51
|
Kotopoulis S, Lam C, Haugse R, Snipstad S, Murvold E, Jouleh T, Berg S, Hansen R, Popa M, Mc Cormack E, Gilja OH, Poortinga A. Formulation and characterisation of drug-loaded antibubbles for image-guided and ultrasound-triggered drug delivery. ULTRASONICS SONOCHEMISTRY 2022; 85:105986. [PMID: 35358937 PMCID: PMC8967728 DOI: 10.1016/j.ultsonch.2022.105986] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 06/13/2023]
Abstract
The aim of this study was to develop high load-capacity antibubbles that can be visualized using diagnostic ultrasound and the encapsulated drug can be released and delivered using clinically translatable ultrasound. The antibubbles were developed by optimising a silica nanoparticle stabilised double emulsion template. We produced an emulsion with a mean size diameter of 4.23 ± 1.63 µm where 38.9 ± 3.1% of the droplets contained a one or more cores. Following conversion to antibubbles, the mean size decreased to 2.96 ± 1.94 µm where 99% of antibubbles were <10 µm. The antibubbles had a peak attenuation of 4.8 dB/cm at 3.0 MHz at a concentration of 200 × 103 particles/mL and showed distinct attenuation spikes at frequencies between 5.5 and 13.5 MHz. No increase in subharmonic response was observed for the antibubbles in contrast to SonoVue®. High-speed imaging revealed that antibubbles can release their cores at MIs of 0.6. In vivo imaging indicated that the antibubbles have a long half-life of 68.49 s vs. 40.02 s for SonoVue®. The antibubbles could be visualised using diagnostic ultrasound and could be disrupted at MIs of ≥0.6. The in vitro drug delivery results showed that antibubbles can significantly improve drug delivery (p < 0.0001) and deliver the drug within the antibubbles. In conclusion antibubbles are a viable concept for ultrasound guided drug delivery.
Collapse
Affiliation(s)
- Spiros Kotopoulis
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway; Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Neoety AS, Kløfta, Norway.
| | - Christina Lam
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ragnhild Haugse
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Quality and Development, Hospital Pharmacies Enterprise in Western Norway, Bergen, Norway
| | - Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Elisa Murvold
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway; KinN Therapeutics, Bergen, Norway
| | - Tæraneh Jouleh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - Sigrid Berg
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Rune Hansen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - Mihaela Popa
- Department of Clinical Science, University of Bergen, Bergen, Norway; CCBIO, Department of Clinical Science, University of Bergen, Norway
| | - Emmet Mc Cormack
- Department of Clinical Science, University of Bergen, Bergen, Norway; KinN Therapeutics, Bergen, Norway
| | - Odd Helge Gilja
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - Albert Poortinga
- Polymer Technology, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
52
|
Alphandéry E. Ultrasound and nanomaterial: an efficient pair to fight cancer. J Nanobiotechnology 2022; 20:139. [PMID: 35300712 PMCID: PMC8930287 DOI: 10.1186/s12951-022-01243-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/02/2022] [Indexed: 01/12/2023] Open
Abstract
Ultrasounds are often used in cancer treatment protocols, e.g. to collect tumor tissues in the right location using ultrasound-guided biopsy, to image the region of the tumor using more affordable and easier to use apparatus than MRI and CT, or to ablate tumor tissues using HIFU. The efficacy of these methods can be further improved by combining them with various nano-systems, thus enabling: (i) a better resolution of ultrasound imaging, allowing for example the visualization of angiogenic blood vessels, (ii) the specific tumor targeting of anti-tumor chemotherapeutic drugs or gases attached to or encapsulated in nano-systems and released in a controlled manner in the tumor under ultrasound application, (iii) tumor treatment at tumor site using more moderate heating temperatures than with HIFU. Furthermore, some nano-systems display adjustable sizes, i.e. nanobubbles can grow into micro-bubbles. Such dual size is advantageous since it enables gathering within the same unit the targeting properties of nano bubbles via EPR effect and the enhanced ultrasound contrasting properties of micro bubbles. Interestingly, the way in which nano-systems act against a tumor could in principle also be adjusted by accurately selecting the nano-system among a large choice and by tuning the values of the ultrasound parameters, which can lead, due to their mechanical nature, to specific effects such as cavitation that are usually not observed with purely electromagnetic waves and can potentially help destroying the tumor. This review highlights the clinical potential of these combined treatments that can improve the benefit/risk ratio of current cancer treatments.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS, 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de. Cosmochimie, IMPMC, 75005, Paris, France. .,Nanobacterie SARL, 36 boulevard Flandrin, 75116, Paris, France. .,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
53
|
Evaluation of Liposome-Loaded Microbubbles as a Theranostic Tool in a Murine Collagen-Induced Arthritis Model. Sci Pharm 2022. [DOI: 10.3390/scipharm90010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by severe inflammation of the synovial tissue. Here, we assess the feasibility of liposome-loaded microbubbles as theranostic agents in a murine arthritis model. First, contrast-enhanced ultrasound (CEUS) was used to quantify neovascularization in this model since CEUS is well-established for RA diagnosis in humans. Next, the potential of liposome-loaded microbubbles and ultrasound (US) to selectively enhance liposome delivery to the synovium was evaluated with in vivo fluorescence imaging. This procedure is made very challenging by the presence of hard joints and by the limited lifetime of the microbubbles. The inflamed knee joints were exposed to therapeutic US after intravenous injection of liposome-loaded microbubbles. Loaded microbubbles were found to be quickly captured by the liver. This resulted in fast clearance of attached liposomes while free and long-circulating liposomes were able to accumulate over time in the inflamed joints. Our observations show that murine arthritis models are not well-suited for evaluating the potential of microbubble-mediated drug delivery in joints given: (i) restricted microbubble passage in murine synovial vasculature and (ii) limited control over the exact ultrasound conditions in situ given the much shorter length scale of the murine joints as compared to the therapeutic wavelength.
Collapse
|
54
|
Contrast Ultrasound, Sonothrombolysis and Sonoperfusion in Cardiovascular Disease: Shifting to Theragnostic Clinical Trials. JACC Cardiovasc Imaging 2022; 15:345-360. [PMID: 34656483 PMCID: PMC8837667 DOI: 10.1016/j.jcmg.2021.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 02/03/2023]
Abstract
Contrast ultrasound has a variety of applications in cardiovascular medicine, both in diagnosing cardiovascular disease as well as providing prognostic information. Visualization of intravascular contrast microbubbles is based on acoustic cavitation, the characteristic oscillation that results in changes in the reflected ultrasound waves. At high power, this acoustic response generates sufficient shear that is capable of enhancing endothelium-dependent perfusion in atherothrombotic cardiovascular disease (sonoperfusion). The oscillation and collapse of microbubbles in response to ultrasound also induces microstreaming and jetting that can fragment thrombus (sonothrombolysis). Several preclinical studies have focused on identifying optimal diagnostic ultrasound settings and treatment regimens. Clinical trials have been performed in acute myocardial infarction, stroke, and peripheral arterial disease often with improved outcome. In the coming years, results of ongoing clinical trials along with innovation and improvements in sonothrombolysis and sonoperfusion will determine whether this theragnostic technique will become a valuable addition to reperfusion therapy.
Collapse
|
55
|
Xu Y, Ren Y, Zhu Y, Zhang X, Wu Z, Mei Z, Hu J, Li Y, Chen X, Huang N, Xu X, Wang H, Tian J. Preparation, characterization, and antibacterial activity of tigecycline-loaded, ultrasound-activated microbubbles. Pharm Dev Technol 2021; 27:1-8. [PMID: 34895029 DOI: 10.1080/10837450.2021.2017967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Central nervous system infectious disease caused by the multidrug-resistant Acinetobacter baumannii (AB) seriously threatens human life in clinic. Tigecycline has good sensitivity in killing AB, but due to its wide tissue distribution and blood-brain barrier, concentration in cerebrospinal fluid is low, therefore, the clinical effect is limited. Herein, we designed micro-bubbled tigecycline, aimed to enhance its anti-MDRAB effects under ultrasound. The lipid microbubbles with different ratios of lipids to drugs (a ratio of 10:1, 20:1, and 40:1) were prepared by the mechanical shaking method. The morphology, zeta potential and particle size of microbubbles were tested to screen out the much better formulation. Encapsulation efficiency and drug loading amount were determined by ultracentrifugation combined with high-performance liquid chromatography. Then the in vitro antibacterial activity against AB was conducted using the selected ultrasound-activated microbubble. Results showed the selected microbubbles with high encapsulation efficiency and good stability. The mechanical shaking method is feasible for preparation of drug-loaded and ultrasound-activated lipid microbubbles. Using 0.2 mg/mL microbubbles, combined with 1 MHz, 2.5 W/cm2 and 1 min of ultrasound exhibited a potent anit-AB in vitro. This study indicates that tigecycline treatment in form of ultrasound-activated microbubble is a promising strategy against AB infections.
Collapse
Affiliation(s)
- Yanyan Xu
- Department of Pharmacy, Lishui Hospital of Zhejiang University, Lishui, China
| | - Yajun Ren
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yanyan Zhu
- Department of Pharmacy, Lishui Hospital of Zhejiang University, Lishui, China
| | - Xiayan Zhang
- Department of Pharmacy, Lishui Hospital of Zhejiang University, Lishui, China
| | - Zhenbo Wu
- Department of Pharmacy, Lishui Hospital of Zhejiang University, Lishui, China
| | - Ziwei Mei
- Department of Pharmacy, Lishui Hospital of Zhejiang University, Lishui, China
| | - Jieru Hu
- Department of Pharmacy, Lishui Hospital of Zhejiang University, Lishui, China
| | - Yuhe Li
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xiaoyu Chen
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Ni Huang
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xi Xu
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Haixiang Wang
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Jilai Tian
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
56
|
Arango-Restrepo A, Rubi JM, Kjelstrup S, Angelsen BAJ, Davies CDL. Enhancing carrier flux for efficient drug delivery in cancer tissues. Biophys J 2021; 120:5255-5266. [PMID: 34757075 DOI: 10.1016/j.bpj.2021.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 01/24/2023] Open
Abstract
Ultrasound focused toward tumors in the presence of circulating microbubbles improves the delivery of drug-loaded nanoparticles and therapeutic outcomes; however, the efficacy varies among the different properties and conditions of the tumors. Therefore, there is a need to optimize the ultrasound parameters and determine the properties of the tumor tissue important for the successful delivery of nanoparticles. Here, we propose a mesoscopic model considering the presence of entropic forces to explain the ultrasound-enhanced transport of nanoparticles across the capillary wall and through the interstitium of tumors. The nanoparticles move through channels of variable shape whose irregularities can be assimilated to barriers of entropic nature that the nanoparticles must overcome to reach their targets. The model assumes that focused ultrasound and circulating microbubbles cause the capillary wall to oscillate, thereby changing the width of transcapillary and interstitial channels. Our analysis provides values for the penetration distances of nanoparticles into the interstitium that are in agreement with experimental results. We found that the penetration increased significantly with increasing acoustic intensity as well as tissue elasticity, which means softer and more deformable tissue (Young modulus lower than 50 kPa), whereas porosity of the tissue and pulse repetition frequency of the ultrasound had less impact on the penetration length. We also considered that nanoparticles can be absorbed into cells and to extracellular matrix constituents, finding that the penetration length is increased when there is a low absorbance coefficient of the nanoparticles compared with their diffusion coefficient (close to 0.2). The model can be used to predict which tumor types, in terms of elasticity, will successfully deliver nanoparticles into the interstitium. It can also be used to predict the penetration distance into the interstitium of nanoparticles with various sizes and the ultrasound intensity needed for the efficient distribution of the nanoparticles.
Collapse
Affiliation(s)
- Andrés Arango-Restrepo
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia, Universitat de Barcelona, Barcelona, Spain.
| | - J Miguel Rubi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia, Universitat de Barcelona, Barcelona, Spain; PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Signe Kjelstrup
- PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørn Atle J Angelsen
- PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
57
|
Ultrasound and Microbubbles Enhance Uptake of Doxorubicin in Murine Kidneys. Pharmaceutics 2021; 13:pharmaceutics13122038. [PMID: 34959319 PMCID: PMC8703523 DOI: 10.3390/pharmaceutics13122038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
The use of ultrasound and microbubble-enhanced drug delivery, commonly referred to as sonoporation, has reached numerous clinical trials and has shown favourable results. Nevertheless, the microbubbles and acoustic path also pass through healthy tissues. To date, the majority of studies have focused on the impact to diseased tissues and rarely evaluated the impact on healthy and collateral tissue. The aim of this study was to test the effect and feasibility of low-intensity sonoporation on healthy kidneys in a mouse model. In our work here, we used a clinical diagnostic ultrasound system (GE Vivid E9) with a C1-5 ultrasound transducer combined with a software modification for 20-µs-long pulses to induce the ultrasound-guided drug delivery of doxorubicin (DOX) in mice kidneys in combination with SonoVue® and Sonazoid™ microbubbles. The acoustic output settings were within the commonly used diagnostic ranges. Sonoporation with SonoVue® resulted in a significant decrease in weight vs. DOX alone (p = 0.0004) in the first nine days, whilst all other comparisons were not significant. Ultrasound alone resulted in a 381% increase in DOX uptake vs. DOX alone (p = 0.0004), whilst SonoVue® (p = 0.0001) and Sonazoid™ (p < 0.0001) further increased the uptake nine days after treatment (419% and 493%, respectively). No long-standing damage was observed in the kidneys via histology. In future sonoporation and drug uptake studies, we therefore suggest including an “ultrasound alone” group to verify the actual contribution of the individual components of the procedure on the drug uptake and to perform collateral damage studies to ensure there is no negative impact of low-intensity sonoporation on healthy tissues.
Collapse
|
58
|
Yan Y, Chen Y, Liu Z, Cai F, Niu W, Song L, Liang H, Su Z, Yu B, Yan F. Brain Delivery of Curcumin Through Low-Intensity Ultrasound-Induced Blood-Brain Barrier Opening via Lipid-PLGA Nanobubbles. Int J Nanomedicine 2021; 16:7433-7447. [PMID: 34764649 PMCID: PMC8575349 DOI: 10.2147/ijn.s327737] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disorder. Owing to the presence of blood-brain barrier (BBB), conventional pharmaceutical agents are difficult to the diseased nuclei and exert their action to inhibit or delay the progress of PD. Recent literatures have demonstrated that curcumin shows the great potential to treat PD. However, its applications are still difficult in vivo due to its poor druggability and low bioavailability through the BBB. Methods Melt-crystallization methods were used to improve the solubility of curcumin, and curcumin-loaded lipid-PLGA nanobubbles (Cur-NBs) were fabricated through encapsulating the curcumin into the cavity of lipid-PLGA nanobubbles. The bubble size, zeta potentials, ultrasound imaging capability and drug encapsulation efficiency of the Cur-NBs were characterized by a series of analytical methods. Low-intensity focused ultrasound (LIFU) combined with Cur-NB was used to open the BBB to facilitate curcumin delivery into the deep brain of PD mice, followed by behavioral evaluation for the treatment efficacy. Results The solubility of curcumin was improved by melt-crystallization methods, with 2627-fold higher than pure curcumin. The resulting Cur-NBs have a nanoscale size about 400 nm and show excellent contrast imaging performance. Curcumin drugs encapsulated into Cur-NBs could be effectively released when Cur-NBs were irradiated by LIFU at the optimized acoustic pressure, achieving 30% cumulative release rate within 6 h. Importantly, Cur-NBs combined with LIFU can open the BBB and locally deliver the curcumin into the deep-seated brain nuclei, significantly enhancing efficacy of curcumin in the Parkinson C57BL/6J mice model in comparison with only Cur-NBs and LIFU groups. Conclusion In this work, we greatly improved the solubility of curcumin and developed Cur-NBs for brain delivery of curcumin against PD through combining with LIFU-mediating BBB. Cur-NBs provide a platform for these potential drugs which are difficult to cross the BBB to treat PD disease or other central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Yiran Yan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yan Chen
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhongxun Liu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Wanting Niu
- VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Liming Song
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Haifeng Liang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhiwen Su
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, People's Republic of China
| |
Collapse
|
59
|
de Maar JS, Rousou C, van Elburg B, Vos HJ, Lajoinie GPR, Bos C, Moonen CTW, Deckers R. Ultrasound-Mediated Drug Delivery With a Clinical Ultrasound System: In Vitro Evaluation. Front Pharmacol 2021; 12:768436. [PMID: 34737709 PMCID: PMC8560689 DOI: 10.3389/fphar.2021.768436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy efficacy is often reduced by insufficient drug uptake in tumor cells. The combination of ultrasound and microbubbles (USMB) has been shown to improve drug delivery and to enhance the efficacy of several drugs in vitro and in vivo, through effects collectively known as sonopermeation. However, clinical translation of USMB therapy is hampered by the large variety of (non-clinical) US set-ups and US parameters that are used in these studies, which are not easily translated to clinical practice. In order to facilitate clinical translation, the aim of this study was to prove that USMB therapy using a clinical ultrasound system (Philips iU22) in combination with clinically approved microbubbles (SonoVue) leads to efficient in vitro sonopermeation. To this end, we measured the efficacy of USMB therapy for different US probes (S5-1, C5-1 and C9-4) and US parameters in FaDu cells. The US probe with the lowest central frequency (i.e. 1.6 MHz for S5-1) showed the highest USMB-induced intracellular uptake of the fluorescent dye SYTOX™ Green (SG). These SG uptake levels were comparable to or even higher than those obtained with a custom-built US system with optimized US parameters. Moreover, USMB therapy with both the clinical and the custom-built US system increased the cytotoxicity of the hydrophilic drug bleomycin. Our results demonstrate that a clinical US system can be used to perform USMB therapy as efficiently as a single-element transducer set-up with optimized US parameters. Therefore, future trials could be based on these clinical US systems, including validated US parameters, in order to accelerate successful translation of USMB therapy.
Collapse
Affiliation(s)
- Josanne S de Maar
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Charis Rousou
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| | - Benjamin van Elburg
- Physics of Fluids Group, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Hendrik J Vos
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Guillaume P R Lajoinie
- Physics of Fluids Group, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Clemens Bos
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chrit T W Moonen
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Roel Deckers
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
60
|
Snipstad S, Vikedal K, Maardalen M, Kurbatskaya A, Sulheim E, Davies CDL. Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine. Adv Drug Deliv Rev 2021; 177:113847. [PMID: 34182018 DOI: 10.1016/j.addr.2021.113847] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Successful delivery of drugs and nanomedicine to tumors requires a functional vascular network, extravasation across the capillary wall, penetration through the extracellular matrix, and cellular uptake. Nanomedicine has many merits, but penetration deep into the tumor interstitium remains a challenge. Failure of cancer treatment can be caused by insufficient delivery of the therapeutic agents. After intravenous administration, nanomedicines are often found in off-target organs and the tumor extracellular matrix close to the capillary wall. With circulating microbubbles, ultrasound exposure focused toward the tumor shows great promise in improving the delivery of therapeutic agents. In this review, we address the impact of focused ultrasound and microbubbles to overcome barriers for drug delivery such as perfusion, extravasation, and transport through the extracellular matrix. Furthermore, we discuss the induction of an immune response with ultrasound and delivery of immunotherapeutics. The review discusses mainly preclinical results and ends with a summary of ongoing clinical trials.
Collapse
Affiliation(s)
- Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway.
| | - Krister Vikedal
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matilde Maardalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna Kurbatskaya
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | | |
Collapse
|
61
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
62
|
Sulheim E, Hanson I, Snipstad S, Vikedal K, Mørch Y, Boucher Y, Davies CDL. Sonopermeation with Nanoparticle‐Stabilized Microbubbles Reduces Solid Stress and Improves Nanomedicine Delivery to Tumors. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Einar Sulheim
- Department of Physics Norwegian University of Science and Technology (NTNU) Trondheim NO‐7491 Norway
- Department of Biotechnology and Nanomedicine SINTEF AS Trondheim 7034 Norway
- Cancer Clinic St.Olavs Hospital Trondheim 7030 Norway
| | - Ingunn Hanson
- Department of Physics Norwegian University of Science and Technology (NTNU) Trondheim NO‐7491 Norway
| | - Sofie Snipstad
- Department of Physics Norwegian University of Science and Technology (NTNU) Trondheim NO‐7491 Norway
- Department of Biotechnology and Nanomedicine SINTEF AS Trondheim 7034 Norway
- Cancer Clinic St.Olavs Hospital Trondheim 7030 Norway
| | - Krister Vikedal
- Department of Physics Norwegian University of Science and Technology (NTNU) Trondheim NO‐7491 Norway
| | - Yrr Mørch
- Department of Biotechnology and Nanomedicine SINTEF AS Trondheim 7034 Norway
| | - Yves Boucher
- Edwin L. Steele Laboratory for Tumor Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Catharina de Lange Davies
- Department of Physics Norwegian University of Science and Technology (NTNU) Trondheim NO‐7491 Norway
| |
Collapse
|
63
|
Wu H, Zhou Y, Xu L, Tong L, Wang Y, Liu B, Yan H, Sun Z. Mapping Knowledge Structure and Research Frontiers of Ultrasound-Induced Blood-Brain Barrier Opening: A Scientometric Study. Front Neurosci 2021; 15:706105. [PMID: 34335175 PMCID: PMC8316975 DOI: 10.3389/fnins.2021.706105] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Among the effective approaches developed for blood-brain barrier (BBB) opening, ultrasound is recognized as a non-invasive technique that can induce localized BBB opening transiently and repeatedly. This technique has aroused broad attention from researchers worldwide, and numerous articles have been published recently. However, no existing study has systematically examined this field from a scientometric perspective. The aim of this study was to summarize the knowledge structure and identify emerging trends and potential hotspots in this field. Methods: Publications related to ultrasound-induced BBB opening published from 1998 to 2020 were retrieved from Web of Science Core Collection. The search strategies were as follows: topic: ("blood brain barrier" OR "BBB") AND topic: (ultrasound OR ultrason* OR acoustic* OR sonopora*). The document type was set to articles or reviews with language restriction to English. Three different analysis tools including one online platform, VOS viewer1.6.16, and CiteSpace V5.7.R2 software were used to conduct this scientometric study. Results: A total of 1,201 valid records were included in the final analysis. The majority of scientific publication was produced by authors from North America, Eastern Asia, and Western Europe. Ultrasound in Medicine and Biology was the most prominent journal. The USA, China, and Canada were the most productive countries. Hynynen K, and Mcdannold N were key researchers with considerable academic influence. According to analysis of keywords, four main research directions were identified: cluster 1 (microbubbles study), cluster 2 (management of intracranial tumors), cluster 3 (ultrasound parameters and mechanisms study), and cluster 4 (treatment of neurodegenerative diseases). The current research hotspot has shifted from the basic research of ultrasound and microbubbles to management of intracranial tumors and neurodegenerative diseases. Burst detection analysis showed that Parkinson's disease, doxorubicin, gold nanoparticle, glioblastoma, gene therapy, and Alzheimer's disease may continue to be the research frontiers. Conclusion: Ultrasound-induced BBB opening research is in a period of robust development. This study is a starting point, providing a comprehensive overview, development landscape, and future opportunities of this technology, which standout as a useful reference for researchers and decision makers interested in this area.
Collapse
Affiliation(s)
- Haiyang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Lixia Xu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Linjian Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Baolong Liu
- Department of Ultrasound, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhiming Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Spine and Spinal Cord, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
64
|
Yamaguchi K, Matsumoto Y, Suzuki R, Nishida H, Omata D, Inaba H, Kukita A, Tanikawa M, Sone K, Oda K, Osuga Y, Maruyama K, Fujii T. Enhanced antitumor activity of combined lipid bubble ultrasound and anticancer drugs in gynecological cervical cancers. Cancer Sci 2021; 112:2493-2503. [PMID: 33793049 PMCID: PMC8177762 DOI: 10.1111/cas.14907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
Chemotherapy plays an important role in the treatment of patients with gynecological cancers. Delivering anticancer drugs effectively to tumor cells with just few side effects is key in cancer treatment. Lipid bubbles (LB) are compounds that increase the vascular permeability of the tumor under diagnostic ultrasound (US) exposure and enable the effective transport of drugs to tumor cells. The aim of our study was to establish a novel drug delivery technique for chemotherapy and to identify the most effective anticancer drugs for the bubble US‐mediated drug delivery system (BUS‐DDS) in gynecological cancer treatments. We constructed xenograft models using cervical cancer (HeLa) and uterine endometrial cancer (HEC1B) cell lines. Lipid bubbles were injected i.v., combined with either cisplatin (CDDP), pegylated liposomal doxorubicin (PLD), or bevacizumab, and US was applied to the tumor. We compared the enhanced chemotherapeutic effects of these drugs and determined the optimal drugs for BUS‐DDS. Tumor volume reduction of HeLa and HEC1B xenografts following cisplatin treatment was significantly enhanced by BUS‐DDS. Both CDDP and PLD significantly enhanced the antitumor effects of BUS‐DDS in HeLa tumors; however, volume reduction by BUS‐DDS was insignificant when combined with bevacizumab, a humanized anti‐vascular endothelial growth factor mAb. The BUS‐DDS did not cause any severe adverse events and significantly enhanced the antitumor effects of cytotoxic drugs. The effects of bevacizumab, which were not as dose‐dependent as those of the two drugs used prior, were minimal. Our data suggest that BUS‐DDS technology might help achieve “reinforced targeting” in the treatment of gynecological cancers.
Collapse
Affiliation(s)
- Kohei Yamaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Matsumoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daiki Omata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Hirofumi Inaba
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asako Kukita
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Interactive Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Maruyama
- Laboratory of Theranostics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
65
|
Snipstad S, Mørch Ý, Sulheim E, Åslund A, Pedersen A, Davies CDL, Hansen R, Berg S. Sonopermeation Enhances Uptake and Therapeutic Effect of Free and Encapsulated Cabazitaxel. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1319-1333. [PMID: 33549379 DOI: 10.1016/j.ultrasmedbio.2020.12.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/18/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Delivery of drugs and nanomedicines to tumors is often heterogeneous and insufficient and, thus, of limited efficacy. Microbubbles in combination with ultrasound have been found to improve delivery to tumors, enhancing accumulation and penetration. We used a subcutaneous prostate cancer xenograft model in mice to investigate the effect of free and nanoparticle-encapsulated cabazitaxel in combination with ultrasound and microbubbles with a lipid shell or a shell of nanoparticles. Sonopermeation reduced tumor growth and prolonged survival (26%-100%), whether the free drug was co-injected with lipid-shelled microbubbles or the nanoformulation was co-injected with lipid-shelled or nanoparticle-shelled microbubbles. Coherently with the improved therapeutic response, we found enhanced uptake of nanoparticles directly after ultrasound treatment that lasted several weeks (2.3 × -15.8 × increase). Neither cavitation dose nor total accumulation of nanoparticles could explain the variation within treatment groups, emphasizing the need for a better understanding of the tumor biology and mechanisms involved in ultrasound-mediated treatment.
Collapse
Affiliation(s)
- Sofie Snipstad
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway.
| | - Ýrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Einar Sulheim
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Andreas Åslund
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - André Pedersen
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | | | - Rune Hansen
- Department of Health Research, SINTEF Digital, Trondheim, Norway; Department of Circulation and Medical imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigrid Berg
- Cancer Clinic, St. Olav's Hospital, Trondheim, Norway; Department of Health Research, SINTEF Digital, Trondheim, Norway; Department of Circulation and Medical imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
66
|
Deprez J, Lajoinie G, Engelen Y, De Smedt SC, Lentacker I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv Drug Deliv Rev 2021; 172:9-36. [PMID: 33705877 DOI: 10.1016/j.addr.2021.02.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Apart from its clinical use in imaging, ultrasound has been thoroughly investigated as a tool to enhance drug delivery in a wide variety of applications. Therapeutic ultrasound, as such or combined with cavitating nuclei or microbubbles, has been explored to cross or permeabilize different biological barriers. This ability to access otherwise impermeable tissues in the body makes the combination of ultrasound and therapeutics very appealing to enhance drug delivery in situ. This review gives an overview of the most important biological barriers that can be tackled using ultrasound and aims to provide insight on how ultrasound has shown to improve accessibility as well as the biggest hurdles. In addition, we discuss the clinical applicability of therapeutic ultrasound with respect to the main challenges that must be addressed to enable the further progression of therapeutic ultrasound towards an effective, safe and easy-to-use treatment tailored for drug delivery in patients.
Collapse
Affiliation(s)
- J Deprez
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - G Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Y Engelen
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
67
|
Snipstad S, Hanstad S, Bjørkøy A, Mørch Ý, de Lange Davies C. Sonoporation Using Nanoparticle-Loaded Microbubbles Increases Cellular Uptake of Nanoparticles Compared to Co-Incubation of Nanoparticles and Microbubbles. Pharmaceutics 2021; 13:640. [PMID: 33946327 PMCID: PMC8146007 DOI: 10.3390/pharmaceutics13050640] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Therapeutic agents can benefit from encapsulation in nanoparticles, due to improved pharmacokinetics and biodistribution, protection from degradation, increased cellular uptake and sustained release. Microbubbles in combination with ultrasound have been shown to improve the delivery of nanoparticles and drugs to tumors and across the blood-brain barrier. Here, we evaluate two different microbubbles for enhancing the delivery of polymeric nanoparticles to cells in vitro: a commercially available lipid microbubble (Sonazoid) and a microbubble with a shell composed of protein and nanoparticles. Various ultrasound parameters are applied and confocal microscopy is employed to image cellular uptake. Ultrasound enhanced cellular uptake depending on the pressure and duty cycle. The responsible mechanisms are probably sonoporation and sonoprinting, followed by uptake, and to a smaller degree enhanced endocytosis. The use of commercial Sonazoid microbubbles leads to significantly lower uptake than when using nanoparticle-loaded microbubbles, suggesting that proximity between cells, nanoparticles and microbubbles is important, and that mainly nanoparticles in the shell are taken up, rather than free nanoparticles in solution.
Collapse
Affiliation(s)
- Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway; (S.H.); (A.B.); (C.d.L.D.)
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Sem Sælandsvei 2A, 7034 Trondheim, Norway;
- Cancer Clinic, St. Olav’s Hospital, Prinsesse Kristinas Gate 1, 7030 Trondheim, Norway
| | - Sigurd Hanstad
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway; (S.H.); (A.B.); (C.d.L.D.)
| | - Astrid Bjørkøy
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway; (S.H.); (A.B.); (C.d.L.D.)
| | - Ýrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Sem Sælandsvei 2A, 7034 Trondheim, Norway;
| | - Catharina de Lange Davies
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway; (S.H.); (A.B.); (C.d.L.D.)
| |
Collapse
|
68
|
Giammalva GR, Gagliardo C, Marrone S, Paolini F, Gerardi RM, Umana GE, Yağmurlu K, Chaurasia B, Scalia G, Midiri F, La Grutta L, Basile L, Gulì C, Messina D, Pino MA, Graziano F, Tumbiolo S, Iacopino DG, Maugeri R. Focused Ultrasound in Neuroscience. State of the Art and Future Perspectives. Brain Sci 2021; 11:84. [PMID: 33435152 PMCID: PMC7827488 DOI: 10.3390/brainsci11010084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Transcranial MR-guided Focused ultrasound (tcMRgFUS) is a surgical procedure that adopts focused ultrasounds beam towards a specific therapeutic target through the intact skull. The convergence of focused ultrasound beams onto the target produces tissue effects through released energy. Regarding neurosurgical applications, tcMRgFUS has been successfully adopted as a non-invasive procedure for ablative purposes such as thalamotomy, pallidotomy, and subthalamotomy for movement disorders. Several studies confirmed the effectiveness of tcMRgFUS in the treatment of several neurological conditions, ranging from motor disorders to psychiatric disorders. Moreover, using low-frequencies tcMRgFUS systems temporarily disrupts the blood-brain barrier, making this procedure suitable in neuro-oncology and neurodegenerative disease for controlled drug delivery. Nowadays, tcMRgFUS represents one of the most promising and fascinating technologies in neuroscience. Since it is an emerging technology, tcMRgFUS is still the subject of countless disparate studies, even if its effectiveness has been already proven in many experimental and therapeutic fields. Therefore, although many studies have been carried out, many others are still needed to increase the degree of knowledge of the innumerable potentials of tcMRgFUS and thus expand the future fields of application of this technology.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (C.G.); (F.M.)
| | - Salvatore Marrone
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Federica Paolini
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Rosa Maria Gerardi
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | | | - Kaan Yağmurlu
- Departments of Neuroscience and Neurosurgery, University of Virginia Health System, Charlottesville, VA 22903, USA;
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| | - Gianluca Scalia
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, 95122 Catania, Italy; (G.S.); (F.G.)
| | - Federico Midiri
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (C.G.); (F.M.)
| | - Ludovico La Grutta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties-ProMISE, University of Palermo, 90127 Palermo, Italy;
| | - Luigi Basile
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Carlo Gulì
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Domenico Messina
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Maria Angela Pino
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Francesca Graziano
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, 95122 Catania, Italy; (G.S.); (F.G.)
| | - Silvana Tumbiolo
- Division of Neurosurgery, Villa Sofia Hospital, 90146 Palermo, Italy;
| | - Domenico Gerardo Iacopino
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| |
Collapse
|
69
|
Hu S, Zhang X, Unger M, Patties I, Melzer A, Landgraf L. Focused Ultrasound-Induced Cavitation Sensitizes Cancer Cells to Radiation Therapy and Hyperthermia. Cells 2020; 9:E2595. [PMID: 33287379 PMCID: PMC7761886 DOI: 10.3390/cells9122595] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Focused ultrasound (FUS) has become an important non-invasive therapy for solid tumor ablation via thermal effects. The cavitation effect induced by FUS is thereby avoided but applied for lithotripsy, support drug delivery and the induction of blood vessel destruction for cancer therapy. In this study, head and neck cancer (FaDu), glioblastoma (T98G), and prostate cancer (PC-3) cells were exposed to FUS by using an in vitro FUS system followed by single-dose X-ray radiation therapy (RT) or water bath hyperthermia (HT). Sensitization effects of short FUS shots with cavitation (FUS-Cav) or without cavitation (FUS) to RT or HT (45 °C, 30 min) were evaluated. FUS-Cav significantly increases the sensitivity of cancer cells to RT and HT by reducing long-term clonogenic survival, short-term cell metabolic activity, cell invasion, and induction of sonoporation. Our results demonstrated that short FUS treatment with cavitation has good potential to sensitize cancer cells to RT and HT non-invasively.
Collapse
Affiliation(s)
- Shaonan Hu
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany; (S.H.); (M.U.); (I.P.); (L.L.)
| | - Xinrui Zhang
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany; (S.H.); (M.U.); (I.P.); (L.L.)
| | - Michael Unger
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany; (S.H.); (M.U.); (I.P.); (L.L.)
| | - Ina Patties
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany; (S.H.); (M.U.); (I.P.); (L.L.)
- Department of Radiation Oncology, University of Leipzig, 04103 Leipzig, Germany
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany; (S.H.); (M.U.); (I.P.); (L.L.)
- Institute for Medical Science and Technology (IMSaT), University of Dundee, Dundee DD2 1FD, UK
| | - Lisa Landgraf
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany; (S.H.); (M.U.); (I.P.); (L.L.)
| |
Collapse
|
70
|
Hanes J, Dobakova E, Majerova P. Brain Drug Delivery: Overcoming the Blood-brain Barrier to Treat Tauopathies. Curr Pharm Des 2020; 26:1448-1465. [PMID: 32178609 DOI: 10.2174/1381612826666200316130128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics' delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.
Collapse
Affiliation(s)
- Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | - Eva Dobakova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| |
Collapse
|
71
|
Haugse R, Langer A, Murvold ET, Costea DE, Gjertsen BT, Gilja OH, Kotopoulis S, Ruiz de Garibay G, McCormack E. Low-Intensity Sonoporation-Induced Intracellular Signalling of Pancreatic Cancer Cells, Fibroblasts and Endothelial Cells. Pharmaceutics 2020; 12:pharmaceutics12111058. [PMID: 33171947 PMCID: PMC7694645 DOI: 10.3390/pharmaceutics12111058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
The use of ultrasound (US) and microbubbles (MB), usually referred to as sonoporation, has great potential to increase the efficacy of chemotherapy. However, the molecular mechanisms that mediate sonoporation response are not well-known, and recent research suggests that cell stress induced by US + MBs may contribute to the treatment benefit. Furthermore, there is a growing understanding that the effects of US + MBs are beyond only the cancer cells and involves the tumour vasculature and microenvironment. We treated pancreatic cancer cells (MIA PaCa-2) and stromal cells, fibroblasts (BJ) and human umbilical vein endothelial cells (HUVECs), with US ± MB, and investigated the extent of uptake of cell impermeable dye (calcein, by flow cytometry), viability (cell count, Annexin/PI and WST-1 assays) and activation of a number of key proteins in important intracellular signalling pathways immediately and 2 h after sonoporation (phospho flow cytometry). Different cell types responded differently to US ± MBs in all these aspects. In general, sonoporation induces immediate, transient activation of MAP-kinases (p38, ERK1/2), and an increase in phosphorylation of ribosomal protein S6 together with dephosphorylation of 4E-BP1. The sonoporation stress-response resembles cellular responses to electroporation and pore-forming toxins in membrane repair and restoring cellular homeostasis, and may be exploited therapeutically. The stromal cells were more sensitive to sonoporation than tumoural cells, and further efforts in optimising sonoporation-enhanced therapy should be targeted at the microenvironment.
Collapse
Affiliation(s)
- Ragnhild Haugse
- Centre for Pharmacy, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway;
- Department of Quality and Development, Hospital Pharmacies Enterprise in Western Norway, Møllendalsbakken 9, 5021 Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (A.L.); (D.E.C.); (B.T.G.); (G.R.d.G.)
| | - Anika Langer
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (A.L.); (D.E.C.); (B.T.G.); (G.R.d.G.)
| | - Elisa Thodesen Murvold
- KinN Therapeutics AS, Jonas Lies vei 91B, 5021 Bergen, Norway;
- Department of Clinical Medicine, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (O.H.G.); (S.K.)
| | - Daniela Elena Costea
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (A.L.); (D.E.C.); (B.T.G.); (G.R.d.G.)
- Department of Clinical Medicine, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (O.H.G.); (S.K.)
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (A.L.); (D.E.C.); (B.T.G.); (G.R.d.G.)
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Odd Helge Gilja
- Department of Clinical Medicine, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (O.H.G.); (S.K.)
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Spiros Kotopoulis
- Department of Clinical Medicine, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (O.H.G.); (S.K.)
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- EXACT Therapeutics AS, Ullernchausseen 64, 0379 Oslo, Norway
| | - Gorka Ruiz de Garibay
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (A.L.); (D.E.C.); (B.T.G.); (G.R.d.G.)
| | - Emmet McCormack
- Centre for Pharmacy, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway;
- Department of Quality and Development, Hospital Pharmacies Enterprise in Western Norway, Møllendalsbakken 9, 5021 Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway; (A.L.); (D.E.C.); (B.T.G.); (G.R.d.G.)
- KinN Therapeutics AS, Jonas Lies vei 91B, 5021 Bergen, Norway;
- Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway
- Correspondence:
| |
Collapse
|
72
|
Fagerland SMT, Berg S, Hill DK, Snipstad S, Sulheim E, Hyldbakk A, Kim J, Davies CDL. Ultrasound-Mediated Delivery of Chemotherapy into the Transgenic Adenocarcinoma of the Mouse Prostate Model. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3032-3045. [PMID: 32800470 DOI: 10.1016/j.ultrasmedbio.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Ultrasound (US) in combination with microbubbles (MB) has had promising results in improving delivery of chemotherapeutic agents. However, most studies are done in immunodeficient mice with xenografted tumors. We used two phenotypes of the spontaneous transgenic adenocarcinoma of the mouse prostate (TRAMP) model to evaluate if US + MB could enhance the therapeutic efficacy of cabazitaxel (Cab). Cab was either injected intravenously as free drug or encapsulated into nanoparticles. In both cases, Cab transiently reduced tumor and prostate volume in the TRAMP model. No additional therapeutic efficacy was observed combining Cab with US + MB, except for one tumor. Additionally, histology grading and immunostaining of Ki67 did not reveal differences between treatment groups. Mass spectrometry revealed that nanoparticle encapsulation of Cab increased the circulation time and enhanced the accumulation in liver and spleen compared with free Cab. The therapeutic results in this spontaneous, clinically relevant tumor model differ from the improved therapeutic response observed in xenografts combining US + MB and chemotherapy.
Collapse
Affiliation(s)
- Stein-Martin T Fagerland
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigrid Berg
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Health Research, SINTEF Digital, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Deborah K Hill
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Astrid Hyldbakk
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Jana Kim
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
73
|
Melich R, Bussat P, Morici L, Vivien A, Gaud E, Bettinger T, Cherkaoui S. Microfluidic preparation of various perfluorocarbon nanodroplets: Characterization and determination of acoustic droplet vaporization (ADV) threshold. Int J Pharm 2020; 587:119651. [DOI: 10.1016/j.ijpharm.2020.119651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022]
|
74
|
Ultrasound-mediated delivery enhances therapeutic efficacy of MMP sensitive liposomes. J Control Release 2020; 325:121-134. [DOI: 10.1016/j.jconrel.2020.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
|
75
|
Focused ultrasound for opening blood-brain barrier and drug delivery monitored with positron emission tomography. J Control Release 2020; 324:303-316. [DOI: 10.1016/j.jconrel.2020.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
|
76
|
Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020; 158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Physically triggered systems hold promise for improving drug delivery by enhancing the controllability of drug accumulation and release, lowering non-specific toxicity, and facilitating clinical translation. Several external physical stimuli including ultrasound, light, electric fields and magnetic fields have been used to control drug delivery and they share some common features such as spatial targeting, spatiotemporal control, and minimal invasiveness. At the same time, they possess several distinctive features in terms of interactions with biological entities and/or the extent of stimulus response. Here, we review the key advances of such systems with a focus on discussing their physical mechanisms, the design rationales, and translational challenges.
Collapse
Affiliation(s)
- Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anshuman Dasgupta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
77
|
Linz G, Djeljadini S, Steinbeck L, Köse G, Kiessling F, Wessling M. Cell barrier characterization in transwell inserts by electrical impedance spectroscopy. Biosens Bioelectron 2020; 165:112345. [PMID: 32513645 DOI: 10.1016/j.bios.2020.112345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 11/19/2022]
Abstract
We describe an impedance-based method for cell barrier integrity testing. A four-electrode electrical impedance spectroscopy (EIS) setup can be realized by simply connecting a commercial chopstick-like electrode (STX-1) to a potentiostat allowing monitoring cell barriers cultivated in transwell inserts. Subsequent electric circuit modeling of the electrical impedance results the capacitive properties of the barrier next to the well-known transepithelial electrical resistance (TEER). The versatility of the new method was analyzed by the EIS analysis of a Caco-2 monolayer in response to (a) different membrane coating materials, (b) two different permeability enhancers ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and saponin, and (c) sonoporation. For the different membrane coating materials, the TEERs of the standard and new protocol coincide and increase during cultivation, while the capacitance shows a distinct maximum for three different surface materials (no coating, Matrigel®, and collagen I). The permeability enhancers cause a decline in the TEER value, but only saponin alters the capacitance of the cell layer by two orders of magnitude. Hence, cell layer capacitance and TEER represent two independent properties characterizing the monolayer. The use of commercial chopstick-like electrodes to access the impedance of a barrier cultivated in transwell inserts enables remarkable insight into the behavior of the cellular barrier with no extra work for the researcher. This simple method could evolve into a standard protocol used in cell barrier research.
Collapse
Affiliation(s)
- Georg Linz
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany; RWTH Aachen University, Aachener Verfahrenstechnik-Chemical Process Engineering, Forckenbeckstrasse 51, 52074, Aachen, Germany
| | - Suzana Djeljadini
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany; RWTH Aachen University, Aachener Verfahrenstechnik-Chemical Process Engineering, Forckenbeckstrasse 51, 52074, Aachen, Germany
| | - Lea Steinbeck
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany; RWTH Aachen University, Aachener Verfahrenstechnik-Chemical Process Engineering, Forckenbeckstrasse 51, 52074, Aachen, Germany
| | - Gurbet Köse
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Wessling
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany; RWTH Aachen University, Aachener Verfahrenstechnik-Chemical Process Engineering, Forckenbeckstrasse 51, 52074, Aachen, Germany.
| |
Collapse
|
78
|
Ho YJ, Li JP, Fan CH, Liu HL, Yeh CK. Ultrasound in tumor immunotherapy: Current status and future developments. J Control Release 2020; 323:12-23. [PMID: 32302759 DOI: 10.1016/j.jconrel.2020.04.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
Abstract
Immunotherapy has considerable potential in eliminating cancers by activating the host's own immune system, while the thermal and mechanical effects of ultrasound have various applications in tumor therapy. Hyperthermia, ablation, histotripsy, and microbubble stable/inertial cavitation can alter the tumor microenvironment to enhance immunoactivation to inhibit tumor growth. Microbubble cavitation can increase vessel permeability and thereby improve the delivery of immune cells, cytokines, antigens, and antibodies to tumors. Violent microbubble cavitation can disrupt tumor cells and efficiently expose them to numerous antigens so as to promote the maturity of antigen-presenting cells and subsequent adaptive immune-cell activation. This review provides an overview and compares the mechanisms of ultrasound-induced immune modulation for peripheral and brain tumor therapy, even degenerative brain diseases therapy. The possibility of reversing tumors to an immunoactive microenvironment by utilizing the cavitation of microbubbles loaded with therapeutic gases is also proposed as another potential pathway for immunotherapy. Finally, we disuss the challenges and opportunities of ultrasound in immunotherapy for future development.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ju-Pi Li
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Taoyuan 333, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
79
|
May JN, Golombek SK, Baues M, Dasgupta A, Drude N, Rix A, Rommel D, von Stillfried S, Appold L, Pola R, Pechar M, van Bloois L, Storm G, Kuehne AJC, Gremse F, Theek B, Kiessling F, Lammers T. Multimodal and multiscale optical imaging of nanomedicine delivery across the blood-brain barrier upon sonopermeation. Am J Cancer Res 2020; 10:1948-1959. [PMID: 32042346 PMCID: PMC6993230 DOI: 10.7150/thno.41161] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/20/2019] [Indexed: 01/15/2023] Open
Abstract
Rationale: The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. Sonopermeation, which relies on the combination of ultrasound and microbubbles, has emerged as a powerful tool to permeate the BBB, enabling the extravasation of drugs and drug delivery systems (DDS) to and into the central nervous system (CNS). When aiming to improve the treatment of high medical need brain disorders, it is important to systematically study nanomedicine translocation across the sonopermeated BBB. To this end, we here employed multimodal and multiscale optical imaging to investigate the impact of DDS size on brain accumulation, extravasation and penetration upon sonopermeation. Methods: Two prototypic DDS, i.e. 10 nm-sized pHPMA polymers and 100 nm-sized PEGylated liposomes, were labeled with fluorophores and intravenously injected in healthy CD-1 nude mice. Upon sonopermeation, computed tomography-fluorescence molecular tomography, fluorescence reflectance imaging, fluorescence microscopy, confocal microscopy and stimulated emission depletion nanoscopy were used to study the effect of DDS size on their translocation across the BBB. Results: Sonopermeation treatment enabled safe and efficient opening of the BBB, which was confirmed by staining extravasated endogenous IgG. No micro-hemorrhages, edema and necrosis were detected in H&E stainings. Multimodal and multiscale optical imaging showed that sonopermeation promoted the accumulation of nanocarriers in mouse brains, and that 10 nm-sized polymeric DDS accumulated more strongly and penetrated deeper into the brain than 100 nm-sized liposomes. Conclusions: BBB opening via sonopermeation enables safe and efficient delivery of nanomedicine formulations to and into the brain. When looking at accumulation and penetration (and when neglecting issues such as drug loading capacity and therapeutic efficacy) smaller-sized DDS are found to be more suitable for drug delivery across the BBB than larger-sized DDS. These findings are valuable for better understanding and further developing nanomedicine-based strategies for the treatment of CNS disorders.
Collapse
|
80
|
de Maar JS, Sofias AM, Porta Siegel T, Vreeken RJ, Moonen C, Bos C, Deckers R. Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. Am J Cancer Res 2020; 10:1884-1909. [PMID: 32042343 PMCID: PMC6993242 DOI: 10.7150/thno.38625] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic and phenotypic tumour heterogeneity is an important cause of therapy resistance. Moreover, non-uniform spatial drug distribution in cancer treatment may cause pseudo-resistance, meaning that a treatment is ineffective because the drug does not reach its target at sufficient concentrations. Together with tumour heterogeneity, non-uniform drug distribution causes “therapy heterogeneity”: a spatially heterogeneous treatment effect. Spatial heterogeneity in drug distribution occurs on all scales ranging from interpatient differences to intratumour differences on tissue or cellular scale. Nanomedicine aims to improve the balance between efficacy and safety of drugs by targeting drug-loaded nanoparticles specifically to tumours. Spatial heterogeneity in nanoparticle and payload distribution could be an important factor that limits their efficacy in patients. Therefore, imaging spatial nanoparticle distribution and imaging the tumour environment giving rise to this distribution could help understand (lack of) clinical success of nanomedicine. Imaging the nanoparticle, drug and tumour environment can lead to improvements of new nanotherapies, increase understanding of underlying mechanisms of heterogeneous distribution, facilitate patient selection for nanotherapies and help assess the effect of treatments that aim to reduce heterogeneity in nanoparticle distribution. In this review, we discuss three groups of imaging modalities applied in nanomedicine research: non-invasive clinical imaging methods (nuclear imaging, MRI, CT, ultrasound), optical imaging and mass spectrometry imaging. Because each imaging modality provides information at a different scale and has its own strengths and weaknesses, choosing wisely and combining modalities will lead to a wealth of information that will help bring nanomedicine forward.
Collapse
|
81
|
Ng TS, Garlin MA, Weissleder R, Miller MA. Improving nanotherapy delivery and action through image-guided systems pharmacology. Theranostics 2020; 10:968-997. [PMID: 31938046 PMCID: PMC6956809 DOI: 10.7150/thno.37215] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022] Open
Abstract
Despite recent advances in the translation of therapeutic nanoparticles (TNPs) into the clinic, the field continues to face challenges in predictably and selectively delivering nanomaterials for the treatment of solid cancers. The concept of enhanced permeability and retention (EPR) has been coined as a convenient but simplistic descriptor of high TNP accumulation in some tumors. However, in practice EPR represents a number of physiological variables rather than a single one (including dysfunctional vasculature, compromised lymphatics and recruited host cells, among other aspects of the tumor microenvironment) — each of which can be highly heterogenous within a given tumor, patient and across patients. Therefore, a clear need exists to dissect the specific biophysical factors underlying the EPR effect, to formulate better TNP designs, and to identify patients with high-EPR tumors who are likely to respond to TNP. The overall pharmacology of TNP is governed by an interconnected set of spatially defined and dynamic processes that benefit from a systems-level quantitative approach, and insights into the physiology have profited from the marriage between in vivo imaging and quantitative systems pharmacology (QSP) methodologies. In this article, we review recent developments pertinent to image-guided systems pharmacology of nanomedicines in oncology. We first discuss recent developments of quantitative imaging technologies that enable analysis of nanomaterial pharmacology at multiple spatiotemporal scales, and then examine reports that have adopted these imaging technologies to guide QSP approaches. In particular, we focus on studies that have integrated multi-scale imaging with computational modeling to derive insights about the EPR effect, as well as studies that have used modeling to guide the manipulation of the EPR effect and other aspects of the tumor microenvironment for improving TNP action. We anticipate that the synergistic combination of imaging with systems-level computational methods for effective clinical translation of TNPs will only grow in relevance as technologies increase in resolution, multiplexing capability, and in the ability to examine heterogeneous behaviors at the single-cell level.
Collapse
|
82
|
Leenhardt R, Camus M, Mestas JL, Jeljeli M, Abou Ali E, Chouzenoux S, Bordacahar B, Nicco C, Batteux F, Lafon C, Prat F. Ultrasound-induced Cavitation enhances the efficacy of Chemotherapy in a 3D Model of Pancreatic Ductal Adenocarcinoma with its microenvironment. Sci Rep 2019; 9:18916. [PMID: 31831785 PMCID: PMC6908636 DOI: 10.1038/s41598-019-55388-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is supported by a complex microenvironment whose physical contribution to chemoresistance could be overcome by ultrasound (US) therapy. This study aims to investigate the ability of US-induced inertial cavitation in association with chemotherapy to alter tumor cell viability via microenvironment disruption. For this purpose, we used a 3D-coculture PDAC model partially mimicking the tumor and its microenvironment. Coculture spheroids combining DT66066 cells isolated from KPC-transgenic mice and murine embryonic fibroblasts (iMEF) were obtained by using a magnetic nanoshuttle method. Spheroids were exposed to US with incremental inertial cavitation indexes. Conditions studied included control, gemcitabine, US-cavitation and US-cavitation + gemcitabine. Spheroid viability was assessed by the reduction of resazurin and flow cytometry. The 3D-coculture spheroid model incorporated activated fibroblasts and produced type 1-collagen, thus providing a partial miniature representation of tumors with their microenvironment. Main findings were: (a) Gemcitabine (5 μM) was significantly less cytotoxic in the presence of KPC/iMEFs spheroids compared with KPC (fibroblast-free) spheroids; (b) US-induced inertial cavitation combined with Gemcitabine significantly decreased spheroid viability compared to Gemcitabine alone; (c) both cavitation and chemotherapy affected KPC cell viability but not that of fibroblasts, confirming the protective role of the latter vis-à-vis tumor cells. Gemcitabine toxicity is enhanced when cocultured spheroids of KPC and iMEF are exposed to US-cavitation. Although the model used is only a partial representation of PDAC, this experience supports the hypothesis that US-inertial cavitation can enhance drug penetration and cytotoxicity by disrupting PDAC microenvironment.
Collapse
MESH Headings
- Animals
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Mice
- Mice, Transgenic
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Tumor Microenvironment/drug effects
- Ultrasonic Therapy
- Gemcitabine
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- R Leenhardt
- University of Paris Descartes, INSERM U1016, Cochin Institute, Paris, France
| | - M Camus
- Sorbonne University, APHP, Saint-Antoine Hospital, Paris, France
| | - J L Mestas
- LabTAU, INSERM U1032, Centre Léon Bérard, Université-Lyon 1, Lyon, 69003, Lyon, France
| | - M Jeljeli
- University of Paris Descartes, INSERM U1016, Cochin Institute, Paris, France
| | - E Abou Ali
- University of Paris Descartes, INSERM U1016, Cochin Institute, Paris, France
| | - S Chouzenoux
- University of Paris Descartes, INSERM U1016, Cochin Institute, Paris, France
| | - B Bordacahar
- University of Paris Descartes, INSERM U1016, Cochin Institute, Paris, France
| | - C Nicco
- University of Paris Descartes, INSERM U1016, Cochin Institute, Paris, France
| | - F Batteux
- University of Paris Descartes, INSERM U1016, Cochin Institute, Paris, France
| | - C Lafon
- LabTAU, INSERM U1032, Centre Léon Bérard, Université-Lyon 1, Lyon, 69003, Lyon, France
| | - F Prat
- University of Paris Descartes, INSERM U1016, Cochin Institute, Paris, France.
| |
Collapse
|
83
|
van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nanomedicine. NATURE NANOTECHNOLOGY 2019; 14:1007-1017. [PMID: 31695150 PMCID: PMC7227032 DOI: 10.1038/s41565-019-0567-y] [Citation(s) in RCA: 774] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/30/2019] [Indexed: 05/19/2023]
Abstract
Nanomedicines are extensively employed in cancer therapy. We here propose four strategic directions to improve nanomedicine translation and exploitation. (1) Patient stratification has become common practice in oncology drug development. Accordingly, probes and protocols for patient stratification are urgently needed in cancer nanomedicine, to identify individuals suitable for inclusion in clinical trials. (2) Rational drug selection is crucial for clinical and commercial success. Opportunistic choices based on drug availability should be replaced by investments in modular (pro)drug and nanocarrier design. (3) Combination therapies are the mainstay of clinical cancer care. Nanomedicines synergize with pharmacological and physical co-treatments, and should be increasingly integrated in multimodal combination therapy regimens. (4) Immunotherapy is revolutionizing the treatment of cancer. Nanomedicines can modulate the behaviour of myeloid and lymphoid cells, thereby empowering anticancer immunity and immunotherapy efficacy. Alone and especially together, these four directions will fuel and foster the development of successful cancer nanomedicine therapies.
Collapse
Affiliation(s)
- Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim, Norway
- Cancer Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Yang Shi
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Willem J M Mulder
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany.
- Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands.
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
84
|
Guo L, Shi D, Meng D, Shang M, Sun X, Zhou X, Liu X, Zhao Y, Li J. New FH peptide-modified ultrasonic nanobubbles for delivery of doxorubicin to cancer-associated fibroblasts. Nanomedicine (Lond) 2019; 14:2957-2971. [PMID: 31749406 DOI: 10.2217/nnm-2019-0302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: To synthesize and evaluate a novel FH peptide-modified ultrasonic nanobubble-loading doxorubicin (FH-NB-DOX) for specially cancer-associated fibroblasts (CAFs) targeting and eradication. Materials & methods: The characteristics, cytotoxicity, contrast-enhanced ultrasound imaging (CEUI), targeting ability and specially eradicating CAFs of these NBs were investigated. Results: FH-NB-DOX (about 208 nm) showed a good CEUI, and achieved higher targeting ability due to the conjunction ability of FH peptide to tenascin C protein high-level expressed in CAFs. Under ultrasound irradiation, FH-NB-DOX could delivery more DOX into CAFs, thus exhibited stronger eradication role compared with NB-DOX and free DOX. Conclusion: These new NBs, which combines the advantages of targeted theranostic agent and CEUI, is expected to be a potential approach for tumor therapy based on CAF targeting.
Collapse
Affiliation(s)
- Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, PR China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, PR China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, PR China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, PR China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, PR China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, PR China
| | - Xinxin Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, PR China
- The Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education, Chinese Ministry of Health & Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, PR China
| | - Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, PR China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, PR China
| |
Collapse
|
85
|
Abstract
Gas-involving cancer theranostics have attracted considerable attention in recent years due to their high therapeutic efficacy and biosafety. We have reviewed the recent significant advances in the development of stimuli-responsive gas releasing molecules (GRMs) and gas nanogenerators for cancer bioimaging, targeted and controlled gas therapy, and gas-sensitized synergistic therapy. We have focused on gases with known anticancer effects, such as oxygen (O2), carbon monoxide (CO), nitric oxide (NO), hydrogen sulfide (H2S), hydrogen (H2), sulfur dioxide (SO2), carbon dioxide (CO2), and heavy gases that act via the gas-generating process. The GRMs and gas nanogenerators for each gas have been described in terms of the stimulation method, followed by their applications in ultrasound and multimodal imaging, and finally their primary and synergistic actions with other cancer therapeutic modalities. The current challenges and future possibilities of gas therapy and imaging vis-à-vis clinical translation have also been discussed.
Collapse
Affiliation(s)
- Lichan Chen
- College of Chemical Engineering , Huaqiao University , Xiamen , Fujian 361021 , P.R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering , Huaqiao University , Xiamen , Fujian 361021 , P.R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , P.R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , P.R. China
| |
Collapse
|
86
|
Roovers S, Segers T, Lajoinie G, Deprez J, Versluis M, De Smedt SC, Lentacker I. The Role of Ultrasound-Driven Microbubble Dynamics in Drug Delivery: From Microbubble Fundamentals to Clinical Translation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10173-10191. [PMID: 30653325 DOI: 10.1021/acs.langmuir.8b03779] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the last couple of decades, ultrasound-driven microbubbles have proven excellent candidates for local drug delivery applications. Besides being useful drug carriers, microbubbles have demonstrated the ability to enhance cell and tissue permeability and, as a consequence, drug uptake herein. Notwithstanding the large amount of evidence for their therapeutic efficacy, open issues remain. Because of the vast number of ultrasound- and microbubble-related parameters that can be altered and the variability in different models, the translation from basic research to (pre)clinical studies has been hindered. This review aims at connecting the knowledge gained from fundamental microbubble studies to the therapeutic efficacy seen in in vitro and in vivo studies, with an emphasis on a better understanding of the response of a microbubble upon exposure to ultrasound and its interaction with cells and tissues. More specifically, we address the acoustic settings and microbubble-related parameters (i.e., bubble size and physicochemistry of the bubble shell) that play a key role in microbubble-cell interactions and in the associated therapeutic outcome. Additionally, new techniques that may provide additional control over the treatment, such as monodisperse microbubble formulations, tunable ultrasound scanners, and cavitation detection techniques, are discussed. An in-depth understanding of the aspects presented in this work could eventually lead the way to more efficient and tailored microbubble-assisted ultrasound therapy in the future.
Collapse
Affiliation(s)
- Silke Roovers
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Tim Segers
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Joke Deprez
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| |
Collapse
|
87
|
Abstract
Treatment of certain central nervous system disorders, including different types of cerebral malignancies, is limited by traditional oral or systemic administrations of therapeutic drugs due to possible serious side effects and/or lack of the brain penetration and, therefore, the efficacy of the drugs is diminished. During the last decade, several new technologies were developed to overcome barrier properties of cerebral capillaries. This review gives a short overview of the structural elements and anatomical features of the blood–brain barrier. The various in vitro (static and dynamic), in vivo (microdialysis), and in situ (brain perfusion) blood–brain barrier models are also presented. The drug formulations and administration options to deliver molecules effectively to the central nervous system (CNS) are presented. Nanocarriers, nanoparticles (lipid, polymeric, magnetic, gold, and carbon based nanoparticles, dendrimers, etc.), viral and peptid vectors and shuttles, sonoporation and microbubbles are briefly shown. The modulation of receptors and efflux transporters in the cell membrane can also be an effective approach to enhance brain exposure to therapeutic compounds. Intranasal administration is a noninvasive delivery route to bypass the blood–brain barrier, while direct brain administration is an invasive mode to target the brain region with therapeutic drug concentrations locally. Nowadays, both technological and mechanistic tools are available to assist in overcoming the blood–brain barrier. With these techniques more effective and even safer drugs can be developed for the treatment of devastating brain disorders.
Collapse
|
88
|
Sulheim E, Mørch Y, Snipstad S, Borgos SE, Miletic H, Bjerkvig R, Davies CDL, Åslund AK. Therapeutic Effect of Cabazitaxel and Blood-Brain Barrier opening in a Patient-Derived Glioblastoma Model. Nanotheranostics 2019; 3:103-112. [PMID: 30899638 PMCID: PMC6427936 DOI: 10.7150/ntno.31479] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/05/2019] [Indexed: 01/21/2023] Open
Abstract
Treatment of glioblastoma and other diseases in the brain is especially challenging due to the blood-brain barrier, which effectively protects the brain parenchyma. In this study we show for the first time that cabazitaxel, a semi-synthetic derivative of docetaxel can cross the blood-brain barrier and give a significant therapeutic effect in a patient-derived orthotopic model of glioblastoma. We show that the drug crosses the blood-brain barrier more effectively in the tumor than in the healthy brain due to reduced expression of p-glycoprotein efflux pumps in the vasculature of the tumor. Surprisingly, neither ultrasound-mediated blood-brain barrier opening (sonopermeation) nor drug formulation in polymeric nanoparticles could increase either accumulation of the drug in the brain or therapeutic effect. This indicates that for hydrophobic drugs, sonopermeation of the blood brain barrier might not be sufficient to achieve improved drug delivery. Nonetheless, our study shows that cabazitaxel is a promising drug for the treatment of brain tumors.
Collapse
Affiliation(s)
- Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim Norway
- Cancer Clinic, St.Olav's University Hospital, Trondheim Norway
| | - Yrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim Norway
| | - Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim Norway
- Cancer Clinic, St.Olav's University Hospital, Trondheim Norway
| | - Sven Even Borgos
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim Norway
| | - Hrvoje Miletic
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Norway
- Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | | | - Andreas K.O. Åslund
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim Norway
- Stroke Unit, Department of internal medicine, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|