51
|
Choi JT, Choi Y, Lee Y, Lee SH, Kang S, Lee KT, Bahn YS. The hybrid RAVE complex plays V-ATPase-dependent and -independent pathobiological roles in Cryptococcus neoformans. PLoS Pathog 2023; 19:e1011721. [PMID: 37812645 PMCID: PMC10586682 DOI: 10.1371/journal.ppat.1011721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/19/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
V-ATPase, which comprises 13-14 subunits, is essential for pH homeostasis in all eukaryotes, but its proper function requires a regulator to assemble its subunits. While RAVE (regulator of H+-ATPase of vacuolar and endosomal membranes) and Raboconnectin-3 complexes assemble V-ATPase subunits in Saccharomyces cerevisiae and humans, respectively, the function of the RAVE complex in fungal pathogens remains largely unknown. In this study, we identified two RAVE complex components, Rav1 and Wdr1, in the fungal meningitis pathogen Cryptococcus neoformans, and analyzed their roles. Rav1 and Wdr1 are orthologous to yeast RAVE and human Rabconnectin-3 counterparts, respectively, forming the hybrid RAVE (hRAVE) complex. Deletion of RAV1 caused severe defects in growth, cell cycle control, morphogenesis, sexual development, stress responses, and virulence factor production, while the deletion of WDR1 resulted in similar but modest changes, suggesting that Rav1 and Wdr1 play central and accessary roles, respectively. Proteomics analysis confirmed that Wdr1 was one of the Rav1-interacting proteins. Although the hRAVE complex generally has V-ATPase-dependent functions, it also has some V-ATPase-independent roles, suggesting a unique role beyond conventional intracellular pH regulation in C. neoformans. The hRAVE complex played a critical role in the pathogenicity of C. neoformans, and RAV1 deletion attenuated virulence and impaired blood-brain barrier crossing ability. This study provides comprehensive insights into the pathobiological roles of the fungal RAVE complex and suggests a novel therapeutic strategy for controlling cryptococcosis.
Collapse
Affiliation(s)
- Jin-Tae Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yujin Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Seung-Heon Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Seun Kang
- Korea Zoonosis Research Institute, Jeonbuk National University, Jeonbuk, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Jeonbuk, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
52
|
Vanherp L, Poelmans J, Govaerts K, Hillen A, Lagrou K, Vande Velde G, Himmelreich U. In vivo assessment of differences in fungal cell density in cerebral cryptococcomas of mice infected with Cryptococcus neoformans or Cryptococcus gattii. Microbes Infect 2023; 25:105127. [PMID: 36940783 DOI: 10.1016/j.micinf.2023.105127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023]
Abstract
In cerebral cryptococcomas caused by Cryptococcus neoformans or Cryptococcus gattii, the density of fungal cells within lesions can contribute to the overall brain fungal burden. In cultures, cell density is inversely related to the size of the cryptococcal capsule, a dynamic polysaccharide layer surrounding the cell. Methods to investigate cell density or related capsule size within fungal lesions of a living host are currently unavailable, precluding in vivo studies on longitudinal changes. Here, we assessed whether intravital microscopy and quantitative magnetic resonance imaging techniques (diffusion MRI and MR relaxometry) would enable non-invasive investigation of fungal cell density in cerebral cryptococcomas in mice. We compared lesions caused by type strains C. neoformans H99 and C. gattii R265 and evaluated potential relations between observed imaging properties, fungal cell density, total cell and capsule size. The observed inverse correlation between apparent diffusion coefficient and cell density permitted longitudinal investigation of cell density changes. Using these imaging methods, we were able to study the multicellular organization and cell density within brain cryptococcomas in the intact host environment of living mice. Since the MRI techniques are also clinically available, the same approach could be used to assess fungal cell density in brain lesions of patients.
Collapse
Affiliation(s)
- Liesbeth Vanherp
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jennifer Poelmans
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Kristof Govaerts
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Amy Hillen
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; National Reference Centre for Mycosis, Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
53
|
Abstract
The fungal cell wall is essential for growth and survival, and is a key target for antifungal drugs and the immune system. The cell wall must be robust but flexible, protective and shielding yet porous to nutrients and membrane vesicles and receptive to exogenous signals. Most fungi have a common inner wall skeleton of chitin and β-glucans that functions as a flexible viscoelastic frame to which a more diverse set of outer cell wall polymers and glycosylated proteins are attached. Whereas the inner wall largely determines shape and strength, the outer wall confers properties of hydrophobicity, adhesiveness, and chemical and immunological heterogeneity. The spatial organization and dynamic regulation of the wall in response to prevailing growth conditions enable fungi to thrive within changing, diverse and often hostile environments. Understanding this architecture provides opportunities to develop diagnostics and drugs to combat life-threatening fungal infections.
Collapse
Affiliation(s)
- Neil A R Gow
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, UK.
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
54
|
Liu Y, Zhang Y, Zhao X, Lu W, Zhong Y, Fu YV. Antifungal Peptide SP1 Damages Polysaccharide Capsule of Cryptococcus neoformans and Enhances Phagocytosis of Macrophages. Microbiol Spectr 2023; 11:e0456222. [PMID: 36916981 PMCID: PMC10100895 DOI: 10.1128/spectrum.04562-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Cryptococcus neoformans is a fungal pathogen which causes nearly half a million deaths worldwide each year. Under host-relevant conditions, it produces a characteristic polysaccharide capsule. The polysaccharide capsule is one of the main virulence factors of C. neoformans, which involves antiphagocytosis and immune responses of the host to cause a lack of an immune. Meanwhile, the polysaccharide capsule is a promising drug target because of the absence of analogs in the host. Here, we demonstrate that antifungal peptide SP1, which is derived from the N terminus of Saccharomyces cerevisiae GAPDH (glyceraldehyde-3-phosphate dehydrogenase), disrupts the polysaccharide capsule of C. neoformans H99. The mechanism is possibly due to the interaction of SP1 with glucuronoxylomannan (GXM). Disruption of the polysaccharide capsule enhances the adhesion and phagocytosis of C. neoformans H99 by macrophages and reduces the replication of C. neoformans H99 within macrophages. Additionally, SP1 exhibits antifungal activity against cryptococcal biofilms associated with the capsular polysaccharides. These findings suggest the potential of SP1 as a drug candidate for the treatment of cryptococcosis. IMPORTANCE C. neoformans is an opportunistic pathogen that causes invasive infections with a high mortality rate. Currently, the clinical drugs available for the treatment of cryptococcosis are limited to amphotericin B, azoles, and flucytosine. Amphotericin is nephrotoxic, and the widespread use of azoles and 5-flucytosine has led to a rapid development of drug resistance in C. neoformans. There is an urgent need to develop new and effective anticryptococcal drugs. Targeting virulence factors is a novel strategy for developing antifungal drugs. The antifungal peptide SP1 is capable of disrupting the polysaccharide capsule, which is a principal virulence factor of C. neoformans. Studying the mechanism by which SP1 damages the polysaccharide capsule and investigating the potential benefits of SP1 in removing C. neoformans from the host provides baseline data to develop a therapeutic strategy against refractory cryptococcal infections. This strategy would involve both inhibiting virulence factors and directly killing C. neoformans cells.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xi Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Weilai Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu V. Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
55
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
56
|
Abstract
The respiratory tree maintains sterilizing immunity against human fungal pathogens. Humans inhale ubiquitous filamentous molds and geographically restricted dimorphic fungal pathogens that form small airborne conidia. In addition, pathogenic yeasts, exemplified by encapsulated Cryptococcus species, and Pneumocystis pose significant fungal threats to the lung. Classically, fungal pneumonia occurs in immune compromised individuals, specifically in patients with HIV/AIDS, in patients with hematologic malignancies, in organ transplant recipients, and in patients treated with corticosteroids and targeted biologics that impair fungal immune surveillance in the lung. The emergence of fungal co-infections during severe influenza and COVID-19 underscores the impairment of fungus-specific host defense pathways in the lung by respiratory viruses and by medical therapies to treat viral infections. Beyond life-threatening invasive syndromes, fungal antigen exposure can exacerbate allergenic disease in the lung. In this review, we discuss emerging principles of lung-specific antifungal immunity, integrate the contributions and cooperation of lung epithelial, innate immune, and adaptive immune cells to mucosal barrier immunity, and highlight the pathogenesis of fungal-associated allergenic disease. Improved understanding of fungus-specific immunity in the respiratory tree has paved the way to develop improved diagnostic, pre-emptive, therapeutic, and vaccine approaches for fungal diseases of the lung.
Collapse
Affiliation(s)
- Lena J Heung
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Darin L Wiesner
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
57
|
|
58
|
Tezcan EF, Demirtas Y, Cakar ZP, Ulgen KO. Comprehensive genome-scale metabolic model of the human pathogen Cryptococcus neoformans: A platform for understanding pathogen metabolism and identifying new drug targets. FRONTIERS IN BIOINFORMATICS 2023; 3:1121409. [PMID: 36714093 PMCID: PMC9880062 DOI: 10.3389/fbinf.2023.1121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction: The fungal priority pathogen Cryptococcus neoformans causes cryptococcal meningoencephalitis in immunocompromised individuals and leads to hundreds of thousands of deaths per year. The undesirable side effects of existing treatments, the need for long application times to prevent the disease from recurring, the lack of resources for these treatment methods to spread over all continents necessitate the search for new treatment methods. Methods: Genome-scale models have been shown to be valuable in studying the metabolism of many organisms. Here we present the first genome-scale metabolic model for C. neoformans, iCryptococcus. This comprehensive model consists of 1,270 reactions, 1,143 metabolites, 649 genes, and eight compartments. The model was validated, proving accurate when predicting the capability of utilizing different carbon and nitrogen sources and growth rate in comparison to experimental data. Results and Discussion: The compatibility of the in silico Cryptococcus metabolism under infection conditions was assessed. The steroid and amino acid metabolisms found in the essentiality analyses have the potential to be drug targets for the therapeutic strategies to be developed against Cryptococcus species. iCryptococcus model can be applied to explore new targets for antifungal drugs along with essential gene, metabolite and reaction analyses and provides a promising platform for elucidation of pathogen metabolism.
Collapse
Affiliation(s)
- Enes Fahri Tezcan
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Yigit Demirtas
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Zeynep Petek Cakar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Kutlu O. Ulgen
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey,*Correspondence: Kutlu O. Ulgen,
| |
Collapse
|
59
|
Alves V, Araújo GR, Frases S. Off-label treatments as potential accelerators in the search for the ideal antifungal treatment of cryptococcosis. Future Microbiol 2023; 18:127-135. [PMID: 36688321 DOI: 10.2217/fmb-2022-0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cryptococcosis is an opportunistic mycosis that mainly affects immunosuppressed patients. The treatment is a combination of three antifungal agents: amphotericin B, 5-flucytosine and fluconazole. However, these drugs have many disadvantages, such as high nephrotoxicity, marketing bans in some countries and fungal resistance. One of the solutions to find possible new drugs is pharmacological repositioning. This work presents repositioned drugs as an alternative for new antifungal therapies for cryptococcosis. All the studies here were performed in vitro or in animal models, except for sertraline, which reached phase III in humans. There is still no pharmacological repositioning approval for cryptococcosis in humans, though this review shows the potential of repurposing as a rapid approach to finding new agents to treat cryptococcosis.
Collapse
Affiliation(s)
- Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941902, Brazil
| | - Glauber Rs Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941902, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941902, Brazil
| |
Collapse
|
60
|
Smith DFQ, Dragotakes Q, Kulkarni M, Hardwick JM, Casadevall A. Galleria mellonella immune melanization is fungicidal during infection. Commun Biol 2022; 5:1364. [PMID: 36510005 PMCID: PMC9744840 DOI: 10.1038/s42003-022-04340-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
A key component of the insect immune response is melanin production, including within nodules, or aggregations of immune cells surrounding microbes. Melanization produces oxidative and toxic intermediates that limit microbial infections. However, a direct fungicidal role of melanin during infection has not been demonstrated. We previously reported that the fungus Cryptococcus neoformans is encapsulated with melanin within nodules of Galleria mellonella hosts. Here we developed techniques to study melanin's role during C. neoformans infection in G. mellonella. We provided evidence that in vivo melanin-encapsulation was fungicidal. To further study immune melanization, we applied tissue-clearing techniques to visualize melanized nodules in situ throughout the larvae. Further, we developed a time-lapse microscopy protocol to visualize the melanization kinetics in extracted hemolymph following fungal exposure. Using this technique, we found that cryptococcal melanin and laccase enhance immune melanization. We extended this approach to study the fungal pathogens Candida albicans and Candida auris. We find that the yeast morphologies of these fungi elicited robust melanization responses, while hyphal and pseudohyphal morphologies were melanin-evasive. Approximately 23% of melanin-encapsulated C. albicans yeast can survive and breakthrough the encapsulation. Overall, our results provide direct evidence that immune melanization functions as a direct antifungal mechanism in G. mellonella.
Collapse
Affiliation(s)
- Daniel F Q Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Quigly Dragotakes
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Madhura Kulkarni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
61
|
Cryptococcal Immune Reconstitution Inflammatory Syndrome: From Clinical Studies to Animal Experiments. Microorganisms 2022; 10:microorganisms10122419. [PMID: 36557672 PMCID: PMC9780901 DOI: 10.3390/microorganisms10122419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cryptococcus neoformans is an encapsulated pathogenic fungus that initially infects the lung but can migrate to the central nervous system (CNS), resulting in meningoencephalitis. The organism causes the CNS infection primarily in immunocompromised individuals including HIV/AIDS patients, but also, rarely, in immunocompetent individuals. In HIV/AIDS patients, limited inflammation in the CNS, due to impaired cellular immunity, cannot efficiently clear a C. neoformans infection. Antiretroviral therapy (ART) can rapidly restore cellular immunity in HIV/AIDS patients. Paradoxically, ART induces an exaggerated inflammatory response, termed immune reconstitution inflammatory syndrome (IRIS), in some HIV/AIDS patients co-infected with C. neoformans. A similar excessive inflammation, referred to as post-infectious inflammatory response syndrome (PIIRS), is also frequently seen in previously healthy individuals suffering from cryptococcal meningoencephalitis. Cryptococcal IRIS and PIIRS are life-threatening complications that kill up to one-third of affected people. In this review, we summarize the inflammatory responses in the CNS during HIV-associated cryptococcal meningoencephalitis. We overview the current understanding of cryptococcal IRIS developed in HIV/AIDS patients and cryptococcal PIIRS occurring in HIV-uninfected individuals. We also describe currently available animal models that closely mimic aspects of cryptococcal IRIS observed in HIV/AIDS patients.
Collapse
|
62
|
He S, Luo T, Xie Y, Zhu X, Lei J, Cai L, Deng Z. Pubis Cryptococcal Osteomyelitis in an Immunocompetent Patient: A Case Report and Recent Literature Review. Infect Drug Resist 2022; 15:7369-7375. [DOI: 10.2147/idr.s390881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
|
63
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
64
|
Sharma K, Aaghaz S, Kumar Maurya I, Sharma KK, Singh S, Rudramurthy SM, Kumar V, Tikoo K, Jain R. Synthetic Amino Acids-Derived Peptides Targets Cryptococcus neoformans by Inducing Cell Membrane Disruption. Bioorg Chem 2022; 130:106252. [DOI: 10.1016/j.bioorg.2022.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
65
|
de Castro RJA, Rêgo MTAM, Brandão FS, Pérez ALA, De Marco JL, Poças-Fonseca MJ, Nichols C, Alspaugh JA, Felipe MSS, Alanio A, Bocca AL, Fernandes L. Engineered Fluorescent Strains of Cryptococcus neoformans: a Versatile Toolbox for Studies of Host-Pathogen Interactions and Fungal Biology, Including the Viable but Nonculturable State. Microbiol Spectr 2022; 10:e0150422. [PMID: 36005449 PMCID: PMC9603711 DOI: 10.1128/spectrum.01504-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/05/2022] [Indexed: 12/31/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen known for its remarkable ability to infect and subvert phagocytes. This ability provides survival and persistence within the host and relies on phenotypic plasticity. The viable but nonculturable (VBNC) phenotype was recently described in C. neoformans, whose study is promising in understanding the pathophysiology of cryptococcosis. The use of fluorescent strains is improving host interaction research, but it is still underexploited. Here, we fused histone H3 or the poly(A) binding protein (Pab) to enhanced green fluorescent protein (eGFP) or mCherry, obtaining a set of C. neoformans transformants with different colors, patterns of fluorescence, and selective markers (hygromycin B resistance [Hygr] or neomycin resistance [Neor]). We validated their similarity to the parental strain in the stress response, the expression of virulence-related phenotypes, mating, virulence in Galleria mellonella, and survival within murine macrophages. PAB-GFP, the brightest transformant, was successfully applied for the analysis of phagocytosis by flow cytometry and fluorescence microscopy. Moreover, we demonstrated that an engineered fluorescent strain of C. neoformans was able to generate VBNC cells. GFP-tagged Pab1, a key regulator of the stress response, evidenced nuclear retention of Pab1 and the assembly of cytoplasmic stress granules, unveiling posttranscriptional mechanisms associated with dormant C. neoformans cells. Our results support that the PAB-GFP strain is a useful tool for research on C. neoformans. IMPORTANCE Cryptococcus neoformans is a human-pathogenic yeast that can undergo a dormant state and is responsible for over 180,000 deaths annually worldwide. We engineered a set of fluorescent transformants to aid in research on C. neoformans. A mutant with GFP-tagged Pab1 improved fluorescence-based techniques used in host interaction studies. Moreover, this mutant induced a viable but nonculturable phenotype and uncovered posttranscriptional mechanisms associated with dormant C. neoformans. The experimental use of fluorescent mutants may shed light on C. neoformans-host interactions and fungal biology, including dormant phenotypes.
Collapse
Affiliation(s)
- Raffael Júnio Araújo de Castro
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
- CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses et Antifongiques, Institut Pasteur, Paris, France
| | - Marco Túlio Aidar Mariano Rêgo
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Fabiana S. Brandão
- Faculty of Health Science, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Ana Laura Alfonso Pérez
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District, Brazil
| | - Janice Lisboa De Marco
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District, Brazil
| | - Marcio José Poças-Fonseca
- Department of Genetics and Morphology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Connie Nichols
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - J. Andrew Alspaugh
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - Maria Sueli S. Felipe
- Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Brasília, Federal District, Brazil
| | - Alexandre Alanio
- CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses et Antifongiques, Institut Pasteur, Paris, France
- Laboratoire de Mycologie et Parasitologie, AP-HP, Hôpital Saint Louis, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Larissa Fernandes
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
- Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Brasília, Federal District, Brazil
| |
Collapse
|
66
|
Yang C, Huang Y, Zhou Y, Zang X, Deng H, Liu Y, Shen D, Xue X. Cryptococcus escapes host immunity: What do we know? Front Cell Infect Microbiol 2022; 12:1041036. [PMID: 36310879 PMCID: PMC9606624 DOI: 10.3389/fcimb.2022.1041036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cryptococcus is an invasive fungus that seriously endangers human life and health, with a complex and well-established immune-escaping mechanism that interferes with the function of the host immune system. Cryptococcus can attenuate the host’s correct recognition of the fungal antigen and escape the immune response mediated by host phagocytes, innate lymphoid cells, T lymphocytes, B lymphocytes with antibodies, and peripheral cytokines. In addition, the capsule, melanin, dormancy, Titan cells, biofilm, and other related structures of Cryptococcus are also involved in the process of escaping the host’s immunity, as well as enhancing the ability of Cryptococcus to infect the host.
Collapse
Affiliation(s)
- Chen Yang
- Department of Laboratory Medicine, the First Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yemei Huang
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Yangyu Zhou
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Xuelei Zang
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Hengyu Deng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yitong Liu
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Dingxia Shen
- Department of Laboratory Medicine, the First Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Dingxia Shen, ; Xinying Xue,
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Dingxia Shen, ; Xinying Xue,
| |
Collapse
|
67
|
Denham ST, Brammer B, Chung KY, Wambaugh MA, Bednarek JM, Guo L, Moreau CT, Brown JCS. A dissemination-prone morphotype enhances extrapulmonary organ entry by Cryptococcus neoformans. Cell Host Microbe 2022; 30:1382-1400.e8. [PMID: 36099922 PMCID: PMC9588642 DOI: 10.1016/j.chom.2022.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 01/08/2023]
Abstract
Environmental pathogens move from ecological niches to mammalian hosts, requiring adaptation to dramatically different environments. Microbes that disseminate farther, including the fungal meningitis pathogen Cryptococcus neoformans, require additional adaptation to diverse tissues. We demonstrate that the formation of a small C. neoformans morphotype-called "seed" cells due to their colonizing ability-is critical for extrapulmonary organ entry. Seed cells exhibit changes in fungal cell size and surface expression that result in an enhanced macrophage update. Seed cell formation is triggered by environmental factors, including C. neoformans' environmental niche, and pigeon guano with phosphate plays a central role. Seed cells show the enhanced expression of phosphate acquisition genes, and mutants unable to acquire phosphate fail to adopt the seed cell morphotype. Additionally, phosphate can be released by tissue damage, potentially establishing a feed-forward loop of seed cell formation and dissemination. Thus, C. neoformans' size variation represent inducible morphotypes that change host interactions to facilitate microbe spread.
Collapse
Affiliation(s)
- Steven T Denham
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Brianna Brammer
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Krystal Y Chung
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Morgan A Wambaugh
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph M Bednarek
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Li Guo
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Christian T Moreau
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
68
|
Cryptococcus neoformans Infection in the Central Nervous System: The Battle between Host and Pathogen. J Fungi (Basel) 2022; 8:jof8101069. [PMID: 36294634 PMCID: PMC9605252 DOI: 10.3390/jof8101069] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus neoformans (C. neoformans) is a pathogenic fungus with a global distribution. Humans become infected by inhaling the fungus from the environment, and the fungus initially colonizes the lungs. If the immune system fails to contain C. neoformans in the lungs, the fungus can disseminate to the blood and invade the central nervous system, resulting in fatal meningoencephalitis particularly in immunocompromised individuals including HIV/AIDS patients. Following brain invasion, C. neoformans will encounter host defenses involving resident as well as recruited immune cells in the brain. To overcome host defenses, C. neoformans possesses multiple virulence factors capable of modulating immune responses. The outcome of the interactions between the host and C. neoformans will determine the disease progression. In this review, we describe the current understanding of how C. neoformans migrates to the brain across the blood–brain barrier, and how the host immune system responds to the invading organism in the brain. We will also discuss the virulence factors that C. neoformans uses to modulate host immune responses.
Collapse
|
69
|
Pulmonary Fibrosis and Hypereosinophilia in TLR9-/- Mice Infected by Cryptococcus gattii. Pathogens 2022; 11:pathogens11090987. [PMID: 36145419 PMCID: PMC9505093 DOI: 10.3390/pathogens11090987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus gattii is a worldwide-distributed basidiomycetous yeast that can infect immunocompetent hosts. However, little is known about the mechanisms involved in the disease. The innate immune response is essential to the control of infections by microorganisms. Toll-like receptor 9 (TLR9) is an innate immune receptor, classically described as a non-methylated DNA recognizer and associated with bacteria, protozoa and opportunistic mycosis infection models. Previously, our group showed that TLR9-/- mice were more susceptible to C. gattii after 21 days of infection. However, some questions about the innate immunity involving TLR9 response against C. gattii remain unknown. In order to investigate the systemic cryptococcal infection, we evaluated C57BL/6 mice and C57BL/6 TLR9-/- after intratracheal infection with 104C. gattii yeasts for 21 days. Our data evidenced that TLR9-/- was more susceptible to C. gattii. TLR9-/- mice had hypereosinophilia in pulmonary mixed cellular infiltrate, severe bronchiolitis and vasculitis and type 2 alveolar cell hyperplasia. In addition, TLR9-/- mice developed severe pulmonary fibrosis and areas with strongly birefringent fibers. Together, our results corroborate the hypothesis that TLR9 is important to support the Th1/Th17 response against C. gattii infection in the murine experimental model.
Collapse
|
70
|
Ishibashi Y. Functions and applications of glycolipid-hydrolyzing microbial glycosidases. Biosci Biotechnol Biochem 2022; 86:974-984. [PMID: 35675217 DOI: 10.1093/bbb/zbac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/29/2022] [Indexed: 11/13/2022]
Abstract
Glycolipids are important components of cell membranes in several organisms. The major glycolipids in mammals are glycosphingolipids (GSLs), which are composed of ceramides. In mammals, GSLs are degraded stepwise from the non-reducing end of the oligosaccharides via exo-type glycosidases. However, endoglycoceramidase (EGCase), an endo-type glycosidase found in actinomycetes, is a unique enzyme that directly acts on the glycosidic linkage between oligosaccharides and ceramides to generate intact oligosaccharides and ceramides. Three molecular species of EGCase, namely EGCase I, EGCase II, and endogalactosylceramidase, have been identified based on their substrate specificity. EGCrP1 and EGCrP2, which are homologs of EGCase in pathogenic fungi, were identified as the first fungal glucosylceramide- and sterylglucoside-hydrolyzing glycosidases, respectively. These enzymes are promising targets for antifungal drugs against pathogenic fungi. This review describes the functions and properties of these microbial glycolipid-degrading enzymes, the molecular basis of their differential substrate specificity, and their applications.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
71
|
de Oliveira HC, Castelli RF, Alves LR, Nosanchuk JD, Salama EA, Seleem M, Rodrigues ML. Identification of four compounds from the Pharmakon library with antifungal activity against Candida auris and species of Cryptococcus. Med Mycol 2022; 60:myac033. [PMID: 35575621 DOI: 10.1093/mmy/myac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
There is an urgent need to develop novel antifungals. In this study, we screened 1600 compounds for antifungal activity against Cryptococcus neoformans and Candida auris. We evaluated 4 promising compounds against 24 additional isolates of Cr. neoformans, Ca. auris, Cr. deuterogattii, and Cr. gattii. The four compounds, dequalinium chloride (DQC), bleomycin sulfate (BMS), pentamidine isethionate salt (PIS), and clioquinol (CLQ), varied in their efficacy against these pathogens but were generally more effective against cryptococci. The compounds exerted their antifungal effect via multiple mechanisms, including interference with the capsule of cryptococci and induction of hyphal-like morphology in Ca. auris. Our results indicate that DQC, BMS, PIS, and CLQ represent potential prototypes for the future development of antifungals. LAY SUMMARY Fungal infections can be lethal and the options to fight them are scarce. We tested 1600 molecules for their ability to control the growth of two important fungal pathogens, namely Candida auris and species of Cryptococcus. Four of these compounds showed promising antifungal activities.
Collapse
Affiliation(s)
| | - Rafael F Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Lysangela R Alves
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ehab A Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, VA Tech, Blacksburg, Virginia, USA
| | - Mohamed Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, VA Tech, Blacksburg, Virginia, USA
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
72
|
Wirth F, Staudt KJ, Araújo BV, Ishida K. Experimental models for pharmacokinetic and pharmacodynamic studies of antifungals used in cryptococcosis treatment. Future Microbiol 2022; 17:969-982. [PMID: 35694892 DOI: 10.2217/fmb-2021-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on cryptococcosis in the mammal animal model have demonstrated the occurrence of central nervous system infection and similarities in fungal pathogenicity with clinical and immunological features of the human infection. Although there is still a lack of studies involving pharmacokinetics (PK) and pharmacodynamics (PD) in animal models of cryptococcosis in the literature, these experimental models are useful for understanding this mycosis and antifungal effectiveness in improving the therapeutic schemes. The scope of this review is to describe and discuss the main mammal animal models for PK and PD studies of antifungals used in cryptococcosis treatment. Alternative models and computational methods are also addressed. All approaches for PK/PD studies are relevant to investigating drug-infection interaction and improving cryptococcosis therapy.
Collapse
Affiliation(s)
- Fernanda Wirth
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Keli J Staudt
- Faculty of Pharmacy, Pharmaceutical Sciences Post-Graduation Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Bibiana V Araújo
- Faculty of Pharmacy, Pharmaceutical Sciences Post-Graduation Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
73
|
Wang T, Yang W, Liu Y, Li W, Wang Y, Liu N, Sheng C. Jumonji Histone Demethylase Inhibitor JIB-04 as a Broad-Spectrum Antifungal Agent. ACS Infect Dis 2022; 8:1316-1323. [PMID: 35695031 DOI: 10.1021/acsinfecdis.2c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Invasive fungal infections are emerging as a global public health problem. The lack of effective antifungal drugs is the bottleneck of clinical antifungal treatment. To identify novel antifungal agents with new mechanisms of action, JIB-04, a Jumonji histone demethylase inhibitor, was identified to possess broad-spectrum antifungal activity by a cell-based screen. Particularly, JIB-04 effectively inhibited Jumonji demethylase activity and ergosterol biosynthesis of Cryptococcus neoformans cells, leading to in vitro and in vivo anti-Cryptococcus activity. It also significantly inhibited the virulence factors of C. neoformans including biofilm, melanin, capsule, and surface hydrophobicity. Thus, JIB-04 was validated as a potent antifungal agent for the treatment of cryptococcal meningitis and Jumonji histone demethylase was preliminarily identified as a potential target for the development of novel antifungal therapeutics.
Collapse
Affiliation(s)
- Tianyou Wang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.,Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wanzhen Yang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yun Liu
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wang Li
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yan Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Na Liu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
74
|
Ferreira MDS, Mendoza SR, Gonçalves DDS, Rodríguez-de la Noval C, Honorato L, Nimrichter L, Ramos LFC, Nogueira FCS, Domont GB, Peralta JM, Guimarães AJ. Recognition of Cell Wall Mannosylated Components as a Conserved Feature for Fungal Entrance, Adaptation and Survival Within Trophozoites of Acanthamoeba castellanii and Murine Macrophages. Front Cell Infect Microbiol 2022; 12:858979. [PMID: 35711659 PMCID: PMC9194641 DOI: 10.3389/fcimb.2022.858979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023] Open
Abstract
Acanthamoeba castellanii (Ac) is a species of free-living amoebae (FLAs) that has been widely applied as a model for the study of host-parasite interactions and characterization of environmental symbionts. The sharing of niches between Ac and potential pathogens, such as fungi, favors associations between these organisms. Through predatory behavior, Ac enhances fungal survival, dissemination, and virulence in their intracellular milieu, training these pathogens and granting subsequent success in events of infections to more evolved hosts. In recent studies, our group characterized the amoeboid mannose binding proteins (MBPs) as one of the main fungal recognition pathways. Similarly, mannose-binding lectins play a key role in activating antifungal responses by immune cells. Even in the face of similarities, the distinct impacts and degrees of affinity of fungal recognition for mannose receptors in amoeboid and animal hosts are poorly understood. In this work, we have identified high-affinity ligands for mannosylated fungal cell wall residues expressed on the surface of amoebas and macrophages and determined the relative importance of these pathways in the antifungal responses comparing both phagocytic models. Mannose-purified surface proteins (MPPs) from both phagocytes showed binding to isolated mannose/mannans and mannosylated fungal cell wall targets. Although macrophage MPPs had more intense binding when compared to the amoeba receptors, the inhibition of this pathway affects fungal internalization and survival in both phagocytes. Mass spectrometry identified several MPPs in both models, and in silico alignment showed highly conserved regions between spotted amoeboid receptors (MBP and MBP1) and immune receptors (Mrc1 and Mrc2) and potential molecular mimicry, pointing to a possible convergent evolution of pathogen recognition mechanisms.
Collapse
Affiliation(s)
- Marina da Silva Ferreira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
- Pós-Graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Ruiz Mendoza
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
- Pós-Graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego de Souza Gonçalves
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
- Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Rodríguez-de la Noval
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Leandro Honorato
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil
| | - Luís Felipe Costa Ramos
- Laboratório de Química de Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C. S. Nogueira
- Laboratório de Química de Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B. Domont
- Laboratório de Química de Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Mauro Peralta
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan J. Guimarães
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
- Pós-Graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
75
|
Snelders E, Moyrand F, Sturny-Leclère A, Vernel-Pauillac F, Volant S, Janbon G, Alanio A. The role of glycosylphosphatidylinositol (gpi) anchored proteins in Cryptococcus neoformans. Microbes Infect 2022; 24:105016. [DOI: 10.1016/j.micinf.2022.105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/25/2022] [Accepted: 05/20/2022] [Indexed: 10/31/2022]
|
76
|
Wang WY, Zheng YL, Jiang LB. Cryptococcal antigen testing of lung tissue homogenate improves pulmonary cryptococcosis diagnosis: Two case reports. World J Clin Cases 2022; 10:3893-3898. [PMID: 35647158 PMCID: PMC9100706 DOI: 10.12998/wjcc.v10.i12.3893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/30/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary cryptococcosis (PC) is an opportunistic infectious disease of the respiratory system. Lung tissue biopsies, culture of respiratory samples (e.g., sputum, lung tissue, pleural fluid, and bronchoalveolar lavage fluid), and cryptococcal antigen (CrAg) testing are helpful for a definitive diagnosis. However, these tests are sometimes falsely negative. PC is often misdiagnosed or underdiagnosed owing to the absence of obvert symptoms, poor imaging specificity, and false-negative laboratory tests.
CASE SUMMARY We report two female patients who underwent computed tomography-guided percutaneous needle pulmonary biopsy of a lung nodule for a confirmed diagnosis. In both patients, the CrAg test on the lung biopsy tissue homogenate was positive, while the serum CrAg test was negative. Combined with the lung tissue pathology, we made the diagnosis of PC. Antifungal therapy was effective in both patients.
CONCLUSION Given the findings of our cases and the literature review, lung tissue homogenate CrAg testing can be helpful in improving the diagnosis of PC.
Collapse
Affiliation(s)
- Wei-Yi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Yu-Lu Zheng
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Li-Bin Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
77
|
Flores-Torres AS, Samarasinghe AE. Impact of Therapeutics on Unified Immunity During Allergic Asthma and Respiratory Infections. FRONTIERS IN ALLERGY 2022; 3:852067. [PMID: 35386652 PMCID: PMC8974821 DOI: 10.3389/falgy.2022.852067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a common chronic respiratory disease that affects millions of people worldwide. Patients with allergic asthma, the most prevalent asthma endotype, are widely considered to possess a defective immune response against some respiratory infectious agents, including viruses, bacteria and fungi. Furthermore, respiratory pathogens are associated with asthma development and exacerbations. However, growing data suggest that the immune milieu in allergic asthma may be beneficial during certain respiratory infections. Immunomodulatory asthma treatments, although beneficial, should then be carefully prescribed to avoid misuse and overuse as they can also alter the host microbiome. In this review, we summarize and discuss recent evidence of the correlations between allergic asthma and the most significant respiratory infectious agents that have a role in asthma pathogenesis. We also discuss the implications of current asthma therapeutics beyond symptom prevention.
Collapse
Affiliation(s)
- Armando S. Flores-Torres
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| |
Collapse
|
78
|
Wang Y, Pawar S, Dutta O, Wang K, Rivera A, Xue C. Macrophage Mediated Immunomodulation During Cryptococcus Pulmonary Infection. Front Cell Infect Microbiol 2022; 12:859049. [PMID: 35402316 PMCID: PMC8987709 DOI: 10.3389/fcimb.2022.859049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Macrophages are key cellular components of innate immunity, acting as the first line of defense against pathogens to modulate homeostatic and inflammatory responses. They help clear pathogens and shape the T-cell response through the production of cytokines and chemokines. The facultative intracellular fungal pathogen Cryptococcus neoformans has developed a unique ability to interact with and manipulate host macrophages. These interactions dictate how Cryptococcus infection can remain latent or how dissemination within the host is achieved. In addition, differences in the activities of macrophages have been correlated with differential susceptibilities of hosts to Cryptococcus infection, highlighting the importance of macrophages in determining disease outcomes. There is now abundant information on the interaction between Cryptococcus and macrophages. In this review we discuss recent advances regarding macrophage origin, polarization, activation, and effector functions during Cryptococcus infection. The importance of these strategies in pathogenesis and the potential of immunotherapy for cryptococcosis treatment is also discussed.
Collapse
Affiliation(s)
- Yan Wang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Department of Microbiology and Immunology , Guangdong Medical University, Dongguan, China
| | - Siddhi Pawar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Orchi Dutta
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Chaoyang Xue
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
79
|
Berguson HP, Caulfield LW, Price MS. Influence of Pathogen Carbon Metabolism on Interactions With Host Immunity. Front Cell Infect Microbiol 2022; 12:861405. [PMID: 35372116 PMCID: PMC8968422 DOI: 10.3389/fcimb.2022.861405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous opportunistic fungal pathogen typically causing disease in immunocompromised individuals and is globally responsible for about 15% of AIDS-related deaths annually. C. neoformans first causes pulmonary infection in the host and then disseminates to the brain, causing meningoencephalitis. The yeast must obtain and metabolize carbon within the host in order to survive in the central nervous system and cause disease. Communication between pathogen and host involves recognition of multiple carbon-containing compounds on the yeast surface: polysaccharide capsule, fungal cell wall, and glycosylated proteins comprising the major immune modulators. The structure and function of polysaccharide capsule has been studied for the past 70 years, emphasizing its role in virulence. While protected by the capsule, fungal cell wall has likewise been a focus of study for several decades for its role in cell integrity and host recognition. Associated with both of these major structures are glycosylated proteins, which exhibit known immunomodulatory effects. While many studies have investigated the role of carbon metabolism on virulence and survival within the host, the precise mechanism(s) affecting host-pathogen communication remain ill-defined. This review summarizes the current knowledge on mutants in carbon metabolism and their effect on the host immune response that leads to changes in pathogen recognition and virulence. Understanding these critical interactions will provide fresh perspectives on potential treatments and the natural history of cryptococcal disease.
Collapse
Affiliation(s)
- Hannah P. Berguson
- Department of Anatomical Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
| | - Lauren W. Caulfield
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, United States
| | - Michael S. Price
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Michael S. Price,
| |
Collapse
|
80
|
Lineages Derived from Cryptococcus neoformans Type Strain H99 Support a Link between the Capacity to Be Pleomorphic and Virulence. mBio 2022; 13:e0028322. [PMID: 35258331 PMCID: PMC9040854 DOI: 10.1128/mbio.00283-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenic yeast Cryptococcus neoformans causes nearly 200,000 deaths annually in immunocompromised individuals. Cryptococcus cells can undergo substantial morphological change during mammalian infection, including increased capsule and cell size, the release of shed capsule, and the production of titan (>10 μm), micro (<2 μm)-, and irregular cells. We examined phenotypic variation under conditions designed to simulate in vivo stress in a collection of nine lineages derived from the C. neoformans type strain H99. These lineages are highly genetically similar but have a range of virulence levels. Strains from hypervirulent lineages had a larger average capsule size, greater variation in cell size, and an increased production of microcells and shed capsule. We tested whether disruption of SGF29, which encodes a component of the SAGA histone acetylation complex that has previously been implicated in the hypervirulence of some lineages, also has a role in the production of morphological variants. Deletion of SGF29 in a lineage with intermediate virulence substantially increased its production of microcells and released capsule, consistent with a switch to hypervirulence. We further examined SGF29 in a set of 52 clinical isolates and found loss-of-function mutations were significantly correlated with patient death. Expansion of a TA repeat in the second intron of SGF29 was positively correlated with cell and capsule size, suggesting it also affects Sgf29 function. This study extends the evidence for a link between pleomorphism and virulence in Cryptococcus, with a likely role for epigenetic mechanisms mediated by SAGA-induced histone acetylation.
Collapse
|
81
|
Transverse Myelitis Associated with Cryptococcus neoformans in an Immunocompetent Patient. Case Rep Infect Dis 2022; 2022:2000246. [PMID: 35237455 PMCID: PMC8885289 DOI: 10.1155/2022/2000246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
Cryptococcus neoformans is a microscopic fungus that despite its pervasiveness in the environment rarely causes infection in immunocompetent patients. In immunosuppressed patients, infections involving the central nervous system (CNS) usually present as meningitis or meningoencephalitis. Cryptococcal infections are known to cause significant morbidity and mortality in immunosuppressed patients as it is difficult to eradicate even with adequate antifungal treatment. A 44-year-old Hispanic male presented to the hospital with headache, progressive urinary retention, neck and back pain, and right upper and bilateral lower extremity weakness for five days. Imaging revealed small foci in the white matter and revealed diffuse abnormal signal involving the cervical medullary junction extending up to the thoracic spine. Analysis of cerebral spinal fluid (CSF) obtained via lumbar puncture was positive for the Streptococcus antigen with cultures also growing Cryptococcus neoformans. Upon evaluation, patient was not found to be immunocompromised. This report works to highlight an atypical presentation of a cryptococcal CNS infection to raise awareness amongst clinicians hoping to prevent a delay in diagnosis of this disease given its high mortality.
Collapse
|
82
|
Narayan M, Jayavelu S, Goel H, Rosenthal JR, Aisenberg GM. A Case of Neuroparacoccidioidomycosis in Houston, Texas. Cureus 2022; 14:e21129. [PMID: 35165582 PMCID: PMC8833289 DOI: 10.7759/cureus.21129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/05/2022] Open
|
83
|
Climate Change and Global Distribution of Cryptococcosis. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
84
|
Li Y, Li H, Sun T, Ding C. Pathogen-Host Interaction Repertoire at Proteome and Posttranslational Modification Levels During Fungal Infections. Front Cell Infect Microbiol 2021; 11:774340. [PMID: 34926320 PMCID: PMC8674643 DOI: 10.3389/fcimb.2021.774340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Prevalence of fungal diseases has increased globally in recent years, which often associated with increased immunocompromised patients, aging populations, and the novel Coronavirus pandemic. Furthermore, due to the limitation of available antifungal agents mortality and morbidity rates of invasion fungal disease remain stubbornly high, and the emergence of multidrug-resistant fungi exacerbates the problem. Fungal pathogenicity and interactions between fungi and host have been the focus of many studies, as a result, lots of pathogenic mechanisms and fungal virulence factors have been identified. Mass spectrometry (MS)-based proteomics is a novel approach to better understand fungal pathogenicities and host–pathogen interactions at protein and protein posttranslational modification (PTM) levels. The approach has successfully elucidated interactions between pathogens and hosts by examining, for example, samples of fungal cells under different conditions, body fluids from infected patients, and exosomes. Many studies conclude that protein and PTM levels in both pathogens and hosts play important roles in progression of fungal diseases. This review summarizes mass spectrometry studies of protein and PTM levels from perspectives of both pathogens and hosts and provides an integrative conceptual outlook on fungal pathogenesis, antifungal agents development, and host–pathogen interactions.
Collapse
Affiliation(s)
- Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
85
|
Ghandhi LHD, Bidula S, Pask CM, Lord RM, McGowan PC. Bis(N-picolinamido)cobalt(II) Complexes Display Antifungal Activity toward Candida albicans and Aspergillus fumigatus. ChemMedChem 2021; 16:3210-3221. [PMID: 34327861 PMCID: PMC8597028 DOI: 10.1002/cmdc.202100159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/14/2021] [Indexed: 11/06/2022]
Abstract
This report highlights the synthesis and characterization of ten new bis(N-picolinamido)cobalt(II) complexes of the type [(L)2 CoX2 ]0/2+ , whereby L=N-picolinamide ligand and X=diisothiocyanato (-NCS), dichlorido (-Cl) or diaqua (-OH2 ) ligands. Single crystal X-ray (SC-XRD) analysis for nine of the structures are reported and confirm the picolinamide ligand is bound to the Co(II) center through a neutral N,O binding mode. With the addition of powder X-ray diffraction (PXRD), we have confirmed the cis and trans ligand arrangements of each complex. All complexes were screened against several fungal species and show increased antifungal activity. Notably, these complexes had significant activity against strains of Candida albicans and Aspergillus fumigatus, with several compounds exhibiting growth inhibition of >80 %, and onecompound inhibiting Aspergillus fumigatus hyphal growth by >90 %. Conversely, no antifungal activity was exhibited toward Cryptococcus neoformans and no cytotoxicity towards mammalian cell lines.
Collapse
Affiliation(s)
| | - Stefan Bidula
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7JTUK
| | | | - Rianne M. Lord
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7JTUK
| | | |
Collapse
|
86
|
Cell Wall Integrity Pathway Involved in Morphogenesis, Virulence and Antifungal Susceptibility in Cryptococcus neoformans. J Fungi (Basel) 2021; 7:jof7100831. [PMID: 34682253 PMCID: PMC8540506 DOI: 10.3390/jof7100831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Due to its location, the fungal cell wall is the compartment that allows the interaction with the environment and/or the host, playing an important role during infection as well as in different biological functions such as cell morphology, cell permeability and protection against stress. All these processes involve the activation of signaling pathways within the cell. The cell wall integrity (CWI) pathway is the main route responsible for maintaining the functionality and proper structure of the cell wall. This pathway is highly conserved in the fungal kingdom and has been extensively characterized in Saccharomyces cerevisiae. However, there are still many unknown aspects of this pathway in the pathogenic fungi, such as Cryptococcus neoformans. This yeast is of particular interest because it is found in the environment, but can also behave as pathogen in multiple organisms, including vertebrates and invertebrates, so it has to adapt to multiple factors to survive in multiple niches. In this review, we summarize the components of the CWI pathway in C. neoformans as well as its involvement in different aspects such as virulence factors, morphological changes, and its role as target for antifungal therapies among others.
Collapse
|
87
|
Horianopoulos LC, Lee CWJ, Hu G, Caza M, Kronstad JW. Dnj1 Promotes Virulence in Cryptococcus neoformans by Maintaining Robust Endoplasmic Reticulum Homeostasis Under Temperature Stress. Front Microbiol 2021; 12:727039. [PMID: 34566931 PMCID: PMC8461255 DOI: 10.3389/fmicb.2021.727039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
The capacity of opportunistic fungal pathogens such as Cryptococcus neoformans to cause disease is dependent on their ability to overcome an onslaught of stresses including elevated temperature under mammalian host conditions. Protein chaperones and co-chaperones play key roles in thermotolerance. In this study, we characterized the role of the endoplasmic reticulum (ER) J-domain containing co-chaperone, Dnj1, in the virulence of C. neoformans. A strain expressing a Dnj1-GFP fusion protein was used to confirm localization to the ER, and a dnj1∆ deletion mutant was shown to be hypersensitive to the ER stress caused by tunicamycin (TM) or 4μ8C. Dnj1 and another ER chaperone, calnexin were found to coordinately maintain ER homeostasis and contribute to maintenance of cell wall architecture. Dnj1 also contributed to thermotolerance and increased in abundance at elevated temperatures representative of febrile patients (e.g., 39°C) thus highlighting its role as a temperature-responsive J domain protein. The elaboration of virulence factors such as the polysaccharide capsule and extracellular urease activity were also markedly impaired in the dnj1∆ mutant when induced at human body temperature (i.e., 37°C). These virulence factors are immunomodulatory and, indeed, infection with the dnj1∆ mutant revealed impaired induction of the cytokines IL-6, IL-10, and MCP-1 in the lungs of mice compared to infection with wild type or complemented strains. The dnj1∆ mutant also had attenuated virulence in an intranasal murine model of cryptococcosis. Altogether, our data indicate that Dnj1 is crucial for survival and virulence factor production at elevated temperatures. The characterization of this co-chaperone also highlights the importance of maintaining homeostasis in the ER for the pathogenesis of C. neoformans.
Collapse
Affiliation(s)
| | - Christopher W J Lee
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
88
|
dos Santos MH, Machado MP, Kumaresan PR, da Silva TA. Titan Cells and Yeast Forms of Cryptococcus neoformans and Cryptococcus gattii Are Recognized by GXMR-CAR. Microorganisms 2021; 9:microorganisms9091886. [PMID: 34576780 PMCID: PMC8467747 DOI: 10.3390/microorganisms9091886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptococcosis, a systemic mycosis that affects both the immunocompromised and immunocompetent, is caused by the inhalation of dehydrated yeasts or fungal spores of Cryptococcus gattii or Cryptococcus neoformans. The Cryptococcus spp. polysaccharide capsule is composed mainly of glucuronoxylomannan—GXM, its major virulence factor. The capsule thickness increases to more than 15 μm during titanization, favoring the pathogenesis of cryptococcosis. Previous studies demonstrated that cytotoxic T cells that had been bioengineered with GXM-targeting chimeric antigen receptor (GXMR-CAR) were able to recognize C. neoformans by promoting the control of titanization. GXMR-CAR, a second-generation CAR, contains a single-chain variable fragment that originates from a 18B7 clone: a human IgG4 hinge, followed by a human CD28 (transmembrane/cytoplasmic domains) and a CD3ς chain. In the current study, we redirected T cells to target distinct C. neoformans and C. gattii cell types by GXMR-CAR. Lentiviral particles carrying the GXMR-CAR sequence were used to transduce Jurkat cells, and these modified cells interacted with the GXM of the C. gattii R265 strain. Moreover, GXMR-CAR mediated the recognition of C. gattii and C. neoformans yeasts with both thin and thick polysaccharide capsules, and GXMR-CAR Jurkat cells interacted with titan cells sourced from both Cryptococcus spp. Thus, bioengineered cells using CAR can improve the treatment of cryptococcosis.
Collapse
Affiliation(s)
- Matheus Henrique dos Santos
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 140490-900, SP, Brazil; (M.H.d.S.); (M.P.M.)
| | - Michele Procópio Machado
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 140490-900, SP, Brazil; (M.H.d.S.); (M.P.M.)
| | - Pappanaicken R. Kumaresan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Thiago Aparecido da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 140490-900, SP, Brazil; (M.H.d.S.); (M.P.M.)
- Correspondence: or ; Tel.: +55-16-3315-3049
| |
Collapse
|
89
|
Edwards HM, Cogliati M, Kwenda G, Fisher MC. The need for environmental surveillance to understand the ecology, epidemiology and impact of Cryptococcus infection in Africa. FEMS Microbiol Ecol 2021; 97:6312494. [PMID: 34196370 PMCID: PMC8536938 DOI: 10.1093/femsec/fiab093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Our understanding of the pathogenic yeasts Cryptococcus neoformans and Cryptococcus gattii has been greatly enhanced by use of genome sequencing technologies. Found ubiquitously as saprotrophs in the environment, inhalation of infectious spores from these pathogens can lead to the disease cryptococcosis. Individuals with compromised immune systems are at particular risk, most notably those living with HIV/AIDS. Genome sequencing in combination with laboratory and clinical studies has revealed diverse lineages with important differences in their observed frequency, virulence and clinical outcomes. However, to date, genomic analyses have focused primarily on clinical isolates that represent only a subset of the diversity in the environment. Enhanced genomic surveillance of these yeasts in their native environments is needed in order to understand their ecology, biology and evolution and how these influence the epidemiology and pathophysiology of clinical disease. This is particularly relevant on the African continent from where global cryptococcal diversity may have originated, yet where environmental sampling and sequencing has been sparse despite harbouring the largest population at risk from cryptococcosis. Here, we review what scientifically and clinically relevant insights have been provided by analysis of environmental Cryptococcus isolates to date and argue that with further sampling, particularly in Africa, many more important discoveries await.
Collapse
Affiliation(s)
- Hannah M Edwards
- MRC Centre for Global Infectious Disease Analysis, Imperial College School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Massimo Cogliati
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Ridgeway Campus, PO Box 50110, Lusaka, Zambia
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
90
|
Schaefer S, Pham TTP, Brunke S, Hube B, Jung K, Lenardon MD, Boyer C. Rational Design of an Antifungal Polyacrylamide Library with Reduced Host-Cell Toxicity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27430-27444. [PMID: 34060800 DOI: 10.1021/acsami.1c05020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Life-threatening invasive fungal infections represent an urgent threat to human health worldwide. The limited set of antifungal drugs has critical constraints such as resistance development and/or adverse side effects. One approach to overcome these limitations is to mimic naturally occurring antifungal peptides called defensins. Inspired by their advantageous amphiphilic properties, a library of 35 synthetic, linear, ternary polyacrylamides was prepared by controlled/living radical polymerization. The effect of the degree of polymerization (20, 40, and 100) and varying hydrophobic functionalities (branched, linear, cyclic, or aromatic differing in their number of carbons) on their antifungal activity was investigated. Short copolymers with a calculated log P of ∼1.5 revealed optimal activity against the major human fungal pathogen Candida albicans and other pathogenic fungal species with limited toxicity to mammalian host cells (red blood cells and fibroblasts). Remarkably, selected copolymers outperformed the commercial antifungal drug amphotericin B, with respect to the therapeutic index, highlighting their potential as novel antifungal compounds.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Thi Thu Phuong Pham
- School of Chemical Engineering, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Kenward Jung
- School of Chemical Engineering, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Megan Denise Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
91
|
The Environmental Effects on Virulence Factors and the Antifungal Susceptibility of Cryptococcus neoformans. Int J Mol Sci 2021; 22:ijms22126302. [PMID: 34208294 PMCID: PMC8230809 DOI: 10.3390/ijms22126302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen responsible for fungal meningoencephalitis primarily in immunocompromised individuals. It has become evident the pathogenicity of C. neoformans is dependent on the fungal cell’s environment. The differential expression of virulence factors, based on the cell’s environmental conditions, is one mechanism allowing for the environmental control of the pathogenic ability of C. neoformans. Here, we discuss how these virulence factors (including melanin, the polysaccharide capsule, and Antiphagocytic protein 1) have been shown to be differentially expressed dependent on the cell’s environment. The genetics and signaling pathways leading to the environmental-dependent regulation of virulence factors will also be examined. Susceptibility to antifungal therapeutics is also regulated by the environment, and thus affects the pathogenic abilities of C. neoformans and disease outcomes. This review will also examine the role of the C. neoformans’s environment on antifungal susceptibilities, and the genetics and signaling pathways responsible for these susceptibility alterations. By examining the complex interplay between the environment and the pathogenicity of C. neoformans, we have a better understanding of the intricacies of the pathogen–environment interaction and how to exploit this interaction to develop the most effective treatment protocols.
Collapse
|
92
|
Zhu T, Chen X, Li C, Tu J, Liu N, Xu D, Sheng C. Lanosterol 14α-demethylase (CYP51)/histone deacetylase (HDAC) dual inhibitors for treatment of Candida tropicalis and Cryptococcus neoformans infections. Eur J Med Chem 2021; 221:113524. [PMID: 33992927 DOI: 10.1016/j.ejmech.2021.113524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
Invasive fungal infections remain a challenge due to lack of effective antifungal agents and serious drug resistance. Discovery of antifungal agents with novel antifungal mechanism is important and urgent. Previously, we designed the first CYP51/HDAC dual inhibitors with potent activity against resistant Candida albicans infections. To better understand the antifungal spectrum and synergistic mechanism, herein new CYP51/HDAC dual inhibitors were designed which showed potent in vitro and in vivo antifungal activity against C. neoformans and C. tropicalis infections. Antifungal mechanism studies revealed that the CYP51/HDAC dual inhibitors acted by inhibiting various virulence factors of C. tropicalis and C. neoformans and down-regulating resistance-associated genes. This study highlights the potential of CYP51/HDAC dual inhibitors as a promising strategy for the discovery of novel broad-spectrum antifungal agents.
Collapse
Affiliation(s)
- Tianbao Zhu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmacy, 1 Gehu Road, Changzhou University, Changzhou, 213164, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an, 710127, China
| | - Chenglan Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Na Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Defeng Xu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmacy, 1 Gehu Road, Changzhou University, Changzhou, 213164, China.
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
93
|
Production of Secreted Carbohydrates that Present Immunologic Similarities with the Cryptococcus Glucuronoxylomannan by Members of the Trichosporonaceae Family: A Comparative Study Among Species of Clinical Interest. Mycopathologia 2021; 186:377-385. [PMID: 33956292 DOI: 10.1007/s11046-021-00558-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/22/2021] [Indexed: 10/20/2022]
Abstract
Glucuronoxylomannan (GXM) participates in several immunoregulatory mechanisms, which makes it an important Cryptococcus virulence factor that is essential for the disease. Trichosporon asahii and Trichosporon mucoides share with Cryptococcus species the ability to produce GXM. To check whether other opportunistic species in the Trichosporonaceae family produce GXM-like polysaccharides, extracts from 28 strains were produced from solid cultures and their carbohydrate content evaluated by the sulfuric acid / phenol method. Moreover, extracts were assessed for cryptococcal GXM cross-reactivity through latex agglutination and lateral flow assay methods. Cryptococcus neoformans and Saccharomyces cerevisiae were used as positive and negative controls, respectively. In addition to T. asahii, the species Trichosporon inkin, Apiotrichum montevideense, Trichosporon japonicum, Trichosporon faecale, Trichosporon ovoides, Cutaneotrichosporon debeurmannianum, and Cutaneotrichosporon arboriformis are also producers of a polysaccharide immunologically similar to the GXM produced by human pathogenic Cryptococcus species. The carbohydrate concentration of the extracts presented a positive correlation with the GXM contents determined by titration of both methodologies. These results add several species to the list of fungal pathogens that produce glycans of the GXM type and bring information about the origin of potential false-positive results on immunological tests for diagnosis of cryptococcosis based on GXM detection.
Collapse
|
94
|
The Repurposing of Acetylsalicylic Acid as a Photosensitiser to Inactivate the Growth of Cryptococcal Cells. Pharmaceuticals (Basel) 2021; 14:ph14050404. [PMID: 33922831 PMCID: PMC8146328 DOI: 10.3390/ph14050404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 01/07/2023] Open
Abstract
Photodynamic treatment (PDT) is often successful when used against aerobic microbes, given their natural susceptibility to oxidative damage. To this end, the current study aimed to explore the photodynamic action of acetylsalicylic acid (ASA; aspirin, which is commonly used to treat non-infectious ailments), when administered to respiring cryptococcal cells. The treatment of cryptococcal cells, i.e., exposure to 0.5 or 1 mM of ASA in the presence of ultraviolet light (UVL) for 10 min, resulted in a significant (p < 0.05) reduction in the growth of tested cells when compared to non-treated (non-Rx) cells, i.e., no ASA and no UVL. The treated cells were also characterised by diseased mitochondria, which is crucial for the survival of respiring cells, as observed by a significant (p < 0.05) loss of mitochondrial membrane potential (ΔΨM) and significant (p < 0.05) accumulation of reactive oxygen species (ROS) when compared to non-Rx cells. Moreover, the photolytic products of acetylsalicylic acid altered the ultrastructural appearance of treated cells as well as limited the expression levels of the capsular-associated gene, CAP64, when compared to non-Rx cells. The results of the study highlight the potential use of ASA as a photosensitiser that is effective for controlling the growth of cryptococcal cells. Potentially, this treatment can also be used as an adjuvant, to complement and support the usage of current anti-microbial agents.
Collapse
|
95
|
Chen Y, Li C, Sun D, Strickland AB, Liu G, Shi M. Quantitative analysis reveals internalisation of Cryptococcus neoformans by brain endothelial cells in vivo. Cell Microbiol 2021; 23:e13330. [PMID: 33745221 DOI: 10.1111/cmi.13330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Migration of Cryptococcus neoformans from the blood to the brain parenchyma is crucial to cause fatal meningoencephalitis. Although mechanisms involved in brain migration of C. neoformans have been widely studied in vitro, less is known about how the fungus crosses the blood-brain barrier (BBB) in vivo. This is in part because of the lack of an approach to quantitatively analyse the dynamics of fungal transmigration into the brain across the BBB in vivo. In this study, we report a novel approach to quantitatively analyse the interactions between C. neoformans and brain endothelial cells in a mouse model using flow cytometry. Using this system, we show that C. neoformans was internalised by brain endothelial cells in vivo and that mice infected with acapsular or heat-killed C. neoformans yeast cells displayed a lower frequency of brain endothelial cells containing the yeast cell compared to mice infected with wild-type or viable yeast cells, respectively. We further demonstrate that brain endothelial cells were invaded by serotype A strain (H99 strain) at a higher rate compared to serotype D strain (52D strain). Our experiments established that internalisation of C. neoformans by brain endothelial cells occurred in vivo and offered a powerful approach to quantitatively analyse fungal migration into the brain.
Collapse
Affiliation(s)
- Yanli Chen
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Chang Li
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Donglei Sun
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Ashley B Strickland
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Gongguan Liu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
96
|
F. Q. Smith D, Casadevall A. Fungal immunity and pathogenesis in mammals versus the invertebrate model organism Galleria mellonella. Pathog Dis 2021; 79:ftab013. [PMID: 33544836 PMCID: PMC7981337 DOI: 10.1093/femspd/ftab013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent decades, Galleria mellonella (Lepidoptera: Pyralidae) have emerged as a model system to explore experimental aspects of fungal pathogenesis. The benefits of the G. mellonella model include being faster, cheaper, higher throughput and easier compared with vertebrate models. Additionally, as invertebrates, their use is subject to fewer ethical and regulatory issues. However, for G. mellonella models to provide meaningful insight into fungal pathogenesis, the G. mellonella-fungal interactions must be comparable to mammalian-fungal interactions. Indeed, as discussed in the review, studies suggest that G. mellonella and mammalian immune systems share many similarities, and fungal virulence factors show conserved functions in both hosts. While the moth model has opened novel research areas, many comparisons are superficial and leave large gaps of knowledge that need to be addressed concerning specific mechanisms underlying G. mellonella-fungal interactions. Closing these gaps in understanding will strengthen G. mellonella as a model for fungal virulence in the upcoming years. In this review, we provide comprehensive comparisons between fungal pathogenesis in mammals and G. mellonella from immunological and virulence perspectives. When information on an antifungal immune component is unknown in G. mellonella, we include findings from other well-studied Lepidoptera. We hope that by outlining this information available in related species, we highlight areas of needed research and provide a framework for understanding G. mellonella immunity and fungal interactions.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
97
|
Abstract
Cryptococcus neoformans is a basidiomycetous yeast responsible for hundreds of thousands of deaths a year and is particularly threatening in immunocompromised patients. There are few families of antifungals that are available to fight fungal infections, and the unique efficient treatment for the most deadly cerebral forms of cryptococcosis is based on a combination of 5-fluorocytosine and amphotericin B. The toxicities of both compounds are elevated, and more therapeutic options are urgently needed for better management of life-threatening cryptococcosis. The newest class of antifungals, i.e., echinocandins, has initially led to great hope. Unfortunately, C. neoformans was rapidly confirmed to be naturally resistant to these molecules, notably caspofungin. In this respect, we discuss here the recent key findings of the Panepinto research group published in mBio (M. C. Kalem et al., mBio 12:e03225-20, 2021, https://doi:10.1128/mBio.03225-20) that provide an unprecedented view of how C. neoformans regulates caspofungin resistance through a complex posttranscriptional regulation of cell wall biosynthesis genes.
Collapse
Affiliation(s)
- Nicolas Papon
- Host-Pathogen Interaction Study Group (GEIHP, EA 3142), Université Angers, Université Brest, Angers, France
- Federative Structure of Research Cellular Interactions and Therapeutic Applications, SFR 4208 ICAT, Université Angers, Angers, France
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
98
|
Huang YM, Tao XH, Xu DF, Yu Y, Teng Y, Xie WQ, Fan YB. HOG1 has an essential role in the stress response, virulence and pathogenicity of Cryptococcus gattii. Exp Ther Med 2021; 21:476. [PMID: 33767771 PMCID: PMC7976431 DOI: 10.3892/etm.2021.9907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus gattii (C. gattii) is a lethal pathogen that causes the majority of cryptococcosis cases in previously healthy individuals. This pathogen poses an increasing threat to global public health, but the mechanisms underlying the pathogenesis have remained to be fully elucidated. In the present study, the role of high-osmolarity glycerol (HOG)1 in the stress reaction and virulence control of C. gattii was characterized by deleting the HOG1 gene using the clinical isolate strain CZ2012, and finally, the virulence and pathogenic traits of the deletion strain were defined. Deletion of the HOG1 gene resulted in notable growth defects under stress conditions (high salt and antifungal drugs), but different traits were observed under oxidative stress conditions (hydrogen peroxide). Similarly, the C. gattii hog1Δ strains (deletion of HOG1) also displayed decreased capsule production and melanin synthesis. Furthermore, mice infected with the hog1Δ strain had longer survival times than those infected with the wild-type strain and the reconstituted strain. The hog1Δ strain recovered from infected organs exhibited significant growth defects in terms of decreased colony count and size. The present results suggested that HOG1 has a significant role in the virulence of C. gattii and these results may help to elucidate the pathogenesis of C. gattii.
Collapse
Affiliation(s)
- You-Ming Huang
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Hua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Dan-Feng Xu
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yong Yu
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yan Teng
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Wen-Qing Xie
- Department of Orthopedics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Yi-Bin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
99
|
Oliveira LVN, Wang R, Specht CA, Levitz SM. Vaccines for human fungal diseases: close but still a long way to go. NPJ Vaccines 2021; 6:33. [PMID: 33658522 PMCID: PMC7930017 DOI: 10.1038/s41541-021-00294-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Despite the substantial global burden of human fungal infections, there are no approved fungal vaccines to protect at risk individuals. Here, we review the progress that has been made and the challenges that lie ahead in the quest towards efficacious fungal vaccines. In mouse studies, protection has been achieved with vaccines directed against fungal pathogens, including species of Candida, Cryptococcus, and Aspergillus, that most commonly cause life-threatening human disease. Encouraging results have been obtained with vaccines composed of live-attenuated and killed fungi, crude extracts, recombinant subunit formulations, and nucleic acid vaccines. Novel adjuvants that instruct the immune system to mount the types of protective responses needed to fight mycotic infections are under development. Candidate vaccines include those that target common antigens expressed on multiple genera of fungi thereby protecting against a broad range of mycoses. Encouragingly, three vaccines have reached human clinical trials. Still, formidable obstacles must be overcome before we will have fungal vaccines licensed for human use.
Collapse
Affiliation(s)
- Lorena V N Oliveira
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ruiying Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Charles A Specht
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
100
|
Horn C, Vediyappan G. Anticapsular and Antifungal Activity of α-Cyperone. Antibiotics (Basel) 2021; 10:antibiotics10010051. [PMID: 33419126 PMCID: PMC7825567 DOI: 10.3390/antibiotics10010051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 11/23/2022] Open
Abstract
Fungal infections affect 300 million people and cause 1.5 million deaths globally per year. With the number of immunosuppressed patients increasing steadily, there is an increasing number of patients infected with opportunistic fungal infections such as infections caused by the species of Candida and Cryptococcus. In fact, the drug-resistant Can. krusei and the emerging pan-antifungal resistant Can. auris pose a serious threat to human health as the existing limited antifungals are futile. To further complicate therapy, fungi produce capsules and spores that are resistant to most antifungal drugs/host defenses. Novel antifungal drugs are urgently needed to fill unmet medical needs. From screening a collection of medicinal plant sources for antifungal activity, we have identified an active fraction from the rhizome of Cyperus rotundus, the nut grass plant. The fraction contained α-Cyperone, an essential oil that showed fungicidal activity against different species of Candida. Interestingly, the minimal inhibitory concentration of α-Cyperone was reduced 8-fold when combined with a clinical antifungal drug, fluconazole, indicating its antifungal synergistic potential and could be useful for combination therapy. Furthermore, α-Cyperone affected the synthesis of the capsule in Cryp. neoformans, a causative agent of fungal meningitis in humans. Further work on mechanistic understanding of α-Cyperone against fungal virulence could help develop a novel antifungal agent for drug-resistant fungal pathogens.
Collapse
|