51
|
Geng ZQ, Qian DK, Hu ZY, Wang S, Yan Y, van Loosdrecht MCM, Zeng RJ, Zhang F. Identification of Extracellular Key Enzyme and Intracellular Metabolic Pathway in Alginate-Degrading Consortia via an Integrated Metaproteomic/Metagenomic Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16636-16645. [PMID: 34860015 DOI: 10.1021/acs.est.1c05289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Uronic acid in extracellular polymeric substances is a primary but often ignored factor related to the difficult hydrolysis of waste-activated sludge (WAS), with alginate as a typical polymer. Previously, we enriched alginate-degrading consortia (ADC) in batch reactors that can enhance methane production from WAS, but the enzymes and metabolic pathway are not well documented. In this work, two chemostats in series were operated to enrich ADC, in which 10 g/L alginate was wholly consumed. Based on it, the extracellular alginate lyase (∼130 kD, EC 4.2.2.3) in the cultures was identified by metaproteomic analysis. This enzyme offers a high specificity to convert alginate to disaccharides over other mentioned hydrolases. Genus Bacteroides (>60%) was revealed as the key bacterium for alginate conversion. A new Entner-Doudoroff pathway of alginate via 5-dehydro-4-deoxy-d-glucuronate (DDG) and 3-deoxy-d-glycerol-2,5-hexdiulosonate (DGH) as the intermediates to 2-keto-3-deoxy-gluconate (KDG) was constructed based on the metagenomic and metaproteomic analysis. In summary, this work documented the core enzymes and metabolic pathway for alginate degradation, which provides a good paradigm when analyzing the degrading mechanism of unacquainted substrates. The outcome will further contribute to the application of Bacteroides-dominated ADC on WAS methanogenesis in the future.
Collapse
Affiliation(s)
- Zi-Qian Geng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ding-Kang Qian
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhi-Yi Hu
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuai Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yang Yan
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft 2628 BC, The Netherlands
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
52
|
Haifer C, Paramsothy S, Kaakoush NO, Saikal A, Ghaly S, Yang T, Luu LDW, Borody TJ, Leong RW. Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): a randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol Hepatol 2021; 7:141-151. [PMID: 34863330 DOI: 10.1016/s2468-1253(21)00400-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) delivered via colonoscopic infusion or enemas have been shown to induce remission in a proportion of patients with active ulcerative colitis. Whether orally administered FMT is effective in ulcerative colitis is unknown. We aimed to assess the efficacy of oral lyophilised FMT for the treatment of active ulcerative colitis. METHODS A double-blind, randomised, placebo-controlled trial was conducted at two centres in Australia. Eligible patients were aged 18-75 years with active ulcerative colitis (defined as clinical and endoscopic active ulcerative colitis, with a total Mayo score of 4-10, and a Mayo endoscopic subscore ≥1). After 2 weeks of amoxicillin, metronidazole, and doxycycline, patients were randomly assigned in a 1:1 ratio to receive either oral lyophilised FMT or placebo capsules for 8 weeks, using a prespecified computer-generated randomisation list with a permuted block size of 8. The primary outcome was corticosteroid-free clinical remission with endoscopic remission or response (total Mayo score ≤2, all subscores ≤1, and ≥1 point reduction in endoscopic subscore) at week 8. At week 8, FMT responders were randomly assigned (in a 1:1 ratio, permuted block size of 8) to either continue or withdraw FMT for a further 48 weeks. Analyses were done by modified intention-to-treat, including all patients who received at least one study dose. This trial is registered with Australian New Zealand Trial Registry, number ACTRN 12619000611123; this is the final report of the trial. FINDINGS Between May 20, 2019, and March 24, 2020, 35 patients were randomly assigned: 15 to receive FMT and 20 to receive placebo. Recruitment was terminated early due to the COVID-19 pandemic. At week 8, eight (53%) of 15 patients in the FMT group were in corticosteroid-free clinical remission with endoscopic remission or response, as were three (15%) of 20 patients in the placebo group (difference 38·3%, 95% CI 8·6-68·0; p=0·027; odds ratio 5·0, 95% CI 1·8-14·1). Adverse events occurred in 10 (67%) patients in the FMT group and 17 (85%) of those in the placebo group during the 8-week induction period, and were generally mild and self-limiting gastrointestinal complaints. Serious adverse events included worsening ulcerative colitis (two in the FMT group, one in the placebo group) and per-rectal bleeding (one in the placebo group). Ten patients in the FMT group who achieved a clinical or endoscopic response entered the maintenance phase and were randomly assigned to continue open-label FMT (n=4) or withdraw therapy (n=6). All four (100%) patients who continued FMT were in clinical, endoscopic, and histologic remission at week 56 compared with none of the patients who had FMT withdrawn. INTERPRETATION Antibiotics followed by orally administered FMT was associated with the induction of remission in patients with active ulcerative colitis. Continuing FMT was well tolerated and appeared to demonstrate clinical, endoscopic, and histological efficacy. Oral FMT could be a promising and feasible treatment option for patients with ulcerative colitis. FUNDING St Vincent's Clinic Foundation, Gastroenterological Society of Australia, Gutsy Group.
Collapse
Affiliation(s)
- Craig Haifer
- Concord Clinical School, University of Sydney, Sydney, NSW, Australia; Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW, Australia; Department of Gastroenterology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Sudarshan Paramsothy
- Concord Clinical School, University of Sydney, Sydney, NSW, Australia; Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Aiasha Saikal
- Department of Gastroenterology, St Vincent's Hospital, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Simon Ghaly
- Department of Gastroenterology, St Vincent's Hospital, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tao Yang
- Department of Anatomical Pathology, St Vincent's Hospital, Sydney, NSW, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Laurence Don Wai Luu
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Rupert W Leong
- Concord Clinical School, University of Sydney, Sydney, NSW, Australia; Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW, Australia.
| |
Collapse
|
53
|
Fultz R, Ticer T, Ihekweazu FD, Horvath TD, Haidacher SJ, Hoch KM, Bajaj M, Spinler JK, Haag AM, Buffington SA, Engevik MA. Unraveling the Metabolic Requirements of the Gut Commensal Bacteroides ovatus. Front Microbiol 2021; 12:745469. [PMID: 34899632 PMCID: PMC8656163 DOI: 10.3389/fmicb.2021.745469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/29/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Bacteroidetes are the most common bacterial phylum in the mammalian intestine and the effects of several Bacteroides spp. on multiple facets of host physiology have been previously described. Of the Bacteroides spp., Bacteroides ovatus has recently garnered attention due to its beneficial effects in the context of intestinal inflammation. In this study, we aimed to examine model host intestinal physiological conditions and dietary modifications to characterize their effects on B. ovatus growth. Methods and Results: Using Biolog phenotypic microarrays, we evaluated 62 primary carbon sources and determined that B. ovatus ATCC 8384 can use the following carbohydrates as primary carbon sources: 10 disaccharides, 4 trisaccharides, 4 polysaccharides, 4 polymers, 3 L-linked sugars, 6 D-linked sugars, 5 amino-sugars, 6 alcohol sugars, and 15 organic acids. Proteomic profiling of B. ovatus bacteria revealed that a significant portion of the B. ovatus proteome contains proteins important for metabolism. Among the proteins, we found glycosyl hydrolase (GH) familes GH2, GH5, GH20, GH 43, GH88, GH92, and GH95. We also identified multiple proteins with antioxidant properties and reasoned that these proteins may support B. ovatus growth in the GI tract. Upon further testing, we showed that B. ovatus grew robustly in various pH, osmolarity, bile, ethanol, and H2O2 concentrations; indicating that B. ovatus is a well-adapted gut microbe. Conclusion: Taken together, we have demonstrated that key host and diet-derived changes in the intestinal environment influence B. ovatus growth. These data provide the framework for future work toward understanding how diet and lifestyle interventions may promote a beneficial environment for B. ovatus growth.
Collapse
Affiliation(s)
- Robert Fultz
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Taylor Ticer
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Faith D. Ihekweazu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, TX, United States
| | - Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Kathleen M. Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Meghna Bajaj
- Department of Chemistry and Physics and Department of Biotechnology, Alcorn State University, Lorman, MS, United States
| | - Jennifer K. Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Shelly A. Buffington
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Melinda A. Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
54
|
Lee JWJ, Plichta D, Hogstrom L, Borren NZ, Lau H, Gregory SM, Tan W, Khalili H, Clish C, Vlamakis H, Xavier RJ, Ananthakrishnan AN. Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease. Cell Host Microbe 2021; 29:1294-1304.e4. [PMID: 34297922 DOI: 10.1016/j.chom.2021.06.019] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/01/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
The intestinal microbiome is a key determinant of responses to biologic therapy in inflammatory bowel disease (IBD). However, diverse therapeutics and variable responses among IBD patients have posed challenges in predicting clinical therapeutic success. In this prospective study, we profiled baseline stool and blood in patients with moderate-to-severe Crohn's disease or ulcerative colitis initiating anti-cytokine therapy (anti-TNF or -IL12/23) or anti-integrin therapy. Patients were assessed at 14 weeks for clinical remission and 52 weeks for clinical and endoscopic remission. Baseline microbial richness indicated preferential responses to anti-cytokine therapy and correlated with the abundance of microbial species capable of 7α/β-dehydroxylation of primary to secondary bile acids. Serum signatures of immune proteins reflecting microbial diversity identified patients more likely to achieve remission with anti-cytokine therapy. Remission-associated multi-omic profiles were unique to each therapeutic class. These profiles may facilitate a priori determination of optimal therapeutics for patients and serve as targets for newer therapies.
Collapse
Affiliation(s)
- Jonathan Wei Jie Lee
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore; Division of Gastroenterology and Hepatology, National University Health System, Singapore University Medical Center, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), 14 Medical Drive, MD6-Centre for Translational Medicine, Singapore 117599, Singapore
| | - Damian Plichta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Larson Hogstrom
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nynke Z Borren
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Helena Lau
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sara M Gregory
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - William Tan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
55
|
Guo C, Wang Y, Zhang S, Zhang X, Du Z, Li M, Ding K. Crataegus pinnatifida polysaccharide alleviates colitis via modulation of gut microbiota and SCFAs metabolism. Int J Biol Macromol 2021; 181:357-368. [PMID: 33774071 DOI: 10.1016/j.ijbiomac.2021.03.137] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) afflicted individual and most medications have side-effects. Crataegus pinnatifida (Hawthorn), which is a safe medicine and food homolog plant, has been reported to prevent colitis in murine. Yet the bioactivity component and the underlying molecular mechanism remain unclear. Here, we established a direct link between colitis induced by dextran sulphate sodium (DSS) in mice and polysaccharide HAW1-2 isolated from hawthorn. Our results showed HAW1-2 restored the pathological lesions in colon and inhibited the expression of inflammatory cytokines including IL-1β, IL-6 and TNF-α. Meanwhile, IKKα/β, IκBα, NF-κB and the phosphorylation levels were inhibited significantly. These findings suggested HAW1-2 could alleviate the inflammation of colon. Further, we found the composition of gut microbiota was modified and Bacteroides including Alistipes and Odoribacter were significantly enriched. Besides, we showed Alistipes and Odoribacter were positively co-related with acetic acid and propionic acid while were negatively co-related with inflammatory cytokines. Finally, we demonstrated the anti-inflammation activity of HAW1-2 might be induced by acetic acid. Together, the present data revealed HAW1-2 could directly modify the gut microbiota, especially for Bacteroides, and generate SCFAs to inhibit colitis. It also implies microbiota-directed intervention in IBD patients should be particularly given more attention.
Collapse
Affiliation(s)
- Ciliang Guo
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, PR China
| | - Yeqing Wang
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China
| | - Shihai Zhang
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China
| | - Xiuqi Zhang
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, PR China
| | - Zhenyun Du
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China
| | - Meixia Li
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China.
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
56
|
The impact of Opisthorchis felineus infection and praziquantel treatment on the intestinal microbiota in children. Acta Trop 2021; 217:105835. [PMID: 33485871 DOI: 10.1016/j.actatropica.2021.105835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
The presence of some species of helminths is associated with changes in host microbiota composition and diversity, which varies widely depending on the infecting helminth species and other factors. We conducted a prospective case-control study to evaluate the gut microbiota in children with Opisthorchis felineus infection (n=50) before and after anthelmintic treatment and in uninfected children (n=49) in the endemic region. A total of 99 children and adolescents aged between 7 and 18 years were enrolled to the study. Helminth infection was assessed before and at 3 months after treatment with praziquantel. A complex examination for each participant was performed in the study, including an assessment of the clinical symptoms and an intestinal microbiota survey by 16S rRNA gene sequencing of stool samples. There was no change in alpha diversity between O. felineus-infected and control groups. We found significant changes in the abundances of bacterial taxa at different taxonomic levels between the infected and uninfected individuals. Enterobacteriaceae family was more abundant in infected participants compared to uninfected children. On the genus level, O. felineus-infected participants' microbiota showed higher levels of Lachnospira, Escherichia-Shigella, Bacteroides, Eubacterium eligens group, Ruminiclostridium 6, Barnesiella, Oscillibacter, Faecalitalea and Anaerosporobacter and reduction of Blautia, Lachnospiraceae FCS020 and Eubacterium hallii group in comparison with the uninfected individuals. Following praziquantel therapy, there were significant differences in abundances of some microorganisms, including an increase of Faecalibacterium and decrease of Megasphaera, Roseburia. Enterobacteriaceae and Escherichia abundances were decreased up to the control group values. Our results highlight the importance of the host-parasite-microbiota interactions for the community health in the endemic regions.
Collapse
|
57
|
Luo Y, Zhou T. Connecting the dots: Targeting the microbiome in drug toxicity. Med Res Rev 2021; 42:83-111. [PMID: 33856076 DOI: 10.1002/med.21805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
The gut microbiota has a vast influence on human health and its role in initiating, aggravating, or ameliorating diseases is beginning to emerge. Recently, its contribution to heterogeneous toxicological responses is also gaining attention, especially in drug-induced toxicity. Whether they are orally administered or not, drugs may interact with the gut microbiota directly or indirectly, which leads to altered toxicity. Present studies focus more on the unidirectional influence of how xenobiotics disturb intestinal microbial composition and functions, and thus induce altered homeostasis. However, interactions between the gut microbiota and xenobiotics are bidirectional and the impact of the gut microbiota on xenobiotics, especially on drugs, should not be neglected. Thus, in this review, we focus on how the gut microbiota modulates drug toxicity by highlighting the microbiome, microbial enzyme, and microbial metabolites. We connect the dots between drugs, the microbiome, microbial enzymes or metabolites, drug metabolites, and host toxicological responses to facilitate the discovery of microbial targets and mechanisms associated with drug toxicity. Besides this, current mainstream strategies to manipulate drug toxicity by targeting the microbiome are summarized and discussed. The review provides technical reference for the evaluation of medicinal properties in the research and development of innovative drugs, and for the future exploitation of strategies to reduce drug toxicity by targeting the microbiome.
Collapse
Affiliation(s)
- Yusha Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
58
|
Ihekweazu FD, Engevik MA, Ruan W, Shi Z, Fultz R, Engevik KA, Chang-Graham AL, Freeborn J, Park ES, Venable S, Horvath TD, Haidacher SJ, Haag AM, Goodwin A, Schady DA, Hyser JM, Spinler JK, Liu Y, Versalovic J. Bacteroides ovatus Promotes IL-22 Production and Reduces Trinitrobenzene Sulfonic Acid-Driven Colonic Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:704-719. [PMID: 33516788 PMCID: PMC8027925 DOI: 10.1016/j.ajpath.2021.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
The intestinal microbiota influences the development and function of the mucosal immune system. However, the exact mechanisms by which commensal microbes modulate immunity is not clear. We previously demonstrated that commensal Bacteroides ovatus ATCC 8384 reduces mucosal inflammation. Herein, we aimed to identify immunomodulatory pathways employed by B. ovatus. In germ-free mice, mono-association with B. ovatus shifted the CD11b+/CD11c+ and CD103+/CD11c+ dendritic cell populations. Because indole compounds are known to modulate dendritic cells, B. ovatus cell-free supernatant was screened for tryptophan metabolites by liquid chromatography-tandem mass spectrometry and larger quantities of indole-3-acetic acid were detected. Analysis of cecal and fecal samples from germ-free and B. ovatus mono-associated mice confirmed that B. ovatus could elevate indole-3-acetic acid concentrations in vivo. Indole metabolites have previously been shown to stimulate immune cells to secrete the reparative cytokine IL-22. Addition of B. ovatus cell-free supernatant to immature bone marrow-derived dendritic cells stimulated IL-22 secretion. The ability of IL-22 to drive repair in the intestinal epithelium was confirmed using a physiologically relevant human intestinal enteroid model. Finally, B. ovatus shifted the immune cell populations in trinitrobenzene sulfonic acid-treated mice and up-regulated colonic IL-22 expression, effects that correlated with decreased inflammation. Our data suggest that B. ovatus-produced indole-3-acetic acid promotes IL-22 production by immune cells, yielding beneficial effects on colitis.
Collapse
Affiliation(s)
- Faith D Ihekweazu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, Texas.
| | - Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, Texas
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Robert Fultz
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, Texas
| | - Kristen A Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Jasmin Freeborn
- Division of Gastroenterology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas
| | - Evelyn S Park
- Division of Gastroenterology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas
| | - Susan Venable
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Annie Goodwin
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Deborah A Schady
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Jennifer K Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Yuying Liu
- Division of Gastroenterology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas
| | - James Versalovic
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
59
|
Guo S, Geng W, Chen S, Wang L, Rong X, Wang S, Wang T, Xiong L, Huang J, Pang X, Lu Y. Ginger Alleviates DSS-Induced Ulcerative Colitis Severity by Improving the Diversity and Function of Gut Microbiota. Front Pharmacol 2021; 12:632569. [PMID: 33692694 PMCID: PMC7937968 DOI: 10.3389/fphar.2021.632569] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
The effects of ginger on gastrointestinal disorders such as ulcerative colitis have been widely investigated using experimental models; however, the mechanisms underlying its therapeutic actions are still unknown. In this study, we investigated the correlation between the therapeutic effects of ginger and the regulation of the gut microbiota. We used dextran sulfate sodium (DSS) to induce colitis and found that ginger alleviated colitis-associated pathological changes and decreased the mRNA expression levels of interleukin-6 and inducible nitric oxide synthase in mice. 16s rRNA sequencing analysis of the feces samples showed that mice with colitis had an intestinal flora imbalance with lower species diversity and richness. At the phylum level, a higher abundance of pathogenic bacteria, Proteobacteria and firmicutes, were observed; at the genus level, most samples in the model group showed an increase in Lachnospiraceae_NK4A136_group. The overall analysis illustrated an increase in the relative abundance of Lactobacillus_murinus, Lachnospiraceae_bacterium_615, and Ruminiclostridium_sp._KB18. These increased pathogenic bacteria in model mice were decreased when treated with ginger. DSS-treated mice showed a lower abundance of Muribaculaceae, and ginger corrected this disorder. The bacterial community structure of the ginger group analyzed with Alpha and Beta indices was similar to that of the control group. The results also illustrated that altered intestinal microbiomes affected physiological functions and adjusted key metabolic pathways in mice. In conclusion, this research presented that ginger reduced DSS-induced colitis severity and positively regulated the intestinal microbiome. Based on the series of data in this study, we hypothesize that ginger can improve diseases by restoring the diversity and functions of the gut microbiota.
Collapse
Affiliation(s)
- Shanshan Guo
- School of Medicine, Shanghai University, Shanghai, China.,Eight Plus One Pharmaceutical Co., Ltd, Guilin, China
| | - Wenye Geng
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Shan Chen
- Eight Plus One Pharmaceutical Co., Ltd, Guilin, China
| | - Li Wang
- Eight Plus One Pharmaceutical Co., Ltd, Guilin, China
| | - Xuli Rong
- School of Pharmacy, Henan University, Kaifeng, China
| | - Shuocun Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Liyan Xiong
- School of Medicine, Shanghai University, Shanghai, China
| | - Jinghua Huang
- Eight Plus One Pharmaceutical Co., Ltd, Guilin, China
| | - Xiaobin Pang
- School of Pharmacy, Henan University, Kaifeng, China
| | - Yiming Lu
- School of Medicine, Shanghai University, Shanghai, China.,Eight Plus One Pharmaceutical Co., Ltd, Guilin, China.,Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
60
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
61
|
Fecal transplants as a microbiome-based therapeutic. Curr Opin Microbiol 2020; 56:16-23. [PMID: 32615390 DOI: 10.1016/j.mib.2020.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Impaired microbiome diversity and composition can develop into a potent etiological agent of disease and increase susceptibility to infection. Given this, interventions targeting the microbiome have developed rapidly, with healthy donor feces being a de facto source of beneficial communities employed to rebalance patients' microbiomes. Recent evidence has demonstrated that bacterial and viral richness, short chain fatty acid production, bile acid conversion as well as presence of bacterial and fungal pathobionts are associated with therapy efficacy; however, little is known of the influence of host factors such as genetics, medications, and diet. Here, current knowledge on factors associated with fecal transplant efficacy, as well as efforts to transition to other forms of therapy are reviewed.
Collapse
|
62
|
A Novel Non-Digestible, Carrot-Derived Polysaccharide (cRG-I) Selectively Modulates the Human Gut Microbiota while Promoting Gut Barrier Integrity: An Integrated in Vitro Approach. Nutrients 2020; 12:nu12071917. [PMID: 32610452 PMCID: PMC7400138 DOI: 10.3390/nu12071917] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
Modulation of the gut microbiome as a means to improve human health has recently gained increasing interest. In this study, it was investigated whether cRG-I, a carrot-derived pectic polysaccharide, enriched in rhamnogalacturonan-I (RG-I) classifies as a potential prebiotic ingredient using novel in vitro models. First, digestion methods involving α-amylase/brush border enzymes demonstrated the non-digestibility of cRG-I by host-derived enzymes versus digestible (starch/maltose) and non-digestible controls (inulin). Then, a recently developed short-term (48 h) colonic incubation strategy was applied and revealed that cRG-I fermentation increased levels of health-promoting short-chain fatty acids (SCFA; mainly acetate and propionate) and lactate comparable but not identical to the reference prebiotic inulin. Upon upgrading this fermentation model by inclusion of a simulated mucosal environment while applying quantitative 16S-targeted Illumina sequencing, cRG-I was additionally shown to specifically stimulate operational taxonomic units (OTUs) related to health-associated species such as Bifidobacterium longum, Bifidobacterium adolescentis, Bacteroides dorei, Bacteroides ovatus, Roseburia hominis, Faecalibacterium prausnitzii, and Eubacterium hallii. Finally, in a novel model to assess host–microbe interactions (Caco-2/peripheral blood mononuclear cells (PBMC) co-culture) fermented cRG-I increased barrier integrity while decreasing markers for inflammation. In conclusion, by using novel in vitro models, cRG-I was identified as a promising prebiotic candidate to proceed to clinical studies.
Collapse
|
63
|
Wu Q, Chen T, El-Nezami H, Savidge TC. Food ingredients in human health: Ecological and metabolic perspectives implicating gut microbiota function. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
64
|
Colquhoun C, Duncan M, Grant G. Inflammatory Bowel Diseases: Host-Microbial-Environmental Interactions in Dysbiosis. Diseases 2020; 8:E13. [PMID: 32397606 PMCID: PMC7348996 DOI: 10.3390/diseases8020013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Crohn's Disease (CD) and Ulcerative Colitis (UC) are world-wide health problems in which intestinal dysbiosis or adverse functional changes in the microbiome are causative or exacerbating factors. The reduced abundance and diversity of the microbiome may be a result of a lack of exposure to vital commensal microbes or overexposure to competitive pathobionts during early life. Alternatively, many commensal bacteria may not find a suitable intestinal niche or fail to proliferate or function in a protective/competitive manner if they do colonize. Bacteria express a range of factors, such as fimbriae, flagella, and secretory compounds that enable them to attach to the gut, modulate metabolism, and outcompete other species. However, the host also releases factors, such as secretory IgA, antimicrobial factors, hormones, and mucins, which can prevent or regulate bacterial interactions with the gut or disable the bacterium. The delicate balance between these competing host and bacteria factors dictates whether a bacterium can colonize, proliferate or function in the intestine. Impaired functioning of NOD2 in Paneth cells and disrupted colonic mucus production are exacerbating features of CD and UC, respectively, that contribute to dysbiosis. This review evaluates the roles of these and other the host, bacterial and environmental factors in inflammatory bowel diseases.
Collapse
Affiliation(s)
| | | | - George Grant
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (C.C.); (M.D.)
| |
Collapse
|
65
|
Satokari R. High Intake of Sugar and the Balance between Pro- and Anti-Inflammatory Gut Bacteria. Nutrients 2020; 12:nu12051348. [PMID: 32397233 PMCID: PMC7284805 DOI: 10.3390/nu12051348] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
The so-called Western diet is rich in saturated fat and sugars and poor in plant-derived fibers, and it is associated with an increased risk of metabolic and cardiovascular diseases, as well as chronic (low grade) inflammation. The detrimental effects of poor diet are in part mediated by gut microbiota, whose composition, functionality and metabolic end products respond to dietary changes. Recent studies have shown that high intake of sugars increase the relative abundance of Proteobacteria in the gut, while simultaneously decreasing the abundance of Bacteroidetes, which can mitigate the effects of endotoxin, as well as reinforce gut barrier function. Thus, a high sugar intake may stagger the balance of microbiota to have increased pro-inflammatory properties and decreased the capacity to regulate epithelial integrity and mucosal immunity. Consequently, high dietary sugar can, through the modulation of microbiota, promote metabolic endotoxemia, systemic (low grade) inflammation and the development of metabolic dysregulation and thereby, high dietary sugar may have many-fold deleterious health effects, in addition to providing excess energy.
Collapse
Affiliation(s)
- Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
66
|
Isolation of Anti-Inflammatory and Epithelium Reinforcing Bacteroides and Parabacteroides Spp. from A Healthy Fecal Donor. Nutrients 2020; 12:nu12040935. [PMID: 32230951 PMCID: PMC7230855 DOI: 10.3390/nu12040935] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Altered intestinal microbiota is associated with systemic and intestinal diseases, such as inflammatory bowel disease (IBD). Dysbiotic microbiota with enhanced proinflammatory capacity is characterized by depletion of anaerobic commensals, increased proportion of facultatively anaerobic bacteria, as well as reduced diversity and stability. In this study, we developed a high-throughput in vitro screening assay to isolate intestinal commensal bacteria with anti-inflammatory capacity from a healthy fecal microbiota transplantation donor. Freshly isolated gut bacteria were screened for their capacity to attenuate Escherichia coli lipopolysaccharide (LPS)-induced interleukin 8 (IL-8) release from HT-29 cells. The screen yielded a number of Bacteroides and Parabacteroides isolates, which were identified as P. distasonis, B. caccae, B. intestinalis, B. uniformis, B. fragilis, B. vulgatus and B. ovatus using whole genome sequencing. We observed that a cell-cell contact with the epithelium was not necessary to alleviate in vitro inflammation as spent culture media from the isolates were also effective and the anti-inflammatory action did not correlate with the enterocyte adherence capacity of the isolates. The anti-inflammatory isolates also exerted enterocyte monolayer reinforcing action and lacked essential genes to synthetize hexa-acylated, proinflammatory lipid A, part of LPS. Yet, the anti-inflammatory effector molecules remain to be identified. The Bacteroides strains isolated and characterized in this study have potential to be used as so-called next-generation probiotics.
Collapse
|
67
|
Dery KJ, Kadono K, Hirao H, Górski A, Kupiec-Weglinski JW. Microbiota in organ transplantation: An immunological and therapeutic conundrum? Cell Immunol 2020; 351:104080. [PMID: 32139071 DOI: 10.1016/j.cellimm.2020.104080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
The gastrointestinal (GI) tract microbiota is an environmental factor that regulates host immunity in allo-transplantation (allo-Tx). It is required for the development of resistance against pathogens and the stabilization of mucosa-associated lymphoid tissue. The gut-microbiota axis may also precipitate allograft rejection by producing metabolites that activate host cell-mediated and humoral immunity. Here, we discuss new insights into microbial immunomodulation, highlighting ongoing attempts to affect commensal colonization in an attempt to ameliorate allograft rejection cascade. Recent progress on the use of antibiotics to modulate GI microbiota diversity and innate-adaptive immune interface are discussed. Our focus on the microbiota's influence of endoplasmic reticulum (ER) stress and autophagy signaling through hepatic EP4/CHOP/LC3B platforms reveals a novel molecular pathway and potential biomarkers determining the progression of allo-Tx damage. Understanding and harnessing the potential of microbiome/bacteriophage therapies may offer safe and effective means for personalized treatment to reduce risks of infections and immunosuppression in allo-Tx.
Collapse
Affiliation(s)
- Kenneth J Dery
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles 90095, CA, USA
| | - Kentaro Kadono
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles 90095, CA, USA
| | - Hirofumi Hirao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles 90095, CA, USA
| | - Andrzej Górski
- Bacteriophage Laboratory and Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy W Kupiec-Weglinski
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles 90095, CA, USA.
| |
Collapse
|
68
|
Manipulating resident microbiota to enhance regulatory immune function to treat inflammatory bowel diseases. J Gastroenterol 2020; 55:4-14. [PMID: 31482438 PMCID: PMC6942586 DOI: 10.1007/s00535-019-01618-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 02/04/2023]
Abstract
Altered intestinal microbial composition (dysbiosis) and metabolic products activate aggressive mucosal immune responses that mediate inflammatory bowel diseases (IBD). This dysbiosis impairs the function of regulatory immune cells, which normally promote mucosal homeostasis. Normalizing and maintaining regulatory immune cell function by correcting dysbiosis provides a promising approach to treat IBD patients. However, existing microbe-targeted therapies, including antibiotics, prebiotics, probiotics, and fecal microbial transplantation, provide variable outcomes that are not optimal for current clinical application. This review discusses recent progress in understanding the dysbiosis of IBD and the basis for therapeutic restoration of homeostatic immune function by manipulating an individual patient's microbiota composition and function. We believe that identifying more precise therapeutic targets and developing appropriate rapid diagnostic tools will guide more effective and safer microbe-based induction and maintenance treatments for IBD patients that can be applied in a personalized manner.
Collapse
|
69
|
Britto SL, Krishna M, Kellermayer R. Weight loss is a sufficient and economical single outcome measure of murine dextran sulfate sodium colitis. FASEB Bioadv 2019; 1:493-497. [PMID: 32123846 PMCID: PMC6996316 DOI: 10.1096/fba.2019-00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/23/2019] [Accepted: 06/07/2019] [Indexed: 01/05/2023] Open
Abstract
Inflammatory bowel diseases (IBD: Crohn's disease and ulcerative colitis) are becoming common around the world without a cure. Animal models of colitis have become instrumental in IBD research. The dextran sulfate sodium (DSS) induced murine colitis model is likely the most utilized due to its simplicity and reproducibility with over 4000 publications on PubMed, where weight loss is the most commonly used and reliable positive correlate. We predicted at current state of art, that the DSS colitis model can be optimized by using weight loss as a single cost‐saving outcome measure. Twenty recent and consecutive publications using the DSS model in PubMed were selected for review. Guarded cost estimations for additional outcome measures of colitis beyond weight loss were performed. In all manuscripts (100%), weight loss corroborated the conclusions. Average excess cost for examining additional measures of colitis was approximately $6700 per publication. Two studies (10.5%) were estimated to have spent over $20,000 in excess. Additional measures of colitis either supported the final conclusions found with weight loss, or lead to indeterminate results. Potential annual savings from following our guidance were calculated to be over $60,000 for and IBD lab. We conclude that weight loss is a sufficient, objective, and economical outcome measure of DSS‐induced colitis in mice.
Collapse
Affiliation(s)
- Savini Lanka Britto
- Section of Pediatric Gastroenterology Texas Children's Hospital Baylor College of Medicine Houston Texas
| | - Mahesh Krishna
- Section of Pediatric Gastroenterology Texas Children's Hospital Baylor College of Medicine Houston Texas
| | - Richard Kellermayer
- Section of Pediatric Gastroenterology Texas Children's Hospital Baylor College of Medicine Houston Texas.,USDA/ARS Children's Nutrition Research Center Houston Texas
| |
Collapse
|
70
|
Kellermayer R. Fecal microbiota transplantation: great potential with many challenges. Transl Gastroenterol Hepatol 2019; 4:40. [PMID: 31231707 DOI: 10.21037/tgh.2019.05.10] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
In January of 2019, Samuel P. Costello and colleagues published a wonderfully executed, double blind placebo-controlled trial on fecal microbiota transplantation (FMT) versus autologous stool as placebo in mild to moderately active adult ulcerative colitis [UC: one type of inflammatory bowel disease (IBD)] patients. This review-commentary examines the current state of knowledge on human gut microbiome (live microbiota + their products and surrounding environment, i.e., fecal matter) and microbial therapeutics from a gastrointestinal (GI) clinician's standpoint. The varied forms of dysbiosis as the target of FMT, recipient donor and placebo considerations are also discussed in respect to randomized control trials in IBD [and the lack thereof in Crohn's disease (CD)] with this unconventional treatment modality.
Collapse
Affiliation(s)
- Richard Kellermayer
- Section of Pediatric Gastroenterology, Texas Children's Hospital Baylor College of Medicine, Houston, TX, USA.,USDA/ARS Children's Nutrition Research Center, Houston, TX, USA
| |
Collapse
|