51
|
Fuchs B, Saikkonen K, Helander M, Tian Y, Yang B, Engström MT, Salminen JP, Muola A. Legacy of agrochemicals in the circular food economy: Glyphosate-based herbicides introduced via manure fertilizer affect the yield and biochemistry of perennial crop plants during the following year. CHEMOSPHERE 2022; 308:136366. [PMID: 36113650 DOI: 10.1016/j.chemosphere.2022.136366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Conventional agricultural practices favoring the use of glyphosate-based herbicides (GBHs) increase the risk of GBH residues ending up in animal feed, feces, and, eventually, manure. The use of poultry manure as organic fertilizer in the circular food economy increases the unintentional introduction of GBH residues into horticultural and agricultural systems, with reportedly negative effects on the growth and reproduction of crop plants. To understand the potential lasting effects of exposure to GBH residues via organic manure fertilizers, we studied strawberry (Fragaria x vescana) plant performance, yield quantity, biochemistry, folivory, phytochemistry, and soil elemental composition the year after exposure to GBH. Although plants exposed to GBH residues via manure fertilizer were, on average, 23% smaller in the year of exposure, they were able to compensate for their growth during the following growing season. Interestingly, GBH residue exposure in the previous growing season led to a trend in altered plant size preferences of folivores during the following growing season. Furthermore, the plants that had been exposed to GBH residues in the previous growing season produced 20% heavier fruits with an altered composition of phenolic compounds compared to non-exposed plants. Our results indicate that GBHs introduced via manure fertilizer following circular economy practices in one year can have effects on perennial crop plants in the following year, although GBH residues in soil have largely vanished.
Collapse
Affiliation(s)
- Benjamin Fuchs
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland.
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Ye Tian
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014, Turku, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014, Turku, Finland
| | - Marica T Engström
- Natural Chemistry Research Group, Department of Chemistry, FI-20014, University of Turku, Finland
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, FI-20014, University of Turku, Finland
| | - Anne Muola
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland; Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
52
|
Hu G, Liu L, Miao X, Zhao Y, Peng Y, Li X. Symbiotic bacteria stabilize the intestinal environment by producing phenylpropanoids. Microb Biotechnol 2022; 16:88-98. [PMID: 36448752 PMCID: PMC9803327 DOI: 10.1111/1751-7915.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) can colonize in the intestinal tract of chickens and transmit to humans. In order to decrypt the mechanism of avian resistance to S. Enteritidis, we utilized two China local chicken breeds to generate the reciprocal crosses (the Cross and the Reverse-cross). The two lines of hybrids were orally inoculated with S. Enteritidis at 2-day old and sampled at 3 days post-inoculation. Along the analysis direction of multi-omics, differential metabolites, functional pathways and correlated microbes, we found that 12 species of microbes thrived upon S. Enteritidis challenge and probably contributed to the intestinal stability in the Cross by enhancing the production of phenylpropanoids. Our findings can help to understand the symbiotic and resistant mechanisms derived from the intestinal microbiota.
Collapse
Affiliation(s)
- Geng Hu
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non‐grain Feed Resources (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai'anChina
| | - Liying Liu
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Xiuxiu Miao
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non‐grain Feed Resources (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai'anChina
| | - Yanan Zhao
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non‐grain Feed Resources (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai'anChina
| | - Yanan Peng
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non‐grain Feed Resources (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai'anChina
| | - Xianyao Li
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non‐grain Feed Resources (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai'anChina
| |
Collapse
|
53
|
Yu J, Lee H, Heo H, Jeong HS, Sung J, Lee J. Sucrose-induced abiotic stress improves the phytochemical profiles and bioactivities of mung bean sprouts. Food Chem 2022; 400:134069. [DOI: 10.1016/j.foodchem.2022.134069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
|
54
|
Selma S, Sanmartín N, Espinosa‐Ruiz A, Gianoglio S, Lopez‐Gresa MP, Vázquez‐Vilar M, Flors V, Granell A, Orzaez D. Custom-made design of metabolite composition in N. benthamiana leaves using CRISPR activators. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1578-1590. [PMID: 35514036 PMCID: PMC9342607 DOI: 10.1111/pbi.13834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 05/25/2023]
Abstract
Transcriptional regulators based on CRISPR architecture expand our ability to reprogramme endogenous gene expression in plants. One of their potential applications is the customization of plant metabolome through the activation of selected enzymes in a given metabolic pathway. Using the previously described multiplexable CRISPR activator dCasEV2.1, we assayed the selective enrichment in Nicotiana benthamiana leaves of four different flavonoids, namely, naringenin, eriodictyol, kaempferol, and quercetin. After careful selection of target genes and guide RNAs combinations, we created successful activation programmes for each of the four metabolites, each programme activating between three and seven genes, and with individual gene activation levels ranging from 4- to 1500-fold. Metabolic analysis of the flavonoid profiles of each multigene activation programme showed a sharp and selective enrichment of the intended metabolites and their glycosylated derivatives. Remarkably, principal component analysis of untargeted metabolic profiles clearly separated samples according to their activation treatment, and hierarchical clustering separated the samples into five groups, corresponding to the expected four highly enriched metabolite groups, plus an un-activated control. These results demonstrate that dCasEV2.1 is a powerful tool for re-routing metabolic fluxes towards the accumulation of metabolites of interest, opening the door for the custom-made design of metabolic contents in plants.
Collapse
Affiliation(s)
- Sara Selma
- Instituto Biologia Molecular de PlantasCSIC‐UPVValenciaSpain
| | - Neus Sanmartín
- Escuela Superior de Tecnología y Ciencias ExperimentalesUniversidad Jaume ICastellón de la PlanaSpain
| | | | | | | | | | - Victor Flors
- Escuela Superior de Tecnología y Ciencias ExperimentalesUniversidad Jaume ICastellón de la PlanaSpain
| | - Antonio Granell
- Instituto Biologia Molecular de PlantasCSIC‐UPVValenciaSpain
| | - Diego Orzaez
- Instituto Biologia Molecular de PlantasCSIC‐UPVValenciaSpain
| |
Collapse
|
55
|
Jaiswal N, Kumar A. HPLC in the discovery of plant phenolics as antifungal molecules against Candida infection related biofilms. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
56
|
Iwasaki Y, Manabe R, Kimoto M, Fukuda M, Mase N, Miyazawa M, Hosokawa K, Kamei J. Copper-Induced Interactions of Caffeic Acid and Sinapic Acid to Generate New Compounds in Artificial Biological Fluid Conditions. Antioxidants (Basel) 2022; 11:antiox11071307. [PMID: 35883798 PMCID: PMC9311897 DOI: 10.3390/antiox11071307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Active ingredients may be ingested through foods, and they can cause several interactions in the human body. Although drug–drug or drug–food interactions are evaluated before the approval of medicines, several functional food interactions are not well-documented because of the wide range of possible combinations of interactions. In this study, we examined the chemical reactions between hydroxycinnamic acids (HCAs), a group of polyphenols, and metal ions in artificial gastric juice or artificial intestinal fluid. Caffeic acid (CaA) and sinapic acid (SA) reacted with copper ions under artificial intestinal fluid conditions and produced new compounds. The triple interactions of CaA or SA with iron and copper ions were also examined. Relative to the initial compounds, CaA and SA derivatives produced by condensation exhibited an increased antioxidant and a decreased prooxidant activity. This study revealed a new food ingredient interaction pattern in which new compounds are produced under biological conditions.
Collapse
Affiliation(s)
- Yusuke Iwasaki
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
- Correspondence:
| | - Rie Manabe
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
| | - Mika Kimoto
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
| | - Mao Fukuda
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
| | - Narumi Mase
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
| | - Mako Miyazawa
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
| | - Kotomi Hosokawa
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
| | - Junzo Kamei
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Juntendo Advanced Research Institute for Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
57
|
Zayed A, Sobeh M, Farag MA. Dissecting dietary and semisynthetic volatile phenylpropenes: A compile of their distribution, food properties, health effects, metabolism and toxicities. Crit Rev Food Sci Nutr 2022; 63:11105-11124. [PMID: 35708064 DOI: 10.1080/10408398.2022.2087175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenylpropenes represent a major subclass of plant volatiles, including eugenol, and (E)-anethole. They contribute to the flavor and aroma of many chief herbs and spices, to exert distinct notes in food, i.e., spicy anise- and clove-like to fruit. Asides from their culinary use, they appear to exert general health effects, whereas some effects are specific, e.g., eugenol being a natural local anesthetic. This review represents the most comprehensive overview of phenylpropenes with respect to their chemical structures, different health effects, and their food applications as flavor and food preservatives. Side effects and toxicities of these compounds represent the second main part of this review, as some were reported for certain metabolites generated inside the body. Several metabolic reactions mediating for phenylpropenes metabolism in rodents via cytochrome P450 (CYP450) and sulfotransferase (SULT) enzymes are presented being involved in their toxicities. Such effects can be lessened by influencing their pharmacokinetics through a matrix-derived combination effect via administration of herbal extracts containing SULT inhibitors, i.e., nevadensin in sweet basil. Moreover, structural modification of phenylpropanes appears to improve their effects and broaden their applications. Hence, such review capitalizing on phenylpropenes can help optimize their applications in nutraceuticals, cosmeceuticals, and food applications.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
58
|
Irahal IN, Guenaou I, Lahlou FA, Hmimid F, Bourhim N. Syzygium aromaticum bud (clove) essential oil is a novel and safe aldose reductase inhibitor: in silico, in vitro, and in vivo evidence. Hormones (Athens) 2022; 21:229-240. [PMID: 35212917 DOI: 10.1007/s42000-021-00347-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aimed to evaluate the antioxidant and antidiabetic properties of clove essential oil (CEO) and to elucidate its mode of action, using selected biochemical targets, relevant to diabetes, and, specifically, its inhibitory effect on the polyol pathway. METHODS In the current study, CEO was examined for its inhibitory effects on aldose reductase in silico, in vitro, and in vivo, as well as its antioxidative activity. RESULTS In silico docking studies showed that all the selected major compounds of CEO have an energy change ranging between - 5.5 and - 8.8 kcal/mol and an inhibition constant ranging between 357.08 nM and 93.12 µM. CEO significantly inhibits aldose reductase with an IC50 value of 58.55 ± 5.84 µg/mL in a noncompetitive manner. The supplementation of CEO at 20 mg/kg BW decreases retinal sorbitol dehydrogenase activity via decreased aldose reductase activity in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. Moreover, diabetic rats injected with CEO have exhibited improved levels of glycemia. The IC50 values for ABTS, hydroxyl, and hydrogen peroxide scavenging activities of CEO were found to be 34.42, 277.4, and 39.99 µg/mL, respectively. Reducing power assay and phosphomolybdate assay exhibited a reduction force with the A0.5 values of 50.25 and 140.16 µg/mL, respectively. CONCLUSION CEO potentially exerts a beneficial effect on diabetes-related complications due to its antioxidant and inhibitory effect on aldose reductase activity.
Collapse
Affiliation(s)
- Imane Nait Irahal
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| | - Ismail Guenaou
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| | - Fatima Azzahra Lahlou
- Laboratoire National De Référence, Université Mohammed VI Des Sciences De La Santé Faculté De Médecine, Casablanca, Morocco
| | - Fouzia Hmimid
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
- Biotechnologie, Environnement Et Santé, Faculté Des Sciences El Jadida, Université Chouaïb Doukkali, El Jadida, Morocco
| | - Noureddine Bourhim
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco.
| |
Collapse
|
59
|
Shankar A, Sharma KK. Fungal secondary metabolites in food and pharmaceuticals in the era of multi-omics. Appl Microbiol Biotechnol 2022; 106:3465-3488. [PMID: 35546367 PMCID: PMC9095418 DOI: 10.1007/s00253-022-11945-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 01/16/2023]
Abstract
Fungi produce several bioactive metabolites, pigments, dyes, antioxidants, polysaccharides, and industrial enzymes. Fungal products are also the primary sources of functional food and nutrition, and their pharmacological products are used for healthy aging. Their molecular properties are validated through the use of recent high-throughput genomic, transcriptomic, and metabolomic tools and techniques. Together, these updated multi-omic tools have been used to study fungal metabolites structure and their mode of action on biological and cellular processes. Diverse groups of fungi produce different proteins and secondary metabolites, which possess tremendous biotechnological and pharmaceutical applications. Furthermore, its use and acceptability can be accelerated by adopting multi-omics, bioinformatics, and machine learning tools that generate a huge amount of molecular data. The integration of artificial intelligence and machine learning tools in the era of omics and big data has opened up a new outlook in both basic and applied researches in the area of nutraceuticals and functional food and nutrition. KEY POINTS: • Multi-omic tool helps in the identification of novel fungal metabolites • Intra-omic data from genomics to bioinformatics • Novel metabolites and application in human health.
Collapse
Affiliation(s)
- Akshay Shankar
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
60
|
Microencapsulation of Essential Oils: A Review. Polymers (Basel) 2022; 14:polym14091730. [PMID: 35566899 PMCID: PMC9099681 DOI: 10.3390/polym14091730] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Essential oils (EOs) are complex mixtures of volatile compounds extracted from different parts of plants by different methods. There is a large diversity of these natural substances with varying properties that lead to their common use in several areas. The agrochemical, pharmaceutical, medical, food, and textile industry, as well as cosmetic and hygiene applications are some of the areas where EOs are widely included. To overcome the limitation of EOs being highly volatile and reactive, microencapsulation has become one of the preferred methods to retain and control these compounds. This review explores the techniques for extracting essential oils from aromatic plant matter. Microencapsulation strategies and the available technologies are also reviewed, along with an in-depth overview of the current research and application of microencapsulated EOs.
Collapse
|
61
|
Mostafa S, Wang Y, Zeng W, Jin B. Floral Scents and Fruit Aromas: Functions, Compositions, Biosynthesis, and Regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:860157. [PMID: 35360336 PMCID: PMC8961363 DOI: 10.3389/fpls.2022.860157] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/09/2022] [Indexed: 05/27/2023]
Abstract
Floral scents and fruit aromas are crucial volatile organic compounds (VOCs) in plants. They are used in defense mechanisms, along with mechanisms to attract pollinators and seed dispersers. In addition, they are economically important for the quality of crops, as well as quality in the perfume, cosmetics, food, drink, and pharmaceutical industries. Floral scents and fruit aromas share many volatile organic compounds in flowers and fruits. Volatile compounds are classified as terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives, and amino acid derivatives. Many genes and transcription factors regulating the synthesis of volatiles have been discovered. In this review, we summarize recent progress in volatile function, composition, biosynthetic pathway, and metabolism regulation. We also discuss unresolved issues and research perspectives, providing insight into improvements and applications of plant VOCs.
Collapse
Affiliation(s)
- Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Yun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wen Zeng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
62
|
Derbassi NB, Pedrosa MC, Heleno S, Carocho M, Ferreira IC, Barros L. Plant volatiles: Using Scented molecules as food additives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
63
|
Wang Z, Wang S, Liu P, Yang X, He X, Xie X, Luo Z, Wu M, Wang C, Yang J. Molecular cloning and functional characterization of NtWRKY41a in the biosynthesis of phenylpropanoids in Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111154. [PMID: 35067314 DOI: 10.1016/j.plantsci.2021.111154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/21/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Phenylpropanoids are important secondary metabolites that have multifaceted effects on plant growth, development, and environmental adaptation. WRKY41 has been shown to repress anthocyanins synthesis in Arabidopsis, but its full roles in regulating plant phenylpropanoids metabolism still remains to be further studied. Here, we cloned two NtWRKY41 genes from N. tabacum genome, and NtWRKY41a showed higher expression levels than NtWRKY41b genes in all the tobacco tissues examined. Overexpression and knock-out of NtWRKY41a gene revealed that NtWRKY41a promoted the biosynthesis of Chlorogenic acid (CGA) and lignin, but repressed the accumulation of scopoletin and flavonoids in tobacco. Transcriptome analysis found 7 phenylpropanoids related differentially expressed genes (DEGs) between WT and NtWRKY41a-OE plants, among which the transcription of NtCCoAOMT and NtHST was significantly induced by posttranslational activation of NtWRKY41a, while those of NtF6'H1 and NtGT3 was significantly repressed by NtWRKY41a. Chromatin immunoprecipitation and Dual-Luc assays further indicated that NtWRKY41a could bind to the promoter regions of these four genes to regulate their transcription. Moreover, ectopic expression of NtWRKY41a also promoted the transcription of several NtLOX and NtHPL genes, which encode key enzymes involved in the oxylipin pathway. Our findings revealed new functions of NtWRKY41a in modulating the distribution of metabolism flux in phenylpropanoids pathway, and provided a promising target for manipulating phenylpropanoids contents in tobacco.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Shuaibin Wang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xiaonian Yang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China
| | - Xinxi He
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
64
|
Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy. Int J Mol Sci 2022; 23:ijms23031532. [PMID: 35163459 PMCID: PMC8835907 DOI: 10.3390/ijms23031532] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Cisplatin and other platinum-based drugs, such as carboplatin, ormaplatin, and oxaliplatin, have been widely used to treat a multitude of human cancers. However, a considerable proportion of patients often relapse due to drug resistance and/or toxicity to multiple organs including the liver, kidneys, gastrointestinal tract, and the cardiovascular, hematologic, and nervous systems. In this study, we sought to provide a comprehensive review of the current state of the science highlighting the use of cisplatin in cancer therapy, with a special emphasis on its molecular mechanisms of action, and treatment modalities including the combination therapy with natural products. Hence, we searched the literature using various scientific databases., such as MEDLINE, PubMed, Google Scholar, and relevant sources, to collect and review relevant publications on cisplatin, natural products, combination therapy, uses in cancer treatment, modes of action, and therapeutic strategies. Our search results revealed that new strategic approaches for cancer treatment, including the combination therapy of cisplatin and natural products, have been evaluated with some degree of success. Scientific evidence from both in vitro and in vivo studies demonstrates that many medicinal plants contain bioactive compounds that are promising candidates for the treatment of human diseases, and therefore represent an excellent source for drug discovery. In preclinical studies, it has been demonstrated that natural products not only enhance the therapeutic activity of cisplatin but also attenuate its chemotherapy-induced toxicity. Many experimental studies have also reported that natural products exert their therapeutic action by triggering apoptosis through modulation of mitogen-activated protein kinase (MAPK) and p53 signal transduction pathways and enhancement of cisplatin chemosensitivity. Furthermore, natural products protect against cisplatin-induced organ toxicity by modulating several gene transcription factors and inducing cell death through apoptosis and/or necrosis. In addition, formulations of cisplatin with polymeric, lipid, inorganic, and carbon-based nano-drug delivery systems have been found to delay drug release, prolong half-life, and reduce systemic toxicity while other formulations, such as nanocapsules, nanogels, and hydrogels, have been reported to enhance cell penetration, target cancer cells, and inhibit tumor progression.
Collapse
Affiliation(s)
- Shaloam Dasari
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Sylvianne Njiki
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Ariane Mbemi
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Clement G. Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA;
| | - Paul B. Tchounwou
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
- Correspondence: ; Tel.: +1-601-979-0777
| |
Collapse
|
65
|
Dong T, Sha Y, Liu H, Sun L. Altitudinal Variation of Metabolites, Mineral Elements and Antioxidant Activities of Rhodiola crenulata (Hook.f. & Thomson) H.Ohba. Molecules 2021; 26:7383. [PMID: 34885966 PMCID: PMC8658832 DOI: 10.3390/molecules26237383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Rhodiolacrenulata (Hook.f. & Thomson) H.Ohba is an alpine medicinal plant that can survive in extreme high altitude environments. However, its changes to extreme high altitude are not yet clear. In this study, the response of Rhodiola crenulata to differences in altitude gradients was investigated through chemical, ICP-MS and metabolomic methods. A targeted study of Rhodiola crenulata growing at three vertical altitudes revealed that the contents of seven elements Ca, Sr, B, Mn, Ni, Cu, and Cd, the phenolic components, the ascorbic acid, the ascorbic acid/dehydroascorbate ratio, and the antioxidant capacity were positively correlated with altitude, while the opposite was true for total ascorbic acid content. Furthermore, 1165 metabolites were identified: flavonoids (200), gallic acids (30), phenylpropanoids (237), amino acids (100), free fatty acids and glycerides (56), nucleotides (60), as well as other metabolites (482). The differential metabolite and biomarker analyses suggested that, with an increasing altitude: (1) the shikimic acid-phenylalanine-phenylpropanoids-flavonoids pathway was enhanced, with phenylpropanoids upregulating biomarkers much more than flavonoids; phenylpropanes and phenylmethanes upregulated, and phenylethanes downregulated; the upregulation of quercetin was especially significant in flavonoids; upregulation of condensed tannins and downregulation of hydrolyzed tannins; upregulation of shikimic acids and amino acids including phenylalanine. (2) significant upregulation of free fatty acids and downregulation of glycerides; and (3) upregulation of adenosine phosphates. Our findings provide new insights on the responses of Rhodiola crenulata to extreme high altitude adversity.
Collapse
Affiliation(s)
| | | | | | - Liwei Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.D.); (Y.S.); (H.L.)
| |
Collapse
|
66
|
Effects of Secondary Metabolites from Pea on Fusarium Growth and Mycotoxin Biosynthesis. J Fungi (Basel) 2021; 7:jof7121004. [PMID: 34946987 PMCID: PMC8706721 DOI: 10.3390/jof7121004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium species present ubiquitously in the environment are capable of infecting a wide range of plant species. They produce several mycotoxins targeted to weaken the host plant. While infecting some resistant plants, the host can alter the expression of toxin-related genes and accumulate no/very low amounts of mycotoxins. The ability of the host plant to modulate the biosynthesis of these toxins is entirely depending on the secondary metabolites produced by the plant, often as a part of systemic acquired resistance (SAR). A major role plays in the family of metabolites called phenyl propanoids, consisting of thousands of natural products, synthesized from the phenylalanine or tyrosine amino acids through a cascade of enzymatic reactions. They are also famous for inhibiting or limiting infection through their antioxidant characteristics. The current study was aimed at identifying the differentially expressed secondary metabolites in resistant (Sokolik) and susceptible (Santana) cultivars of pea (Pisum sativum L.) and understanding their roles in the growth and mycotoxin biosynthesis of two different Fusarium species. Although metabolites such as coumarin, spermidine, p-coumaric acid, isoorientin, and quercetin reduced the growth of the pathogen, a higher level of p-coumaric acid was found to enhance the growth of F. proliferatum strain PEA1. It was also noticeable that the growth of the pathogen did not depend on their ability to produce mycotoxins, as all the metabolites were able to highly inhibit the biosynthesis of fumonisin B1 and beauvericin.
Collapse
|
67
|
De novo transcriptome and tissue specific expression analysis of genes associated with biosynthesis of secondary metabolites in Operculina turpethum (L.). Sci Rep 2021; 11:22539. [PMID: 34795371 PMCID: PMC8602414 DOI: 10.1038/s41598-021-01906-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
This study reported the first-ever de novo transcriptome analysis of Operculina turpethum, a high valued endangered medicinal plant, using the Illumina HiSeq 2500 platform. The de novo assembly generated a total of 64,259 unigenes and 20,870 CDS (coding sequence) with a mean length of 449 bp and 571 bp respectively. Further, 20,218 and 16,458 unigenes showed significant similarity with identified proteins of NR (non-redundant) and UniProt database respectively. The homology search carried out against publicly available database found the best match with Ipomoea nil sequences (82.6%). The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis identified 6538 unigenes functionally assigned to 378 modules with phenylpropanoid biosynthesis pathway as the most enriched among the secondary metabolite biosynthesis pathway followed by terpenoid biosynthesis. A total of 17,444 DEGs were identified among which majority of the DEGs (Differentially Expressed Gene) involved in secondary metabolite biosynthesis were found to be significantly upregulated in stem as compared to root tissues. The qRT-PCR validation of 9 unigenes involved in phenylpropanoid and terpenoid biosynthesis also showed a similar expression pattern. This finding suggests that stem tissues, rather than root tissues, could be used to prevent uprooting of O. turpethum in the wild, paving the way for the plant's effective conservation. Moreover, the study formed a valuable repository of genetic information which will provide a baseline for further molecular research.
Collapse
|
68
|
Di Lena G, Sanchez del Pulgar J, Lucarini M, Durazzo A, Ondrejíčková P, Oancea F, Frincu RM, Aguzzi A, Ferrari Nicoli S, Casini I, Gabrielli P, Caproni R, Červeň I, Lombardi-Boccia G. Valorization Potentials of Rapeseed Meal in a Biorefinery Perspective: Focus on Nutritional and Bioactive Components. Molecules 2021; 26:6787. [PMID: 34833884 PMCID: PMC8618708 DOI: 10.3390/molecules26226787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Rapeseed meal (RSM), a by-product of oilseed extraction connected to the agri-food and biofuel sectors, is currently used as animal feed and for other low-value purposes. With a biorefinery approach, RSM could be valorized as a source of bio-based molecules for high-value applications. This study provides a chemical characterization of RSM in the perspective of its valorization. A qualitative study of main functional groups by fourier transform infrared (FTIR) spectroscopy was integrated with a chemical characterization of macronutrients, minerals by inductively coupled plasma optical emission spectrometry (ICP-OES), phenolic acids and lipid components by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), HPLC-diode-array detector (HPLC-DAD) and gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID). The study, conducted on different lots of RSM collected over a one-year period from an oil pressing factory serving a biofuel biorefinery, highlighted a constant quality over time of RSM, characterized by high protein (31-34%), fiber (33-40%) and mineral (5.5-6.8%) contents. Polyphenol extracts showed a significant antioxidant activity and a prevalence of sinapic acid, accounting for more than 85% of total phenolic acids (395-437 mg kg-1 RSM). Results highlight the potentialities of RSM for further valorization strategies that may lead to the creation of new cross-sector interconnections and bio-based value chains with improvement of the economics and sustainability of the bioeconomy sectors involved.
Collapse
Affiliation(s)
- Gabriella Di Lena
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Jose Sanchez del Pulgar
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Massimo Lucarini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Alessandra Durazzo
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | | | - Florin Oancea
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (F.O.); (R.-M.F.)
| | - Rodica-Mihaela Frincu
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (F.O.); (R.-M.F.)
| | - Altero Aguzzi
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Stefano Ferrari Nicoli
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Irene Casini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Paolo Gabrielli
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Roberto Caproni
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Igor Červeň
- Poľnoservis a.s., Trnavská Cesta, 920 41 Leopoldov, Slovakia;
| | - Ginevra Lombardi-Boccia
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| |
Collapse
|
69
|
Garibay-Hernández A, Kessler N, Józefowicz AM, Türksoy GM, Lohwasser U, Mock HP. Untargeted metabotyping to study phenylpropanoid diversity in crop plants. PHYSIOLOGIA PLANTARUM 2021; 173:680-697. [PMID: 33963574 DOI: 10.1111/ppl.13458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Plant genebanks constitute a key resource for breeding to ensure crop yield under changing environmental conditions. Because of their roles in a range of stress responses, phenylpropanoids are promising targets. Phenylpropanoids comprise a wide array of metabolites; however, studies regarding their diversity and the underlying genes are still limited for cereals. The assessment of barley diversity via genotyping-by-sequencing is in rapid progress. Exploring these resources by integrating genetic association studies to in-depth metabolomic profiling provides a valuable opportunity to study barley phenylpropanoid metabolism; but poses a challenge by demanding large-scale approaches. Here, we report an LC-PDA-MS workflow for barley high-throughput metabotyping. Without prior construction of a species-specific library, this method produced phenylpropanoid-enriched metabotypes with which the abundance of putative metabolic features was assessed across hundreds of samples in a single-processed data matrix. The robustness of the analytical performance was tested using a standard mix and extracts from two selected cultivars: Scarlett and Barke. The large-scale analysis of barley extracts showed (1) that barley flag leaf profiles were dominated by glycosylation derivatives of isovitexin, isoorientin, and isoscoparin; (2) proved the workflow's capability to discriminate within genotypes; (3) highlighted the role of glycosylation in barley phenylpropanoid diversity. Using the barley S42IL mapping population, the workflow proved useful for metabolic quantitative trait loci purposes. The protocol can be readily applied not only to explore the barley phenylpropanoid diversity represented in genebanks but also to study species whose profiles differ from those of cereals: the crop Helianthus annuus (sunflower) and the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
| | | | | | - Gözde Merve Türksoy
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Ulrike Lohwasser
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Hans-Peter Mock
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
70
|
Wang S, Zhou L, Attia FAZKK, Tang Q, Wang M, Liu Z, Waterhouse GIN, Liu L, Kang W. Origanum majorana L.: A Nutritional Supplement With Immunomodulatory Effects. Front Nutr 2021; 8:748031. [PMID: 34631774 PMCID: PMC8493290 DOI: 10.3389/fnut.2021.748031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Origanum majorana L. is an aromatic herb that has been grown in several Mediterranean countries since ancient times, but became popular during the Middle Ages as a medicinal plant and seasoning ingredient. O. majorana has many pharmacological effects, but its immunoreactive components and mechanisms are still unclear. In this study, four compounds were isolated and identified from O. majorana by a spectral analysis, including 1H and 13C-NMR. They were 1H-indole-2-carboxylic acid (1), (+)-laricresol (2), (+)-isolaricresol (3), and procumboside B (4, pB), which were isolated for the first time in O. majorana. The immunomodulatory effects of the four compounds were screened, and pB had good immunomodulatory activity on RAW 264.7 cells. The immunomodulatory mechanism of pB was proved, in which pB could increase the secretion of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS) and simultaneously upregulate the expression of CD80 and CD86 on the cell surface. These results suggested that the mechanism of pB may be related to the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs)-signaling pathways. O. majorana is rich in nutrients and is commonly used in diets, so it can be used as a nutritional supplement with immunomodulatory effects.
Collapse
Affiliation(s)
- Senye Wang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Li Zhou
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Fatma Al-Zahra K K Attia
- Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China.,Department of Ornamental, Medicinal and Aromatic Plants, Faculty of Agriculture, Assiut University, Asyut, Egypt
| | - Qi Tang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Mengke Wang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Zhenhua Liu
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Geoffrey I N Waterhouse
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Lijun Liu
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Huaihe Hospital, Henan University, Kaifeng, China
| | - Wenyi Kang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| |
Collapse
|
71
|
Sun C, Liu B, Shen S, Jing W, Kou J, Sun S, Wang Y, Xu X, Ren H, Shi X, Teng Y, Mu L. WITHDRAWN: Rapid identification of chemical constituents in Physalis alkengi L. var. franchetii by UHPLC-ESI-Q-Obritrap MS/MS. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
72
|
Elimination of aromatic fusel alcohols as by-products of Saccharomyces cerevisiae strains engineered for phenylpropanoid production by 2-oxo-acid decarboxylase replacement. Metab Eng Commun 2021; 13:e00183. [PMID: 34584841 PMCID: PMC8450241 DOI: 10.1016/j.mec.2021.e00183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
Engineered strains of the yeast Saccharomyces cerevisiae are intensively studied as production platforms for aromatic compounds such as hydroxycinnamic acids, stilbenoids and flavonoids. Heterologous pathways for production of these compounds use l-phenylalanine and/or l-tyrosine, generated by the yeast shikimate pathway, as aromatic precursors. The Ehrlich pathway converts these precursors to aromatic fusel alcohols and acids, which are undesirable by-products of yeast strains engineered for production of high-value aromatic compounds. Activity of the Ehrlich pathway requires any of four S. cerevisiae 2-oxo-acid decarboxylases (2-OADCs): Aro10 or the pyruvate-decarboxylase isoenzymes Pdc1, Pdc5, and Pdc6. Elimination of pyruvate-decarboxylase activity from S. cerevisiae is not straightforward as it plays a key role in cytosolic acetyl-CoA biosynthesis during growth on glucose. In a search for pyruvate decarboxylases that do not decarboxylate aromatic 2-oxo acids, eleven yeast and bacterial 2-OADC-encoding genes were investigated. Homologs from Kluyveromyces lactis (KlPDC1), Kluyveromyces marxianus (KmPDC1), Yarrowia lipolytica (YlPDC1), Zymomonas mobilis (Zmpdc1) and Gluconacetobacter diazotrophicus (Gdpdc1.2 and Gdpdc1.3) complemented a Pdc− strain of S. cerevisiae for growth on glucose. Enzyme-activity assays in cell extracts showed that these genes encoded active pyruvate decarboxylases with different substrate specificities. In these in vitro assays, ZmPdc1, GdPdc1.2 or GdPdc1.3 had no substrate specificity towards phenylpyruvate. Replacing Aro10 and Pdc1,5,6 by these bacterial decarboxylases completely eliminated aromatic fusel-alcohol production in glucose-grown batch cultures of an engineered coumaric acid-producing S. cerevisiae strain. These results outline a strategy to prevent formation of an important class of by-products in ‘chassis’ yeast strains for production of non-native aromatic compounds. Identification of pyruvate decarboxylases active with pyruvate but not with aromatic 2-oxo acids. Zymomonas mobilis pyruvate decarboxylase can replace the native yeast enzymes. Expression of Z. mobilis pyruvate decarboxylase removes formation of fusel alcohols. Elimination of fusel alcohol by products improves formation of coumaric acid. Decarboxylase swapping is a beneficial strategy for production of non-native aromatics.
Collapse
|
73
|
Cartabia A, Tsiokanos E, Tsafantakis N, Lalaymia I, Termentzi A, Miguel M, Fokialakis N, Declerck S. The Arbuscular Mycorrhizal Fungus Rhizophagus irregularis MUCL 41833 Modulates Metabolites Production of Anchusa officinalis L. Under Semi-Hydroponic Cultivation. FRONTIERS IN PLANT SCIENCE 2021; 12:724352. [PMID: 34539717 PMCID: PMC8443025 DOI: 10.3389/fpls.2021.724352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 06/01/2023]
Abstract
Anchusa officinalis is recognized for its therapeutic properties, which are attributed to the production of different metabolites. This plant interacts with various microorganisms, including the root symbiotic arbuscular mycorrhizal fungi (AMF). Whether these fungi play a role in the metabolism of A. officinalis is unknown. In the present study, two independent experiments, associating A. officinalis with the AMF Rhizophagus irregularis MUCL 41833, were conducted in a semi-hydroponic (S-H) cultivation system. The experiments were intended to investigate the primary and secondary metabolites (PMs and SMs, respectively) content of shoots, roots, and exudates of mycorrhized (M) and non-mycorrhized (NM) plants grown 9 (Exp. 1) or 30 (Exp. 2) days in the S-H cultivation system. Differences in the PMs and SMs were evaluated by an untargeted ultrahigh-performance liquid chromatography high-resolution mass spectrometry metabolomics approach combined with multivariate data analysis. Differences in metabolite production were shown in Exp. 1. Volcano-plots analysis revealed a strong upregulation of 10 PMs and 23 SMs. Conversely, in Exp. 2, no significant differences in PMs and SMs were found in shoots or roots between M and NM plants whereas the coumarin scoparone and the furanocoumarin byakangelicin, accumulated in the exudates of the M plants. In Exp. 1, we noticed an enhanced production of PMs, including organic acids and amino acids, with the potential to act as precursors of other amino acids and as building blocks for the production of macromolecules. Similarly, SMs production was significantly affected in Exp 1. In particular, the phenolic compounds derived from the phenylpropanoid pathway. Fifteen di-, tri-, and tetra-meric C6-C3 derivatives of caffeic acid were induced mainly in the roots of M plants, while four oleanane-types saponins were accumulated in the shoots of M plants. Two new salvianolic acid B derivatives and one new rosmarinic acid derivative, all presenting a common substitution pattern (methylation at C-9"' and C-9' and hydroxylation at C-8), were detected in the roots of M plants. The accumulation of diverse compounds observed in colonized plants suggested that AMF have the potential to affect specific plant biosynthetic pathways.
Collapse
Affiliation(s)
- Annalisa Cartabia
- Applied Microbiology, Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Evangelia Tsiokanos
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tsafantakis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ismahen Lalaymia
- Applied Microbiology, Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Aikaterini Termentzi
- Laboratory of Pesticides' Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Maria Miguel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Nikolas Fokialakis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Stéphane Declerck
- Applied Microbiology, Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
74
|
Bioactive Components, Volatile Profile and In Vitro Antioxidative Properties of Taxus baccata L. Red Arils. Molecules 2021; 26:molecules26154474. [PMID: 34361625 PMCID: PMC8348699 DOI: 10.3390/molecules26154474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/24/2023] Open
Abstract
This study aimed at assessing the composition of bioactive compounds, including ascorbic acid, carotenoids and polyphenols, the volatile compound profile and the antioxidant activity of red arils (RAs) of Taxus baccata L. grown in diverse locations in Poland. Among the carotenoids assayed in high quantities (3.3-5.42 μg/g), the lycopene content (2.55-4.1 μg/g) was remarkably higher than that in many cultivated fruits. Samples collected from three sites were distinguished by higher amounts of ascorbic acid (125 mg/100 g, on average) than those found in many cultivated berries. Phenylpropanoids quantitatively dominated among the four groups of phenolic compounds. Chromatographic separation enabled the detection of two phenylpropanoid acids: ferulic and p-coumaric. Irrespectively of the growth site, RAs contained substantial amounts of (-)-epicatechin (1080 μg/100 g, on average). A higher ability to scavenge DPPH● and ABTS●+ radicals was found in the hydrophilic fraction of RAs from two sites (Warsaw and Koszalin) compared with the other two sites. The volatile compound profile of RAs was dominated by alcohols, followed by ketones, esters and aldehydes. The presence of some volatiles was exclusively related to the specific growth site, which may be regarded as a valuable indicator. The combination of bioactive and volatile compounds and the fairly good antioxidant potential of RAs render them an attractive source for preparing functional foods.
Collapse
|
75
|
Uddin MJ, Russo D, Haque MA, Çiçek SS, Sönnichsen FD, Milella L, Zidorn C. Bioactive Abietane-Type Diterpenoid Glycosides from Leaves of Clerodendrum infortunatum (Lamiaceae). Molecules 2021; 26:4121. [PMID: 34299396 PMCID: PMC8306933 DOI: 10.3390/molecules26144121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, two previously undescribed diterpenoids, (5R,10S,16R)-11,16,19-trihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-3,8,11,13-abietatetraene-7-one (1) and (5R,10S,16R)-11,16-dihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-4-carboxy-3,8,11,13-abietatetraene-7-one (2), and one known compound, the C13-nor-isoprenoid glycoside byzantionoside B (3), were isolated from the leaves of Clerodendrum infortunatum L. (Lamiaceae). Structures were established based on spectroscopic and spectrometric data and by comparison with literature data. The three terpenoids, along with five phenylpropanoids: 6'-O-caffeoyl-12-glucopyranosyloxyjasmonic acid (4), jionoside C (5), jionoside D (6), brachynoside (7), and incanoside C (8), previously isolated from the same source, were tested for their in vitro antidiabetic (α-amylase and α-glucosidase), anticancer (Hs578T and MDA-MB-231), and anticholinesterase activities. In an in vitro test against carbohydrate digestion enzymes, compound 6 showed the most potent effect against mammalian α-amylase (IC50 3.4 ± 0.2 μM) compared to the reference standard acarbose (IC50 5.9 ± 0.1 μM). As yeast α-glucosidase inhibitors, compounds 1, 2, 5, and 6 displayed moderate inhibitory activities, ranging from 24.6 to 96.0 μM, compared to acarbose (IC50 665 ± 42 μM). All of the tested compounds demonstrated negligible anticholinesterase effects. In an anticancer test, compounds 3 and 5 exhibited moderate antiproliferative properties with IC50 of 94.7 ± 1.3 and 85.3 ± 2.4 μM, respectively, against Hs578T cell, while the rest of the compounds did not show significant activity (IC50 > 100 μM).
Collapse
Affiliation(s)
- Md. Josim Uddin
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany; (M.J.U.); (S.S.Ç.)
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Daniela Russo
- Department of Science, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (D.R.); (L.M.)
- Spinoff BioActiPlant s.r.l., Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy
| | - Md. Anwarul Haque
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan;
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Serhat Sezai Çiçek
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany; (M.J.U.); (S.S.Ç.)
| | - Frank D. Sönnichsen
- Otto Diels Institute for Organic Chemistry, University of Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany;
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (D.R.); (L.M.)
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany; (M.J.U.); (S.S.Ç.)
| |
Collapse
|
76
|
Contardi M, Lenzuni M, Fiorentini F, Summa M, Bertorelli R, Suarato G, Athanassiou A. Hydroxycinnamic Acids and Derivatives Formulations for Skin Damages and Disorders: A Review. Pharmaceutics 2021; 13:999. [PMID: 34371691 PMCID: PMC8309026 DOI: 10.3390/pharmaceutics13070999] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Alterations of skin homeostasis are widely diffused in our everyday life both due to accidental injuries, such as wounds and burns, and physiological conditions, such as late-stage diabetes, dermatitis, or psoriasis. These events are locally characterized by an intense inflammatory response, a high generation of harmful free radicals, or an impairment in the immune response regulation, which can profoundly change the skin tissue' repair process, vulnerability, and functionality. Moreover, diabetes diffusion, antibiotic resistance, and abuse of aggressive soaps and disinfectants following the COVID-19 emergency could be causes for the future spreading of skin disorders. In the last years, hydroxycinnamic acids and derivatives have been investigated and applied in several research fields for their anti-oxidant, anti-inflammatory, and anti-bacterial activities. First, in this study, we give an overview of these natural molecules' current source and applications. Afterwards, we review their potential role as valid alternatives to the current therapies, supporting the management and rebalancing of skin disorders and diseases at different levels. Also, we will introduce the recent advances in the design of biomaterials loaded with these phenolic compounds, specifically suitable for skin disorders treatments. Lastly, we will suggest future perspectives for introducing hydroxycinnamic acids and derivatives in treating skin disorders.
Collapse
Affiliation(s)
- Marco Contardi
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
| | - Martina Lenzuni
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- DIBRIS, University of Genoa, 16145 Genoa, Italy
| | - Fabrizio Fiorentini
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- DIBRIS, University of Genoa, 16145 Genoa, Italy
| | - Maria Summa
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Rosalia Bertorelli
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Giulia Suarato
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Athanassia Athanassiou
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
| |
Collapse
|
77
|
Park YJ, Kim NS, Sathasivam R, Chung YS, Park SU. Impact of copper treatment on phenylpropanoid biosynthesis in adventitious root culture of Althaea officinalis L. Prep Biochem Biotechnol 2021; 52:283-291. [PMID: 34154516 DOI: 10.1080/10826068.2021.1934697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Althaea officinalis has been widely used in various pharmaceutical applications. The biological effects and significance of phenylpropanoids in numerous industries are well studied. However, fulfilling consumer demand for these commercially important compounds is difficult. The effect of heavy-metal toxic influence on plants is primarily due to a strong and rapid suppression of growth processes, as well as the decline in activity of the photosynthetic apparatus, also associated with progressing senescence processes. Some of the secondary metabolite production was triggered by the application of heavy metals, but there was not a stress response. In the adventitious root culture of A. officinalis, copper-mediated phenylpropanoid biosynthesis has been investigated in both concentration-and duration-dependent manners. High-performance liquid chromatography (HPLC) analysis revealed a total of nine different phenolic compounds in response to different concentrations of copper chloride. In this study, high productivity of phenolic compounds was observed in the copper chloride treated-adventitious root culture of A. officianalis. In particular, a low concentration of copper chloride led to a significant accumulation of phenolic compounds under optimal conditions. Moreover, all genes responsible for phenylpropanoid biosynthesis may be sensitive to phenolic compound production following copper treatment. Especially, the highest change in transcript level was observed from AoANS at 6 h. According to our findings, treatment with copper chloride (0.5 mM) for 48 or 96 h can be an appropriate method to maximize phenylpropanoid levels in A. officinalis adventitious root culture.
Collapse
Affiliation(s)
- Yun Ji Park
- Department of Crop Science, Chungnam National University, Daejeon, Republic of Korea
| | - Nam Su Kim
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
| | - Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
78
|
Nguyen VPT, Stewart JD, Ioannou I, Allais F. Sinapic Acid and Sinapate Esters in Brassica: Innate Accumulation, Biosynthesis, Accessibility via Chemical Synthesis or Recovery From Biomass, and Biological Activities. Front Chem 2021; 9:664602. [PMID: 34055737 PMCID: PMC8161205 DOI: 10.3389/fchem.2021.664602] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Sinapic acid (SinA) and corresponding esters are secondary metabolites abundantly found in plants of Brassica family. Belonging to the family of p-hydroxycinnamic acids, SinA and its esters analogues are present in different plant parts and involved in multiple biological processes in planta. Moreover, these metabolites are also found in relatively large quantities in agro-industrial wastes. Nowadays, these metabolites are increasingly drawing attention due to their bioactivities which include antioxidant, anti-microbial, anti-cancer and UV filtering activities. As a result, these metabolites find applications in pharmaceutical, cosmetic and food industries. In this context, this article reviews innate occurrence, biosynthesis, accessibility via chemical synthesis or direct extraction from agro-industrial wastes. Biological activities of SinA and its main corresponding esters will also be discussed.
Collapse
Affiliation(s)
- V P Thinh Nguyen
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France.,Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Jon D Stewart
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Irina Ioannou
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France.,Department of Chemistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
79
|
Chemical Profile, Cytotoxic Activity and Oxidative Stress Reduction of Different Syringa vulgaris L. Extracts. Molecules 2021; 26:molecules26113104. [PMID: 34067400 PMCID: PMC8197011 DOI: 10.3390/molecules26113104] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
Syringa vulgaris L. (common lilac) is one of the most popular ornamental species, but also a promising not comprehensively studied source of bioactive compounds with important therapeutic potential. Our study was designed to characterize the chemical composition and to assess the antioxidant and cytotoxic properties of ethanolic extracts obtained from S. vulgaris L. flowers, leaves, bark, and fruit. The chemical profile of the ethanolic extracts was investigated using chromatographic (HPLC-DAD-ESI+, GC-MS) and spectral (UV-Vis, FT-IR) methods, while the protective effect against free radicals was evaluated in vitro by different chemical assays (DPPH, FRAP, CUPRAC). The cytotoxic activity was tested on two tumoral cell lines, HeLa, B16F10, using the MTT assay. Significant amounts of free or glycosylated chemical components belonging to various therapeutically important structural classes, such as phenyl-propanoids (syringin, acteoside, echinacoside), flavonoids (quercetin, kaempferol derivatives) and secoiridoids (secologanoside, oleuropein, 10-hydroxy oleuropein, demethyloleuropein, syringalactone A, nuzhenide, lingstroside) were obtained for the flowers, leaves and bark extracts, respectively. Furthermore, MTT tests pointed out a significant cytotoxic potential expressed in a non-dose-dependent manner toward the tumoral lines. The performed methods underlined that S. vulgaris extracts, in particular belonging to flowers and leaves, represent valuable sources of compounds with antioxidant and antitumoral potential.
Collapse
|
80
|
Rønning SB, Voldvik V, Bergum SK, Aaby K, Borge GIA. Ellagic acid and urolithin A modulate the immune response in LPS-stimulated U937 monocytic cells and THP-1 differentiated macrophages. Food Funct 2021; 11:7946-7959. [PMID: 32832941 DOI: 10.1039/c9fo03008e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dietary polyphenols are subjected, following ingestion, to an extensive metabolism, and the molecules that act at the cellular and tissue level will be, most likely, metabolites rather than native polyphenols. The mechanisms behind the positive effects exerted by polyphenols are not yet completely elucidated, since most in vitro studies use unmetabolised polyphenols rather than the metabolites present in the body. The aim of this study was to investigate and compare the potential effect of phenolic metabolites on the immune response using U937 monocyte and THP-1 macrophage cell cultures. Of the 16 metabolites tested, urolithins (Uro), and Uro A, in particular were the most potent, showing a modest increase in basal NF-κB activity and a reduction in lipopolysaccaride (LPS)-induced NF-κB activity, gene expression and secretion of pro-inflammatory cytokines. Protocatechuic acid and its sulfate/glucuronide metabolites reduced LPS-induced NF-κB activity, but not IL-6 and TNF-α cytokine secretion. Interestingly, both ellagic acid and its metabolite Uro A had immunomodulating effects, although they regulated the immune response differently, and both reduced LPS-induced NF-κB activity in U937 cells. However, while Uro A dramatically reduced IL-6 and IL-10 mRNA expression, no effect could be observed with ellagic acid. In THP-1 cells, treatment with ellagic acid dramatically reduced the expression of Toll-like receptor 4, while Uro A had no effect. The dual role observed for Uro A, showing both a modest increase in basal NF-κB activity and a reduction in LPS-induced NF-κB activity, as well as a reduction in LPS-induced pro-inflammatory cytokine secretion, makes this metabolite particularly interesting for further studies in animals and humans.
Collapse
|
81
|
Chen J, Liu J, Huang Y, Li R, Ma C, Zhang B, Wu F, Yu W, Zuo X, Liang Y, Wang Q. Insights into oral bioavailability enhancement of therapeutic herbal constituents by cytochrome P450 3A inhibition. Drug Metab Rev 2021; 53:491-507. [PMID: 33905669 DOI: 10.1080/03602532.2021.1917598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Herbal plants typically have complex compositions and diverse mechanisms. Among them, bioactive constituents with relatively high exposure in vivo are likely to exhibit therapeutic efficacy. On the other hand, their bioavailability may be influenced by the synergistic effects of different bioactive components. Cytochrome P450 3A (CYP3A) is one of the most abundant CYP enzymes, responsible for the metabolism of 50% of approved drugs. In recent years, many therapeutic herbal constituents have been identified as CYP3A substrates. It is more evident that CYP3A inhibition derived from the herbal formula plays a critical role in improving the oral bioavailability of therapeutic constituents. CYP3A inhibition may be the mechanism of the synergism of herbal formula. In this review, we explored the multiplicity of CYP3A, summarized herbal monomers with CYP3A inhibitory effects, and evaluated herb-mediated CYP3A inhibition, thereby providing new insights into the mechanisms of CYP3A inhibition-mediated oral herb bioavailability.
Collapse
Affiliation(s)
- Junmei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueyue Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruoyu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Beiping Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fanchang Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenqian Yu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Zuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
82
|
Sundar M, Suresh S, Lingakumar K. Influence of Caralluma adscendens Var. attenuata cold cream on UV-B damaged skin epidermal cells: a novel approach. 3 Biotech 2021; 11:155. [PMID: 33747705 PMCID: PMC7930170 DOI: 10.1007/s13205-021-02694-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023] Open
Abstract
Ultraviolet radiation-induced sunburns are characterized by pigmented, wrinkled, and dried skin, with rashes and red spots. Chemical sunscreen lotion shows beneficial effects, but it shows the adverse side effect while in continuous usage. Natural substances of plant origin are deemed a possible cause of UV radiation through sunscreen resources. On this basis, we formulated the cold cream from the Caralluma adscendens Var. attenuata (CAVA) plant extract. The phytocompounds were studied by using GC-MS. The antioxidant potential of the plant extract was determined, and the CAVA showed cytotoxicity on A375 skin melanoma cells determined by MTT assay. The FT-IR spectra analysis confirmed the chemical nature of crude and crosslinking between cold creams. The cream was applied topically to rats pre-exposed to UV-B radiation (32,800 J/m2) four times/week (on alternate days). UV-B exposed without any treatment rats showed increased red spots or wrinkles (5 cm2). In contrast, the cold cream treatment application on irradiated skin has significantly reduced the size of rashes and red spots and the wound was contracted in a dose-dependent manner. Furthermore, histopathology of the experimental rat skin confirmed that CAVA cream treatment significantly reduced the epidermal thickening, damage in dermis and epidermis layers, and restructured the hair follicles. This study suggests that the cream formulated using CAVA can alleviate the damages caused by the UV-B-irradiation at a high level and safeguard the skin tissues. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02694-y.
Collapse
Affiliation(s)
- Madasamy Sundar
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College, Sivakasi, Tamilnadu 626124 India
- Department of Botany, Directorate of Distance Education, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Sudan Suresh
- Department of Botany, Directorate of Distance Education, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Krishnasamy Lingakumar
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College, Sivakasi, Tamilnadu 626124 India
| |
Collapse
|
83
|
Bioevaluation and molecular docking analysis of novel phenylpropanoid derivatives as potent food preservative and anti-microbials. 3 Biotech 2021; 11:70. [PMID: 33489687 DOI: 10.1007/s13205-020-02636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022] Open
Abstract
Novel derivatives were synthesized using natural scaffold, like phenylpropanoids C6-C3 backbone to reduce unfavorable browning of food due to tyrosinase and oxidative spoilage. Most of the compounds displayed mushroom tyrosinase inhibition better than kojic acid. Compound CE48 exhibited better anti-tyrosinase (IC50-29.64 μM) and antioxidant (EC50-12.67 μM) activity than the reference compounds, kojic acid (IC50-50.30 μM) and ascorbic acid (EC50-14.55 μM), respectively. Compounds SAM30, SE78, 11F, and CE48 showed better anti-B. subtilis, anti-S. aureus, and anti-A. niger activity, respectively, compared to their parents. Molecular docking studies between inhibitors and mushroom tyrosinase corroborated the experimental reports, except SAM30 (glide score - 8.117) and SE78 (glide score - 6.151). In silico absorption, distribution, metabolism, excretion/toxicity (ADME/T) and toxicological studies of these newly synthesized compounds exhibited acceptable pharmacokinetic and safety profiles, like good aqueous solubility (- 3.34 to - 7.57), low human oral absorption (e.g., SAM30, SE78, FAM34), low gut-blood barrier permeability [36.67-209.88 nm/s in Cancer coli-2 (Caco-2) cells] and [19.45-91.51 nm/s in Madin-Darby Canine Kidney (MDCK) cells], low blood-brain barrier penetration, non-mutagenicity, and non-carcinogenicity. Interestingly, the synthesized compounds also possessed multifunctional properties, like microbial growth inhibitor, free radicals scavenger, and it also prevented browning of raw fruits and vegetables by inhibiting tyrosinase enzyme. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02636-0.
Collapse
|
84
|
The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. Int J Mol Sci 2021; 22:ijms22031442. [PMID: 33535511 PMCID: PMC7867105 DOI: 10.3390/ijms22031442] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022] Open
Abstract
There is no argument to the fact that insect herbivores cause significant losses to plant productivity in both natural and agricultural ecosystems. To counter this continuous onslaught, plants have evolved a suite of direct and indirect, constitutive and induced, chemical and physical defenses, and secondary metabolites are a key group that facilitates these defenses. Polyphenols—widely distributed in flowering plants—are the major group of such biologically active secondary metabolites. Recent advances in analytical chemistry and metabolomics have provided an opportunity to dig deep into extraction and quantification of plant-based natural products with insecticidal/insect deterrent activity, a potential sustainable pest management strategy. However, we currently lack an updated review of their multifunctional roles in insect-plant interactions, especially focusing on their insect deterrent or antifeedant properties. This review focuses on the role of polyphenols in plant-insect interactions and plant defenses including their structure, induction, regulation, and their anti-feeding and toxicity effects. Details on mechanisms underlying these interactions and localization of these compounds are discussed in the context of insect-plant interactions, current findings, and potential avenues for future research in this area.
Collapse
|
85
|
Ferreira SS, Antunes MS. Re-engineering Plant Phenylpropanoid Metabolism With the Aid of Synthetic Biosensors. FRONTIERS IN PLANT SCIENCE 2021; 12:701385. [PMID: 34603348 PMCID: PMC8481569 DOI: 10.3389/fpls.2021.701385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 05/03/2023]
Abstract
Phenylpropanoids comprise a large class of specialized plant metabolites with many important applications, including pharmaceuticals, food nutrients, colorants, fragrances, and biofuels. Therefore, much effort has been devoted to manipulating their biosynthesis to produce high yields in a more controlled manner in microbial and plant systems. However, current strategies are prone to significant adverse effects due to pathway complexity, metabolic burden, and metabolite bioactivity, which still hinder the development of tailor-made phenylpropanoid biofactories. This gap could be addressed by the use of biosensors, which are molecular devices capable of sensing specific metabolites and triggering a desired response, as a way to sense the pathway's metabolic status and dynamically regulate its flux based on specific signals. Here, we provide a brief overview of current research on synthetic biology and metabolic engineering approaches to control phenylpropanoid synthesis and phenylpropanoid-related biosensors, advocating for the use of biosensors and genetic circuits as a step forward in plant synthetic biology to develop autonomously-controlled phenylpropanoid-producing plant biofactories.
Collapse
|
86
|
Manganyi MC, Ateba CN. Untapped Potentials of Endophytic Fungi: A Review of Novel Bioactive Compounds with Biological Applications. Microorganisms 2020; 8:microorganisms8121934. [PMID: 33291214 PMCID: PMC7762190 DOI: 10.3390/microorganisms8121934] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
Over the last century, endophytic fungi have gained tremendous attention due to their ability to produce novel bioactive compounds exhibiting varied biological properties and are, therefore, utilized for medicinal, pharmaceutical, and agricultural applications. Endophytic fungi reside within the plant tissues without showing any disease symptoms, thus supporting the physiological and ecological attributes of the host plant. Ground breaking lead compounds, such as paclitaxel and penicillin, produced by endophytic fungi have paved the way for exploring novel bioactive compounds for commercial usage. Despite this, limited research has been conducted in this valuable and unique niche area. These bioactive compounds belong to various structural groups, including alkaloids, peptides, steroids, terpenoids, phenols, quinones, phenols, and flavonoids. The current review focuses on the significance of endophytic fungi in producing novel bioactive compounds possessing a variety of biological properties that include antibacterial, antiviral, antifungal, antiprotozoal, antiparasitic, antioxidant, immunosuppressant, and anticancer functions. Taking into consideration the portal of this publication, special emphasis is placed on the antimicrobial and antiviral activities of metabolites produced by endophytes against human pathogens. It also highlights the importance of utilization of these compounds as potential treatment agents for serious life-threatening infectious diseases. This is supported by the fact that several findings have indicated that these bioactive compounds may significantly contribute towards the fight against resistant human and plant pathogens, thus motivating the need enhance the search for new, more efficacious and cost-effective antimicrobial drugs.
Collapse
Affiliation(s)
- Madira Coutlyne Manganyi
- Department of Microbiology, North West University Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
- Correspondence: ; Tel.: +27-18-389-2134
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North West University, Mmabatho, Mafikeng 2735, South Africa;
| |
Collapse
|
87
|
Shull TE, Kurepa J, Miller RD, Martinez-Ochoa N, Smalle JA. Inhibition of Fusarium oxysporum f. sp. nicotianae Growth by Phenylpropanoid Pathway Intermediates. THE PLANT PATHOLOGY JOURNAL 2020; 36:637-642. [PMID: 33312099 PMCID: PMC7721531 DOI: 10.5423/ppj.nt.08.2020.0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Fusarium wilt in tobacco caused by the fungus Fusarium oxysporum f. sp. nicotianae is a disease‑management challenge worldwide, as there are few effective and environmentally benign chemical agents for its control. This challenge results in substantial losses in both the quality and yield of tobacco products. Based on an in vitro analysis of the effects of different phenylpropanoid intermediates, we found that the early intermediates trans‑cinnamic acid and para‑coumaric acid effectively inhibit the mycelial growth of F. oxysporum f. sp. nicotianae strain FW316F, whereas the downstream intermediates quercetin and caffeic acid exhibit no fungicidal properties. Therefore, our in vitro screen suggests that trans‑cinnamic acid and para‑coumaric acid are promising chemical agents and natural lead compounds for the suppression of F. oxysporum f. sp. nicotianae growth.
Collapse
Affiliation(s)
- Timothy E. Shull
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0236, USA
| | - Jasmina Kurepa
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0236, USA
| | - Robert D. Miller
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0236, USA
| | - Natalia Martinez-Ochoa
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0236, USA
- KTRDC, University of Kentucky, Lexington, KY 40546-036, USA
| | - Jan A. Smalle
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0236, USA
- KTRDC, University of Kentucky, Lexington, KY 40546-036, USA
| |
Collapse
|
88
|
Leonard W, Zhang P, Ying D, Fang Z. Tyramine-derived hydroxycinnamic acid amides in plant foods: sources, synthesis, health effects and potential applications in food industry. Crit Rev Food Sci Nutr 2020; 62:1608-1625. [PMID: 33206548 DOI: 10.1080/10408398.2020.1845603] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyramine-derived hydroxycinnamic acid amines (HCAAT) are naturally occurring group of secondary metabolites present in various plant genera, such as Allium, Cannabis, Lycium, Polyganotum and Solanum. It belongs to the neutral, water-insoluble compounds and plays a role in plant growth, development and defence mechanism. The past two decades have seen a shift in the study of HCAAT from its role in plants to its potent biological activities. This review highlights the sources, roles in plants, biosynthetic pathways, metabolic engineering and chemical synthesis of HCAAT. The biological properties of HCAAT remain the focus in this paper, including antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-melanogenesis and neuroprotective properties. The effects of food processing and technology on HCAAT are also discussed. Given the current research gap, this review proposes future directions on the study of HCAAT, as well as its potential applications in food and pharmaceutical industry.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Danyang Ying
- CSIRO Agriculture & Food, Werribee, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
89
|
Antioxidant Activities of a New Chemotype of Piper cubeba L. Fruit Essential Oil (Methyleugenol/Eugenol): In Silico Molecular Docking and ADMET Studies. PLANTS 2020; 9:plants9111534. [PMID: 33182768 PMCID: PMC7696487 DOI: 10.3390/plants9111534] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022]
Abstract
Piper cubeba L. fruit is an important species used in folk medicine for different types of pains such as rheumatism, chills, flu, colds, muscular aches, and fever. This study examines the chemical constituents, antioxidant activity, and potential inhibitory effect against human peroxiredoxin 5, a key enzyme of P. cubeba essential oil from fruits. Using gas chromatography coupled with mass spectrometry (GC-MS), the principal components were methyleugenol (41.31%) and eugenol (33.95%), followed by (E)-caryophyllene (5.65%), p-cymene-8-ol (3.50%), 1,8-cineole (2.94%), and α-terpinolene (1.41%). Results showed similar scavenging activity via 2,2-diphenyl-1-picrylhydrazyl DPPH radical scavenging activity (IC50 = 110.00 ± 0.08 μg/mL), as well as very potent antioxidant activity against both ferric reducing/antioxidant power (FRAP) (106.00 ± 0.11 μg/mL) and β-carotene bleaching (IC50 = 315.00 ± 2.08 μg/mL) assays when compared to positive butylated hydroxytoluene and ascorbic acid. The molecular docking approach has also been performed to screen the antioxidant activities of the major and potent compounds against human protein target peroxiredoxin 5. Results showed good binding profiles and attributed the strongest inhibitory activity to β-caryophyllene oxide (-5.8 kcal/mol), followed respectively by isocembrol and α-selinene (-5.4 kcal/mol), and viridiflorol (-5.1 kcal/mol). Furthermore, ADME (absorption, distribution, metabolism and excretion)-related physicochemical and pharmacokinetic properties have been assessed and support our in vitro findings. This work demonstrates the powerful antioxidant potency of cubeba pepper and paves the way for the discovery and development of antioxidant agent with high potency.
Collapse
|
90
|
Molecular evaluation of quorum quenching potential of vanillic acid against Yersinia enterocolitica through transcriptomic and in silico analysis. J Med Microbiol 2020; 69:1319-1331. [DOI: 10.1099/jmm.0.001261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Introduction.
Yersinia enterocolitica
is one of the leading food-borne entero-pathogens causing various illnesses ranging from gastroenteritis to systemic infections. Quorum sensing (QS) is one of the prime mechanisms that control the virulence in
Y. enterocolitica
.
Hypothesis/Gap Statement. Vanillic acid inhibits the quorum sensing and other virulence factors related to
Y. enterocolitica
. It has been evaluated by transcriptomic and Insilico analysis. Therefore, it can be a prospective agent to develop a therapeutic combination against
Y. enterocolitica
.
Aim. The present study is focused on screening natural anti-quorum-sensing agents against
Y. enterocolitica
. The effect of selected active principle on various virulence factors was evaluated.
Methodology. In total, 12 phytochemicals were screened by swarming assay. MATH assay, EPS and surfactant production assay, SEM analysis, antibiotic and blood sensitivity assay were performed to demonstrate the anti-virulence activity. Further, RNA sequencing and molecular docking studies were carried out to substantiate the anti-QS activity.
Results. Vanillic acid (VA) has exhibited significant motility inhibition, thus indicating the anti-QS activity with MQIC of 400 µg ml−1 without altering the cell viability. It has also inhibited the violacein production in
Chromobacterium violaceum
ATCC 12472, which further confirms the anti-QS activity. VA has inhibited 16 % of cell-surface hydrophobicity (CSH), 52 % of EPS production and 60 % of surfactant production. Moreover, it has increased the sensitivity of
Y. enterocolitica
towards antibiotics. It has also made the cells upto 91 % more vulnerable towards human immune cells. The transcriptomic analysis by RNA sequencing revealed the down regulation of genes related to motility, virulence, chemotaxis, siderophores and drug resistance. VA treatment has also positively regulated the expression of several stress response genes. In furtherance, the anti-QS potential of VA has been validated with QS regulatory protein YenR by in silico molecular simulation and docking study.
Conclusion. The present study is possibly the first attempt to demonstrate the anti-QS and anti-pathogenic potential of VA against
Y. enterocolitica
by transcriptomic and in silico analysis. It also deciphers that VA can be a promising lead to develop biopreservative and therapeutic regimens to treat
Y. enterocolitica
infections.
Collapse
|
91
|
Muronetz VI, Barinova K, Kudryavtseva S, Medvedeva M, Melnikova A, Sevostyanova I, Semenyuk P, Stroylova Y, Sova M. Natural and Synthetic Derivatives of Hydroxycinnamic Acid Modulating the Pathological Transformation of Amyloidogenic Proteins. Molecules 2020; 25:E4647. [PMID: 33053854 PMCID: PMC7594092 DOI: 10.3390/molecules25204647] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
This review presents the main properties of hydroxycinnamic acid (HCA) derivatives and their potential application as agents for the prevention and treatment of neurodegenerative diseases. It is partially focused on the successful use of these compounds as inhibitors of amyloidogenic transformation of proteins. Firstly, the prerequisites for the emergence of interest in HCA derivatives, including natural compounds, are described. A separate section is devoted to synthesis and properties of HCA derivatives. Then, the results of molecular modeling of HCA derivatives with prion protein as well as with α-synuclein fibrils are summarized, followed by detailed analysis of the experiments on the effect of natural and synthetic HCA derivatives, as well as structurally similar phenylacetic and benzoic acid derivatives, on the pathological transformation of prion protein and α-synuclein. The ability of HCA derivatives to prevent amyloid transformation of some amyloidogenic proteins, and their presence not only in food products but also as natural metabolites in human blood and tissues, makes them promising for the prevention and treatment of neurodegenerative diseases of amyloid nature.
Collapse
Affiliation(s)
- Vladimir I. Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (K.B.); (A.M.); (I.S.); (P.S.); (Y.S.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (S.K.); (M.M.)
| | - Kseniya Barinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (K.B.); (A.M.); (I.S.); (P.S.); (Y.S.)
| | - Sofia Kudryavtseva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (S.K.); (M.M.)
| | - Maria Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (S.K.); (M.M.)
| | - Aleksandra Melnikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (K.B.); (A.M.); (I.S.); (P.S.); (Y.S.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (S.K.); (M.M.)
| | - Irina Sevostyanova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (K.B.); (A.M.); (I.S.); (P.S.); (Y.S.)
| | - Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (K.B.); (A.M.); (I.S.); (P.S.); (Y.S.)
| | - Yulia Stroylova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (K.B.); (A.M.); (I.S.); (P.S.); (Y.S.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya St. 8, Bldg. 2, 119991 Moscow, Russia
| | - Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
92
|
Intra-Articular Route for the System of Molecules 14G1862 from Centella Asiatica: Pain Relieving and Protective Effects in a Rat Model of Osteoarthritis. Nutrients 2020; 12:nu12061618. [PMID: 32486519 PMCID: PMC7352185 DOI: 10.3390/nu12061618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Current pharmacological therapies for the management of chronic articular diseases are far from being satisfactory, so new strategies need to be investigated. We tested the intra-articular pain relieving properties of a system of molecules from a characterized Centella asiatica extract (14G1862) in a rat model of osteoarthritis induced by monoiodoacetate (MIA). 14G1862 (0.2–2 mg mL−1) was intra-articularly (i.a.) injected 7 days after MIA, behavioural and histological evaluations were performed 14, 30 and 60 days after treatments. Moreover, the effect of 14G1862 on nitrate production and iNOS expression in RAW 264.7 macrophages stimulated with LPS was assessed. In vitro, 14G1862 treatment attenuated LPS-induced NO production and iNOS expression in a comparable manner to celecoxib. In vivo, 14G1862 significantly reduced mechanical allodynia and hyperalgesia, spontaneous pain and motor alterations starting on day 14 up to day 60. The efficacy was higher or comparable to that evoked by triamcinolone acetonide (100 μg i.a.) used as reference drug. Histological evaluation highlighted the improvement of several morphological parameters in MIA + 14G1862-treated animals with particularly benefic effects on joint space and fibrin deposition. In conclusion, i.a. treatment with Centella asiatica is a candidate to be a novel effective approach for osteoarthritis therapy.
Collapse
|
93
|
Leonard W, Zhang P, Ying D, Fang Z. Lignanamides: sources, biosynthesis and potential health benefits - a minireview. Crit Rev Food Sci Nutr 2020; 61:1404-1414. [PMID: 32366112 DOI: 10.1080/10408398.2020.1759025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lignanamides are natural plant secondary metabolites derived from oxidative coupling mechanism with hydroxycinnamic acid amides as intermediates. These compounds display powerful anti-inflammatory, antioxidant, anti-cancer and anti-hyperlipidemic capacities in vitro, cell culture and in vivo studies. With strong potential to be utilized as protective agents against human chronic diseases, these compounds have attracted the interest of researchers. This review aims to discuss current understanding on the sources, classification, biosynthesis of lignanamides in plants, and importantly their biological activity and potential health benefits. The general biosynthesis pathway for lignanamides is comprehensively summarized, though some details in molecular regulation of the coupling process have yet to be elucidated. Lignanamides deserves additional clinical studies involving animal and human subjects, to prove its health benefits.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, University of Melbourne, Parkville, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, University of Melbourne, Parkville, Australia
| | | | - Zhongxiang Fang
- School of Agriculture and Food, University of Melbourne, Parkville, Australia
| |
Collapse
|
94
|
Synthesis and Antibacterial Activity of Difluoromethyl Cinnamoyl Amides. Molecules 2020; 25:molecules25040789. [PMID: 32059479 PMCID: PMC7070587 DOI: 10.3390/molecules25040789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 01/18/2023] Open
Abstract
Series of novel amides of isoferulic acid, where the phenolic hydroxyl was replaced by a difluoromethyl group, were synthesized and their in vitro antibacterial activities assayed against fourteen bacterial strains (six Gram-positive and eight Gram-negative). A one-pot methodology was developed to obtain the 3′-(difluoromethyl)-4′-methoxycinnamoyl amides using Deoxofluor® as a fluorinating agent. The N-isopropyl, N-isopentyl, and N-(2-phenylethyl) amides 11b, 11d and 11g were the most active and selective against Mycobacterium smegmatis (MIC = 8 µg/mL) with 11b and 11g displaying negligible or no cytotoxicity against HepG2 and A549 cells. Thirteen analogs of N-isopropylamide 11b were also synthesized and their antibacterial activity assayed. Results show that the difluoromethyl moiety enhanced antibacterial activity and selectivity towards M. smegmatis, changing the microorganism inhibition profile of the parent compound. The selectivity exhibited by some of the compounds towards M. smegmatis makes them potential leads in the search for new narrow spectrum antibiotics against M. tuberculosis.
Collapse
|