51
|
The pathophysiological function of non-gastrointestinal farnesoid X receptor. Pharmacol Ther 2021; 226:107867. [PMID: 33895191 DOI: 10.1016/j.pharmthera.2021.107867] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Farnesoid X receptor (FXR) influences bile acid homeostasis and the progression of various diseases. While the roles of hepatic and intestinal FXR in enterohepatic transport of bile acids and metabolic diseases were reviewed previously, the pathophysiological functions of FXR in non-gastrointestinal cells and tissues have received little attention. Thus, the roles of FXR in the liver, immune system, nervous system, cardiovascular system, kidney, and pancreas beyond the gastrointestinal system are reviewed herein. Gain of FXR function studies in non-gastrointestinal tissues reveal that FXR signaling improves various experimentally-induced metabolic and immune diseases, including non-alcoholic fatty liver disease, type 2 diabetes, primary biliary cholangitis, sepsis, autoimmune diseases, multiple sclerosis, and diabetic nephropathy, while loss of FXR promotes regulatory T cells production, protects the brain against ischemic injury, atherosclerosis, and inhibits pancreatic tumor progression. The downstream pathways regulated by FXR are diverse and tissue/cell-specific, and FXR has both ligand-dependent and ligand-independent activities, all of which may explain why activation and inhibition of FXR signaling could produce paradoxical or even opposite effects in some experimental disease models. FXR signaling is frequently compromised by diseases, especially during the progressive stage, and rescuing FXR expression may provide a promising strategy for boosting the therapeutic effect of FXR agonists. Tissue/cell-specific modulation of non-gastrointestinal FXR could influence the treatment of various diseases. This review provides a guide for drug discovery and clinical use of FXR modulators.
Collapse
|
52
|
Yin Y, Wang M, Gu W, Chen L. Intestine-specific FXR agonists as potential therapeutic agents for colorectal cancer. Biochem Pharmacol 2021; 186:114430. [PMID: 33556338 DOI: 10.1016/j.bcp.2021.114430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most malignant cancers in the world. A major cause of death in CRC patients is the limited therapeutic options in its advanced stages. The Farnesoid X receptor (FXR) is a member of the nuclear superfamily, which is effective in slowing the progression of colorectal cancer in addition to its extraordinary role in regulating metabolic disorders. Due to the systemic side-effects caused by non-selective agonists, the intestine-restricted FXR agonists can induce a whole-body benefit without activating the hepatic FXR, suggesting intestinal FXR activation as a potentially safer therapy in the treatment of CRC. This review highlights the effects of FXR on the disturbed bile acid circulation and the carcinogenesis of CRC and with a specific emphasis on listing the functions of several intestinal-restricted FXR agonists.
Collapse
Affiliation(s)
- Yiming Yin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Mengge Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Wenjie Gu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Lili Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
53
|
New-Aaron M, Ganesan M, Dagur RS, Kharbanda KK, Poluektova LY, Osna NA. Obeticholic acid attenuates human immunodeficiency virus/alcohol metabolism-induced pro-fibrotic activation in liver cells. World J Hepatol 2020; 12:965-975. [PMID: 33312422 PMCID: PMC7701963 DOI: 10.4254/wjh.v12.i11.965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The morbidity and mortality of human immunodeficiency virus (HIV)-infection is often associated with liver disease, which progresses slowly into severe liver dysfunction. There are multiple insults which exacerbate HIV-related liver injury, including HIV-associated dysregulation of lipid metabolism and fat turnover, co-infections with hepatotropic viruses and alcohol abuse. As we reported before, exposure of hepatocytes to HIV and alcohol metabolites causes high oxidative stress, impairs proteasomal and lysosomal functions leading to accumulation of HIV in these cells, which end-ups with apoptotic cell death and finally promotes development of liver fibrosis. AIM To study whether obeticholic acid (OCA) prevents HIV/ethanol metabolism-induced hepatotoxicity and subsequent activation of hepatic stellate cells (HSC) by HIV+ apoptotic hepatocyte engulfment. METHODS Huh7.5-CYP (RLW) cells were exposed to HIV and acetaldehyde-generating system (AGS) in the presence or absence of OCA. In the cells, we measured the expression of HIV-related markers: HIVgagRNA-by real-time polymerase chain reaction (PCR), p24- by western blot, HIV DNA-by semi-nested PCR, integrated HIV DNA-by ddPCR. Lysosomal and proteasomal activities were measured using fluorometrically-labeled substrates. For hepatocyte apoptosis, cleaved caspase 3 and cleaved PARP were visualized by western blot and cytokeratin 18- by M30 ELISA-in supernatants. Apoptotic bodies were generated from untreated and HIV-treated RLW cells exposed to UV light. Pro-fibrotic activation of HSC was characterized by Col1A1 and transforming growth factor-β mRNAs, while inflammasome activation- by NLRP3, caspase 1, interleukin (IL)-6, IL-1β mRNA levels. RESULTS In RLW cells, OCA treatment attenuated HIV-AGS-induced accumulation of HIVgagRNA, HIV DNA and p24. OCA suppressed reactive oxygen species production and restored chymotrypsin-like proteasome activity as well as cathepsin B lysosome activity. OCA also decreased HIV-AGS-triggered apoptosis in RLW cells. Exposure of HIV-containing apoptotic hepatocytes to HSC prevented activation of inflammasome and induced pro-fibrotic activation in these cells. CONCLUSION We conclude that by suppressing oxidative stress and restoring proteasomal and lysosomal functions impaired by HIV and ethanol metabolism, OCA decreases accumulation of HIV in hepatocytes, leading to down-regulation of apoptosis in these cells. In addition, OCA reverses pro-fibrotic and inflammasome-related activation of HSC triggered by engulfment of HIV-containing apoptotic hepatocytes, potentially contributing to suppression of liver fibrosis development.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental, Agriculture and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68105, United States
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Raghubendra Singh Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, United States.
| |
Collapse
|
54
|
Role of Farnesoid X Receptor in the Pathogenesis of Respiratory Diseases. Can Respir J 2020; 2020:9137251. [PMID: 33294085 PMCID: PMC7714608 DOI: 10.1155/2020/9137251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Farnesoid X receptor (FXR) is a bile acid receptor encoded by the Nr1h4 gene. FXR plays an important role in maintaining the stability of the internal environment and the integrity of many organs, including the liver and intestines. The expression of FXR in nondigestible tissues other than in the liver and small intestine is known as the expression of “nonclassical” bile acid target organs, such as blood vessels and lungs. In recent years, several studies have shown that FXR is widely involved in the pathogenesis of various respiratory diseases, such as chronic obstructive pulmonary disease, bronchial asthma, and idiopathic pulmonary fibrosis. Moreover, a number of works have confirmed that FXR can regulate the bile acid metabolism in the body and exert its anti-inflammatory and antifibrotic effects in the airways and lungs. In addition, FXR may be used as a potential therapeutic target for some respiratory diseases. For example, FXR can regulate the tumor microenvironment by regulating the balance of inflammatory and immune responses in the body to promote the occurrence and development of non-small-cell lung cancer (NSCLC), thereby being considered a potential target for immunotherapy of NSCLC. In this article, we provide an overview of the internal relationship between FXR and respiratory diseases to track the progress that has been achieved thus far in this direction and suggest potential therapeutic prospects of FXR in respiratory diseases.
Collapse
|
55
|
Sun X, Xue H, Zan B, Zhao Y, Li Y, Wang T, Wu J, Liu S, Wang Z, Shi R, Yang L, Ma Y. Anti-convulsant effects of cultures bear bile powder in febrile seizure via regulation of neurotransmission and inhibition of neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:112998. [PMID: 32485303 DOI: 10.1016/j.jep.2020.112998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/01/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural bear bile powder (NBBP) has been used to treat seizures for thousands of years, but its application is greatly restricted due to ethical reasons. Cultured bear bile powder (CBBP), which is produced by biotransformation, may be an appropriate substitute for NBBP. However, the anti-convulsant effects of CBBP and its mechanisms remain unclear. AIM OF THE STUDY This study aimed to investigate the anti-convulsant effects and possible mechanisms of CBBP in a febrile seizure (FS) rat model. MATERIALS AND METHODS FS was induced by placing the rats in a warm water bath (45.5 °C). The incidence rate and latency of FS, and hematoxylin-eosin staining (HE) were conducted for neurological damage. The levels of 4 bile acids and 8 main neurotransmitters in vivo were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The expression of bile acid related transports, neurotransmitter receptors, inflammatory factors, neurotrophic factors and glial fibrillary acidic protein (GFAP) in hippocampal tissues were detected by real-time PCR, western blotting, and immunohistochemistry. RESULTS Pre-treatments with CBBP and similarly, NBBP, significantly reduced the incidence rate and prolonged the latency of FS. Additionally, CBBP alleviated the histological injury induced by FS in the rat hippocampus tissue. LC-MS/MS analyses revealed that CBBP markedly increased the levels of tauroursodeoxycholic acid (TUDCA), taurochenodeoxycholic acid (TCDCA), ursodeoxycholic acid (UDCA), and chenodeoxycholic acid (CDCA) in FS rats. Furthermore, the content of gamma-aminobutyric acid (GABA) was up-regulated in rats pre-treated with CBBP whereas GFAP was down-regulated. CBBP also significantly suppressed the expression of interleukin -1β (IL-1β), tumor necrosis factor α (TNF-α), nuclear factor kappa B (NF-κB), and brain-derived neurotrophic factor (BDNF) and its TrkB receptors, and improved the expression of GABA type A receptors (GABAAR) and farnesoid X receptors (FXR). CONCLUSIONS The present study demonstrated that CBBP had anti-convulsant effects in a FS rat model. CBBP may protect rats against FS, probably by up-regulating FXR, which was activated by increasing brain bile acids, up-regulating GABAergic transmission by inhibiting BDNF-TrkB signaling, and suppressing neuroinflammation by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Xiaoshu Sun
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Haoyu Xue
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bin Zan
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yining Zhao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shaoyong Liu
- Shanghai Kai Bao Pharmaceutical CO. Ltd., Shanghai, 201401, China.
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Rong Shi
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Li Yang
- Centre for Traditional Chinese Medicine of Complexity Systems, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
56
|
Zagoskin P, Erlykina E. Bile Acids as a New Type of Steroid Hormones Regulating Nonspecific Energy Expenditure of the Body (Review). Sovrem Tekhnologii Med 2020; 12:114-127. [PMID: 34796012 PMCID: PMC8596256 DOI: 10.17691/stm2020.12.5.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The review is devoted to the systematization, classification, and generalization of the results of modern scientific research on the role of bile acids as a new class of steroid hormones. The paper presents the evidence for bile acid participation in the regulation of the body energy metabolism, body weight control, as well as the pathogenesis of obesity, diabetes mellitus, insulin resistance, and cardiovascular diseases. Particular attention is paid to the role of bile acids in the control of nonspecific energy expenditure of the body. The applied aspects of using the novel data about the membrane and intracellular receptors responsible for the development of hormonal regulatory effects of bile acids are analyzed. According to the authors, the modern data on the role of bile acids in the regulation of body functions allow a deeper understanding of the pathogenesis of body weight disorders and associated cardiovascular diseases. The review demonstrates promising directions in the search for specific methods of prevention and correction of these pathological conditions.
Collapse
Affiliation(s)
- P.P. Zagoskin
- Associate Professor, Department of Biochemistry named after G.Ya. Gorodisskaya; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E.I. Erlykina
- Professor, Head of the Department of Biochemistry named after G.Ya. Gorodisskaya Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
57
|
Zhang G, Sun X, Wen Y, Shi A, Zhang J, Wei Y, Wu X. Hesperidin alleviates cholestasis via activation of the farnesoid X receptor in vitro and in vivo. Eur J Pharmacol 2020; 885:173498. [PMID: 32841642 DOI: 10.1016/j.ejphar.2020.173498] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/16/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Cholestasis causes the intrahepatic accumulation of bile acids leading to hepatobiliary injury. Recently obeticholic acid, a farnesoid X receptor (FXR) agonist, was FDA-approved to treat cholestatic liver diseases, providing a new therapeutic strategy for cholestasis. The purpose of the current study was to characterize a novel FXR agonist and verify the anti-cholestatic effect of hesperidin (HP) in vivo and in vitro. Based on a molecular docking study that predicted that HP would bind to FXR, the hepatoprotective effect of HP against cholestasis and hepatotoxicity was evaluated in mice and in normal and FXR-suppressed HepaRG cells. HP prevented bile acid toxicity in HepaRG cells, and this effect was blocked by FXR silencing. HP appears to activate FXR to prevent cholestatic liver injury. Dynamic change analysis of bile acids revealed that HP promoted bile acid excretion into feces and reduced hepatic accumulation via the regulation of the FXR-target genes bile salt export pump, multi-drug resistance-associated protein 2, and Na+-taurocholate cotransporting polypeptide. Furthermore, HP down-regulated enzymes involved in bile acid synthesis including cholesterol 7α-hydroxylase and sterol 27-hydroxylase. HP produced a protective effect against cholestasis via FXR activation, and may be an effective approach for the prevention and treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiaohan Sun
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China; College of Pharmaceutical Science, Lanzhou University, Lanzhou, 730000, China
| | - Yuanjie Wen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China; College of Pharmaceutical Science, Lanzhou University, Lanzhou, 730000, China
| | - A'xi Shi
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Jianping Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yuhui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xin'an Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
58
|
Li J, Liu M, Li Y, Sun DD, Shu Z, Tan Q, Guo S, Xie R, Gao L, Ru H, Zang Y, Liu H, Li J, Zhou Y. Discovery and Optimization of Non-bile Acid FXR Agonists as Preclinical Candidates for the Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2020; 63:12748-12772. [PMID: 32991173 DOI: 10.1021/acs.jmedchem.0c01065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Farnesoid X receptor (FXR) plays a key role in bile acid homeostasis, inflammation, fibrosis, and metabolism of lipid and glucose and becomes a promising therapeutic target for nonalcoholic steatohepatitis (NASH) or other FXR-dependent diseases. The phase III trial results of obeticholic acid demonstrate that the FXR agonists emerge as a promising intervention in patients with NASH and fibrosis, but this bile acid-derived FXR agonist brings severe pruritus and an elevated risk of cardiovascular disease for patients. Herein, we reported our efforts in the discovery of a series of non-bile acid FXR agonists, and 36 compounds were designed and synthesized based on the structure-based drug design and structural optimization strategies. Particularly, compound 42 is a highly potent and selective FXR agonist, along with good pharmacokinetic profiles, high liver distribution, and preferable in vivo efficacy, indicating that it is a potential candidate for the treatment of NASH or other FXR-dependent diseases.
Collapse
Affiliation(s)
- Junyou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mengqi Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yazhou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Dan-Dan Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhihao Shu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qian Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Rongrong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hongbo Ru
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
59
|
Luo G, Lin X, Li Z, Xiao M, Li X, Zhang D, Xiang H. Structure-guided modification of isoxazole-type FXR agonists: Identification of a potent and orally bioavailable FXR modulator. Eur J Med Chem 2020; 209:112910. [PMID: 33049605 DOI: 10.1016/j.ejmech.2020.112910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022]
Abstract
Farnesoid X receptor (FXR) agonists are emerging as potential therapeutics for the treatment of various metabolic diseases, as they display multiple effects on bile acid, lipid, and glucose homeostasis. Although the steroidal obeticholic acid, a full FXR agonist, was recently approved, several side effects probably due to insufficient pharmacological selectivity impede its further clinical application. Activating FXR in a partial manner is therefore crucial in the development of novel FXR modulators. Our efforts focusing on isoxazole-type FXR agonists, common nonsteroidal agonists for FXR, led to the discovery a series of novel FXR agonists bearing aryl urea moieties through structural simplification of LJN452 (phase 2). Encouragingly, compound 11k was discovered as a potent FXR agonist which exhibited similar FXR agonism potency but lower maximum efficacy compared to full agonists GW4064 and LJN452 in cell-based FXR transactivation assay. Extensive in vitro evaluation further confirmed partial efficacy of 11k in cellular FXR-dependent gene modulation, and revealed its lipid-reducing activity. More importantly, orally administration of 11k in mice exhibited desirable pharmacokinetic characters resulting in promising in vivo FXR agonistic activity.
Collapse
Affiliation(s)
- Guoshun Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhenbang Li
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Maoxu Xiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinyu Li
- School of Life and Health Sciences and Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China
| | - Dayong Zhang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Hua Xiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
60
|
Sahu R, Mishra R, Majee C. An insight into primary biliary cholangitis and its recent advances in treatment: semi-synthetic analogs to combat ursodeoxycholic-acid resistance. Expert Rev Gastroenterol Hepatol 2020; 14:985-998. [PMID: 32674617 DOI: 10.1080/17474124.2020.1797485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease which on progression causes cirrhosis; various studies also suggested that several diseases can co-exist in patients. In existing depiction of disease PBC, apart from entire use of ursodeoxycholic acid (UDCA), several patients need to step forward to liver-transplantation or death due to resistance or non-responder with UDCA monotherapy. AREAS COVERED To overcome this non-respondent treatment, novel bile acid semi-synthetic analogs have been identified which shows their potency against for farnesoid X receptor and transmembrane G protein-coupled receptor-5 which are identified as target for many developing analogs which have desirable pharmacokinetic profiles. EXPERT OPINION A range of studies suggests that adding semisynthetic analogs in therapeutic regime improves liver biochemistries in patients with suboptimal response to UDCA. Thus, the aspire of this review is to abridge and compare therapeutic value and current markets affirm of various bile acids semi-synthetic analogs which certainly are having promising effects in PBC monotherapy or in pooled treatment with UDCA for PBC.
Collapse
Affiliation(s)
- Rakesh Sahu
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute) , Greater Noida, India
| | - Rakhi Mishra
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute) , Greater Noida, India
| | - Chandana Majee
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute) , Greater Noida, India
| |
Collapse
|
61
|
Li C, Yang J, Wang Y, Qi Y, Yang W, Li Y. Farnesoid X Receptor Agonists as Therapeutic Target for Cardiometabolic Diseases. Front Pharmacol 2020; 11:1247. [PMID: 32982723 PMCID: PMC7479173 DOI: 10.3389/fphar.2020.01247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiometabolic diseases are characterized as a combination of multiple risk factors for cardiovascular disease (CVD) and metabolic diseases including diabetes mellitus and dyslipidemia. Cardiometabolic diseases are closely associated with cell glucose and lipid metabolism, inflammatory response and mitochondrial function. Farnesoid X Receptor (FXR), a metabolic nuclear receptor, are found to be activated by primary BAs such as chenodeoxycholic acid (CDCA), cholic acid (CA) and synthetic agonists such as obeticholic acid (OCA). FXR plays crucial roles in regulating cholesterol homeostasis, lipid metabolism, glucose metabolism, and intestinal microorganism. Recently, emerging evidence suggests that FXR agonists are functional for metabolic syndrome and cardiovascular diseases and are considered as a potential therapeutic agent. This review will discuss the pathological mechanism of cardiometabolic disease and reviews the potential mechanisms of FXR agonists in the treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Chao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Wang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingzi Qi
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqing Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
62
|
Абатуров А, Никулина А. Antibiotic Therapy as a Risk Factor of Obesity Development in Children. ПЕДИАТРИЯ. ВОСТОЧНАЯ ЕВРОПА 2020:268-290. [DOI: 10.34883/pi.2020.8.2.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Настоящий обзор научной литературы посвящен вопросам, связанным с механизмами антибактериально-индуцированного адипогенеза. Антибиотиками, наиболее высоко ассоциированными с развитием ожирения у детей, считают: амоксициллин, цефотаксим, макролиды, тетрациклины, ванкомицин. На основании результатов филогенетических, метагеномных исследований эффектов антибиотиков установлено, что их применение в антенатальном, раннем постнатальном периоде приводит к пролонгированным изменениям как состава, так и функционирования микробиома, которые ассоциированы с повышенным риском последующего увеличения массы тела ребенка. Механизмы непосредственного влияния антибиотиков на адипогенез связаны с их способностью повышать аппетит за счет стимуляции высвобождения орексина и меланин-концентрирующего гормона; увеличивать абсорбцию пищевых ингредиентов; активировать липогенез; индуцировать митохондриальную дисфункцию и тем самым способствовать накоплению жирных кислот. Применение антибиотиков существенно изменяет структуру микробиома кишечника, а именно: развитие ожирения связано с высоким уровнем представительства бактерий филюмов Actinobacteria и Firmicutes в сочетании со снижением численности бактерий Bacteroidetes, Verrucomicrobia и Faecalibacterium prausnitzii. Антибиотик-индуцированные изменения микробиома могут существенно влиять на аппетит, так как уровень грелина, вызывающего аппетит, положительно коррелирует с представительством бактерий Bacteroides и Prevotella, и отрицательно – с численностью бактерий Bifidobacterium, Lactobacillus, Blautia coccoides и Eubacterium rectale. Доказано, что применение некоторых антибиотиков сопровождается не только накоплением висцерального жира, но и приводит к развитию как неалкогольной болезни печени, так и инсулинорезистентности. Рецепторы FXR и TGR5 являются сенсорами изменений микробиоты кишечника, которые участвуют в регуляции метаболических процессов макроорганизма. Развитие ожирения характеризуется наличием низкоуровневого системного воспаления. При развитии ожирения по мере увеличения размеров адипоцитов фенотип макрофагов меняется на провоспалительный фенотип М1. Накопление провоспалительных клеток в висцеральной жировой ткани является важной причиной развития инсулинорезистентности. В настоящее время необходимость применения антибиотиков при лечении инфекционных заболеваний, вызванных бактериальными агентами, не вызывает никаких клинических сомнений. Однако появление научных сведений о метаболических эффектах, возникновение которых ассоциировано с антибиотикотерапией, ставит клинические новые задачи, решение которых, вероятно, лежит в оптимизации режимов применения антибиотиков и выборе сопровождающих лекарственных средств.
This review of scientific literature is devoted to issues related to the mechanisms of antibacterial- induced adipogenesis. The antibiotics most highly associated with the development of obesity in children are the following: amoxicillin, cefotaxime, macrolides, tetracyclines, vancomycin. On the base of the results of phylogenetic, metagenomic studies of the effects of antibiotics, it was found that their use in the antenatal, early postnatal period leads to prolonged changes in both the composition and functioning of the microbiome, which is associated with the increased risk of subsequent increase of body weight of the child. The mechanisms of direct effect of antibiotics on adipogenesis are associated with their ability to increase appetite, by stimulating the release of orexin and melanin-concentrating hormone; increase the absorption of food ingredients; activate lipogenesis; induce mitochondrial dysfunction and thereby contribute to accumulation of fatty acids. The use of antibiotics significantly changes the structure of the intestinal microbiome, namely, the development of obesity is associated with a high representation of phylum bacteria Actinobacteria and Firmicutes in combination with the decrease of the number of bacteria Bacteroidetes, Verrucomicrobia and Faecalibacterium prausnitzii. Antibiotic-induced changes in the microbiome can significantly affect appetite, because the level of ghrelin that causes appetite positively correlates with the presence of bacteria Bacteroides and Prevotella, and negatively with the number of bacteria Bifidobacterium, Lactobacillus, Blautia coccoides and Eubacterium rectale. It was proved that the use of certain antibiotics is accompanied not only by the accumulation of visceral fat, but also leads to the development of both non-alcoholic liver disease and insulin resistance. The FXR and TGR5 receptors are the sensors of changes in the intestinal microbiota, which is involved in the regulation of the metabolic processes of the macroorganism. The development of obesity is characterized by the presence of low-level systemic inflammation. With the development of obesity, as the size of adipocytes increases, the macrophage phenotype changes to the pro- inflammatory M1 phenotype. The accumulation of pro-inflammatory cells in visceral adipose tissue is an important reason for development of insulin resistance. Currently, the need for antibiotics in the treatment of infectious diseases caused by bacterial agents does not raise any clinical doubts. However, the emergence of scientific information about metabolic effects, the occurrence of which is associated with antibiotic therapy, presents new clinical challenges, the solution of which probably lies in optimizing antibiotic regimens and choosing the accompanying drugs.
Collapse
|
63
|
Kumari A, Pal Pathak D, Asthana S. Bile acids mediated potential functional interaction between FXR and FATP5 in the regulation of Lipid Metabolism. Int J Biol Sci 2020; 16:2308-2322. [PMID: 32760200 PMCID: PMC7378638 DOI: 10.7150/ijbs.44774] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023] Open
Abstract
Perturbation in lipid homeostasis is one of the major bottlenecks in metabolic diseases, especially Non-alcoholic Fatty Liver Disease (NAFLD), which has emerged as a leading global cause of chronic liver disease. The bile acids (BAs) and their derivatives exert a variety of metabolic effects through complex and intertwined pathways, thus becoming the attractive target for metabolic syndrome treatment. To modulate the lipid homeostasis, the role of BAs, turn out to be paramount as it is essential for the absorption, transport of dietary lipids, regulation of metabolic enzymes and transporters that are essential for lipid modulation, flux, and excretion. The synthesis and transport of BAs (conjugated and unconjugated) is chiefly controlled by nuclear receptors and the uptake of long-chain fatty acids (LCFA) and BA conjugation via transporters. Among them, from in-vivo studies, farnesoid X receptor (FXR) and liver-specific fatty acid transport protein 5 (FATP5) have shown convincing evidence for their key roles in lipid homeostasis and reversal of fatty liver disease substantially. BAs have a wider range of biological effects as they are identified as modulators for FXR and FATP5 both and therefore hold a significant promise for altering the lipid content in the treatment of a metabolic disorder. BAs also have received noteworthy interest in drug delivery research due to its peculiar physicochemical properties and biocompatibility. Here, we are highlighting the connecting possibility of BAs as an agonist for FXR and antagonist for FATP5, paving an avenue to target them for designing synthetic small molecules for lipid homeostasis.
Collapse
Affiliation(s)
- Anita Kumari
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| |
Collapse
|
64
|
SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. Nat Commun 2020; 11:240. [PMID: 31932588 PMCID: PMC6957516 DOI: 10.1038/s41467-019-14138-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Farnesoid X receptor (FXR) is a promising target for nonalcoholic steatohepatitis (NASH) and fibrosis. Although various FXR agonists have shown anti-fibrotic effects in diverse preclinical animal models, the response rate and efficacies in clinical trials were not optimum. Here we report that prophylactic but not therapeutic administration of obeticholic acid (OCA) prevents hepatic stellate cell (HSC) activation and fibrogenesis. Activated HSCs show limited response to OCA and other FXR agonists due to enhanced FXR SUMOylation. SUMOylation inhibitors rescue FXR signaling and thereby increasing the efficacy of OCA against HSC activation and fibrosis. FXR upregulates Perilipin-1, a direct target gene of FXR, to stabilize lipid droplets and thereby prevent HSC activation. Therapeutic coadministration of OCA and SUMOylation inhibitors drastically impedes liver fibrosis induced by CCl4, bile duct ligation, and more importantly NASH. In conclusion, we propose a promising therapeutic approach by combining SUMOylation inhibitors and FXR agonists for liver fibrosis. FXR agonists have been investigated for the treatment of non-alcoholic steatohepatitis and liver fibrosis but the clinical efficacy is not optimal. Here the authors show that enhanced FXR SUMOylation in activated hepatic stellate cells reduces FXR signaling and that this can be rescued by SUMOylation inhibitors.
Collapse
|
65
|
Garcia M, Thirouard L, Monrose M, Holota H, De Haze A, Caira F, Beaudoin C, Volle DH. Farnesoid X receptor alpha (FXRα) is a critical actor of the development and pathologies of the male reproductive system. Cell Mol Life Sci 2019; 76:4849-4859. [PMID: 31407019 PMCID: PMC11105758 DOI: 10.1007/s00018-019-03247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/01/2022]
Abstract
The farnesoid-X-receptorα (FXRα; NR1H4) is one of the main bile acid (BA) receptors. During the last decades, through the use of pharmalogical approaches and transgenic mouse models, it has been demonstrated that the nuclear receptor FXRα controls numerous physiological functions such as glucose or energy metabolisms. It is also involved in the etiology or the development of several pathologies. Here, we will review the unexpected roles of FXRα on the male reproductive tract. FXRα has been demonstrated to play functions in the regulation of testicular and prostate homeostasis. Even though additional studies are needed to confirm these findings in humans, the reviewed reports open new field of research to better define the effects of bile acid-FXRα signaling pathways on fertility disorders and cancers.
Collapse
Affiliation(s)
- Manon Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Laura Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Mélusine Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Hélène Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Angélique De Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Françoise Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France.
| | - David H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France.
| |
Collapse
|
66
|
Li Y, Meng Q, Yang M, Liu D, Hou X, Tang L, Wang X, Lyu Y, Chen X, Liu K, Yu AM, Zuo Z, Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B 2019; 9:1113-1144. [PMID: 31867160 PMCID: PMC6900561 DOI: 10.1016/j.apsb.2019.10.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice.
Collapse
Affiliation(s)
- Yuhua Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Mengbi Yang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyu Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanfeng Lyu
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ai-Ming Yu
- UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Zhong Zuo
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
67
|
Luan ZL, Huo XK, Dong PP, Tian XG, Sun CP, Lv X, Feng L, Ning J, Wang C, Zhang BJ, Ma XC. Highly potent non-steroidal FXR agonists protostane-type triterpenoids: Structure-activity relationship and mechanism. Eur J Med Chem 2019; 182:111652. [DOI: 10.1016/j.ejmech.2019.111652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022]
|
68
|
Zhou J, Huang N, Guo Y, Cui S, Ge C, He Q, Pan X, Wang G, Wang H, Hao H. Combined obeticholic acid and apoptosis inhibitor treatment alleviates liver fibrosis. Acta Pharm Sin B 2019; 9:526-536. [PMID: 31193776 PMCID: PMC6542786 DOI: 10.1016/j.apsb.2018.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
Obeticholic acid (OCA), the first FXR-targeting drug, has been claimed effective in the therapy of liver fibrosis. However, recent clinical trials indicated that OCA might not be effective against liver fibrosis, possibly due to the lower dosage to reduce the incidence of the side-effect of pruritus. Here we propose a combinatory therapeutic strategy of OCA and apoptosis inhibitor for combating against liver fibrosis. CCl4-injured mice, d-galactosamine/LPS (GalN/LPS)-treated mice and cycloheximide/TNFα (CHX/TNFα)-treated HepG2 cells were employed to assess the effects of OCA, or together with IDN-6556, an apoptosis inhibitor. OCA treatment significantly inhibited hepatic stellate cell (HSC) activation/proliferation and prevented fibrosis. Elevated bile acid (BA) levels and hepatocyte apoptosis triggered the activation and proliferation of HSCs. OCA treatment reduced BA levels but could not inhibit hepatocellular apoptosis. An enhanced anti-fibrotic effect was observed when OCA was co-administrated with IDN-6556. Our study demonstrated that OCA inhibits HSCs activation/proliferation partially by regulating BA homeostasis and thereby inhibiting activation of HSCs. The findings in this study suggest that combined use of apoptosis inhibitor and OCA at lower dosage represents a novel therapeutic strategy for liver fibrosis.
Collapse
Key Words
- ALT, alanine aminotransferase
- ANOVA, analysis of variance
- AST, aspartate aminotransferase
- BA, bile acid
- BSEP, bile salt export pump
- Bile acid
- BrdU, bromodeoxyuridine
- CA, cholic acid
- CCl4, carbon tetrachloride
- CDCA, chenodeoxycholic acid
- CHX, cycloheximide
- CYP7A1, cholesterol 7α-hydroxylase
- Col, collagen
- FXR, farnesoid X receptor
- Farnesoid X receptor
- GalN, d-galactosamine
- H&E, hematoxylin and eosin
- HPLC, high performance liquid chromatography
- HSCs, hepatic stellate cells
- Hepatic stellate cell
- Hepatocellular apoptosis
- IDN-6556
- KCs, Kupffer cells
- LPS, lipopolysaccharide
- Liver fibrosis
- OCA, obeticholic acid
- Obeticholic acid
- PBC, primary biliary cholangitis
- RT-PCR, reverse transcription polymerase chain reaction
- SHP, small heterodimer partner
- TGF, transforming growth factor
- TIMP, tissue inhibitor of metalloproteinase
- TNFα, tumor necrosis factor α
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling
- α-SMA, α-smooth muscle action
Collapse
Affiliation(s)
- Jiyu Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ningning Huang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yitong Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Shuang Cui
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Chaoliang Ge
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qingxian He
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojie Pan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
69
|
Wang H, Ge C, Zhou J, Guo Y, Cui S, Huang N, Yan T, Cao L, Che Y, Zheng Q, Zheng X, Gonzalez FJ, Wang G, Hao H. Noncanonical farnesoid X receptor signaling inhibits apoptosis and impedes liver fibrosis. EBioMedicine 2018; 37:322-333. [PMID: 30337250 PMCID: PMC6286639 DOI: 10.1016/j.ebiom.2018.10.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocyte is particularly vulnerable to apoptosis, a hallmark of many liver diseases. Although pro-apoptotic mechanisms have been extensively explored, less is known about the hepatocyte-specific anti-apoptotic molecular events and it lacks effective approach to combat hepatocyte apoptosis. We investigated the anti-apoptotic effect and mechanism of farnesoid X receptor (FXR), and strategies of how to target FXR for inhibiting apoptosis implicated in liver fibrosis. Methods Sensitivity to apoptosis was compared between wild type and Fxr−/− mice and in cultured cells. Cell-based and cell-free assays were employed to identify the binding protein of FXR and to uncover the mechanism of its anti-apoptotic effect. Overexpression of FXR by adenovirus-FXR was employed to determine its anti-fibrotic effect in CCl4-treated mice. Specimens from fibrotic patients were collected to validate the relevance of FXR on apoptosis/fibrosis. Findings FXR deficiency sensitizes hepatocytes to death receptors (DRs)-engaged apoptosis. FXR overexpression, but not FXR ligands, inhibits apoptosis both in vitro and in vivo. Apoptotic stimuli lead to drastic reduction of FXR protein levels, a prerequisite for DRs-engaged apoptosis. Mechanistically, FXR interacts with caspase 8 (CASP8) in the cytoplasm, thus preventing the formation of death-inducing signaling complex (DISC) and activation of CASP8. Adenovirus-FXR transfection impedes liver fibrosis in CCl4-treated mice. Specimens from fibrotic patients are characterized with reduced FXR expression and compromised FXR/CASP8 colocalization. Interpretation FXR represents an intrinsic apoptosis inhibitor in hepatocytes and can be targeted via restoring its expression or strengthening FXR/CASP8 interaction for inhibiting hepatocytes apoptosis in liver fibrosis. Fund National Natural Science Foundation of China. FXR physically interacts with CASP8 in cytoplasm. FXR inhibits death receptors-engaged apoptosis independent of transactivation. Reduction of cytosolic FXR is a prerequisite initiating apoptosis cascade. Forced overexpression of FXR impedes liver fibrosis.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Chaoliang Ge
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jiyu Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yitong Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Shuang Cui
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ningning Huang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijuan Cao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Che
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuling Zheng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|