51
|
Tang H, Li Y, Wang S, Ji J, Zhu X, Bao Y, Huang C, Luo Y, Huang L, Gao Y, Wei C, Liu J, Fang X, Sun L, Ouyang K. IPR-mediated Ca signaling controls B cell proliferation through metabolic reprogramming. iScience 2022; 25:104209. [PMID: 35494252 PMCID: PMC9046235 DOI: 10.1016/j.isci.2022.104209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/05/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Huayuan Tang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Corresponding author
| | - Yali Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shijia Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jing Ji
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yutong Bao
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ye Luo
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yan Gao
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen Shekou People’s Hospital, Shenzhen, China
| | - Chaoliang Wei
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lu Sun
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Corresponding author
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Corresponding author
| |
Collapse
|
52
|
Boothby MR, Brookens SK, Raybuck AL, Cho SH. Supplying the trip to antibody production-nutrients, signaling, and the programming of cellular metabolism in the mature B lineage. Cell Mol Immunol 2022; 19:352-369. [PMID: 34782762 PMCID: PMC8591438 DOI: 10.1038/s41423-021-00782-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
The COVID pandemic has refreshed and expanded recognition of the vital role that sustained antibody (Ab) secretion plays in our immune defenses against microbes and of the importance of vaccines that elicit Ab protection against infection. With this backdrop, it is especially timely to review aspects of the molecular programming that govern how the cells that secrete Abs arise, persist, and meet the challenge of secreting vast amounts of these glycoproteins. Whereas plasmablasts and plasma cells (PCs) are the primary sources of secreted Abs, the process leading to the existence of these cell types starts with naive B lymphocytes that proliferate and differentiate toward several potential fates. At each step, cells reside in specific microenvironments in which they not only receive signals from cytokines and other cell surface receptors but also draw on the interstitium for nutrients. Nutrients in turn influence flux through intermediary metabolism and sensor enzymes that regulate gene transcription, translation, and metabolism. This review will focus on nutrient supply and how sensor mechanisms influence distinct cellular stages that lead to PCs and their adaptations as factories dedicated to Ab secretion. Salient findings of this group and others, sometimes exhibiting differences, will be summarized with regard to the journey to a distinctive metabolic program in PCs.
Collapse
Affiliation(s)
- Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Rheumatology & Immunology Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Cancer Biology Program, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Infection, Inflammation, and Immunology, Nashville, TN, 37232, USA.
| | - Shawna K Brookens
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sung Hoon Cho
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Infection, Inflammation, and Immunology, Nashville, TN, 37232, USA
| |
Collapse
|
53
|
Bier J, Deenick EK. The role of dysregulated PI3Kdelta signaling in human autoimmunity*. Immunol Rev 2022; 307:134-144. [DOI: 10.1111/imr.13067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Julia Bier
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- St Vincent’s Clinical School Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| |
Collapse
|
54
|
Harder I, Münchhalfen M, Andrieux G, Boerries M, Grimbacher B, Eibel H, Maccari ME, Ehl S, Wienands J, Jellusova J, Warnatz K, Keller B. Dysregulated PI3K Signaling in B Cells of CVID Patients. Cells 2022; 11:cells11030464. [PMID: 35159274 PMCID: PMC8834633 DOI: 10.3390/cells11030464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
The altered wiring of signaling pathways downstream of antigen receptors of T and B cells contributes to the dysregulation of the adaptive immune system, potentially causing immunodeficiency and autoimmunity. In humans, the investigation of such complex systems benefits from nature’s experiments in patients with genetically defined primary immunodeficiencies. Disturbed B-cell receptor (BCR) signaling in a subgroup of common variable immunodeficiency (CVID) patients with immune dysregulation and expanded T-bethighCD21low B cells in peripheral blood has been previously reported. Here, we investigate PI3K signaling and its targets as crucial regulators of survival, proliferation and metabolism by intracellular flow cytometry, imaging flow cytometry and RNAseq. We observed increased basal but disturbed BCR-induced PI3K signaling, especially in T-bethighCD21low B cells from CVID patients, translating into impaired activation of crucial downstream molecules and affecting proliferation, survival and the metabolic profile. In contrast to CVID, increased basal activity of PI3K in patients with a gain-of-function mutation in PIK3CD and activated PI3K delta syndrome (APDS) did not result in impaired BCR-induced AKT-mTOR-S6 phosphorylation, highlighting that signaling defects in B cells in CVID and APDS patients are fundamentally different and that assessing responses to BCR stimulation is an appropriate confirmative diagnostic test for APDS. The active PI3K signaling in vivo may render autoreactive T-bethighCD21low B cells in CVID at the same time to be more sensitive to mTOR or PI3K inhibition.
Collapse
Affiliation(s)
- Ina Harder
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (I.H.); (H.E.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Münchhalfen
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany; (M.M.); (J.W.)
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (G.A.); (M.B.)
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (G.A.); (M.B.)
- German Cancer Consortium (DKTK), Partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; (B.G.); (M.E.M.); (S.E.)
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- DZIF—German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
- RESIST—Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (I.H.); (H.E.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; (B.G.); (M.E.M.); (S.E.)
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; (B.G.); (M.E.M.); (S.E.)
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany; (M.M.); (J.W.)
| | - Julia Jellusova
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (I.H.); (H.E.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Correspondence: (K.W.); (B.K.); Tel.: +49-761-27077640 (K.W.); +49-761-27077691 (B.K.)
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (I.H.); (H.E.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Correspondence: (K.W.); (B.K.); Tel.: +49-761-27077640 (K.W.); +49-761-27077691 (B.K.)
| |
Collapse
|
55
|
PHLPP Signaling in Immune Cells. Curr Top Microbiol Immunol 2022; 436:117-143. [DOI: 10.1007/978-3-031-06566-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
56
|
Deenick EK, Bier J, Lau A. PI3K Isoforms in B Cells. Curr Top Microbiol Immunol 2022; 436:235-254. [PMID: 36243847 DOI: 10.1007/978-3-031-06566-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phosphatidylinositol-3-kinases (PI3K) control many aspects of cellular activation and differentiation and play an important role in B cells biology. Three different classes of PI3K have been described, all of which are expressed in B cells. However, it is the class IA PI3Ks, and the p110δ catalytic subunit in particular, which seem to play the most critical role in B cells. Here we discuss the important role that class IA PI3K plays in B cell development, activation and differentiation, as well as examine what is known about the other classes of PI3Ks in B cells.
Collapse
Affiliation(s)
- Elissa K Deenick
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- Faculty of Medicine and Health, UNSW, Sydney, Australia.
| | - Julia Bier
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Anthony Lau
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW, Sydney, Australia
| |
Collapse
|
57
|
Chen Y, Li Y. Metabolic reprogramming and immunity in cancer. CANCER IMMUNOLOGY AND IMMUNOTHERAPY 2022:137-196. [DOI: 10.1016/b978-0-12-823397-9.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
58
|
Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clin Rev Allergy Immunol 2021; 63:499-529. [PMID: 34910283 PMCID: PMC8671603 DOI: 10.1007/s12016-021-08905-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
Non-specific innate and antigen-specific adaptive immunological memories are vital evolutionary adaptations that confer long-lasting protection against a wide range of pathogens. Adaptive memory is established by memory T and B lymphocytes following the recognition of an antigen. On the other hand, innate immune memory, also called trained immunity, is imprinted in innate cells such as macrophages and natural killer cells through epigenetic and metabolic reprogramming. However, these mechanisms of memory generation and maintenance are compromised as organisms age. Almost all immune cell types, both mature cells and their progenitors, go through age-related changes concerning numbers and functions. The aging immune system renders the elderly highly susceptible to infections and incapable of mounting a proper immune response upon vaccinations. Besides the increased infectious burden, older individuals also have heightened risks of metabolic and neurodegenerative diseases, which have an immunological component. This review discusses how immune function, particularly the establishment and maintenance of innate and adaptive immunological memory, regulates and is regulated by epigenetics, metabolic processes, gut microbiota, and the central nervous system throughout life, with a focus on old age. We explain in-depth how epigenetics and cellular metabolism impact immune cell function and contribute or resist the aging process. Microbiota is intimately linked with the immune system of the human host, and therefore, plays an important role in immunological memory during both homeostasis and aging. The brain, which is not an immune-isolated organ despite former opinion, interacts with the peripheral immune cells, and the aging of both systems influences the health of each other. With all these in mind, we aimed to present a comprehensive view of the aging immune system and its consequences, especially in terms of immunological memory. The review also details the mechanisms of promising anti-aging interventions and highlights a few, namely, caloric restriction, physical exercise, metformin, and resveratrol, that impact multiple facets of the aging process, including the regulation of innate and adaptive immune memory. We propose that understanding aging as a complex phenomenon, with the immune system at the center role interacting with all the other tissues and systems, would allow for more effective anti-aging strategies.
Collapse
|
59
|
Al Qureshah F, Sagadiev S, Thouvenel CD, Liu S, Hua Z, Hou B, Acharya M, James RG, Rawlings DJ. Activated PI3Kδ signals compromise plasma cell survival via limiting autophagy and increasing ER stress. J Exp Med 2021; 218:e20211035. [PMID: 34586341 PMCID: PMC8485856 DOI: 10.1084/jem.20211035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/04/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022] Open
Abstract
While phosphatidylinositide 3-kinase delta (PI3Kδ) plays a critical role in humoral immunity, the requirement for PI3Kδ signaling in plasma cells remains poorly understood. Here, we used a conditional mouse model of activated PI3Kδ syndrome (APDS), to interrogate the function of PI3Kδ in plasma cell biology. Mice expressing a PIK3CD gain-of-function mutation (aPIK3CD) in B cells generated increased numbers of memory B cells and mounted an enhanced secondary response but exhibited a rapid decay of antibody levels over time. Consistent with these findings, aPIK3CD expression markedly impaired plasma cell generation, and expression of aPIK3CD intrinsically in plasma cells was sufficient to diminish humoral responses. Mechanistically, aPIK3CD disrupted ER proteostasis and autophagy, which led to increased plasma cell death. Notably, this defect was driven primarily by elevated mTORC1 signaling and modulated by treatment with PI3Kδ-specific inhibitors. Our findings establish an essential role for PI3Kδ in plasma cell homeostasis and suggest that modulating PI3Kδ activity may be useful for promoting and/or thwarting specific immune responses.
Collapse
Affiliation(s)
- Fahd Al Qureshah
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
- Departments of Immunology, University of Washington, Seattle, WA
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sara Sagadiev
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
| | | | - Shuozhi Liu
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
| | - Zhaolin Hua
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baidong Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mridu Acharya
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
| | - Richard G. James
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
- Departments of Pediatrics, University of Washington, Seattle, WA
- Departments of Pharmacology, University of Washington, Seattle, WA
| | - David J. Rawlings
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
- Departments of Immunology, University of Washington, Seattle, WA
- Departments of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
60
|
Zhou Y, Murre C. Bursty gene expression and mRNA decay pathways orchestrate B cell activation. SCIENCE ADVANCES 2021; 7:eabm0819. [PMID: 34860551 PMCID: PMC8641932 DOI: 10.1126/sciadv.abm0819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
It is well established that the helix-loop-helix proteins, E2A and E2-2, promote B cell activation. Here, we examined how during the course of B cell activation E2A and E2-2 gene expression is regulated. We found that E2A and E2-2 mRNA abundance concomitantly increased in activated B cells. The increase in E2A and E2-2 mRNA abundance correlated with increased cell growth. Elevated E2A and E2-2 mRNA abundance was instructed by increased transcriptional bursting frequencies and elevated E2A and E2-2 mRNA half-lives. The increase in E2A and E2-2 bursting frequencies often occurred at shared interchromosomal transcriptional hubs. We suggest that in naïve B cells low E2A and E2-2 bursting frequencies and high E2A and E2-2 mRNA decay rates instruct noisy gene expression that allows a clonal and swift response to invading pathogens whereas in activated B cells increased transcriptional bursting and low mRNA decay rates dictate an activated B lineage gene program.
Collapse
Affiliation(s)
- Yi Zhou
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Cornelis Murre
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92039, USA
| |
Collapse
|
61
|
Jing Y, Luo L, Chen Y, Westerberg LS, Zhou P, Xu Z, Herrada AA, Park CS, Kubo M, Mei H, Hu Y, Lee PPW, Zheng B, Sui Z, Xiao W, Gong Q, Lu Z, Liu C. SARS-CoV-2 infection causes immunodeficiency in recovered patients by downregulating CD19 expression in B cells via enhancing B-cell metabolism. Signal Transduct Target Ther 2021; 6:345. [PMID: 34552055 PMCID: PMC8456405 DOI: 10.1038/s41392-021-00749-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 infection causes severe immune disruption. However, it is unclear if disrupted immune regulation still exists and pertains in recovered COVID-19 patients. In our study, we have characterized the immune phenotype of B cells from 15 recovered COVID-19 patients, and found that healthy controls and recovered patients had similar B-cell populations before and after BCR stimulation, but the frequencies of PBC in patients were significantly increased when compared to healthy controls before stimulation. However, the percentage of unswitched memory B cells was decreased in recovered patients but not changed in healthy controls upon BCR stimulation. Interestingly, we found that CD19 expression was significantly reduced in almost all the B-cell subsets in recovered patients. Moreover, the BCR signaling and early B-cell response were disrupted upon BCR stimulation. Mechanistically, we found that the reduced CD19 expression was caused by the dysregulation of cell metabolism. In conclusion, we found that SARS-CoV-2 infection causes immunodeficiency in recovered patients by downregulating CD19 expression in B cells via enhancing B-cell metabolism, which may provide a new intervention target to cure COVID-19.
Collapse
Affiliation(s)
- Yukai Jing
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Emergency, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Luo
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying Chen
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Peng Zhou
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zhiping Xu
- Wuhan Metware Biotechnology Co., Ltd, Wuhan, People's Republic of China
| | - Andrés A Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Kanagawa, Japan
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Pamela Pui-Wah Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Wei Xiao
- Department of Respiratory, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
62
|
Zemchenkova OV, Basharina OV, Artyukhov VG. Expression Level of Membrane Markers CD5, CD19, and CD20 in B Cells after UV-Irradiation and Incubation in the Presence of Autologous Plasma. Bull Exp Biol Med 2021; 171:222-225. [PMID: 34173108 DOI: 10.1007/s10517-021-05214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 10/21/2022]
Abstract
The effect of UV-light (240-390 nm) in doses of 151 and 755 J/m2 on the expression of membrane markers CD5, CD19, CD20 in human peripheral blood B cells was studied by flow cytometry. In 24 h after exposure to UV light, we observed activation of processes accompanied by structural rearrangements of B-cell membranes leading to changes in the expression of receptor molecules: the content of of CD19 and CD20 increased due to activation of the synthesis of these proteins, while the content of CD5 decreased. The percentage of CD5+ cells decreased over 24 h after UV-irradiation of lymphocytes, while addition of autologous plasma to the incubation medium produced a photoprotective effect on CD5+ cells.
Collapse
Affiliation(s)
- O V Zemchenkova
- N. N. Burdenko Voronezh State Medical University, Ministry of Health of the Russian Federation, Voronezh, Russia.
| | | | | |
Collapse
|
63
|
McAllister E, Jellusova J. BAFF signaling in B cell metabolism. Curr Opin Immunol 2021; 71:69-74. [PMID: 34174517 DOI: 10.1016/j.coi.2021.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022]
Abstract
BAFF is an essential cytokine primarily known for its role in maintaining B cell homeostasis via induction of a pro-survival gene expression profile. Additionally, recent evidence suggests that BAFF induced signaling also drives a metabolic program that is needed for homeostatic cell mass maintenance in resting B cells and which increases the cells' capacity to divide. Many components of the signaling cascades initiated by BAFF, the alternative NFκB pathway and the PI3K/AKT/mTOR pathway, are active in roles beyond their classically assigned function. These components can directly or indirectly impact metabolic reprogramming. Further exploration of the role BAFF signaling plays in B cell metabolism could help to identify metabolic vulnerabilities of hyperactive B cells in the context of autoimmunity.
Collapse
Affiliation(s)
- Ellen McAllister
- Institute of Biology III at the Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Julia Jellusova
- Institute for Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Einsteinstr.25, 81675 Munich, Germany.
| |
Collapse
|
64
|
van Niekerk G, van der Merwe M, Engelbrecht AM. Diabetes and susceptibility to infections: Implication for COVID-19. Immunology 2021; 164:467-475. [PMID: 34115881 PMCID: PMC8446942 DOI: 10.1111/imm.13383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
A number of mechanisms have been proposed to explain the well‐established link between diabetic status and an increased susceptibility to infection. Notably, diabetes has been shown to be one of the strongest factors influencing healthcare outcome in COVID‐19 infections. Though it has long been noted that lymphocytes upregulate insulin receptors following immune activation, until recently, this observation has received little attention. Here, we point out key findings implicating dysregulated insulin signalling in immune cells as a possible contributing factor in the immune pathology associated with diabetes. Mechanistically, insulin, by activating the PI3K/Akt/mTOR pathway, regulates various aspects of both myeloid cells and lymphocytes, such as cell survival, metabolic reprogramming and the polarization and differentiation of immune cells. PI3K signalling is also supressed by immune checkpoint proteins, suggesting that insulin signalling may antagonize peripheral tolerance. Remarkably, it has also recently been shown that, following insulin binding, the insulin receptor translocates to the nucleus where it plays a key role in regulating the transcription of various immune‐related genes, including pathways involved in viral infections. Taken together, these observations suggest that dysregulated insulin signalling may directly contribute to a defective immune response during COVID‐19 infections.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Michelle van der Merwe
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
65
|
Rosser EC, Mauri C. The emerging field of regulatory B cell immunometabolism. Cell Metab 2021; 33:1088-1097. [PMID: 34077716 DOI: 10.1016/j.cmet.2021.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 03/31/2021] [Accepted: 05/05/2021] [Indexed: 01/02/2023]
Abstract
B cells are well known as critical mediators of humoral immune responses via the production of antibodies. However, numerous studies have also identified populations of B cells that are characterized by their anti-inflammatory properties. These "regulatory B cells" restrain excessive inflammatory responses in a wide range of health conditions. A significant knowledge gap remains concerning the nature of the signals that determine whether a B cell exerts a pro-inflammatory or anti-inflammatory function. In this perspective, we explore the concept that in addition to the cytokine microenvironment, intracellular and extracellular metabolic signals play a pivotal role in controlling the balance between regulatory and antibody-producing B cell subsets. Determining the metabolites and tissue-specific signals that influence B cell fate could establish novel therapeutic targets for the treatment of diseases where abnormal B cell responses contribute to pathogenesis.
Collapse
Affiliation(s)
- Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, University College London, London, UK; Centre for Rheumatology Research, Division of Medicine, University College London, London, UK.
| | - Claudia Mauri
- Division of Infection, Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
66
|
Myeloid-derived suppressor cells regulate the immunosuppressive functions of PD-1 -PD-L1 + Bregs through PD-L1/PI3K/AKT/NF-κB axis in breast cancer. Cell Death Dis 2021; 12:465. [PMID: 33967272 PMCID: PMC8107179 DOI: 10.1038/s41419-021-03745-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells that are closely related to tumor immune escape, but the mechanism by which MDSCs regulate B cells has not been elucidated. Our previous studies revealed that breast cancer-derived MDSCs could induce a group of PD-1-PD-L1+ Bregs with immunosuppressive functions. Here, we reported that blocking PD-1/PD-L1 interaction between MDSCs and B cells could reverse the immunosuppressive functions of PD-1-PD-L1+ Bregs. The activation of PI3K/AKT/NF-κB signaling pathway is essential for PD-1-PD-L1+ Bregs to exert immunosuppressive effects. MDSCs activated the PI3K/AKT/NF-κB pathway in B cells via the PD-1/PD-L1 axis. Furthermore, inhibition of PD-1/PD-L1 or PI3K/AKT signaling suppressed both tumor growth and the immunosuppressive functions of PD-1-PD-L1+ Bregs. Dual suppression of PD-1/PD-L1 and PI3K/AKT exerted better antitumor effect. Finally, MDSCs and PD-1-PD-L1+ Bregs were colocalized in breast cancer tissues and PD-1-PD-L1+ Bregs were positively correlated with poor prognosis. Thus, MDSC-educated PD-1-PD-L1+ Bregs and their regulatory mechanisms could contribute to the immunosuppressive tumor microenvironment. Our study proposes a novel mechanism for MDSC-mediated regulation of B cell immunity, which might shed new light on tumor immunotherapy.
Collapse
|
67
|
Xie B, Khoyratty TE, Abu-Shah E, F Cespedes P, MacLean AJ, Pirgova G, Hu Z, Ahmed AA, Dustin ML, Udalova IA, Arnon TI. The Zinc Finger Protein Zbtb18 Represses Expression of Class I Phosphatidylinositol 3-Kinase Subunits and Inhibits Plasma Cell Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1515-1527. [PMID: 33608456 PMCID: PMC7980533 DOI: 10.4049/jimmunol.2000367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/31/2021] [Indexed: 11/24/2022]
Abstract
The PI3K pathway plays a key role in B cell activation and is important for the differentiation of Ab producing plasma cells (PCs). Although much is known about the molecular mechanisms that modulate PI3K signaling in B cells, the transcriptional regulation of PI3K expression is poorly understood. In this study, we identify the zinc finger protein Zbtb18 as a transcriptional repressor that directly binds enhancer/promoter regions of genes encoding class I PI3K regulatory subunits, subsequently limiting their expression, dampening PI3K signaling and suppressing PC responses. Following activation, dividing B cells progressively downregulated Zbtb18, allowing gradual amplification of PI3K signals and enhanced development of PCs. Human Zbtb18 displayed similar expression patterns and function in human B cells, acting to inhibit development of PCs. Furthermore, a number of Zbtb18 mutants identified in cancer patients showed loss of suppressor activity, which was also accompanied by impaired regulation of PI3K genes. Taken together, our study identifies Zbtb18 as a repressor of PC differentiation and reveals its previously unappreciated function as a transcription modulator of the PI3K signaling pathway.
Collapse
Affiliation(s)
- Bin Xie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Tariq E Khoyratty
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Enas Abu-Shah
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Pablo F Cespedes
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Andrew J MacLean
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Gabriela Pirgova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Ahmed A Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Tal I Arnon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| |
Collapse
|
68
|
Cruz DF, Mitash N, Mu F, Farinha CM, Swiatecka-Urban A. Differential Gene Expression Analysis Reveals Global LMTK2 Regulatory Network and Its Role in TGF-β1 Signaling. Front Oncol 2021; 11:596861. [PMID: 33816229 PMCID: PMC8013980 DOI: 10.3389/fonc.2021.596861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Lemur tyrosine kinase 2 (LMTK2) is a transmembrane Ser/Thr kinase whose role has been increasingly recognized; however, when compared to other kinases, understanding of the LMTK2 networks and biological functions is still limited. Recent data have shown that transforming growth factor (TGF)-β1 plays a role in modulating LMTK2 function by controlling its endocytic trafficking in human bronchial epithelial cells. Here, we aimed to unveil the LMTK2 regulatory network and elucidate how it affects cellular functions and disease pathways in either TGF-β1 dependent or independent manner. To understand how the LMTK2 and TGF-β1 pathways interconnect, we knocked down (KD) LMTK2 using small(si)RNA-mediated silencing in human bronchial epithelial CFBE41o- cells, treated cells with TGF-β1 or vehicle control, and performed differential gene expression analysis by RNA sequencing (RNAseq). In vehicle-treated cells, LMTK2 KD affected expression of 2,506 genes while it affected 4,162 genes after TGF-β1 stimulation. Bioinformatics analysis shows that LMTK2 is involved in diverse cellular functions and disease pathways, such as cell death and survival, cellular development, and cancer susceptibility. In summary, our study increases current knowledge about the LMTK2 network and its intersection with the TGF-β1 signaling pathway. These findings will serve as basis for future exploration of the predicted LMTK2 interactions and signaling pathways.
Collapse
Affiliation(s)
- Daniel F Cruz
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Nilay Mitash
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carlos M Farinha
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Agnieszka Swiatecka-Urban
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
69
|
Quiroga J, Alarcón P, Manosalva C, Teuber S, Taubert A, Hermosilla C, Hidalgo MA, Carretta MD, Burgos RA. Metabolic Reprogramming and Inflammatory Response Induced by D-Lactate in Bovine Fibroblast-Like Synoviocytes Depends on HIF-1 Activity. Front Vet Sci 2021; 8:625347. [PMID: 33796579 PMCID: PMC8007789 DOI: 10.3389/fvets.2021.625347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Acute ruminal acidosis (ARA) occurs after an excessive intake of rapidly fermentable carbohydrates and is characterized by the overproduction of D-lactate in the rumen that reaches the bloodstream. Lameness presentation, one of the primary consequences of ARA in cattle, is associated with the occurrence of laminitis and aseptic polysynovitis. Fibroblast-like synoviocytes (FLS) are predominant cells of synovia and play a key role in the pathophysiology of joint diseases, thus increasing the chances of the release of pro-inflammatory cytokines. Increased D-lactate levels and disturbances in the metabolism of carbohydrates, pyruvates, and amino acids are observed in the synovial fluid of heifers with ARA-related polysynovitis prior to neutrophil infiltration, suggesting an early involvement of metabolic disturbances in joint inflammation. We hypothesized that D-lactate induces metabolic reprogramming, along with an inflammatory response, in bovine exposed FLS. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics revealed that D-lactate disrupts the metabolism of bovine FLS, mainly enhancing glycolysis and gluconeogenesis, pyruvate metabolism, and galactose metabolism. The reverse-transcription quantitative PCR (RT-qPCR) analysis revealed an increased expression of metabolic-related genes, including hypoxia-inducible factor 1 (HIF-1)α, glucose transporter 1 (Glut-1), L-lactate dehydrogenase subunit A (L-LDHA), and pyruvate dehydrogenase kinase 1 (PDK-1). Along with metabolic disturbances, D-lactate also induced an overexpression and the secretion of IL-6. Furthermore, the inhibition of HIF-1, PI3K/Akt, and NF-κB reduced the expression of IL-6 and metabolic-related genes. The results of this study reveal a potential role for D-lactate in bFLS metabolic reprogramming and support a close relationship between inflammation and metabolism in cattle.
Collapse
Affiliation(s)
- John Quiroga
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Anja Taubert
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - María Angélica Hidalgo
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
70
|
Phillips CL, Welch BA, Garrett MR, Grayson BE. Regional heterogeneity in rat Peyer's patches through whole transcriptome analysis. Exp Biol Med (Maywood) 2021; 246:513-522. [PMID: 33236653 PMCID: PMC7934146 DOI: 10.1177/1535370220973014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Peyer's patches are gut-associated lymphoid tissue located throughout the intestinal wall. Peyer's patches consist of highly organized ovoid-shaped follicles, classified as non-encapsulated lymphatic tissues, populated with B cells, T cells, macrophages, and dendritic cells and function as an organism's intestinal surveillance. Limited work compares the gene profiles of Peyer's patches derived from different intestinal regions. In the current study, we first performed whole transcriptome analysis using RNAseq to compare duodenal and ileal Peyer's patches obtained from the small intestine of Long Evans rats. Of the 12,300 genes that were highly expressed, 18.5% were significantly different between the duodenum and ileum. Using samples obtained from additional subjects (n = 10), we validated the novel gene expression patterns in Peyer's patches obtained from the three regions of the small intestine. Rats had a significantly reduced number of Peyer's patches in the duodenum in comparison to either the jejunum or ileum. Regional differences in structural, metabolic, and immune-related genes were validated. Genes such as alcohol dehydrogenase 1, gap junction protein beta 2, and serine peptidase inhibitor clade b, member 1a were significantly reduced in the ileum in comparison to other regions. On the other hand, genes such as complement C3d receptor type, lymphocyte cytosolic protein 1, and lysozyme C2 precursor were significantly lower in the duodenum. In summary, the gene expression pattern of Peyer's patches is influenced by intestinal location and may contribute to its role in that segment.
Collapse
Affiliation(s)
- Charles L Phillips
- Program in Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bradley A Welch
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
71
|
Pillai VB, Gupta MP. Is nuclear sirtuin SIRT6 a master regulator of immune function? Am J Physiol Endocrinol Metab 2021; 320:E399-E414. [PMID: 33308014 PMCID: PMC7988780 DOI: 10.1152/ajpendo.00483.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
The ability to ward off pathogens with minimal damage to the host determines the immune system's robustness. Multiple factors, including pathogen processing, identification, secretion of mediator and effector molecules, and immune cell proliferation and differentiation into various subsets, constitute the success of mounting an effective immune response. Cellular metabolism controls all of these intricate processes. Cells utilize diverse fuel sources and switch back and forth between different metabolic pathways depending on their energy needs. The three most critical metabolic pathways on which immune cells depend to meet their energy needs are oxidative metabolism, glycolysis, and glutaminolysis. Dynamic switching between these metabolic pathways is needed for optimal function of the immune cells. Moreover, switching between these metabolic pathways needs to be tightly regulated to achieve the best results. Immune cells depend on the Warburg effect for their growth, proliferation, secretory, and effector functions. Here, we hypothesize that the sirtuin, SIRT6, could be a negative regulator of the Warburg effect. We also postulate that SIRT6 could act as a master regulator of immune cell metabolism and function by regulating critical signaling pathways.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- Department of Surgery (Division of Cardiothoracic Surgery), Pritzker School of Medicine, Basic Science Division, University of Chicago, Chicago, Illinois
| | - Mahesh P Gupta
- Department of Surgery (Division of Cardiothoracic Surgery), Pritzker School of Medicine, Basic Science Division, University of Chicago, Chicago, Illinois
| |
Collapse
|
72
|
Metabolic Effects of Recurrent Genetic Aberrations in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13030396. [PMID: 33494394 PMCID: PMC7865460 DOI: 10.3390/cancers13030396] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Oncogene activation and malignant transformation exerts energetic, biosynthetic and redox demands on cancer cells due to increased proliferation, cell growth and tumor microenvironment adaptation. As such, altered metabolism is a hallmark of cancer, which is characterized by the reprogramming of multiple metabolic pathways. Multiple myeloma (MM) is a genetically heterogeneous disease that arises from terminally differentiated B cells. MM is characterized by reciprocal chromosomal translocations that often involve the immunoglobulin loci and a restricted set of partner loci, and complex chromosomal rearrangements that are associated with disease progression. Recurrent chromosomal aberrations in MM result in the aberrant expression of MYC, cyclin D1, FGFR3/MMSET and MAF/MAFB. In recent years, the intricate mechanisms that drive cancer cell metabolism and the many metabolic functions of the aforementioned MM-associated oncogenes have been investigated. Here, we discuss the metabolic consequences of recurrent chromosomal translocations in MM and provide a framework for the identification of metabolic changes that characterize MM cells.
Collapse
|
73
|
Signal Transduction in Immune Cells and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:133-149. [PMID: 33539014 DOI: 10.1007/978-3-030-49844-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immune response relies upon several intracellular signaling events. Among the protein kinases involved in these pathways, members of the protein kinase C (PKC) family are prominent molecules because they have the capacity to acutely and reversibly modulate effector protein functions, controlling both spatial distribution and dynamic properties of the signals. Different PKC isoforms are involved in distinct signaling pathways, with selective functions in a cell-specific manner.In innate system, Toll-like receptor signaling is the main molecular event triggering effector functions. Various isoforms of PKC can be common to different TLRs, while some of them are specific for a certain type of TLR. Protein kinases involvement in innate immune cells are presented within the chapter emphasizing their coordination in many aspects of immune cell function and, as important players in immune regulation.In adaptive immunity T-cell receptor and B-cell receptor signaling are the main intracellular pathways involved in seminal immune specific cellular events. Activation through TCR and BCR can have common intracellular pathways while others can be specific for the type of receptor involved or for the specific function triggered. Various PKC isoforms involvement in TCR and BCR Intracellular signaling will be presented as positive and negative regulators of the immune response events triggered in adaptive immunity.
Collapse
|
74
|
Han Q, Kono TJY, Knutson CG, Parry NM, Seiler CL, Fox JG, Tannenbaum SR, Tretyakova NY. Multi-Omics Characterization of Inflammatory Bowel Disease-Induced Hyperplasia/Dysplasia in the Rag2-/-/ Il10-/- Mouse Model. Int J Mol Sci 2020; 22:E364. [PMID: 33396408 PMCID: PMC7795000 DOI: 10.3390/ijms22010364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetic dysregulation is hypothesized to play a role in the observed association between inflammatory bowel disease (IBD) and colon tumor development. In the present work, DNA methylome, hydroxymethylome, and transcriptome analyses were conducted in proximal colon tissues harvested from the Helicobacter hepaticus (H. hepaticus)-infected murine model of IBD. Reduced representation bisulfite sequencing (RRBS) and oxidative RRBS (oxRRBS) analyses identified 1606 differentially methylated regions (DMR) and 3011 differentially hydroxymethylated regions (DhMR). These DMR/DhMR overlapped with genes that are associated with gastrointestinal disease, inflammatory disease, and cancer. RNA-seq revealed pronounced expression changes of a number of genes associated with inflammation and cancer. Several genes including Duox2, Tgm2, Cdhr5, and Hk2 exhibited changes in both DNA methylation/hydroxymethylation and gene expression levels. Overall, our results suggest that chronic inflammation triggers changes in methylation and hydroxymethylation patterns in the genome, altering the expression of key tumorigenesis genes and potentially contributing to the initiation of colorectal cancer.
Collapse
Affiliation(s)
- Qiyuan Han
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Thomas J. Y. Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Charles G. Knutson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Nicola M. Parry
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Christopher L. Seiler
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Steven R. Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
75
|
Melo CM, Prado HP, Attie GA, Ruiz DL, Girão MJBC, Pinhal MADS. In silico investigation of heparanase-correlated genes in breast cancer subtypes. EINSTEIN-SAO PAULO 2020; 18:eAO5447. [PMID: 33053017 PMCID: PMC7531901 DOI: 10.31744/einstein_journal/2020ao5447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/16/2020] [Indexed: 11/26/2022] Open
Abstract
Objective To investigate the possible genes that may be related to the mechanisms that modulate heparanase-1. Methods The analysis was conducted at Universidade Federal de São Paulo, on the data provided by: The Cancer Genome Atlas, University of California Santa Cruz Genome Browser, Kyoto Encyclopedia of Genes and Genomes Pathway Database, Database for Annotation, Visualization and Integrated Discovery Bioinformatics Database and the softwares cBioPortal and Ingenuity Pathway Analysis. Results Using messenger RNA expression pattern of different molecular subtypes of breast cancer, we proposed that heparinase-1 was co-related with its progression. In addition, genes that were analyzed presented co-expression with heparanase-1. The results that showed that heparanase-1 co-expressed with phosphoinositide 3-kinase adapter protein 1, sialic acid-binding immunoglobulin-like lectin 7, and leukocyte-associated immunoglobulin-like receptor 1 are directed related with immune system evasion during breast cancer progression. Furthermore, cathepsin L was co-expressed with heparanase-1 and transformed inactive heparanase-1 form into active heparanase-1, triggering extracellular matrix remodeling, which contributes to enhanced tumor-host interaction of the tumor. Conclusion The signaling pathway analysis using bioinformatics tools gives supporting evidence of possible mechanisms related to breast cancer development. Evasion genes of the immune system co-expressed with heparanase-1, a enzyme related with tumor progression.
Collapse
|
76
|
Zhang Y, Ma S, Wang M, Shi W, Hu Y. Comprehensive Analysis of Prognostic Markers for Acute Myeloid Leukemia Based on Four Metabolic Genes. Front Oncol 2020; 10:578933. [PMID: 33117716 PMCID: PMC7552924 DOI: 10.3389/fonc.2020.578933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Metabolic reprogramming is the core characteristic of tumors during the development of tumors, and cancer cells can rely on metabolic changes to support their rapid growth. Nevertheless, an overall analysis of metabolic markers in acute myeloid leukemia (AML) is absent and urgently needed. Methods: Within this work, genetic expression, mutation data and clinical data of AML were queried from Genotype-Tissue Expression (GTEx) database, The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. The tumor samples of TCGA were randomly divided into a training group (64 samples) and an internal validation group (64 samples) at one time, and the tumor samples of GEO served as two external validation groups (99 samples, 374 samples). According to the expression levels of survival-associated metabolic genes, we divided all TCGA tumor samples into high, medium and low metabolism groups, and evaluated the immune cell activity in the tumor microenvironment of the three metabolism groups by single-sample gene set enrichment analysis (ssGSEA) algorithm. Finally, we examined the mutations and prognostic effects of each model gene. Results: Four metabolism-related genes were screened and applied to construct a prognostic model for AML, giving excellent results. As for the area under the curve (AUC) value of receiver operating characteristic (ROC) curve, the training group was up to 0.902 (1-year), 0.81 (3-year), and 0.877 (5-year); and the internal and external validation groups also met the expected standards, showing high potency in predicting patient outcome. Univariate and multivariate prognostic analyses indicated that the riskScore obtained from our prognostic model was an independent prognostic factor. ssGSEA analysis revealed the high metabolism group had higher immune activity. Single and multiple gene survival analysis validated that each model gene had significant effects on the overall survival of AML patients. Conclusions: In our study, a high-efficiency prognostic prediction model was built and validated for AML patients. The results showed that metabolism-related genes could become potential prognostic biomarkers for AML.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shengling Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
77
|
Wei Y, Fu J, Wu W, Wu J. Comparative profiles of DNA methylation and differential gene expression in osteocytic areas from aged and young mice. Cell Biochem Funct 2020; 38:721-732. [PMID: 32526817 DOI: 10.1002/cbf.3539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/09/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022]
Abstract
Altered DNA methylation upon ageing may result in many age-related diseases such as osteoporosis. However, the changes in DNA methylation that occur in cortical bones, the major osteocytic areas, remain unknown. In our study, we extracted total DNA and RNA from the cortical bones of 6-month-old and 24-month-old mice and systematically analysed the differentially methylated regions (DMRs), differentially methylated promoters (DMPs) and differentially expressed genes (DEGs) between the mouse groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DMR-related genes revealed that they were mainly associated with metabolic signalling pathways, including glycolysis, fatty acid and amino acid metabolism. Other genes with DMRs were related to signalling pathways that regulate the growth and development of cells, including the PI3K-AKT, Ras and Rap1 signalling pathways. The gene expression profiles indicated that the DEGs were mainly involved in metabolic pathways and the PI3K-AKT signalling pathway, and the profiles were verified through real-time quantitative PCR (RT-qPCR). Due to the pivotal roles of the affected genes in maintaining bone homeostasis, we suspect that these changes may be key factors in age-related bone loss, either together or individually. Our study may provide a novel perspective for understanding the osteocyte and its relationship with osteoporosis during ageing. SIGNIFICANCE OF THE STUDY: Our study identified age-related changes in gene expressions in osteocytic areas through whole-genome bisulfite sequencing (WGBS) and RNA-seq, providing new theoretical foundations for the targeted treatment of senile osteoporosis.
Collapse
Affiliation(s)
- Yu Wei
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Jiayao Fu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Wenjing Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Junhua Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
78
|
Liu D, Zuo X, Luo H, Zhu H. The altered metabolism profile in pathogenesis of idiopathic inflammatory myopathies. Semin Arthritis Rheum 2020; 50:627-635. [PMID: 32502727 DOI: 10.1016/j.semarthrit.2020.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 11/29/2022]
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of heterogeneous autoimmune diseases characterized by muscle weakness, muscle inflammation and extramuscular manifestations. Despite extensive efforts, the mechanisms of IIMs remain largely unknown, and treatment is still a challenge for physicians. Metabolism changes have emerged as a crucial player in autoimmune diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). However, little is known about metabolism changes in IIMs. In this review, we focus on the alteration of metabolism profile in IIMs, and the relationships with clinical information. We highlight the potential roles of metabolism in the pathogenesis of IIMs and discuss future perspectives for metabolic checkpoint-based therapeutic interventions.
Collapse
Affiliation(s)
- Di Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China.
| |
Collapse
|
79
|
Zhang M, Iwata S, Hajime M, Ohkubo N, Todoroki Y, Miyata H, Ueno M, Hao H, Zhang T, Fan J, Nakayamada S, Yamagata K, Tanaka Y. Methionine Commits Cells to Differentiate Into Plasmablasts Through Epigenetic Regulation ofBTBandCNCHomolog 2 by the MethyltransferaseEZH2. Arthritis Rheumatol 2020; 72:1143-1153. [DOI: 10.1002/art.41208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Mingzeng Zhang
- University of Occupational and Environmental Health Japan, Kitakyushu, Japan, and Fourth Hospital of Hebei Medical University Shijiazhuang China
| | - Shigeru Iwata
- University of Occupational and Environmental Health Japan Kitakyushu Japan
| | - Maiko Hajime
- University of Occupational and Environmental Health Japan Kitakyushu Japan
| | - Naoaki Ohkubo
- University of Occupational and Environmental Health Japan Kitakyushu Japan
| | - Yasuyuki Todoroki
- University of Occupational and Environmental Health Japan Kitakyushu Japan
| | - Hiroko Miyata
- University of Occupational and Environmental Health Japan Kitakyushu Japan
| | - Masanobu Ueno
- University of Occupational and Environmental Health Japan Kitakyushu Japan
| | - He Hao
- University of Occupational and Environmental Health Japan, Kitakyushu, Japan, and Fourth Hospital of Hebei Medical University Shijiazhuang China
| | - Tong Zhang
- University of Occupational and Environmental Health Japan Kitakyushu Japan
| | - Jie Fan
- University of Occupational and Environmental Health Japan Kitakyushu Japan
| | - Shingo Nakayamada
- University of Occupational and Environmental Health Japan Kitakyushu Japan
| | - Kaoru Yamagata
- University of Occupational and Environmental Health Japan Kitakyushu Japan
| | - Yoshiya Tanaka
- University of Occupational and Environmental Health Japan Kitakyushu Japan
| |
Collapse
|
80
|
Li Z, Peng Y, Li Y, Zhou R, Chen D, Jin W, Xu Q, Xu L, Luo Z, Yang H. Glucose metabolism pattern of peripheral blood immune cells in myasthenia gravis patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:577. [PMID: 32566604 PMCID: PMC7290526 DOI: 10.21037/atm-20-918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background We investigated the correlation between glucose metabolism patterns of different immune cells and the metabolic regulatory signaling pathways in myasthenia gravis (MG) and aimed to identify therapeutic targets for MG. Methods We isolated peripheral blood mononuclear cells (PBMCs) and sorted CD19+B cells, dendritic cells (DCs), CD4+ T cells, CD8+ T cells, CD4+CD25+ regulatory T cells (Tregs), CD4+CD25-T cells, and T helper (Th) cells such as Th1, Th2, and Th17 cells. Then, we detected the expression levels of PI3K/AKT/mTOR-HIF-1α, GLUT1, hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) by RT-PCR, measured the oxygen consumption rate and extracellular acidification rate of ex vivo freshly sorted cells using the Seahorse XFe96 Analyzer. In addition, we compared the glycolysis levels using these cells from the same MG patients. By performing in vitro experiments, we measured, the mRNA expression levels of mTOR, HIF-1α, B cell activating factor receptor (BAFF-R), GLUT1, HK, PFK, and PK, in addition to ECAR profiles, frequency of CD80 and CD86, and IgG levels from the culture supernatant of B cells (isolated from MG patients) treated with rapamycin and PX-478 (selective mTOR and HIF-1α inhibitor, respectively) from. Results Except PBMCs, Th2 and CD8+ T cells, the expression levels of the key enzymes involved in glycolysis and HIF-1α were significantly higher in B cells, DCs, Tregs, CD4+CD25-T cells, and Th1 and Th17 cells in MG patients, and the measurement of ECAR and OCR confirmed the metabolic status. In MG patients, B cells and DCs showed significantly higher levels of glycolysis and glycolytic capacity than CD8+ T cells, CD4+ T cells and its subsets. In vitro, except IgG levels, the increased glycolysis levels, expression of key glycolytic enzymes, BAFF-R and frequency of CD80 and CD86 of B cells, could be inhibited by rapamycin and PX-478. Conclusions Different subtypes of immune cells in MG exhibit different glucose metabolism patterns. The mTOR-HIF-1α signaling pathway might be the immunometabolism reprogramming checkpoint of glycolysis-dependent activated B cells in MG.
Collapse
Affiliation(s)
- Zhibin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuyao Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ran Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Di Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wanlin Jin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiu Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liqun Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
81
|
Stathopoulou C, Nikoleri D, Bertsias G. Immunometabolism: an overview and therapeutic prospects in autoimmune diseases. Immunotherapy 2020; 11:813-829. [PMID: 31120393 DOI: 10.2217/imt-2019-0002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metabolism is a critical immune regulator under physiologic and pathologic conditions. Culminating evidence has disentangled the contribution of distinct metabolic pathways, namely glucolysis, pentose phosphate, fatty acid oxidation, glutaminolysis, Krebs cycle and oxidative phosphorylation, in modulating innate and adaptive immune cells based on their activation/differentiation state. Metabolic aberrations and changes in the intracellular levels of specific metabolites are linked to the inflammatory phenotype of immune cells implicated in autoimmune disorders such as systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and diabetes. Notably, targeting metabolism such as the mTOR by rapamycin, hexokinase by 2-deoxy-D-glucose, AMP-activated protein kinase by metformin, may be used to ameliorate autoimmune inflammation. Accordingly, research in immunometabolism is expected to offer novel opportunities for monitoring and treating immune-mediated diseases.
Collapse
Affiliation(s)
- Chrysoula Stathopoulou
- Department of Rheumatology, Clinical Immunology & Allergy, University Hospital of Heraklion, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Laboratory of Rheumatology, Autoimmunity & Inflammation, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, N. Plastira 100, 70013 Heraklion, Greece
| | - Dimitra Nikoleri
- Department of Rheumatology, Clinical Immunology & Allergy, University Hospital of Heraklion, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Laboratory of Rheumatology, Autoimmunity & Inflammation, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, N. Plastira 100, 70013 Heraklion, Greece
| | - George Bertsias
- Department of Rheumatology, Clinical Immunology & Allergy, University Hospital of Heraklion, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Laboratory of Rheumatology, Autoimmunity & Inflammation, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, N. Plastira 100, 70013 Heraklion, Greece
| |
Collapse
|
82
|
Jellusova J. The role of metabolic checkpoint regulators in B cell survival and transformation. Immunol Rev 2020; 295:39-53. [PMID: 32185805 DOI: 10.1111/imr.12855] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022]
Abstract
In response to mitogenic stimulation, B cells activate different pro-anabolic signaling pathways such as c-Myc- and mTORC1-dependent networks to satisfy the energetic demands of biomass synthesis and proliferation. In order to preserve viability and function, cell growth cannot progress unchecked and must be adjusted according to the availability of nutrients. Nutrient-sensing proteins such as AMPK antagonize mTORC1 activity in response to starvation. If pro-anabolic signaling pathways are aberrantly activated, B cells may lack the metabolic capacity to accommodate their energetic needs, which can lead to cell death. On the other hand, metabolic hyperactivation is a salient feature of cancer cells, suggesting that mechanisms exist, which allow B cells to cope with metabolic stress. The aim of this review is to discuss how B cells respond to a mismatch between energy supply and demand and what the consequences are of metabolic dysregulation in normal and malignant B cells.
Collapse
Affiliation(s)
- Julia Jellusova
- Research Centres BIOSS and CIBSS, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Department of Molecular Immunology, Institute of Biology III at the Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
83
|
Preite S, Gomez-Rodriguez J, Cannons JL, Schwartzberg PL. T and B-cell signaling in activated PI3K delta syndrome: From immunodeficiency to autoimmunity. Immunol Rev 2020; 291:154-173. [PMID: 31402502 DOI: 10.1111/imr.12790] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
Abstract
Phosphatidylinositol 3 kinases (PI3K) are a family of lipid kinases that are activated by a variety of cell-surface receptors, and regulate a wide range of downstream readouts affecting cellular metabolism, growth, survival, differentiation, adhesion, and migration. The importance of these lipid kinases in lymphocyte signaling has recently been highlighted by genetic analyses, including the recognition that both activating and inactivating mutations of the catalytic subunit of PI3Kδ, p110δ, lead to human primary immunodeficiencies. In this article, we discuss how studies on the human genetic disorder "Activated PI3K-delta syndrome" and mouse models of this disease (Pik3cdE1020K/+ mice) have provided fundamental insight into pathways regulated by PI3Kδ in T and B cells and their contribution to lymphocyte function and disease, including responses to commensal bacteria and the development of autoimmunity and tumors. We highlight critical roles of PI3Kδ in T follicular helper cells and the orchestration of the germinal center reaction, as well as in CD8+ T-cell function. We further present data demonstrating the ability of the AKT-resistant FOXO1AAA mutant to rescue IgG1 class switching defects in Pik3cdE1020K/+ B cells, as well as data supporting a role for PI3Kδ in promoting multiple T-helper effector cell lineages.
Collapse
Affiliation(s)
- Silvia Preite
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Julio Gomez-Rodriguez
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L Cannons
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Pamela L Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
84
|
Tian D, Liu J, Chen L, Zhu B, Jing J. The protective effects of PI3K/Akt pathway on human nucleus pulposus mesenchymal stem cells against hypoxia and nutrition deficiency. J Orthop Surg Res 2020; 15:29. [PMID: 31992313 PMCID: PMC6988348 DOI: 10.1186/s13018-020-1551-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To study the effects of hypoxia and nutrition deficiency mimicking degenerated intervertebral disc on the biological behavior of human nucleus-derived pulposus mesenchymal stem cells (hNP-MSCs) and the role of PI3K/Akt pathway in the process in vitro. METHODS hP-MSCs were isolated from lumbar disc and were further identified by their immunophenotypes and multilineage differentiation. Then, cells were divided into the control group, hypoxia and nutrition deficiency group, the LY294002 group, and insulin-like growth factor 1 (IGF-1) group. Then cell apoptosis, the cell viability, the caspase 3 activity, and the expression of PI3K, Akt, and functional genes (aggrecan, collagen I, and collagen II) were evaluated. RESULT Our work showed that isolated cells met the criteria of International Society for cellular Therapy. Therefore, cells obtained from degenerated nucleus pulposus were definitely hNP-MSCs. Our results showed that hypoxia and nutrition deficiency could significantly increase cell apoptosis, the caspase 3 activity, and inhibit cell viability. Gene expression results demonstrated that hypoxia and nutrition deficiency could increase the relative expression of PI3K and Akt gene and inhibit the expression of functional genes. However, when the PI3K/Akt pathway was inhibited by LY294002, the cell apoptosis and caspase 3 activity significantly increased while the cell viability was obviously inhibited. Quantitative real-time PCR results showed that the expression of functional genes was more significantly inhibited. Our study further verified that the above-mentioned biological activities of hNP-MSCs could be significantly improved by IGF1. CONCLUSIONS PI3K/Akt signal pathway may have protective effects on human nucleus pulposus-derived mesenchymal stem cells against hypoxia and nutrition deficiency.
Collapse
Affiliation(s)
- DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Jianjun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Lei Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Bin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China.
| |
Collapse
|
85
|
Transcriptomic Profiles of Monocyte-Derived Macrophages in Response to Escherichia coli is Associated with the Host Genetics. Sci Rep 2020; 10:271. [PMID: 31937813 PMCID: PMC6959288 DOI: 10.1038/s41598-019-57089-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/21/2019] [Indexed: 01/05/2023] Open
Abstract
Reactive Nitrogen Species (RNS) are a group of bactericidal molecules produced by macrophages in response to pathogens in a process called oxidative burst. Nitric oxide (NO-) is a member of RNS produced from arginine by inducible Nitric Oxide Synthase (iNOS) enzyme. The activity of iNOS and production of NO- by macrophages following stimulation is one of the indicators of macrophage polarization towards M1/proinflammatory. Production of NO- by bovine monocyte-derived macrophage (MDM) and mouse peritoneal macrophages has been shown to be strongly associated with host genetic with the heritability of 0.776 in bovine MDM and 0.8 in mouse peritoneal macrophages. However, the mechanism of genetic regulation of macrophage response has remained less explored. In the current study, the transcriptome of bovine MDMs was compared between two extreme phenotypes that had been classified as high and low responder based on NO- production. The results showed that 179 and 392 genes were differentially expressed (DE) between high and low responder groups at 3 and 18 hours after exposure to Escherichia coli, respectively. A set of 11 Transcription Factors (TFs) (STAT1, IRF7, SPI1, STAT4, IRF1, HIF1A, FOXO3, REL, NFAT5, HIC1, and IRF4) at 3 hours and a set of 13 TFs (STAT1, IRF1, HIF1A, STAT4, ATF4, TP63, EGR1, CDKN2A, RBL1, E2F1, PRDM1, GATA3, and IRF4) at 18 hours after exposure to E. coli were identified to be differentially regulated between the high and low responder phenotypes. These TFs were found to be divided into two clusters of inflammatory- and hypoxia-related TFs. Functional analysis revealed that some key canonical pathways such as phagocytosis, chemotaxis, antigen presentation, and cell-to-cell signalling are enriched among the over-expressed genes by high responder phenotype. Based on the results of this study, it was inferred that the functional characteristics of bovine MDMs are associated with NO-based classification. Since NO- production is strongly associated with host genetics, this study for the first time shows the distinct proinflammatory profiles of macrophages are controlled by the natural genetic polymorphism in an outbred population. In addition, the results suggest that genetics can be considered as a new dimension in the current model of macrophage polarization which is currently described by the combination of stimulants, only.
Collapse
|
86
|
Granja AG, Perdiguero P, Martín-Martín A, Díaz-Rosales P, Soleto I, Tafalla C. Rainbow Trout IgM + B Cells Preferentially Respond to Thymus-Independent Antigens but Are Activated by CD40L. Front Immunol 2019; 10:2902. [PMID: 31921163 PMCID: PMC6927014 DOI: 10.3389/fimmu.2019.02902] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
In the absence of class switch recombination and germinal centers, the mechanisms through which B cells from teleost fish mount extrafollicular immunoglobulin M (IgM) memory responses remains mostly unexplored. In this report, we demonstrate that teleost IgM+ B cells respond to CD40L, a thymus-dependent activation signal, similarly to mammalian B2 cells. However, when stimulated with different types of antigens, fish IgM+ B cells only reach a general activation state in response to antigens cataloged as thymus-independent 1 (TI-1) in mammals, as established through both functional assays and RNA sequencing. Interestingly, fish IgM+ B cells remained completely unresponsive to TI-2 antigens, suggesting that the engagement of innate receptors provided by TI-1 antigens is required for the activation of teleost B cells. Finally, a synergy between CD40L and TI-1 antigens was also demonstrated, further supporting that there is no clear dichotomy between thymus-dependent and TI responses in teleost fish.
Collapse
Affiliation(s)
- Aitor G Granja
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | | | | | | | - Irene Soleto
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | | |
Collapse
|
87
|
Zhu Z, Shukla A, Ramezani-Rad P, Apgar JR, Rickert RC. The AKT isoforms 1 and 2 drive B cell fate decisions during the germinal center response. Life Sci Alliance 2019; 2:e201900506. [PMID: 31767615 PMCID: PMC6878223 DOI: 10.26508/lsa.201900506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
The PI3K pathway is integral for the germinal center (GC) response. However, the contribution of protein kinase B (AKT) as a PI3K effector in GC B cells remains unknown. Here, we show that mice lacking the AKT1 and AKT2 isoforms in B cells failed to form GCs, which undermined affinity maturation and antibody production in response to immunization. Upon B-cell receptor stimulation, AKT1/2-deficient B cells showed poor survival, reduced proliferation, and impaired mitochondrial and metabolic fitness, which collectively halted GC development. By comparison, Foxo1 T24A mutant, which cannot be inactivated by AKT1/2 phosphorylation and is sequestered in the nucleus, significantly enhanced antibody class switch recombination via induction of activation-induced cytidine deaminase (AID) expression. By contrast, repression of FOXO1 activity by AKT1/2 promoted IRF4-driven plasma cell differentiation. Last, we show that T-cell help via CD40, but not enforced expression of Bcl2, rescued the defective GC response in AKT1/2-deficient animals by restoring proliferative expansion and energy production. Overall, our study provides mechanistic insights into the key role of AKT and downstream pathways on B cell fate decisions during the GC response.
Collapse
Affiliation(s)
- Zilu Zhu
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ashima Shukla
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Parham Ramezani-Rad
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - John R Apgar
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Robert C Rickert
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- National Cancer Institute-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
88
|
Morschhauser F, Machiels JP, Salles G, Rottey S, Rule SAJ, Cunningham D, Peyrade F, Fruchart C, Arkenau HT, Genvresse I, Liu L, Köchert K, Shen K, Kneip C, Peña CE, Grevel J, Zhang J, Cisternas G, Reschke S, Granvil C, Awada A. On-Target Pharmacodynamic Activity of the PI3K Inhibitor Copanlisib in Paired Biopsies from Patients with Malignant Lymphoma and Advanced Solid Tumors. Mol Cancer Ther 2019; 19:468-478. [PMID: 31619463 DOI: 10.1158/1535-7163.mct-19-0466] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/12/2019] [Accepted: 10/07/2019] [Indexed: 11/16/2022]
Abstract
The PI3K inhibitor copanlisib has efficacy and manageable safety in patients with indolent lymphoma and solid tumors. Pharmacodynamic effects relative to copanlisib dose and plasma exposure were evaluated. Patients with lymphoma or solid tumors received copanlisib 0.4 or 0.8 mg/kg on days 1, 8, and 15 of a 28-day cycle. Primary variables were maximum changes in phosphorylated AKT (pAKT) levels in platelet-rich plasma (PRP) and plasma glucose. Other evaluations included PI3K signaling markers and T-lymphocytes in paired tumor biopsies, the relationship between estimated plasma exposure and pharmacodynamic markers, response, and safety. Sixty-three patients received copanlisib. PRP pAKT levels showed sustained reductions from baseline following copanlisib [median inhibition: 0.4 mg/kg, 73.8% (range -94.9 to 144.0); 0.8 mg/kg, 79.6% (range -96.0 to 408.0)]. Tumor pAKT was reduced versus baseline with copanlisib 0.8 mg/kg in paired biopsy samples (P < 0.05). Dose-related transient plasma glucose elevations were observed. Estimated copanlisib plasma exposure significantly correlated with changes in plasma pAKT and glucose metabolism markers. There were two complete responses and six partial responses; seven of eight responders received copanlisib 0.8 mg/kg. Adverse events (all grade) included hyperglycemia (52.4%), fatigue (46.0%), and hypertension (41.3%). Copanlisib demonstrated dose-dependent pharmacodynamic evidence of target engagement and PI3K pathway modulation/inhibition in tumor and immune cells. Results support the use of copanlisib 0.8 mg/kg (or flat-dose equivalent of 60 mg) in solid tumors and lymphoma, and provide a biomarker hypothesis for studies of copanlisib combined with immune checkpoint inhibitors (NCT03711058).
Collapse
Affiliation(s)
- Franck Morschhauser
- Service des Maladies du Sang, Université de Lille, CHU Lille, Lille, France.
| | - Jean-Pascal Machiels
- Service d'Oncologie Médicale, Institut Roi Albert II, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale, UCLouvain, Brussels, Belgium
| | - Gilles Salles
- Service d'Hématologie, Clinique Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
- Hospices Civils de Lyon, Lyon, France
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Simon A J Rule
- Department of Haematology, Plymouth University Medical School, Plymouth Hospitals NHS Trust, Plymouth, United Kingdom
| | - David Cunningham
- Department of Clinical and Experimental Haematology, The Royal Marsden Hospital, Sutton, United Kingdom
| | - Frederic Peyrade
- Department of Medical Oncology, Centre Antoine Lacassagne, Nice, France
| | - Christophe Fruchart
- Institut d'Hématologie de Basse Normandie, Centre Hospitalier Universitaire, Caen, France
| | | | | | - Li Liu
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | - Karl Köchert
- Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - Kui Shen
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | | | - Carol E Peña
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | | | - Jun Zhang
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | | | | | - Camille Granvil
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | - Ahmad Awada
- Clinique Oncologie Médicale, Institut Jules Bordet, Brussels, Belgium
| |
Collapse
|
89
|
Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 2019; 148:104408. [PMID: 31454534 DOI: 10.1016/j.phrs.2019.104408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
90
|
Kurupati RK, Haut LH, Schmader KE, Ertl HC. Age-related changes in B cell metabolism. Aging (Albany NY) 2019; 11:4367-4381. [PMID: 31283526 PMCID: PMC6660053 DOI: 10.18632/aging.102058] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022]
Abstract
Antibody responses to vaccinations or infections decline upon aging. In this study we tested if metabolic changes in B cells may contribute to attenuation of responses to influenza vaccination in aged humans. Our data show that aging affects mitochondrial functions in B cells leading to increases in mitochondrial reactive oxygen species (MROS) and mitochondrial mass (MM) in some aged B cell subsets and decreases in expression levels of Sirtuin 1 (SIRT1), Forkhead box protein (FOX)O1 and carnitine palmitoyltransferase 1 (CPT-1). Seahorse analyses showed minor defects in glycolysis in the aged B cells after activation but a strong reduction in oxidative phosphorylation. The analyses of the transcriptome revealed further pronounced defects in one-carbon metabolism, a pathway that is essential for amino acid and nucleotide metabolism. Overall our data support the notion that the declining ability of aged B cells to increase their metabolism following activation contributes to the weakened antibody responses of the elderly.
Collapse
Affiliation(s)
| | | | - Kenneth E Schmader
- Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
91
|
Moore DK, Loxton AG. Regulatory B lymphocytes: development and modulation of the host immune response during disease. Immunotherapy 2019; 11:691-704. [DOI: 10.2217/imt-2018-0185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of B lymphocytes (B cells) in immunogenic responses has become increasingly important over the past decade, focusing on a new B-cell subtype: regulatory B-cells (Bregs). These Bregs have been shown to possess potent immunosuppressive activities and have identified as key players in disease control and immune tolerance. In this review, the occurrence of Breg type in various conditions, along with evidence supporting discovered functions and proposed purposes will be explored. An example of such regulatory functions includes the induction or suppression of various T lymphocyte phenotypes in response to a particular stimulus. Should Bregs prove effective in mediating immune responses, and correlate with favorable disease outcome, they may serve as a novel therapeutic to combat disease and prevent infection. However, the induction, function and stability of these cells remain unclear and further investigation is needed to better understand their role and therapeutic efficacy.
Collapse
Affiliation(s)
- Dannielle K Moore
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- Faculty of Medicine & Health Sciences, Division of Molecular Biology & Human Genetics, Stellenbosch University, Cape Town, South Africa, 8000
| | - Andre G Loxton
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- Faculty of Medicine & Health Sciences, Division of Molecular Biology & Human Genetics, Stellenbosch University, Cape Town, South Africa, 8000
| |
Collapse
|
92
|
Moreno-Altamirano MMB, Kolstoe SE, Sánchez-García FJ. Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses. Front Cell Infect Microbiol 2019; 9:95. [PMID: 31058096 PMCID: PMC6482253 DOI: 10.3389/fcimb.2019.00095] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, there has been significant advances in the understanding of the cross-talk between metabolism and immune responses. It is now evident that immune cell effector function strongly depends on the metabolic pathway in which cells are engaged in at a particular point in time, the activation conditions, and the cell microenvironment. It is also clear that some metabolic intermediates have signaling as well as effector properties and, hence, topics such as immunometabolism, metabolic reprograming, and metabolic symbiosis (among others) have emerged. Viruses completely rely on their host's cell energy and molecular machinery to enter, multiply, and exit for a new round of infection. This review explores how viruses mimic, exploit or interfere with host cell metabolic pathways and how, in doing so, they may evade immune responses. It offers a brief outline of key metabolic pathways, mitochondrial function and metabolism-related signaling pathways, followed by examples of the mechanisms by which several viral proteins regulate host cell metabolic activity.
Collapse
Affiliation(s)
- María Maximina B Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Simon E Kolstoe
- School of Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
93
|
Verstegen NJM, Unger PPA, Walker JZ, Nicolet BP, Jorritsma T, van Rijssel J, Spaapen RM, de Wit J, van Buul JD, ten Brinke A, van Ham SM. Human B Cells Engage the NCK/PI3K/RAC1 Axis to Internalize Large Particles via the IgM-BCR. Front Immunol 2019; 10:415. [PMID: 30930895 PMCID: PMC6425997 DOI: 10.3389/fimmu.2019.00415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
Growing evidence indicate that large antigen-containing particles induce potent T cell-dependent high-affinity antibody responses. These responses require large particle internalization after recognition by the B cell receptor (BCR) on B cells. However, the molecular mechanisms governing BCR-mediated internalization remain unclear. Here we use a high-throughput quantitative image analysis approach to discriminate between B cell particle binding and internalization. We systematically show, using small molecule inhibitors, that human B cells require a SYK-dependent IgM-BCR signaling transduction via PI3K to efficiently internalize large anti-IgM-coated particles. IgM-BCR-mediated activation of PI3K involves both the adaptor protein NCK and the co-receptor CD19. Interestingly, we here reveal a strong NCK-dependence without profound requirement of the co-receptor CD19 in B cell responses to large particles. Furthermore, we demonstrate that the IgM-BCR/NCK signaling event facilitates RAC1 activation to promote actin cytoskeleton remodeling necessary for particle engulfment. Thus, we establish NCK/PI3K/RAC1 as an attractive IgM-BCR signaling axis for biological intervention to prevent undesired antibody responses to large particles.
Collapse
Affiliation(s)
- Niels J. M. Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Peter-Paul A. Unger
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Julia Z. Walker
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Benoit P. Nicolet
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jos van Rijssel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robbert M. Spaapen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jelle de Wit
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jaap D. van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S. Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
94
|
Single Cell Profiling Reveals PTEN Overexpression in Influenza-Specific B cells in Aging HIV-infected individuals on Anti-retroviral Therapy. Sci Rep 2019; 9:2482. [PMID: 30792481 PMCID: PMC6385500 DOI: 10.1038/s41598-019-38906-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/04/2019] [Indexed: 11/09/2022] Open
Abstract
Memory B cells (MBC) respond to secondary antigen challenge to protect against infection and to boost immunity following vaccinations. Despite effective treatment, chronic HIV infection disturbs MBCs by reducing numbers and altering functionality due to hyper-activation and increased apoptosis leading to suboptimal antibody responses against common infectious agents. We used single cell gene expression analysis to evaluate antigen-specific memory B cells in peripheral blood of virally-suppressed HIV-infected individuals and healthy controls stratified by serum H1N1 antibody response 3 weeks post-administration of the seasonal trivalent inactivated influenza vaccine. We used a fluorescent probe to isolate influenza H1N1-specific B cells and a multiplexed and targeted RT-PCR approach to measure expression levels of 96 genes involved in B cell activation and function. Gene profiling revealed a 4-gene predictive signature containing the phosphoinositide-3 kinase (PI3K) inhibitor, PTEN, for identifying antigen-specific MBC from HIV-infected individuals compared to healthy controls. Gene co-expression analysis showed that in addition to overexpression of PTEN, there was increased co-expression of type I interferon-associated genes with PTEN on single cell level in HIV compared to controls. This study highlights the persistent defects in MBC from HIV-infected individuals and points to the PI3K signaling pathway as a target for potential immune intervention.
Collapse
|
95
|
Li M, Lazorchak AS, Ouyang X, Zhang H, Liu H, Arojo OA, Yan L, Jin J, Han Y, Qu G, Fu Y, Xu X, Liu X, Zhang W, Yang Z, Ruan C, Wang Q, Liu D, Huang C, Lu L, Jiang S, Li F, Su B. Sin1/mTORC2 regulate B cell growth and metabolism by activating mTORC1 and Myc. Cell Mol Immunol 2019; 16:757-769. [PMID: 30705387 DOI: 10.1038/s41423-018-0185-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Proper control of B cell growth and metabolism is crucial for B-cell-mediated immunity, but the underlying molecular mechanisms remain incompletely understood. In this study, Sin1, a key component of mTOR complex 2 (mTORC2), specifically regulates B cell growth and metabolism. Genetic ablation of Sin1 in B cells reduces the cell size at either the transitional stage or upon antigen stimulation and severely impairs metabolism. Sin1 deficiency also severely impairs B-cell proliferation, antibody responses, and anti-viral immunity. At the molecular level, Sin1 controls the expression and stability of the c-Myc protein and maintains the activity of mTORC1 through the Akt-dependent inactivation of GSK3 and TSC1/2, respectively. Therefore, our study reveals a novel and specific role for Sin1 in coordinating the activation of mTORC2 and mTORC1 to control B cell growth and metabolism.
Collapse
Affiliation(s)
- Man Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Adam S Lazorchak
- Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.,EMD Serono Research & Development Institute, Inc., 45 Middlesex Tpke, Billerica, MA, 01821-3936, USA
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huihui Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhi Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Omotooke A Arojo
- Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Lichong Yan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingsi Jin
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guojun Qu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuhong Fu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Xiaocao Xu
- Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Xiaobo Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenqian Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengfeng Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chuan Ruan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qijun Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dou Liu
- Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Fubin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
96
|
Targeting PI3K Signaling in Acute Lymphoblastic Leukemia. Int J Mol Sci 2019; 20:ijms20020412. [PMID: 30669372 PMCID: PMC6358886 DOI: 10.3390/ijms20020412] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 01/11/2023] Open
Abstract
Adhesion of acute lymphoblastic leukemia (ALL) cells to bone marrow stroma cells triggers intracellular signals regulating cell-adhesion-mediated drug resistance (CAM-DR). Stromal cell protection of ALL cells has been shown to require active AKT. In chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT pathway is reported. A novel FDA-approved PI3Kδ inhibitor, CAL-101/idelalisib, leads to downregulation of p-AKT and increased apoptosis of CLL cells. Recently, two additional PI3K inhibitors have received FDA approval. As the PI3K/AKT pathway is also implicated in adhesion-mediated survival of ALL cells, PI3K inhibitors have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K in normal hematopoietic cells, and in ALL. We focus on summarizing targeting strategies of PI3K in ALL.
Collapse
|
97
|
Tang R, Zhong T, Wu C, Zhou Z, Li X. The Remission Phase in Type 1 Diabetes: Role of Hyperglycemia Rectification in Immune Modulation. Front Endocrinol (Lausanne) 2019; 10:824. [PMID: 31849842 PMCID: PMC6901662 DOI: 10.3389/fendo.2019.00824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
The remission phase (or honeymoon period) is a spontaneous "temporary cure stage" in type 1 diabetes course, which provides a good human model for studying β-cell protection. The exact mechanisms are still uncertain, but one of the generally recognized mechanisms is that correction of "glucotoxicity" by exogenous insulin therapy leads to "β-cell rest" and β-cell recovery. Beyond this, the remission phase is accompanied by changes in various immune cells and immune molecules, indicating downregulation of immune response, and induction of immune tolerance. The role of hyperglycemia rectification in the regulation of immune response should be emphasized because glucose metabolism is critical to maintain the normal function of immune system. Here, recent evidence of immune modulation based on the rectification of hyperglycemia from multiple aspects such as immune cells, inflammatory cytokines, biomolecules, and cell antigenicity was reviewed. It should be noteworthy that the interaction between glucose metabolism and immune plays an important role in the pathogenesis of the remission phase. The best intervention strategy may be the combination of strict glycemic control and immune modulation to protect β-cell function as early as possible.
Collapse
Affiliation(s)
- Rong Tang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Central South University, Changsha, China
| | - Ting Zhong
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Central South University, Changsha, China
| | - Chao Wu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Central South University, Changsha, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Central South University, Changsha, China
- *Correspondence: Zhiguang Zhou
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Central South University, Changsha, China
- Xia Li
| |
Collapse
|
98
|
Yu N, Hu S, Hao Z. Benificial Effect of Stachydrine on the Traumatic Brain Injury Induced Neurodegeneration by Attenuating the Expressions of Akt/mTOR/PI3K and TLR4/NFκ-B Pathway. Transl Neurosci 2018; 9:175-182. [PMID: 30687544 PMCID: PMC6341910 DOI: 10.1515/tnsci-2018-0026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 10/14/2018] [Indexed: 12/25/2022] Open
Abstract
Present investigation aims to explore the protective effect of stachydrine against traumatic brain injury (TBI) and also investigate the molecular mechanism of its action. TBI was induced by the fall a hammer (450 g) from the height of 1.5 m. and later stachydrine was administered for 2 weeks starting 2 hr after the induction of TBI. Effect of stachydrine was determined by estimating modified neurological severity score (mNSS), percentage of water content in the brain and cognitive dysfunction in TBI rats. Moreover western blot assay, histopathology and enzyme linked immunosorbent assay (ELISA) tests were used to determine the effect of stachydrine on TBI injured rats. Result of the report suggests that stachydrine reduces the mNSS and percentage of water content in the brain and also attenuates the cognitive dysfunction in TBI injured rats. However data of western blot assay reports that stachydrine reduces the expression of PI3K/m-TOR/Akt pathway in the brain tissues of TBI rats. Concentration of interleukin (IL-1β), tumor necrosis factor-α (TNF-α) and interferon gamma (INF-γ) was reduces in stachydrine treated group than TBI group. Moreover expression of Nuclear factor-κB/Toll-like receptor 4 (NF-κB/TLR-4) protein was also decreased in stachydrine treated group than TBI group. Histopathology study on brain tissue reveals that the percentage of apoptotic cells was also reduced in stachydrine treated group than TBI group. Data of this investigation concludes that stachydrine protects the neuronal injury by attenuating the phosphatidylinositide 3-kinases/mammalian target of rapamycin/Protein kinase B (PI3K/m-TOR/Akt) and NF-κB/TLR-4 pathway in TBI injured rats.
Collapse
Affiliation(s)
- Nianzu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Si Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zheng Hao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
99
|
Smulski CR, Eibel H. BAFF and BAFF-Receptor in B Cell Selection and Survival. Front Immunol 2018; 9:2285. [PMID: 30349534 PMCID: PMC6186824 DOI: 10.3389/fimmu.2018.02285] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
The BAFF-receptor (BAFFR) is encoded by the TNFRSF13C gene and is one of the main pro-survival receptors in B cells. Its function is impressively documented in humans by a homozygous deletion within exon 2, which leads to an almost complete block of B cell development at the stage of immature/transitional B cells. The resulting immunodeficiency is characterized by B-lymphopenia, agammaglobulinemia, and impaired humoral immune responses. However, different from mutations affecting pathway components coupled to B cell antigen receptor (BCR) signaling, BAFFR-deficient B cells can still develop into IgA-secreting plasma cells. Therefore, BAFFR deficiency in humans is characterized by very few circulating B cells, very low IgM and IgG serum concentrations but normal or high IgA levels.
Collapse
Affiliation(s)
- Cristian R Smulski
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
100
|
DUSP6 mediates T cell receptor-engaged glycolysis and restrains T FH cell differentiation. Proc Natl Acad Sci U S A 2018; 115:E8027-E8036. [PMID: 30087184 DOI: 10.1073/pnas.1800076115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activated T cells undergo metabolic reprogramming and effector-cell differentiation but the factors involved are unclear. Utilizing mice lacking DUSP6 (DUSP6-/-), we show that this phosphatase regulates T cell receptor (TCR) signaling to influence follicular helper T (TFH) cell differentiation and T cell metabolism. In vitro, DUSP6-/- CD4+ TFH cells produced elevated IL-21. In vivo, TFH cells were increased in DUSP6-/- mice and in transgenic OTII-DUSP6-/- mice at steady state. After immunization, DUSP6-/- and OTII-DUSP6-/- mice generated more TFH cells and produced more antigen-specific IgG2 than controls. Activated DUSP6-/- T cells showed enhanced JNK and p38 phosphorylation but impaired glycolysis. JNK or p38 inhibitors significantly reduced IL-21 production but did not restore glycolysis. TCR-stimulated DUSP6-/- T cells could not induce phosphofructokinase activity and relied on glucose-independent fueling of mitochondrial respiration. Upon CD28 costimulation, activated DUSP6-/- T cells did not undergo the metabolic commitment to glycolysis pathway to maintain viability. Unexpectedly, inhibition of fatty acid oxidation drastically lowered IL-21 production in DUSP6-/- TFH cells. Our findings suggest that DUSP6 connects TCR signaling to activation-induced metabolic commitment toward glycolysis and restrains TFH cell differentiation via inhibiting IL-21 production.
Collapse
|