIPs revealed several sites within the xxLxLxx region of leucine rich repeats that form beta-sheets along the interacting face of the PGIP that are hypervariable and represent good candidates for generating PGIP diversity. Characterization of the regulatory regions and RT-PCR studies with gene-specific primers revealed that individual genes were differentially responsive to pathogen infection, mechanical wounding and signaling molecules. Many of the BnPgip genes responded to infection by the necrotic pathogen, Sclerotinia sclerotiorum; however, these genes were also induced either by jasmonic acid, wounding and salicylic acid or some combination thereof. The large number of PGIPs and the differential manner in which they are regulated likely ensures that B. napus can respond to attack from a broad spectrum of pathogens and pests.
Collapse
Affiliation(s)
- Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Massa C, Clausen MH, Stojan J, Lamba D, Campa C. Study of the mode of action of a polygalacturonase from the phytopathogen Burkholderia cepacia. Biochem J 2008; 407:207-17. [PMID: 17627609 PMCID: PMC2049012 DOI: 10.1042/bj20061833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have recently isolated and heterologously expressed BcPeh28A, an endopolygalacturonase from the phytopathogenic Gram-negative bacterium Burkholderia cepacia. Endopolygalacturonases belong to glycoside hydrolase family 28 and are responsible for the hydrolysis of the non-esterified regions of pectins. The mode of action of BcPeh28A on different substrates has been investigated and its enzymatic mechanism elucidated. The hydrolysis of polygalacturonate indicates that BcPeh28A is a non-processive enzyme that releases oligomers with chain lengths ranging from two to eight. By inspection of product progression curves, a kinetic model has been generated and extensively tested. It has been used to derive the kinetic parameters that describe the time course of the formation of six predominant products. Moreover, an investigation of the enzymatic activity on shorter substrates that differ in their overall length and methylation patterns sheds light on the architecture of the BcPeh28A active site. Specifically the tolerance of individual sites towards methylated saccharide units was rationalized on the basis of the hydrolysis of hexagalacturonides with different methylation patterns.
Collapse
Affiliation(s)
- Claudia Massa
- International School for Advanced Studies, Via Beirut 2/4, I-34014 Trieste, Italy.
| | | | | | | | | |
Collapse
|
54
|
Coenen G, Bakx E, Verhoef R, Schols H, Voragen A. Identification of the connecting linkage between homo- or xylogalacturonan and rhamnogalacturonan type I. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2007.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
55
|
Massa C, Degrassi G, Devescovi G, Venturi V, Lamba D. Isolation, heterologous expression and characterization of an endo-polygalacturonase produced by the phytopathogen Burkholderia cepacia. Protein Expr Purif 2007; 54:300-8. [DOI: 10.1016/j.pep.2007.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/28/2007] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
|
56
|
Yapo BM, Lerouge P, Thibault JF, Ralet MC. Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2006.12.024] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
57
|
Optimization of biomass, pellet size and polygalacturonase production by Aspergillus sojae ATCC 20235 using response surface methodology. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.08.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
58
|
Roper MC, Greve LC, Warren JG, Labavitch JM, Kirkpatrick BC. Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:411-9. [PMID: 17427811 DOI: 10.1094/mpmi-20-4-0411] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Xylella fastidiosa is the causal agent of Pierce's disease of grape, an economically significant disease for the grape industry. X. fastidiosa systemically colonizes the xylem elements of grapevines and is able to breach the pit pore membranes separating xylem vessels by unknown mechanisms. We hypothesized that X. fastidiosa utilizes cell wall degrading enzymes to break down pit membranes, based on the presence of genes involved in plant cell wall degradation in the X. fastidiosa genome. These genes include several beta-1,4 endoglucanases, several xylanases, several xylosidases, and one polygalacturonase (PG). In this study, we demonstrated that the pglA gene encodes a functional PG. A mutant in pglA lost pathogenicity and was compromised in its ability to systemically colonize Vitis vinifera grapevines. The results indicate that PG is required for X. fastidiosa to successfully infect grapevines and is a critical virulence factor for X. fastidiosa pathogenesis in grapevine.
Collapse
Affiliation(s)
- M Caroline Roper
- Department of Plant Pathology, University of California, Davis. Davis, CA, 95616, USA
| | | | | | | | | |
Collapse
|
59
|
Juge N. Plant protein inhibitors of cell wall degrading enzymes. TRENDS IN PLANT SCIENCE 2006; 11:359-67. [PMID: 16774842 DOI: 10.1016/j.tplants.2006.05.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/04/2006] [Accepted: 05/25/2006] [Indexed: 05/10/2023]
Abstract
Plant cell walls, which consist mainly of polysaccharides (i.e. cellulose, hemicelluloses and pectins), play an important role in defending plants against pathogens. Most phytopathogenic microorganisms secrete an array of cell wall degrading enzymes (CWDEs) capable of depolymerizing the polysaccharides in the plant host wall. In response, plants have evolved a diverse battery of defence responses including protein inhibitors of these enzymes. These include inhibitors of pectin degrading enzymes such as polygalacturonases, pectinmethyl esterases and pectin lyases, and hemicellulose degrading enzymes such as endoxylanases and xyloglucan endoglucanases. The discovery of these plant inhibitors and the recent resolution of their three-dimensional structures, free or in complex with their target enzymes, provide new lines of evidence regarding their function and evolution in plant-pathogen interactions.
Collapse
Affiliation(s)
- Nathalie Juge
- Institut Méditerranéen de Recherche en Nutrition, Faculté des Sciences de St Jérôme, F-13397 Marseilles Cedex 20, France.
| |
Collapse
|
60
|
Lukwinski AT, Hill JE, Khachatourians GG, Hemmingsen SM, Hegedus DD. Biochemical and taxonomic characterization of bacteria associated with the crucifer root maggot (Delia radicum). Can J Microbiol 2006; 52:197-208. [PMID: 16604116 DOI: 10.1139/w05-123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crucifer root maggot, Delia radicum, is an important pest of cruciferous crops; however, little is known about its digestive biochemistry or resident gut microbiota. A culturing approach was used to survey the types of micro organisms associated with eggs, midgut, and faeces of larvae feeding on rutabaga. All bacteria isolated from the midgut and faecal materials were Gram-negative bacilli. Nine types of culturable bacteria were identified within the midgut based on analysis of 60 kDa chaperonin sequences and were generally gamma-Proteobacteria, primarily Enterobacteriaceae. Carbohydrate utilization patterns, select biochemical pathways, and hydrolytic enzymes were examined using the API(R) system for each of the nine groups, revealing an exceptionally broad metabolic and hydrolytic potential. These studies suggest that resident alimentary tract microorganisms have the potential to contribute to host nutrition directly as a food source as well as by providing increased digestive potential.
Collapse
Affiliation(s)
- Angelina T Lukwinski
- Department of Applied Microbiology and Food Science, University of Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
61
|
Gognies S, Barka EA, Gainvors-Claisse A, Belarbi A. Interactions between yeasts and grapevines: filamentous growth, endopolygalacturonase and phytopathogenicity of colonizing yeasts. MICROBIAL ECOLOGY 2006; 51:109-16. [PMID: 16408245 DOI: 10.1007/s00248-005-0098-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 09/07/2005] [Indexed: 05/06/2023]
Abstract
It has been clearly established that phytopathogenic fungi, bacteria, and viruses exert biotic stresses on plants. Much less is known, however, about the interactions between enological species of yeast and their host plants. In a previous study, we described how Saccharomyces cerevisiae, the most common enological yeast, can act as a grapevine (Vitis vinifera L.) pathogen, causing growth retardation or plant death. In the present in vitro study on 11 strains of yeast belonging to different genera, which often occur on the surfaces of vineyard grapes and V. vinifera, a link was found to exist between strain phytopathogenecity and pseudohyphal growth habits and/or endopolygalacturonase activity. The results obtained here are consistent with earlier findings showing that the phytopathogenicity of yeast strains depends on the filamentous growth process, and show that endopolygalacturonase alone is not responsible for the invasion of plants tissues. The mechanisms observed here may be of significant ecological importance and may help to explain the long periods of yeast survival found to occur in vineyards.
Collapse
Affiliation(s)
- Sabine Gognies
- Laboratoire de Microbiologie Générale et Moléculaire, Université de Reims, UFR Sciences, URVVC, UPRES EA 2069, B.P. 1039, 51687 Reims Cedex 2, France
| | | | | | | |
Collapse
|
62
|
Jourand P, Renier A, Rapior S, Miana de Faria S, Prin Y, Galiana A, Giraud E, Dreyfus B. Role of methylotrophy during symbiosis between Methylobacterium nodulans and Crotalaria podocarpa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1061-8. [PMID: 16255245 DOI: 10.1094/mpmi-18-1061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Some rare leguminous plants of the genus Crotalaria are specifically nodulated by the methylotrophic bacterium Methylobacterium nodulans. In this study, the expression and role of bacterial methylotrophy were investigated during symbiosis between M. nodulans, strain ORS 2060T, and its host legume, Crotalaria podocarpa. Using lacZ fusion to the mxaF gene, we showed that the methylotroph genes are expressed in the root nodules, suggesting methylotrophic activity during symbiosis. In addition, loss of the bacterial methylotrophic function significantly affected plant development. Indeed, inoculation of M. nodulans nonmethylotroph mutants in C. podocarpa decreased the total root nodule number per plant up to 60%, decreased the whole-plant nitrogen fixation capacity up to 42%, and reduced the total dry plant biomass up to 46% compared with the wild-type strain. In contrast, inoculation of the legume C. podocarpa with nonmethylotrophic mutants complemented with functional mxa genes restored the symbiotic wild phenotype. These results demonstrate the key role of methylotrophy during symbiosis between M. nodulans and C. podocarpa.
Collapse
Affiliation(s)
- Philippe Jourand
- Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR 113 AgroM/CIRAD/INRA/IRD/UMII, TA 10/J, Campus International de Baillarguet, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
|
64
|
Antranikian G, Vorgias CE, Bertoldo C. Extreme environments as a resource for microorganisms and novel biocatalysts. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 96:219-62. [PMID: 16566093 DOI: 10.1007/b135786] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The steady increase in the number of newly isolated extremophilic microorganisms and the discovery of their enzymes by academic and industrial institutions underlines the enormous potential of extremophiles for application in future biotechnological processes. Enzymes from extremophilic microorganisms offer versatile tools for sustainable developments in a variety of industrial application as they show important environmental benefits due to their biodegradability, specific stability under extreme conditions, improved use of raw materials and decreased amount of waste products. Although major advances have been made in the last decade, our knowledge of the physiology, metabolism, enzymology and genetics of this fascinating group of extremophilic microorganisms and their related enzymes is still limited. In-depth information on the molecular properties of the enzymes and their genes, however, has to be obtained to analyze the structure and function of proteins that are catalytically active around the boiling and freezing points of water and extremes of pH. New techniques, such as genomics, metanogenomics, DNA evolution and gene shuffling, will lead to the production of enzymes that are highly specific for countless industrial applications. Due to the unusual properties of enzymes from extremophiles, they are expected to optimize already existing processes or even develop new sustainable technologies.
Collapse
Affiliation(s)
- Garabed Antranikian
- Institute of Technical Microbiology, Technical University Hamburg-Harburg, Kasernenstrasse 12, 21073 Hamburg, Germany.
| | | | | |
Collapse
|
65
|
Zuppini A, Navazio L, Sella L, Castiglioni C, Favaron F, Mariani P. An endopolygalacturonase from Sclerotinia sclerotiorum induces calcium-mediated signaling and programmed cell death in soybean cells. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:849-55. [PMID: 16134897 DOI: 10.1094/mpmi-18-0849] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A basic endopolygalacturonase (PG) isoform, produced early by Sclerotinia sclerotiorum when infecting soybean seedlings, was used to examine the signaling role of the enzyme in aequorin-expressing soybean cells. A cytosolic Ca2+ elevation was induced, with a rapid increase (phase 1) and a very slow decrease (phase 2) of Ca2+ concentration, indicating the involvement of Ca2+ ions in PG signaling. Within 1 h of PG-cell contact a remarkable level of cell death was recorded, significantly higher than the control cell culture turnover. The observed morphological and biochemical changes were indicative of the activation of programmed cell death; in particular, cytochrome c release in the cytoplasm and activation of both caspase 9-like and caspase 3-like proteases were found. When a polygalacturonase-inhibiting protein (PGIP) and the PG were simultaneously applied to cells, both the Ca2+ increase and cell death were annulled. The possible roles of prolonged sustained cytosolic Ca2+ concentrations in inducing cell death and of the PG-PGIP interaction in preventing PG signaling are discussed.
Collapse
Affiliation(s)
- Anna Zuppini
- Dipartimento di Biologia, Università di Padova, via U Bassi 58/B, 35131 Padova, Italy
| | | | | | | | | | | |
Collapse
|
66
|
POPPER ZOËA, FRY STEPHENC. Widespread occurrence of a covalent linkage between xyloglucan and acidic polysaccharides in suspension-cultured angiosperm cells. ANNALS OF BOTANY 2005; 96:91-9. [PMID: 15837720 PMCID: PMC4246812 DOI: 10.1093/aob/mci153] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 02/17/2005] [Accepted: 03/03/2005] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Covalent linkages between xyloglucan and rhamnogalacturonan-I (RG-I) have been reported in the primary cell walls of cultured Rosa cells and may contribute to wall architecture. This study investigated whether this chemical feature is general to angiosperms or whether Rosa is unusual. * METHODS Xyloglucan was alkali-extracted from the walls of l-[1-3H]arabinose-fed suspension-cultured cells of Arabidopsis, sycamore, rose, tomato, spinach, maize and barley. The polysaccharide was precipitated with 50 % ethanol and subjected to anion-exchange chromatography in 8 m urea. Eluted fractions were Driselase-digested, yielding [3H]isoprimeverose (diagnostic of [3H]xyloglucan). The Arabidopsis cells were also fed [6-14C]glucuronic acid, and radiolabelled pectins were extracted with ammonium oxalate. * KEY RESULTS [3H]Xyloglucan was detected in acidic (galacturonate-containing) as well as non-anionic polysaccharide fractions. The proportion of the [3H]isoprimeverose units that were in anionic fractions was: Arabidopsis, 45 %; sycamore, 60 %; rose, 44 %; tomato, 75 %; spinach, 70 %; maize, 50 %; barley, 70 %. In Arabidopsis cultures fed d-[6-(14)C]glucuronate, 20 % of the (galacturonate-14C)-labelled pectins were found to hydrogen-bond to cellulose, a characteristic normally restricted to hemicelluloses such as xyloglucan. * CONCLUSIONS Alkali-stable, anionic complexes of xyloglucan (reported in the case of Rosa to be xyloglucan-RG-I covalent complexes) are widespread in the cell walls of angiosperms, including gramineous monocots.
Collapse
|
67
|
da Silva EG, de Fátima Borges M, Medina C, Piccoli RH, Schwan RF. Pectinolytic enzymes secreted by yeasts from tropical fruits. FEMS Yeast Res 2005; 5:859-65. [PMID: 15925314 DOI: 10.1016/j.femsyr.2005.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 01/15/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022] Open
Abstract
Three hundred yeasts isolated from tropical fruits were screened in relation to secretion of pectinases. Twenty-one isolates were able to produce polygalacturonase and among them seven isolates could secrete pectin lyase. None of the isolates was able to secrete pectin methylesterase. The pectinolytic yeasts identified belonged to six different genera. Kluyveromyces wickerhamii isolated from the fruit mangaba (Hancornia speciosa) secreted the highest amount of polygalacturonase, followed by K. marxianus and Stephanoascus smithiae. The yeast Debaryomyces hansenii produced the greatest decrease in viscosity while only 3% of the glycosidic linkages were hydrolysed, indicating that the enzyme secreted was an endo-polygalacturonase. The hydrolysis of pectin by polygalacturonase secreted by S. smithiae suggested an exo-splitting mechanism. The other yeast species studied showed low polygalacturonase activity.
Collapse
|
68
|
ØBro J, Harholt J, Scheller HV, Orfila C. Rhamnogalacturonan I in Solanum tuberosum tubers contains complex arabinogalactan structures. PHYTOCHEMISTRY 2004; 65:1429-38. [PMID: 15231417 DOI: 10.1016/j.phytochem.2004.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 05/03/2004] [Indexed: 05/07/2023]
Abstract
A rhamnogalacturonan I polysaccharide was isolated from potato (Solanum tuberosum cv. Posmo) tuber cell walls and characterised by enzymatic digestion with an endo-beta-1 --> 4-galactanase and an endo-alpha-1 --> 5-arabinanase, individually or in combination. The reaction products were separated using size-exclusion chromatography and further analysed for monosaccharide composition and presence of epitopes using the LM5 anti-beta-1 --> 4-galactan and LM6 anti-alpha-1 --> 5-arabinan monoclonal antibodies. The analyses point to distinct structural features of potato tuber rhamnogalacturonan I, such as the abundance of beta-1 --> 4-galactan side chains that are poorly substituted with short arabinose-containing side chains, the presence of alpha-1 --> 5-arabinan side chains substituted with beta-1 --> 4-galactan oligomers (degree of polymerisation > 4), and the presence of alpha-1 --> 5-arabinans that resist enzymatic degradation. A synergy between the enzymes was observed towards the degradation of arabinans but not towards the degradation of galactans. The effect of the enzymes on isolated RG I is discussed in relation to documented effects of enzymes heterologously expressed in potato tubers. In addition, a novel and rapid method for the determination of the monosaccharide and uronic acid composition of cell wall polysaccharides using high-performance anion exchange chromatography with pulsed amperometric detection is described.
Collapse
Affiliation(s)
- Jens ØBro
- Biotechnology Group, Danish Institute of Agricultural Sciences, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
69
|
Choi JK, Lee BH, Chae CH, Shin W. Computer modeling of the rhamnogalacturonase-"hairy" pectin complex. Proteins 2004; 55:22-33. [PMID: 14997537 DOI: 10.1002/prot.10434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The structure of a pectin-bound complex of rhamnogalacturonase was modeled to identify the amino acid residues involved in catalysis and substrate binding. The "hairy" region of pectin, represented by six repeating stretches of (1-->4)-D-galacturonate-(1-->2)-L-rhamnose dimer, was flexibly docked into the putative binding site of rhamnogalacturonase from Aspergillus aculeatus whose X-ray structure is known. A search of the complex configurational space was performed using AutoDock for the dimeric and tetrameric sugar units in which the -1 galacturonate residue has various ring conformations. Then the plausible AutoDock solutions were manually extended to the dodecameric pectin models. Subsequently, the resulting complex models were subjected to solvated molecular dynamics using AMBER. In the best model, the substrate has an extended pseudo-threefold helix with the -1 ring in a 4H3 half-chair that approaches the transition state conformation. The catalytic machinery is clearly defined: Asp197 is a general acid and the activated water bound between Asp177 and Glu198 is a nucleophile. The active site is similar, with a small yet significant difference, to that of polygalacturonase that degrades the pectic "smooth" region of linear homopolymer of D-(1-->4)-linked galacturonic acid. Rhamnogalacturonase has ten binding subsites ranging from -3 to +7, while polygalacturonase has eight subsites from -5 to +3. The model suggests that the eight amino acids including three arginine and three lysine residues, all of which are invariantly conserved in the rhamnogalacturonase family of proteins, are important in substrate binding. The present study may aid in designing mutational studies to characterize rhamnogalacturonase.
Collapse
Affiliation(s)
- Jong Keun Choi
- School of Chemistry and Center for Molecular Catalysis, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
70
|
González ET, Allen C. Characterization of a Ralstonia solanacearum operon required for polygalacturonate degradation and uptake of galacturonic acid. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:536-544. [PMID: 12795379 DOI: 10.1094/mpmi.2003.16.6.536] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The bacterial wilt pathogen Ralstonia solanacearum produces three extracellular polygalacturonases (PGs): PehA, PehB, and PehC. All three PGs hydrolyze pectin's polygalacturonic acid backbone, but each releases different reaction products. PehA and PehB contribute significantly to pathogen virulence, probably by facilitating root invasion and colonization. To determine the collective contribution of PGs to virulence and saprophytic survival, we cloned, characterized, and mutated the R. solanacearum pehC gene, which encodes a distinctive monogalacturonate-releasing exo-PG. The virulence of a pehC mutant on tomato was indistinguishable from that of its wild-type parent; thus, this exo-PG alone does not contribute significantly to wilt pathogenesis. Unexpectedly, a completely PG-deficient triple pehA/B/C mutant was slightly more virulent than a pehA/B mutant. PehC may degrade galacturonide elicitors of host defense, thereby protecting the pathogen from plant antimicrobial responses. A galacturonate transporter gene, exuT, is immediately downstream of pehC and the two genes are co-transcribed. It has been hypothesized that galacturonic acid released by PGs from plant cell walls nourishes bacteria during pathogenesis. To separate the pectolytic and nutrient-generating roles of the PGs, we made an exuT mutant, which still produces all three isozymes of PG but cannot uptake PG degradation products. This exuT mutant had wild-type virulence on tomato, demonstrating that metabolism of galacturonic acid does not contribute significantly to bacterial success inside the plant.
Collapse
Affiliation(s)
- Enid T González
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison 53706, USA
| | | |
Collapse
|
71
|
Mohamed SA, Christensen TMIE, Mikkelsen JD. New polygalacturonases from Trichoderma reesei: characterization and their specificities to partially methylated and acetylated pectins. Carbohydr Res 2003; 338:515-24. [PMID: 12668107 DOI: 10.1016/s0008-6215(02)00398-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two extracellular isoenzymes of polygalacturonases PG1 and PG2 were isolated from 3-day-old culture filtrates of Trichoderma reesei. The two enzymes were purified to homogeneity by ion-exchange, gel filtration and hydrophobic interaction chromatographies. PG1 and PG2 exhibit similar molecular weights from gel filtration and SDS-PAGE. Their properties, including optimal pH and temperature, thermal stability and Km were compared. Characterization of substrate specificity showed that the two enzymes had higher affinity toward PGA (B0100) derived from sugar beet pectin (SBP) than PGA from lime pectin. A series of SBPs with different distribution patterns of methyl and acetyl groups, produced by treatment with either plant pectin methylesterase (P-series) or fungal pectin methylesterase (F-series) or base catalysis (B-series), was used as substrates for PG1 and PG2. Substrates with a low degree of esterification were preferred substrates. The activities of PG1 and PG2 were strongly correlated to the degree of methylation and very little effect from acetylation. The products generated by digestion of selected lime and SBPs were analysed using matrix assisted laser desorption ionisation time of flight (MALDI TOF) MS. A mode of action revealed a random cleavage pattern for PG1 and PG2, confirming that these enzymes are endopolygalacturonases.
Collapse
Affiliation(s)
- Saleh A Mohamed
- Danisco Innovation, Langebrogade 1, DK-1001, Copenhagen K, Denmark
| | | | | |
Collapse
|
72
|
|
73
|
dos Santos Cunha Chellegatti MA, Fonseca MJV, Said S. Purification and partial characterization of exopolygalacturonase I from Penicillium frequentans. Microbiol Res 2002; 157:19-24. [PMID: 11911610 DOI: 10.1078/0944-5013-00127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A polygalacturonase with a molecular mass of 74 kDa, an isoelectric point around pH 4.2 and pH--and temperature optima of 3.9 and 50 degrees C, respectively, was purified from a culture fluid of Penicillium frequentans. The enzyme was characterized as an exo-alpha-1,4-polygalacturonase (exo-PG I). Km and Vmax for sodium polypectate hydrolysis were 0.68 g/l and 596.8 U x mg(-1), respectively. The enzyme, a glycoprotein with a carbohydrate content of 81%, is probably the main pectinase of Penicillium frequentans responsible for cleaving monomer units from the non-reducing end of pectin.
Collapse
|
74
|
Skjøt M, Pauly M, Bush MS, Borkhardt B, McCann MC, Ulvskov P. Direct interference with rhamnogalacturonan I biosynthesis in Golgi vesicles. PLANT PHYSIOLOGY 2002; 129:95-102. [PMID: 12011341 PMCID: PMC155874 DOI: 10.1104/pp.010948] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 11/23/2001] [Accepted: 01/30/2002] [Indexed: 05/20/2023]
Abstract
Pectin is a class of complex cell wall polysaccharides with multiple roles during cell development. Assigning specific functions to particular polysaccharides is in its infancy, in part, because of the limited number of mutants and transformants available with modified pectic polymers in their walls. Pectins are also important polymers with diverse applications in the food and pharmaceutical industries, which would benefit from technology for producing pectins with specific functional properties. In this report, we describe the generation of potato (Solanum tuberosum L. cv Posmo) tuber transformants producing pectic rhamnogalacturonan I (RGI) with a low level of arabinosylation. This was achieved by the expression of a Golgi membrane-anchored endo-alpha-1,5-arabinanase. Sugar composition analysis of RGI isolated from transformed and wild-type tubers showed that the arabinose content was decreased by approximately 70% in transformed cell walls compared with wild type. The modification of the RGI was confirmed by immunolabeling with an antibody recognizing alpha-1,5-arabinan. This is the first time, to our knowledge, that the biosynthesis of a plant cell wall polysaccharide has been manipulated through the action of a glycosyl hydrolase targeted to the Golgi compartment.
Collapse
Affiliation(s)
- Michael Skjøt
- Biotechnology Group, Danish Institute of Agricultural Sciences, Thorvaldsensvej 40, 1871 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
75
|
Abstract
Penicillium frequentans synthesized eleven polygalacturonases and three pectinesterases when grown in the presence of pectin, sodium polypectate or monogalacturonic acid. When glucose was the sole carbohydrate source in the medium two of these polygalacturonases and one pectinesterase were produced. The enzymes produced under any of these conditions degraded pectic substrates to monogalacturonic acid, suggesting that this monosaccharide or its metabolites should induce the pectinolytic complex. All pectinesterases and most of the extracellular polygalacturonases were synthesized after the 2nd hour of incubation. The pectinases produced by Penicillium frequentans were not secreted at the same time but after 5 hours of incubation all of them could be detected outside the cell those detected only inside the cell were probably membrane-associated or unglycosylated forms of the extracellular pectinases.
Collapse
Affiliation(s)
- M A Chellegatti
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n,-CEP 14040-903-Ribeirão Preto-SP-Brazil
| | | | | | | |
Collapse
|
76
|
Willats WG, McCartney L, Mackie W, Knox JP. Pectin: cell biology and prospects for functional analysis. PLANT MOLECULAR BIOLOGY 2001. [PMID: 11554482 DOI: 10.1007/978-94-010-0668-2_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Pectin is a major component of primary cell walls of all land plants and encompasses a range of galacturonic acid-rich polysaccharides. Three major pectic polysaccharides (homogalacturonan, rhamnogalacturonan-I and rhamnogalacturonan-II) are thought to occur in all primary cell walls. This review surveys what is known about the structure and function of these pectin domains. The high degree of structural complexity and heterogeneity of the pectic matrix is produced both during biosynthesis in the endomembrane system and as a result of the action of an array of wall-based pectin-modifying enzymes. Recent developments in analytical techniques and in the generation of anti-pectin probes have begun to place the structural complexity of pectin in cell biological and developmental contexts. The in muro de-methyl-esterification of homogalacturonan by pectin methyl esterases is emerging as a key process for the local modulation of matrix properties. Rhamnogalacturonan-I comprises a highly diverse population of spatially and developmentally regulated polymers, whereas rhamnogalacturonan-II appears to be a highly conserved and stable pectic domain. Current knowledge of biosynthetic enzymes, plant and microbial pectinases and the interactions of pectin with other cell wall components and the impact of molecular genetic approaches are reviewed in terms of the functional analysis of pectic polysaccharides in plant growth and development.
Collapse
Affiliation(s)
- W G Willats
- Centre for Plant Sciences, University of Leeds, UK
| | | | | | | |
Collapse
|
77
|
Cho SW, Lee S, Shin W. The X-ray structure of Aspergillus aculeatus polygalacturonase and a modeled structure of the polygalacturonase-octagalacturonate complex. J Mol Biol 2001; 311:863-78. [PMID: 11518536 DOI: 10.1006/jmbi.2001.4919] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polygalacturonases hydrolyze the alpha-(1-4) glycosidic bonds of de-esterified pectate in the smooth region of the plant cell wall. Crystal structures of polygalacturonase from Aspergillus aculeatus were determined at pH 4.5 and 8.5 both to 2.0 A resolution. A. aculeatus polygalacturonase is a glycoprotein with one N and ten O-glycosylation sites and folds into a right-handed parallel beta-helix. The structures of the three independent molecules are essentially the same, showing no dependency on pH or crystal packing, and are very similar to that of Aspergillus niger polygalacturonase. However, the structures of the long T1 loop containing a catalytic tyrosine residue are significantly different in the two proteins. A three-dimensional model showing the substrate binding mode for a family 28 hydrolase was obtained by a combined approach of flexible docking, molecular dynamics simulations, and energy minimization. The octagalacturonate substrate was modeled as an unbent irregular helix with the -1 ring in a half-chair ((4)H(3)) form that approaches the transition state conformation. A comparative modeling of the three polygalacturonases with known structure shows that six subsites ranging from -4 to +2 are clearly defined but subsites -5 and +3 may or may not be shaped depending on the nearby amino acid residues. Both distal subsites are mostly exposed to the solvent region and have weak binding affinity even if they exist. The complex model provides a clear explanation for the functions, either in catalysis or in substrate binding, of all conserved amino acid residues in the polygalacturonase family of proteins. Modeling suggests that the role of the conserved Asn157 and Tyr270, which had previously been unidentified, may be in transition state stabilization. In A. niger polygalacturonase, the long T1 loop may have to undergo conformational change upon binding of the substrate to bring the tyrosine residue close to subsite -1.
Collapse
Affiliation(s)
- S W Cho
- School of Chemistry and Molecular Engineering, and Center for Molecular Catalysis, Seoul National University, Seoul, 151-742, Korea
| | | | | |
Collapse
|
78
|
Sakiyama CC, Paula EM, Pereira PC, Borges AC, Silva DO. Characterization of pectin lyase produced by an endophytic strain isolated from coffee cherries. Lett Appl Microbiol 2001; 33:117-21. [PMID: 11472518 DOI: 10.1046/j.1472-765x.2001.00961.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The effect of endophytic bacterial activity on the quality of coffee beverage was studied. METHODS AND RESULTS A survey of the micro-organisms in coffee cherries was performed before harvesting, and their growth on the main nutrients available in coffee cherries was determined in vitro. CONCLUSION Many endophytic bacteria were isolated from surface-sterilized coffee cherries. One of the pectinolytic strains was physiologically and phenotypically characterized, and was tentatively identified by partial 16S rDNA sequencing as Paenibacillus amylolyticus. This endophytic strain produced an extracellular pectinase with maximal activity at 40 degrees C and pH 7.9, and was thermostable up to 45 degrees C. EDTA and metal ions had little effect on pectin lyase activity. Km and Vmax values were 4.6 mg ml(-1) and 94.0 10(-8) mol min(-1) ml(-1), respectively. SIGNIFICANCE AND IMPACT OF THE STUDY Pectin lyases have been found in fungi but rarely in bacteria, and this isolate is a promising tool for regulation studies of these enzymes.
Collapse
Affiliation(s)
- C C Sakiyama
- Departamento de Microbiologia, BIOAGRO, Universidade Federal de Viçosa, MG, Brazil
| | | | | | | | | |
Collapse
|
79
|
Ridley BL, O'Neill MA, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. PHYTOCHEMISTRY 2001; 57:929-67. [PMID: 11423142 DOI: 10.1016/s0031-9422(01)00113-3] [Citation(s) in RCA: 1163] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pectin is a family of complex polysaccharides present in all plant primary cell walls. The complicated structure of the pectic polysaccharides, and the retention by plants of the large number of genes required to synthesize pectin, suggests that pectins have multiple functions in plant growth and development. In this review we summarize the current level of understanding of pectin primary and tertiary structure, and describe new methods that may be useful to study localized pectin structure in the plant cell wall. We also discuss progress in our understanding of how pectin is biosynthesized and review the biological activities and possible modes of action of pectic oligosaccharides referred to as oligogalacturonides. We present our view of critical questions regarding pectin structure, biosynthesis, and function that need to be addressed in the coming decade. As the plant community works towards understanding the functions of the tens of thousands of genes expressed by plants, a large number of those genes are likely to be involved in the synthesis, turnover, biological activity, and restructuring of pectin. A combination of genetic, molecular, biochemical and chemical approaches will be necessary to fully understand the function and biosynthesis of pectin.
Collapse
Affiliation(s)
- B L Ridley
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, 220 Riverbend Road, Athens, GA 30602-4712, USA
| | | | | |
Collapse
|