51
|
Krysko DV, Demuynck R, Efimova I, Naessens F, Krysko O, Catanzaro E. In Vitro Veritas: From 2D Cultures to Organ-on-a-Chip Models to Study Immunogenic Cell Death in the Tumor Microenvironment. Cells 2022; 11:3705. [PMID: 36429133 PMCID: PMC9688238 DOI: 10.3390/cells11223705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Immunogenic cell death (ICD) is a functionally unique form of cell death that promotes a T-cell-dependent anti-tumor immune response specific to antigens originating from dying cancer cells. Many anticancer agents and strategies induce ICD, but despite their robust effects in vitro and in vivo on mice, translation into the clinic remains challenging. A major hindrance in antitumor research is the poor predictive ability of classic 2D in vitro models, which do not consider tumor biological complexity, such as the contribution of the tumor microenvironment (TME), which plays a crucial role in immunosuppression and cancer evasion. In this review, we describe different tumor models, from 2D cultures to organ-on-a-chip technology, as well as spheroids and perfusion bioreactors, all of which mimic the different degrees of the TME complexity. Next, we discuss how 3D cell cultures can be applied to study ICD and how to increase the translational potential of the ICD inducers. Finally, novel research directions are provided regarding ICD in the 3D cellular context which may lead to novel immunotherapies for cancer.
Collapse
Affiliation(s)
- Dmitri V. Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Robin Demuynck
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Iuliia Efimova
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Faye Naessens
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Elena Catanzaro
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
52
|
He M, Gu W, Gao Y, Liu Y, Liu J, Li Z. Molecular subtypes and a prognostic model for hepatocellular carcinoma based on immune- and immunogenic cell death-related lncRNAs. Front Immunol 2022; 13:1043827. [PMID: 36479122 PMCID: PMC9720162 DOI: 10.3389/fimmu.2022.1043827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Background Accumulating evidence shows that immunogenic cell death (ICD) enhances immunotherapy effectiveness. In this study, we aimed to develop a prognostic model combining ICD, immunity, and long non-coding RNA biomarkers for predicting hepatocellular carcinoma (HCC) outcomes. Methods Immune- and immunogenic cell death-related lncRNAs (IICDLs) were identified from The Cancer Genome Atlas and Ensembl databases. IICDLs were extracted based on the results of differential expression and univariate Cox analyses and used to generate molecular subtypes using ConsensusClusterPlus. We created a prognostic signature based on IICDLs and a nomogram based on risk scores. Clinical characteristics, immune landscapes, immune checkpoint blocking (ICB) responses, stemness, and chemotherapy responses were also analyzed for different molecular subtypes and risk groups. Result A total of 81 IICDLs were identified, 20 of which were significantly associated with overall survival (OS) in patients with HCC. Cluster analysis divided patients with HCC into two distinct molecular subtypes (C1 and C2), with patients in C1 having a shorter survival time than those in C2. Four IICDLs (TMEM220-AS1, LINC02362, LINC01554, and LINC02499) were selected to develop a prognostic model that was an independent prognostic factor of HCC outcomes. C1 and the high-risk group had worse OS (hazard ratio > 1.5, p < 0.01), higher T stage (p < 0.05), higher clinical stage (p < 0.05), higher pathological grade (p < 0.05), low immune cell infiltration (CD4+ T cells, B cells, macrophages, neutrophils, and myeloid dendritic cells), low immune checkpoint gene expression, poor response to ICB therapy, and high stemness. Different molecular subtypes and risk groups showed significantly different responses to several chemotherapy drugs, such as doxorubicin (p < 0.001), 5-fluorouracil (p < 0.001), gemcitabine (p < 0.001), and sorafenib (p < 0.01). Conclusion Our study identified molecular subtypes and a prognostic signature based on IICDLs that could help predict the clinical prognosis and treatment response in patients with HCC.
Collapse
Affiliation(s)
- Mingang He
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenchao Gu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yang Gao
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ying Liu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Liu
- Cancer Center, Shandong Public Health Clinical Center, Public Health Clinical Center Affiliated to Shandong University, Jinan, China,*Correspondence: Jie Liu, ; Zengjun Li,
| | - Zengjun Li
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Jie Liu, ; Zengjun Li,
| |
Collapse
|
53
|
Wang J, Tu S, Chavda VP, Chen ZS, Chen X. Successes and failures of immunotherapy for gastric cancer. Drug Discov Today 2022; 27:103343. [PMID: 36075377 DOI: 10.1016/j.drudis.2022.103343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/13/2022] [Accepted: 08/31/2022] [Indexed: 11/03/2022]
Abstract
Many exploratory clinical studies have been conducted on immune checkpoint inhibitors (ICIs) as new therapeutic approaches for the first-line treatment of patients with advanced gastric cancer. Despite varying interpretations of the successes and failures of this clinical research, most analyses have focused on the results from the perspective of exploring the superiority of immunotherapy. Consequently, the role of chemotherapy as an important partner of immunotherapy in first-line combination therapy regimens for gastric cancer has attracted less attention. Here, we explore and analyze first-line immunotherapies for gastric cancer from the perspective of chemotherapy, to understand reasons for the failure of studies and to indicate directions for future clinical research.
Collapse
Affiliation(s)
- Jianzheng Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shuiping Tu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA.
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
54
|
Serrano Del Valle A, Beltrán-Visiedo M, de Poo-Rodríguez V, Jiménez-Alduán N, Azaceta G, Díez R, Martínez-Lázaro B, Izquierdo I, Palomera L, Naval J, Anel A, Marzo I. Ecto-calreticulin expression in multiple myeloma correlates with a failed anti-tumoral immune response and bad prognosis. Oncoimmunology 2022; 11:2141973. [PMID: 36338146 PMCID: PMC9629093 DOI: 10.1080/2162402x.2022.2141973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunogenic cell death (ICD) has been proposed to be a crucial process for antitumor immunosurveillance. ICD is characterized by the exposure and emission of Damage Associated Molecular Patterns (DAMP), including calreticulin (CRT). A positive correlation between CRT exposure or total expression and improved anticancer immunosurveillance has been found in certain cancers, usually accompanied by favorable patient prognosis. In the present study, we sought to evaluate CRT levels in the plasma membrane of CD38+ bone marrow mononuclear cells (BMMCs) isolated from 71 patients with varying degrees of multiple myeloma (MM) disease and examine the possible relationship between basal CRT exposure and the bone marrow immune microenvironment, as well as its connection with different clinical markers. Data show that increased levels of cell surface-CRT were associated with more aggressive clinical features and with worse clinical prognosis in MM. High CRT expression in MM cells was associated with increased infiltration of NK cells, CD8+ T lymphocytes and dendritic cells (DC), indicative of an active anti-tumoral immune response, but also with a significantly higher presence of immunosuppressive Treg cells and increased expression of PD-L1 in myeloma cells.
Collapse
Affiliation(s)
| | - Manuel Beltrán-Visiedo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Victoria de Poo-Rodríguez
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Nelia Jiménez-Alduán
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Gemma Azaceta
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Rosana Díez
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,Hematology Service, Hospital Universitario Miguel Servet, 50009Zaragoza, Spain
| | - Beatriz Martínez-Lázaro
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Isabel Izquierdo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,Hematology Service, Hospital Universitario Miguel Servet, 50009Zaragoza, Spain
| | - Luis Palomera
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,CONTACT Isabel Marzo Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| |
Collapse
|
55
|
Feng S, Liang X, Li J, Wang Z, Zhang H, Dai Z, Luo P, Liu Z, Zhang J, Xiao X, Cheng Q. Immunogenic cell death related risk model to delineate ferroptosis pathway and predict immunotherapy response of patients with GBM. Front Immunol 2022; 13:992855. [PMID: 36248827 PMCID: PMC9554879 DOI: 10.3389/fimmu.2022.992855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Immunogenic cell death (ICD) is a type of cell death that leads to the regulation and activation of the immune response, which is marked by the exposure and delivery of damage-associated molecular patterns (DAMPs) in the tumor microenvironment. Accumulating evidence has revealed the significance of ICD-related genes in tumor progression and therapeutic response. In this study, we obtained two ICD-related clusters for glioblastoma (GBM) by applying consensus clustering, and further constructed a risk signature on account of the prognostic ICD genes. Based on the risk signature, we found that higher risk scores were associated with worse patient prognosis. Besides, the results illustrated that ferroptosis regulators/markers were highly enriched the high-risk group, and ferroptosis were correlated with cytokine signaling pathway and other immune-related pathways. We also discovered that high-risk scores were correlated to specific immune infiltration patterns and good response to immune checkpoint blockade (ICB) treatment. In conclusion, our study highlights the significance of ICD-related genes as prognostic biomarkers and immune response indicators in GBM. And the risk signature integrating prognostic genes possessed significant potential value to predict the prognosis of patients and the efficacy of ICB treatment.
Collapse
Affiliation(s)
- Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxiong Xiao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
56
|
Zhang M, Jin X, Gao M, Zhang Y, Tang BZ. A Self-Reporting Fluorescent Salicylaldehyde-Chlorambucil Conjugate as a Type-II ICD Inducer for Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205701. [PMID: 35863361 DOI: 10.1002/adma.202205701] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Immunogenic cell death (ICD) can activate the anticancer immune response and is highly attractive to improve cancer treatment efficacy. ICD is closely related to endoplasmic reticulum (ER) stress, and a series of ICD inducers has recently been reported based on ER-targeted photodynamic/photothermal agents or metal complexes. However, these ER-targeted ICD inducers suffer from complicated synthesis and heavy-metal cytotoxicity. Inspired by the promising clinical potential of small organic molecules, herein, an ER-targeted fluorescent self-reporting ICD inducer, SA-Cbl, is developed by simple conjugation of the chemotherapeutic drug chlorambucil (Cbl) with salicylaldehyde (SA). SA-Cbl can selectively accumulate in the ER to induce rapid ROS generation and an unfolded protein response process, which leads to a fast release of damage-associated molecular patterns and efficient dendritic cells maturation. Meanwhile, the ER-targeted accumulation and ER-stress-inducing process can be in situ monitored based on the turn-on fluorescence of SA-Cbl, which is highly pH- and polarity-sensitive and can selectively interact with ER proteins. Compared with the traditional chemotherapy drug doxorubicin, the superior anticancer immunity effect of SA-Cbl is verified via an in vivo tumor model. This study thus provides a new strategy for developing fluorescent self-reporting ICD inducers by decoration of chemotherapeutic drugs with pH and polarity-sensitive organic fluorophores.
Collapse
Affiliation(s)
- Minjie Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xin Jin
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yunjiao Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
57
|
Caro AA, Deschoemaeker S, Allonsius L, Coosemans A, Laoui D. Dendritic Cell Vaccines: A Promising Approach in the Fight against Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14164037. [PMID: 36011029 PMCID: PMC9406463 DOI: 10.3390/cancers14164037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary With an overall 5-year survival of only 20% for advanced-stage ovarian cancer patients, enduring and effective therapies are a highly unmet clinical need. Current standard-of-care therapies are able to improve progression-free survival; however, patients still relapse. Moreover, immunotherapy has not resulted in clear patient benefits so far. In this situation, dendritic cell vaccines can serve as a potential therapeutic addition against ovarian cancer. In the current review, we provide an overview of the different dendritic cell subsets and the roles they play in ovarian cancer. We focus on the advancements in dendritic cell vaccination against ovarian cancer and highlight the key outcomes and pitfalls associated with currently used strategies. Finally, we address future directions that could be taken to improve the dendritic cell vaccination outcomes in ovarian cancer. Abstract Ovarian cancer (OC) is the deadliest gynecological malignancy in developed countries and is the seventh-highest cause of death in women diagnosed with cancer worldwide. Currently, several therapies are in use against OC, including debulking surgery, chemotherapy, as well as targeted therapies. Even though the current standard-of-care therapies improve survival, a vast majority of OC patients relapse. Additionally, immunotherapies have only resulted in meager patient outcomes, potentially owing to the intricate immunosuppressive nexus within the tumor microenvironment. In this scenario, dendritic cell (DC) vaccination could serve as a potential addition to the therapeutic options available against OC. In this review, we provide an overview of current therapies in OC, focusing on immunotherapies. Next, we highlight the potential of using DC vaccines in OC by underscoring the different DC subsets and their functions in OC. Finally, we provide an overview of the advances and pitfalls of current DC vaccine strategies in OC while providing future perspectives that could improve patient outcomes.
Collapse
Affiliation(s)
- Aarushi Audhut Caro
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sofie Deschoemaeker
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Lize Allonsius
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Damya Laoui
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-6291969
| |
Collapse
|
58
|
Shi Y, Lu Y, You J. Antigen transfer and its effect on vaccine-induced immune amplification and tolerance. Am J Cancer Res 2022; 12:5888-5913. [PMID: 35966588 PMCID: PMC9373810 DOI: 10.7150/thno.75904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 12/13/2022] Open
Abstract
Antigen transfer refers to the process of intercellular information exchange, where antigenic components including nucleic acids, antigen proteins/peptides and peptide-major histocompatibility complexes (p-MHCs) are transmitted from donor cells to recipient cells at the thymus, secondary lymphoid organs (SLOs), intestine, allergic sites, allografts, pathological lesions and vaccine injection sites via trogocytosis, gap junctions, tunnel nanotubes (TNTs), or extracellular vesicles (EVs). In the context of vaccine inoculation, antigen transfer is manipulated by the vaccine type and administration route, which consequently influences, even alters the immunological outcome, i.e., immune amplification and tolerance. Mainly focused on dendritic cells (DCs)-based antigen receptors, this review systematically introduces the biological process, molecular basis and clinical manifestation of antigen transfer.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
59
|
Wang S, Wang Y, Jin K, Zhang B, Peng S, Nayak AK, Pang Z. Recent advances in erythrocyte membrane-camouflaged nanoparticles for the delivery of anti-cancer therapeutics. Expert Opin Drug Deliv 2022; 19:965-984. [PMID: 35917435 DOI: 10.1080/17425247.2022.2108786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Red blood cell (or erythrocyte) membrane-camouflaged nanoparticles (RBC-NPs) not only have a superior circulation life and do not induce accelerated blood clearance, but also possess special functions, which offers great potential in cancer therapy. AREAS COVERED This review focuses on the recent advances of RBC-NPs for delivering various agents to treat cancers in light of their vital role in improving drug delivery. Meanwhile, the construction and in vivo behavior of RBC-NPs are discussed to provide an in-depth understanding of the basis of RBC-NPs for improved cancer drug delivery. EXPERT OPINION Although RBC-NPs are quite prospective in delivering anti-cancer therapeutics, they are still in their infancy stage and many challenges need to be overcome for successful translation into the clinic. The preparation and modification of RBC membranes, the optimization of coating methods, the scale-up production and the quality control of RBC-NPs, and the drug loading and release should be carefully considered in the clinical translation of RBC-NPs for cancer therapy.
Collapse
Affiliation(s)
- Siyu Wang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, China
| | - Yiwei Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Kai Jin
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, China
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong 519000, China
| | - Amit Kumar Nayak
- Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj-757086, Odisha, India
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, China
| |
Collapse
|
60
|
Zhang X, Ge X, Jiang T, Yang R, Li S. Research progress on immunotherapy in triple‑negative breast cancer (Review). Int J Oncol 2022; 61:95. [PMID: 35762339 PMCID: PMC9256074 DOI: 10.3892/ijo.2022.5385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Triple‑negative breast cancer (TNBC) is a highly heterogeneous and aggressive malignancy. Due to the absence of estrogen receptors and progesterone receptors and the lack of overexpression of human epidermal growth factor receptor 2, TNBC responds poorly to endocrine and targeted therapies. As a neoadjuvant therapy, chemotherapy is usually the only option for TNBC; however, chemotherapy may induce tumor resistance. The emergence of immunotherapy as an adjuvant therapy is expected to make up for the deficiency of chemotherapy. Most of the research on immunotherapies has been performed on advanced metastatic TNBC, which has provided significant clinical benefits. In the present review, possible immunotherapy targets and ongoing immunotherapy strategies were discussed. In addition, progress in research on immune checkpoint inhibitors in early TNBC was outlined.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xueying Ge
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Tinghan Jiang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Ruming Yang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
61
|
Ding J, Zheng Y, Wang G, Zheng J, Chai D. The performance and perspectives of dendritic cell vaccines modified by immune checkpoint inhibitors or stimulants. Biochim Biophys Acta Rev Cancer 2022; 1877:188763. [PMID: 35872287 DOI: 10.1016/j.bbcan.2022.188763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Therapeutic dendritic cell (DC) vaccines stimulate the elimination of tumor cells by the immune system. However, while antigen-specific T cell responses induced by DC vaccines are commonly observed, the clinical response rate is relatively poor, necessitating vaccine optimization. There is evidence that the suppression of DC function by immune checkpoints hinders the anti-tumor immune responses mediated by DC vaccines, ultimately leading to the immune escape of the tumor cells. The use of immune checkpoint inhibitors (ICIs) and immune checkpoint activators (ICAs) has extended the immunotherapeutic range. It is known that both inhibitory and stimulatory checkpoint molecules are expressed by most DC subsets and can thus be used to manipulate the effectiveness of DC vaccines. Such manipulation has been investigated using strategies such as chemotherapy, agonistic or antagonistic antibodies, siRNA, shRNA, CRISPR-Cas9, soluble antibodies, lentiviruses, and adenoviruses to maximize the efficacy of DC vaccines. Thus, a deeper understanding of immune checkpoints may assist in the development of improved DC vaccines. Here, we review the actions of various ICIs or ICAs shown by preclinical studies, as well as their potential application in DC vaccines. New therapeutic interventional strategies for blocking and stimulating immune checkpoint molecules in DCs are also described in detail.
Collapse
Affiliation(s)
- Jiage Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
62
|
Polysialylated nanoinducer for precisely enhancing apoptosis and anti-tumor immune response in B-cell lymphoma. Acta Biomater 2022; 149:321-333. [PMID: 35779772 DOI: 10.1016/j.actbio.2022.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
B-cell lymphoma is one of the most common types of lymphoma, and chemotherapy is still the current first-line treatment. However, due to the systemic side effects caused by chemotherapy drugs, traditional regimens have limitations and are difficult to achieve ideal efficacy. Recent studies have found that CD22 (also known as Siglec-2), as a specific marker of B-cells, is significantly up-regulated on B-cell lymphomas. Inspired by the specific recognition and binding of sialic acid residues by CD22, a polysialic acid (PSA)-modified PLGA nanocarrier (SAPC NP) designed to target B-cell lymphoma was fabricated. Mitoxantrone (MTO) was further loaded into SAPC NP through hydrophobic interactions to obtain polysialylated immunogenic cell death (ICD) nanoinducer (MTO@SAPC NP). Cellular experiments confirmed that MTO@SAPC NP could be specifically taken up by two types of CD22+ B lymphoma cells including Raji and Ramos cells, unlike the poor endocytic performance in other lymphocytes or macrophages. MTO@SAPC NP was determined to enhance the ICD and show better apoptotic effect on CD22+ cells. In the mouse model of B-cell lymphoma, MTO@SAPC NP significantly reduced the systemic side effects of MTO through lymphoma targeting, then achieved enhanced anti-tumor immune response, better tumor suppressive effect, and improved survival rate. Therefore, the polysialylated ICD nanoinducer provides a new strategy for precise therapy of B-cell lymphoma. STATEMENT OF SIGNIFICANCE: • Polysialic acid functionalized nanocarrier (SAPC NP) was designed and prepared. • SAPC NP is specifically endocytosed by two CD22+ B lymphoma cells. • Mitoxantrone-loaded nanoinducer (MTO@SAPC NP) promote immunogenic cell death and anti-tumor immune response. • "Polysialylation" is a potential new approach for precision treatment of B-cell lymphoma.
Collapse
|
63
|
Mardi A, Shirokova AV, Mohammed RN, Keshavarz A, Zekiy AO, Thangavelu L, Mohamad TAM, Marofi F, Shomali N, Zamani A, Akbari M. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; Combination of Oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int 2022; 22:168. [PMID: 35488303 PMCID: PMC9052538 DOI: 10.1186/s12935-022-02585-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising and rapidly expanding therapeutic option for a wide range of human malignancies. Despite the ongoing progress of CAR T-cell therapy in hematologic malignancies, the application of this therapeutic strategy in solid tumors has encountered several challenges due to antigen heterogeneity, suboptimal CAR T-cell trafficking, and the immunosuppressive features of the tumor microenvironment (TME). Oncolytic virotherapy is a novel cancer therapy that employs competent or genetically modified oncolytic viruses (OVs) to preferentially proliferate in tumor cells. OVs in combination with CAR T-cells are promising candidates for overcoming the current drawbacks of CAR T-cell application in tumors through triggering immunogenic cell death (ICD) in cancer cells. ICD is a type of cellular death in which danger-associated molecular patterns (DAMPs) and tumor-specific antigens are released, leading to the stimulation of potent anti-cancer immunity. In the present review, we discuss the biological causes of ICD, different types of ICD, and the synergistic combination of OVs and CAR T-cells to reach potent tumor-specific immunity.
Collapse
Affiliation(s)
- Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anastasia V Shirokova
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Science, Cihan University of Sulaimaniya, Suleimanyah, Kurdistan region, Iraq.,College of. Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Angelina O Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Talar Ahmad Merza Mohamad
- Department of Pharmacology and Toxicology, Clinical Pharmacy, Hawler Medical University, College of Pharmacy, Kurdistan Region-Erbil, Iraq
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
64
|
Fan C, Li C, Lu S, Lai X, Wang S, Liu X, Song Y, Deng Y. Polysialic Acid Self-assembled Nanocomplexes for Neutrophil-Based Immunotherapy to Suppress Lung Metastasis of Breast Cancer. AAPS PharmSciTech 2022; 23:109. [PMID: 35411426 DOI: 10.1208/s12249-022-02243-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
The role of neutrophils in tumor metastasis has recently attracted widespread interest. Neutrophils are the most abundant immune cells in human peripheral blood, and large numbers can spontaneously migrate to metastatic sites, where they form an immunosuppressive microenvironment. Polysialic acid (PSA) can target peripheral blood neutrophils (PBNs) mediated by L-selectin, and abemaciclib (ABE) and mitoxantrone (MIT) can treat immunosuppressive microenvironments. Here, we aimed to inhibit lung metastasis of breast cancer and improve chemoimmunotherapy by designing a PSA-modified ABE and MIT co-delivery system (AM-polyion complex (PIC)) to target PBNs in mice with metastatic tumors. We found that through electrostatic interactions between the strong negative charge of PSA and the positive charge of the drug can form stable nanocomplexes and that spontaneous migration of neutrophils can mediate the aggregation of these complexes in the lungs, induce antimetastatic immune responses, enhance the effectiveness of cytotoxic T lymphocytes (CTLs), and inhibit regulatory T cell (Treg) proliferation in vivo and in vitro. Pharmacodynamic results suggested that neutrophil-mediated AM-PIC chemoimmunotherapy inhibited tumor metastasis in mice with lung metastasis of 4T1 breast cancer. Overall, PSA-modified nanocomplexes offer promising neutrophil-mediated, targeted drug delivery systems to treat lung metastasis of breast cancer.
Collapse
|
65
|
Khoury A, Sakoff JA, Gilbert J, Scott KF, Karan S, Gordon CP, Aldrich-Wright JR. Cyclooxygenase-Inhibiting Platinum(IV) Prodrugs with Potent Anticancer Activity. Pharmaceutics 2022; 14:787. [PMID: 35456621 PMCID: PMC9029360 DOI: 10.3390/pharmaceutics14040787] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
Platinum(IV) prodrugs of the [Pt(PL)(AL)(COXi)(OH)]2+ type scaffold (where PL is 1,10-phenanthroline or 5,6-dimethyl-1,10-phenanthroline, AL is 1S,2S-diaminocyclohexane, and COXi is a COX inhibitor, either indomethacin or aspirin) were synthesised and characterised, and their biological activity was explored. MTT assays showed that these complexes exhibit outstanding activity against a range of cancer cell lines, and nanomolar activities were observed. The most potent complex, 4, exhibited a GI50 of 3 nM in the Du145 prostate cancer cell line and was observed to display a 1614-fold increased activity against the HT29 colon cancer cell line relative to cisplatin. ICP-MS studies showed a linear correlation between increased cellular accumulation of the complexes and increased cytotoxicity, while an enzyme immunoassay showed that 1 and 2 inhibited COX-2 at 14 and 1.4 µM, respectively, which is comparable to the inhibition exhibited by indomethacin. These results suggest that while the cytotoxicity of prodrugs 1-4 was influenced by cellular uptake, it was not entirely dependent on either COX inhibition or lipophilicity.
Collapse
Affiliation(s)
- Aleen Khoury
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia; (A.K.); (S.K.); (C.P.G.)
| | | | - Jayne Gilbert
- Calvary Mater Hospital, Waratah, NSW 2298, Australia; (J.A.S.); (J.G.)
| | - Kieran F. Scott
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia;
- Ingham Institute, 1 Campbell Street, Liverpool, NSW 2170, Australia
| | - Shawan Karan
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia; (A.K.); (S.K.); (C.P.G.)
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia; (A.K.); (S.K.); (C.P.G.)
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia; (A.K.); (S.K.); (C.P.G.)
| |
Collapse
|
66
|
Vergato C, Doshi KA, Roblyer D, Waxman DJ. Type-I interferon signaling is essential for robust metronomic chemo-immunogenic tumor regression in murine breast cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:246-257. [PMID: 36187936 PMCID: PMC9524291 DOI: 10.1158/2767-9764.crc-21-0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Many patients with breast cancer have a poor prognosis with limited therapeutic options. Here, we investigated the potential of chemo-immunogenic therapy as an avenue of treatment. We utilized two syngeneic mouse mammary tumor models, 4T1 and E0771, to examine the chemo-immunogenic potential of cyclophosphamide and the mechanistic contributions of cyclophosphamide-activated type-I interferon (IFN) signaling to therapeutic activity. Chemically-activated cyclophosphamide induced robust IFNα/β receptor-1-dependent signaling linked to hundreds of IFN-stimulated gene responses in both cell lines. Further, in 4T1 tumors, cyclophosphamide given on a medium-dose, 6-day intermittent metronomic schedule induced strong IFN signaling but comparatively weak immune cell infiltration associated with long-term tumor growth stasis. Induction of IFN signaling was somewhat weaker in E0771 tumors but was followed by widespread downstream gene responses, robust immune cell infiltration and extensive, prolonged tumor regression. The immune dependence of these effective anti-tumor responses was established by CD8 T-cell immunodepletion, which blocked cyclophosphamide-induced E0771 tumor regression and led to tumor stasis followed by regrowth. Strikingly, IFNα/β receptor-1 antibody blockade was even more effective in preventing E0771 immune cell infiltration and blocked the major tumor regression induced by cyclophosphamide treatment. Type-I IFN signaling is thus essential for the robust chemo-immunogenic response of these tumors to cyclophosphamide administered on a metronomic schedule.
Collapse
Affiliation(s)
- Cameron Vergato
- Department of Biology, Boston University, Boston, Massachusetts
| | - Kshama A. Doshi
- Department of Biology, Boston University, Boston, Massachusetts
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - David J. Waxman
- Department of Biology, Boston University, Boston, Massachusetts
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Corresponding Author: David J. Waxman, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215. Phone: 617-353-7401; E-mail:
| |
Collapse
|
67
|
Fan Y, Xue H, Zheng H. Systemic Therapy for Hepatocellular Carcinoma: Current Updates and Outlook. J Hepatocell Carcinoma 2022; 9:233-263. [PMID: 35388357 PMCID: PMC8977221 DOI: 10.2147/jhc.s358082] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged the culprit of cancer-related mortality worldwide with its dismal prognosis climbing. In recent years, ground-breaking progress has been made in systemic therapy for HCC. Targeted therapy based on specific signaling molecules, including sorafenib, lenvatinib, regorafenib, cabozantinib, and ramucirumab, has been widely used for advanced HCC (aHCC). Immunotherapies such as pembrolizumab and nivolumab greatly improve the survival of aHCC patients. More recently, synergistic combination therapy has boosted first-line (atezolizumab in combination with bevacizumab) and second-line (ipilimumab in combination with nivolumab) therapeutic modalities for aHCC. This review aims to summarize recent updates of systemic therapy relying on the biological mechanisms of HCC, particularly highlighting the approved agents for aHCC. Adjuvant and neoadjuvant therapy, as well as a combination with locoregional therapies (LRTs), are also discussed. Additionally, we describe the promising effect of traditional Chinese medicine (TCM) as systemic therapy on HCC. In this setting, the challenges and future directions of systemic therapy for HCC are also explored.
Collapse
Affiliation(s)
- Yinjie Fan
- College of Integrated Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, People’s Republic of China
- Department of Oncology and Experimental Center, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Hang Xue
- Department of Oncology and Experimental Center, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Huachuan Zheng
- Department of Oncology and Experimental Center, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
- Correspondence: Huachuan Zheng, Department of Oncology and Experimental Center, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China, Tel +86-0314-2279458, Fax +86-0314-2279458, Email
| |
Collapse
|
68
|
Sen S, Won M, Levine MS, Noh Y, Sedgwick AC, Kim JS, Sessler JL, Arambula JF. Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future. Chem Soc Rev 2022; 51:1212-1233. [PMID: 35099487 PMCID: PMC9398513 DOI: 10.1039/d1cs00417d] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer is the deadliest disease in the world behind heart disease. Sadly, this remains true even as we suffer the ravages of the Covid-19 pandemic. Whilst current chemo- and radiotherapeutic treatment strategies have significantly improved the patient survival rate, disease reoccurrence continues to pose a deadly risk for all too many patients. Incomplete removal of tumour cells from the body increases the chances of metastasis and developing resistance against current treatments. Immunotherapy represents a therapeutic modality that has helped to overcome these limitations in recent decades. However, further progress is needed. So-called immunogenic cell death (ICD) is a recently discovered and unique mode of cell death that could trigger this necessary further progress. ICD involves stimulation of a tumour-specific immune response as a downstream effect. Facilitated by certain treatment modalities, cells undergoing ICD can trigger the IFN-γ mediated immune response involving cytotoxic T cells (CTLs) and γδ T cells that eradicate residual tumour cells. In recent years, there has been a significant increase in the number of small-molecules being tested as potential ICD inducers. A large number of these ICD inducers are metal-based complexes. In fact, anticancer metal drugs based on Pt, Ru, Ir, Cu, and Au are now known to give rise to an immune response against tumour cells as the result of ICD. Advances have also been made in terms of exploiting combinatorial and delivery strategies. In favourable cases, these approaches have been shown to increase the efficacy of otherwise ICD "silent" metal complexes. Taken in concert, rationally designed novel anticancer metal complexes that can act as ICD inducers show promise as potential new immunotherapies for neoplastic disease. This Tutorial Review will allow the readers to assess the progress in this fast-evolving field thus setting the stage for future advances.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Matthew S Levine
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Yuvin Noh
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
- OncoTEX, Inc. 3800 North Lamar Blvd., Austin, Texas 78756, USA
| |
Collapse
|
69
|
Lin HJ, Liu Y, Lofland D, Lin J. Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers (Basel) 2022; 14:cancers14020285. [PMID: 35053449 PMCID: PMC8774102 DOI: 10.3390/cancers14020285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immune therapy is designed to stimulate tumoricidal effects in a variety of solid tumors including breast carcinomas. However, the emergence of resistant clones leads to treatment failure. Understanding the molecular, cellular, and microenvironmental aberrations is crucial to uncovering underlying mechanisms and developing advanced strategies for preventing or combating these resistant malignancies. This review will summarize research findings revealing various mechanisms employed to hijack innate and adaptive immune surveillance mechanisms, develop hypoxic and tumor promoting metabolism, and foster an immune tolerance microenvironment. In addition, it will highlight potential targets for therapeutic approaches. Abstract Breast cancer is the most common malignancy among females in western countries, where women have an overall lifetime risk of >10% for developing invasive breast carcinomas. It is not a single disease but is composed of distinct subtypes associated with different clinical outcomes and is highly heterogeneous in both the molecular and clinical aspects. Although tumor initiation is largely driven by acquired genetic alterations, recent data suggest microenvironment-mediated immune evasion may play an important role in neoplastic progression. Beyond surgical resection, radiation, and chemotherapy, additional therapeutic options include hormonal deactivation, targeted-signaling pathway treatment, DNA repair inhibition, and aberrant epigenetic reversion. Yet, the fatality rate of metastatic breast cancer remains unacceptably high, largely due to treatment resistance and metastases to brain, lung, or bone marrow where tumor bed penetration of therapeutic agents is limited. Recent studies indicate the development of immune-oncological therapy could potentially eradicate this devastating malignancy. Evidence suggests tumors express immunogenic neoantigens but the immunity towards these antigens is frequently muted. Established tumors exhibit immunological tolerance. This tolerance reflects a process of immune suppression elicited by the tumor, and it represents a critical obstacle towards successful antitumor immunotherapy. In general, immune evasive mechanisms adapted by breast cancer encompasses down-regulation of antigen presentations or recognition, lack of immune effector cells, obstruction of anti-tumor immune cell maturation, accumulation of immunosuppressive cells, production of inhibitory cytokines, chemokines or ligands/receptors, and up-regulation of immune checkpoint modulators. Together with altered metabolism and hypoxic conditions, they constitute a permissive tumor microenvironment. This article intends to discern representative incidents and to provide potential innovative therapeutic regimens to reinstate tumoricidal immunity.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-302-831-7576; Fax: +1-302-831-4180
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA;
| | - Denene Lofland
- Department of Microbiology and Immunology, Tower Campus, Drexel University College of Medicine, 50 Innovation Way, Wyomissing, PA 19610, USA;
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, 108 N. Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
70
|
Mule RD, Kumar A, Sancheti SP, Senthilkumar B, Kumar H, Patil NT. BQ-AurIPr: a redox-active anticancer Au( i) complex that induces immunogenic cell death. Chem Sci 2022; 13:10779-10785. [PMID: 36320699 PMCID: PMC9491088 DOI: 10.1039/d2sc03756d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 12/22/2022] Open
Abstract
Immunogenic Cell Death (ICD) is a unique cell death mechanism that kills cancer cells while rejuvenating the anticancer immunosurveillance, thereby benefiting the clinical outcomes of various immuno-chemotherapeutic regimens. Herein, we report development of a library of benzo[a]quinolizinium-based Au(i) complexes through an intramolecular amino-auration reaction of pyridino-alkynes. We tested 40 candidates and successfully identified BQ-AurIPr as a novel redox-active Au(i) complex with potent anticancer properties. BQ-AurIPr efficiently triggered generation of DAMPs – the hallmarks of ICD – and was superior in terms of efficiency compared to FDA-approved drugs known to induce ICD. BQ-AurIPr significantly increased immunogenicity of cancer cells enhancing their phagocytosis when co-cultured with immune cells. Our investigation reveals that BQ-AurIPr induces oxidative stress inside mitochondria leading to mitophagy, as the mechanism for immunogenic cell death in A549 cells. A redox-active anticancer Au(i) complex that induces immunogenic cell death in non-small cell lung cancer cells has been identified. Mitochondrial oxidative stress leading to mitophagy-dependent secretion of various DAMPs is implicated as the main mechanism inducing ICD.![]()
Collapse
Affiliation(s)
- Ravindra D. Mule
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune – 411008, India
- Academy of Scientific and Innovative Research, Ghaziabad – 201 002, India
| | - Akhilesh Kumar
- Laboratory of Immunology and Infectious Diseases, Department of Biological Sciences, IISER Bhopal, Bhopal – 462 066, India
| | - Shashank P. Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal – 462 066, India
| | - B. Senthilkumar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune – 411008, India
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Diseases, Department of Biological Sciences, IISER Bhopal, Bhopal – 462 066, India
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka – 565-0871, Japan
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal – 462 066, India
| |
Collapse
|
71
|
Rezaei M, Sherkat R, Moghaddam N, Reisi N. Spontaneous regression of diffuse large B-cell lymphoma in a patient with ataxia–telangiectasia. Adv Biomed Res 2022; 11:31. [PMID: 35720220 PMCID: PMC9201233 DOI: 10.4103/abr.abr_169_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/18/2021] [Accepted: 07/24/2021] [Indexed: 12/02/2022] Open
Abstract
Ataxia–telangiectasia (AT) is a type of primary immunodeficiency characterized by an autosomal recessive mode of inheritance and usually presents with progressive cerebellar ataxia in early life. This complex disease is associated with humoral and cellular immune dysfunction and other features including characteristic oculocutaneous telangiectasia and increased predisposition to cancers, particularly lymphoma and leukemia. An 11-year-old Iranian girl presented with primary immunodeficiency and was diagnosed as having AT according to her clinical manifestations and molecular findings. She had a history of two types of non-Hodgkin's lymphoma and showed spontaneous regression of her diffuse large B-cell lymphoma without any specific treatment. Gene mutations and dysfunction in patients with AT result in different manifestations including abnormal development of the thymus, immunodeficiency, increased susceptibility to malignancies, and increased radiosensitivity. No standard treatment is available for these patients. The use of immunotherapeutic strategies in patients with primary immune deficiency disease-associated tumors is potentially important.
Collapse
|
72
|
Zouein J, Haddad FG, Eid R, Kourie HR. The combination of immune checkpoint inhibitors and chemotherapy in advanced non-small-cell lung cancer: the rational choice. Immunotherapy 2021; 14:155-167. [PMID: 34865502 DOI: 10.2217/imt-2021-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the second most common cancer worldwide and the leading cause of death among cancers. The progressive approvals of immunotherapy as first-line treatment options have helped improve cancer prognosis. However, longer follow-up has confirmed the possibility of acquired resistance to immune checkpoint inhibitors (ICIs) which can lead to late relapses. Chemotherapy can act as a priming therapy to increase a tumor's response to immunotherapy. We aim through this review to explain the mechanism behind ICI resistance and the value of chemotherapy in escaping this resistance. Finally, all US FDA approvals regarding the management of metastatic non-small-cell lung cancer using a combination of ICIs and chemotherapy are summarized.
Collapse
Affiliation(s)
- Joseph Zouein
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Damas Street, P.O Box 17-5208, 1104 2020, Lebanon
| | - Fady G Haddad
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Damas Street, P.O Box 17-5208, 1104 2020, Lebanon
| | - Roland Eid
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Damas Street, P.O Box 17-5208, 1104 2020, Lebanon
| | - Hampig R Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Damas Street, P.O Box 17-5208, 1104 2020, Lebanon
| |
Collapse
|
73
|
Lu Y, Shi Y, You J. Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. J Control Release 2021; 341:184-205. [PMID: 34774890 DOI: 10.1016/j.jconrel.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
The cross presentation of exogenous antigen (Ag) by dendritic cells (DCs) facilitates a diversified mode of T-cell activation, orchestrates specific humoral and cellular immunity, and contributes to an efficient anti-tumor immune response. DCs-mediated cross presentation is subject to both intrinsic and extrinsic factors, including the homing and phenotype of DCs, the spatiotemporal trafficking and degradation kinetics of Ag, and multiple microenvironmental clues, with many details largely unexplored. Here, we systemically review the current mechanistic understanding and regulation strategies of cross presentation by heterogeneous DC populations. We also provide insights into the future exploitation of DCs cross presentation for a better clinical efficacy in anti-tumor therapy.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
74
|
He Y, Liu T, Dai S, Xu Z, Wang L, Luo F. Tumor-Associated Extracellular Matrix: How to Be a Potential Aide to Anti-tumor Immunotherapy? Front Cell Dev Biol 2021; 9:739161. [PMID: 34733848 PMCID: PMC8558531 DOI: 10.3389/fcell.2021.739161] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
The development of cancer immunotherapy, particularly immune checkpoint blockade therapy, has made major breakthroughs in the therapy of cancers. However, less than one-third of the cancer patients obtain significant and long-lasting therapeutic effects by cancer immunotherapy. Over the past few decades, cancer-related inflammations have been gradually more familiar to us. It’s known that chronic inflammation in tumor microenvironment (TME) plays a predominant role in tumor immunosuppression. Tumor-associated extracellular matrix (ECM), as a core member of TME, has been a research hotspot recently. A growing number of studies indicate that tumor-associated ECM is one of the major obstacles to realizing more successful cases of cancer immunotherapy. In this review, we discussed the potential application of tumor-associated ECM in the cancer immunity and its aide potentialities to anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yingying He
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Oncology Department, People's Hospital of Deyang City, Deyang, China
| | - Tao Liu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wang
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
75
|
Xu J, Zheng Q, Cheng X, Hu S, Zhang C, Zhou X, Sun P, Wang W, Su Z, Zou T, Song Z, Xia Y, Yi X, Gao Y. Chemo-photodynamic therapy with light-triggered disassembly of theranostic nanoplatform in combination with checkpoint blockade for immunotherapy of hepatocellular carcinoma. J Nanobiotechnology 2021; 19:355. [PMID: 34717654 PMCID: PMC8557521 DOI: 10.1186/s12951-021-01101-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignant tumor with high rate of metastasis and recurrence. Although immune checkpoint blockade (ICB) has emerged as a promising type of immunotherapy in advanced HCC, treatment with ICB alone achieves an objective remission rate less than 20%. Thus, combination therapy strategies is needed to improve the treatment response rate and therapeutic effect. METHODS A light-triggered disassembly of nanoplatform (TB/PTX@RTK) co-loaded an aggregation induced emission (AIE) photosensitizer (TB) and paclitaxel (PTX) was prepared for on-command drug release and synergistic chemo-photodynamic therapy (chemo-PDT). Nano-micelles were characterized for drug loading content, hydrodynamic size, absorption and emission spectra, reactive oxygen species production, and PTX release from micelles. The targeted fluorescence imaging of TB/PTX@RTK micelles and the synergistic anti-tumor efficacy of TB/PTX@RTK micelles-mediated chemo-PDT combined with anti-PD-L1 were assessed both in vitro and in vivo. RESULTS The TB/PTX@RTK micelles could specifically accumulate at the tumor site through cRGD-mediated active target and facilitate image-guided PDT for tumor ablation. Once irradiated by light, the AIE photosensitizer of TB could produce ROS for PDT, and the thioketal linker could be cleaved by ROS to precise release of PTX in tumor cells. Chemo-PDT could not only synergistically inhibit tumor growth, but also induce immunogenic cell death and elicit anti-tumor immune response. Meanwhile, chemo-PDT significantly upregulated the expression of PD-L1 on tumor cell surface which could efficiently synergize with anti-PD-L1 monoclonal antibodies to induce an abscopal effect, and establish long-term immunological memory to inhibit tumor relapse and metastasis. CONCLUSION Our results suggest that the combination of TB/PTX@RTK micelle-mediated chemo-PDT with anti-PD-L1 monoclonal antibodies can synergistically enhance systemic anti-tumor effects, and provide a novel insight into the development of new nanomedicine with precise controlled release and multimodal therapy to enhance the therapeutic efficacy of HCC.
Collapse
Affiliation(s)
- Jianjun Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qichang Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shaobo Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xing Zhou
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weimin Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhe Su
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianhao Zou
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Xia
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, College of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, China.
| | - Yang Gao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
76
|
Scirocchi F, Napoletano C, Pace A, Rahimi Koshkaki H, Di Filippo A, Zizzari IG, Nuti M, Rughetti A. Immunogenic Cell Death and Immunomodulatory Effects of Cabozantinib. Front Oncol 2021; 11:755433. [PMID: 34745989 PMCID: PMC8564482 DOI: 10.3389/fonc.2021.755433] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/30/2021] [Indexed: 01/06/2023] Open
Abstract
Cabozantinib (XL-184) is a multitarget tyrosine kinase inhibitor (TKI) targeting receptor tyrosine kinases (RTKs) involved in oncogenesis and angiogenesis. It is currently the standard therapy for medullary thyroid cancer (MTC), metastatic renal cell carcinoma (mRCC), and hepatocellular carcinoma (HCC). Combination of Cabozantinib with immunotherapy is now a standard treatment in metastatic renal cancer, and its efficacy is being tested in ongoing clinical trial in prostate cancer patients. Here, we report that Cabozantinib may exert an immunostimulatory role by inducing immunogenic stress of prostate cancer cells and directly modulating dendritic cells (DCs). Cabozantinib treatment arrested the cell cycle and triggered immunogenic cell death (ICD) in prostate cancer cells in vitro. Cabozantinib had a direct effect on DCs by the down-modulation of β-catenin and change in migratory and costimulatory phenotype of the DCs. These results may suggest possible immunomodulatory effects induced by Cabozantinib that could be exploited to optimize patient-tailored immunotherapeutic treatments.
Collapse
Affiliation(s)
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
77
|
Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology 2021; 10:1984677. [PMID: 34676147 PMCID: PMC8526014 DOI: 10.1080/2162402x.2021.1984677] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
While chemotherapy and radiotherapy remain the first-line approaches for the management of most unresectable tumors, immunotherapy has emerged in the past two decades as a game-changing treatment, notably with the clinical success of immune checkpoint inhibitors. Immunotherapies aim at (re)activating anticancer immune responses which occur in two main steps: (1) the activation and expansion of tumor-specific T cells following cross-presentation of tumor antigens by specialized myeloid cells (priming phase); and (2) the immunological clearance of malignant cells by these antitumor T lymphocytes (effector phase). Therapeutic vaccines, adjuvants, monoclonal antibodies, cytokines, immunogenic cell death-inducing agents including oncolytic viruses, anthracycline-based chemotherapy and radiotherapy, as well as adoptive cell transfer, all act at different levels of this cascade to (re)instate cancer immunosurveillance. Intratumoral delivery of these immunotherapeutics is being tested in clinical trials to promote superior antitumor immune activity in the context of limited systemic toxicity.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Institut Universitaire de France, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Jonathan G. Pol
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| |
Collapse
|
78
|
Quiros-Fernandez I, Figueroa-Protti L, Arias-Arias JL, Brenes-Cordero N, Siles F, Mora J, Mora-Rodríguez RA. Perturbation-Based Modeling Unveils the Autophagic Modulation of Chemosensitivity and Immunogenicity in Breast Cancer Cells. Metabolites 2021; 11:637. [PMID: 34564453 PMCID: PMC8469554 DOI: 10.3390/metabo11090637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023] Open
Abstract
In the absence of new therapeutic strategies, chemotherapeutic drugs are the most widely used strategy against metastatic breast cancer, in spite of eliciting multiple adverse effects and having low responses with an average 5-year patient survival rate. Among the new therapeutic targets that are currently in clinical trials, here, we addressed the association between the regulation of the metabolic process of autophagy and the exposure of damage-associated molecular patterns associated (DAMPs) to immunogenic cell death (ICD), which has not been previously studied. After validating an mCHR-GFP tandem LC3 sensor capacity to report dynamic changes of the autophagic metabolic flux in response to external stimuli and demonstrating that both basal autophagy levels and response to diverse autophagy regulators fluctuate among different cell lines, we explored the interaction between autophagy modulators and chemotherapeutic agents in regards of cytotoxicity and ICD using three different breast cancer cell lines. Since these interactions are very complex and variable throughout different cell lines, we designed a perturbation-based model in which we propose specific modes of action of chemotherapeutic agents on the autophagic flux and the corresponding strategies of modulation to enhance the response to chemotherapy. Our results point towards a promising therapeutic potential of the metabolic regulation of autophagy to overcome chemotherapy resistance by eliciting ICD.
Collapse
Affiliation(s)
- Isaac Quiros-Fernandez
- Research Center for Tropical Diseases (CIET), Laboratory of Tumor Chemosensitivity (LQT), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (I.Q.-F.); (L.F.-P.); (J.L.A.-A.); (N.B.-C.); (F.S.); (J.M.)
- DC Laboratory, Laboratory of Surgery and Cancer, University of Costa Rica, San José 11501-2060, Costa Rica
- Master’s Program in Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Lucía Figueroa-Protti
- Research Center for Tropical Diseases (CIET), Laboratory of Tumor Chemosensitivity (LQT), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (I.Q.-F.); (L.F.-P.); (J.L.A.-A.); (N.B.-C.); (F.S.); (J.M.)
- DC Laboratory, Laboratory of Surgery and Cancer, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Jorge L. Arias-Arias
- Research Center for Tropical Diseases (CIET), Laboratory of Tumor Chemosensitivity (LQT), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (I.Q.-F.); (L.F.-P.); (J.L.A.-A.); (N.B.-C.); (F.S.); (J.M.)
- Dulbecco Laboratory Studio, Residencial Lisboa 2G, Alajuela 20102, Costa Rica
| | - Norman Brenes-Cordero
- Research Center for Tropical Diseases (CIET), Laboratory of Tumor Chemosensitivity (LQT), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (I.Q.-F.); (L.F.-P.); (J.L.A.-A.); (N.B.-C.); (F.S.); (J.M.)
| | - Francisco Siles
- Research Center for Tropical Diseases (CIET), Laboratory of Tumor Chemosensitivity (LQT), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (I.Q.-F.); (L.F.-P.); (J.L.A.-A.); (N.B.-C.); (F.S.); (J.M.)
- DC Laboratory, Laboratory of Surgery and Cancer, University of Costa Rica, San José 11501-2060, Costa Rica
- Pattern Recognition and Intelligent Systems Laboratory (PRIS-Lab), Department of Electrical Engineering and Postgraduate Studies in Electrical Engineering, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Javier Mora
- Research Center for Tropical Diseases (CIET), Laboratory of Tumor Chemosensitivity (LQT), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (I.Q.-F.); (L.F.-P.); (J.L.A.-A.); (N.B.-C.); (F.S.); (J.M.)
- DC Laboratory, Laboratory of Surgery and Cancer, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Rodrigo Antonio Mora-Rodríguez
- Research Center for Tropical Diseases (CIET), Laboratory of Tumor Chemosensitivity (LQT), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (I.Q.-F.); (L.F.-P.); (J.L.A.-A.); (N.B.-C.); (F.S.); (J.M.)
- DC Laboratory, Laboratory of Surgery and Cancer, University of Costa Rica, San José 11501-2060, Costa Rica
- Master’s Program in Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
79
|
Arai H, Xiao Y, Loupakis F, Kawanishi N, Wang J, Battaglin F, Soni S, Zhang W, Mancao C, Salhia B, Mumenthaler SM, Weisenberger DJ, Liang G, Cremolini C, Falcone A, Millstein J, Lenz HJ. Immunogenic cell death pathway polymorphisms for predicting oxaliplatin efficacy in metastatic colorectal cancer. J Immunother Cancer 2021; 8:jitc-2020-001714. [PMID: 33172883 PMCID: PMC7656952 DOI: 10.1136/jitc-2020-001714] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 12/22/2022] Open
Abstract
Background Immunogenic cell death (ICD) is a tumor cell death involving both innate and adaptive immune responses. Given published findings that oxaliplatin, but not irinotecan, drives ICD, we investigated whether single nucleotide polymorphisms (SNPs) in the ICD pathway are associated with the efficacy of oxaliplatin-based chemotherapy in metastatic colorectal cancer (mCRC). Methods Two randomized clinical trials data were analyzed: discovery cohort, FOLFOX/bevacizumab arm (MAVERICC); validation cohort, FOLFOXIRI/bevacizumab arm (TRIBE); and two control cohorts, FOLFIRI/bevacizumab arms (both trials). Genomic DNA extracted from blood samples was genotyped. Ten SNPs in the ICD pathway were tested for associations with clinical outcomes. Results In total, 648 patients were included. In the discovery cohort, three SNPs were significantly associated with clinical outcomes in univariate analysis: CALR rs1010222 with progression-free survival (G/G vs any A, HR=0.61, 95% CI 0.43–0.88), ANXA1 rs1050305 with overall survival (OS) (A/A vs any G, HR=1.87, 95% CI 1.04–3.35), and LRP1 rs1799986 with OS (C/C vs any T, HR=1.69, 95% CI 1.07–2.70). Multivariate analysis confirmed the trend, but statistical significance was not reached. In the validation cohort, ANXA1 rs1050305, and LRP1 rs1799986 were validated to have the significant associations with clinical outcome. No significant associations of these SNPs were observed in the two control cohorts. Treatment-by-SNP interaction test confirmed the predictive values. Conclusions The predictive utility of ICD-related SNPs for the efficacy of oxaliplatin-based chemotherapy was demonstrated, warranting further validation studies to be translated into personalized treatment strategies using conventional cytotoxic agents in mCRC.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yi Xiao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fotios Loupakis
- Clinical and Experimental Oncology Department, Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Natsuko Kawanishi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jingyuan Wang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christoph Mancao
- Oncology Biomarker Development, Genentech Inc, Basel, Switzerland
| | - Bodour Salhia
- Department of Translational Genomics, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gangning Liang
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chiara Cremolini
- Department of Translational Medicine, Division of Medical Oncology, University of Pisa, Pisa, Italy
| | - Alfredo Falcone
- Department of Translational Medicine, Division of Medical Oncology, University of Pisa, Pisa, Italy
| | - Joshua Millstein
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
80
|
Skoniecka A, Cichorek M, Tyminska A, Pelikant-Malecka I, Dziewiatkowski J. Melanization as unfavorable factor in amelanotic melanoma cell biology. PROTOPLASMA 2021; 258:935-948. [PMID: 33506271 PMCID: PMC8433105 DOI: 10.1007/s00709-021-01613-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/15/2021] [Indexed: 05/15/2023]
Abstract
The biology of three amelanotic melanoma cell lines (Ab, B16F10, and A375) of different species origin was analyzed during in vitro induced melanization in these cells. Melanin production was induced by DMEM medium characterized by a high level of L-tyrosine (a basic amino acid for melanogenesis). The biodiversity of amelanotic melanoma cells was confirmed by their different responses to melanogenesis induction; Ab hamster melanomas underwent intensive melanization, mouse B16F10 darkened slightly, while human A375 cells did not show any change in melanin content. Highly melanized Ab cells entered a cell death pathway, while slight melanization did not influence cell biology in a significant way. The rapid and high melanization of Ab cells induced apoptosis documented by phosphatidylserine externalization, caspase activation, and mitochondrial energetic state decrease. Melanoma cell type, culture medium, and time of incubation should be taken into consideration during amelanotic melanoma cell culture in vitro. L-tyrosine, as a concentration-dependent factor presented in the culture media, could stimulate some amelanotic melanoma cell lines (Ab, B16F10) to melanin production. The presence of melanin should be considered in the examination of antimelanoma compounds in vitro, because induction of melanin may interfere or be helpful in the treatment of amelanotic melanoma.
Collapse
Affiliation(s)
- A. Skoniecka
- Embryology Department, Medical University of Gdansk, Ul. Debinki 1 St, 80-211, Gdansk, Poland
| | - M. Cichorek
- Embryology Department, Medical University of Gdansk, Ul. Debinki 1 St, 80-211, Gdansk, Poland
| | - A. Tyminska
- Embryology Department, Medical University of Gdansk, Ul. Debinki 1 St, 80-211, Gdansk, Poland
| | - I. Pelikant-Malecka
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland
| | - J. Dziewiatkowski
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Debinki 1 St, 80-211, Gdansk, Poland
| |
Collapse
|
81
|
Fabian KP, Wolfson B, Hodge JW. From Immunogenic Cell Death to Immunogenic Modulation: Select Chemotherapy Regimens Induce a Spectrum of Immune-Enhancing Activities in the Tumor Microenvironment. Front Oncol 2021; 11:728018. [PMID: 34497771 PMCID: PMC8419351 DOI: 10.3389/fonc.2021.728018] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer treatment has rapidly entered the age of immunotherapy, and it is becoming clear that the effective therapy of established tumors necessitates rational multi-combination immunotherapy strategies. But even in the advent of immunotherapy, the clinical role of standard-of-care chemotherapy regimens still remains significant and may be complementary to emerging immunotherapeutic approaches. Depending on dose, schedule, and agent, chemotherapy can induce immunogenic cell death, resulting in the release of tumor antigens to stimulate an immune response, or immunogenic modulation, sensitizing surviving tumor cells to immune cell killing. While these have been previously defined as distinct processes, in this review we examine the published mechanisms supporting both immunogenic cell death and immunogenic modulation and propose they be reclassified as similar effects termed "immunogenic cell stress." Treatment-induced immunogenic cell stress is an important result of cytotoxic chemotherapy and future research should consider immunogenic cell stress as a whole rather than just immunogenic cell death or immunogenic modulation. Cancer treatment strategies should be designed specifically to take advantage of these effects in combination immunotherapy, and novel chemotherapy regimens should be designed and investigated to potentially induce all aspects of immunogenic cell stress.
Collapse
Affiliation(s)
| | | | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
82
|
Li T, Liu T, Zhu W, Xie S, Zhao Z, Feng B, Guo H, Yang R. Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211035540. [PMID: 34408525 PMCID: PMC8365012 DOI: 10.1177/11795549211035540] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/07/2021] [Indexed: 01/06/2023]
Abstract
Immune-checkpoint blockade (ICB) demonstrated inspiring effect and great promise in anti-cancer therapy. However, many obstacles, such as drug resistance and difficulty in patient selection, limited the efficacy of ICB therapy and awaited to be overcome. By timely identification and intervention of the key immune-suppressive promotors in the tumor microenvironment (TME), we may better understand the mechanisms of cancer immune-escape and use novel strategies to enhance the therapeutic effect of ICB. Myeloid-derived suppressor cell (MDSC) is recognized as a major immune suppressor in the TME. In this review, we summarized the roles MDSC played in the cancer context, focusing on its negative biologic functions in ICB therapy, discussed the strategies targeted on MDSC to optimize the diagnosis and therapy process of ICB and improve the efficacy of ICB therapy against malignancies.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Tianyao Liu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Wenjie Zhu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Shangxun Xie
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Baofu Feng
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| |
Collapse
|
83
|
Crucitta S, Cucchiara F, Sciandra F, Cerbioni A, Diodati L, Rafaniello C, Capuano A, Fontana A, Fogli S, Danesi R, Re MD. Pharmacological Basis of Breast Cancer Resistance to Therapies - An Overview. Anticancer Agents Med Chem 2021; 22:760-774. [PMID: 34348634 DOI: 10.2174/1871520621666210804100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is a molecular heterogeneous disease and often patients with similar clinico-pathological characteristics may display different response to treatment. Cellular processes, including uncontrolled cell-cycle, constitutive activation of signalling pathways parallel to or downstream of HER2 and alterations in DNA-repair mechanisms are the main features altered in the tumor. These cellular processes play significant roles in the emergence of therapy resistance. The introduction of target therapies as well as immunotherapies has improved the management of breast cancer. Furthermore, several therapeutic options are available to overcome resistance and physicians could overcome the challenge of resistant BC using combinatorial drug strategies and incorporating novel biomarkers. Molecular profiling promises to help in refine personalized treatment decisions and catalyse the development of further strategies when resistances inevitably occur. The search for biological explanations for treatment failure helps to clarify the phenomenon and allows to incorporate new biomarkers into clinical practice that can lead to adequate solutions to overcome it. This review provides a summary of genetic and molecular aspects of resistance mechanisms to available treatments for BC patients, and its clinical implications.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Francesca Sciandra
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Annalisa Cerbioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Lucrezia Diodati
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa. Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples. Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples. Italy
| | - Andrea Fontana
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa. Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| |
Collapse
|
84
|
miR-130-3p Promotes MTX-Induced Immune Killing of Hepatocellular Carcinoma Cells by Targeting EPHB4. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4650794. [PMID: 34336153 PMCID: PMC8324363 DOI: 10.1155/2021/4650794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
The vast majority of primary hepatocellular cancer is hepatocellular carcinomas (HCCs). Currently, HCC is one of the more common cancers in humans, and it has a high mortality and disability rate. Mitoxantrone (MTX) is an antitumor drug that can block type II topoisomerase. It has been reported that immunogenic cell death evoked by MTX can induce the discharge of damage associated with molecular patterns (DAMPs) and subsequently influence immune cell infiltration in the tumor microenvironment. High mobilities aggregation box 1 (HMGB1) is the prototypical extracellular DAMP. Many cellular processes have been reported to involve EPHB4 receptor tyrosine kinases, but the relation of DAMP and EPHB4 is uncertain. In this research, we assessed the impact of miR-130-3p by Edu incorporation test on cell proliferation, and we have proven its impact on HCC cell migration through Transwell and wound healing tests. Flow cytometry was applied to study its influence on apoptosis. Luciferase report test was integrated in detecting the miR-130-3p target gene. The influence of miR-130-3p on the manifestation of classical DAMPs was studied, such as HMGB1, ATP, and Calreticulin. A coculture experiment was carried out to further confirm its effects on immune cell infiltration. The result displayed that miR-130-3p overexpression considerably facilitates apoptosis and suppresses the migration or proliferation of HCC cells. EPHB4 was confirmed as the target gene of miR-130-3p. Overexpression of this target gene promotes emission of Calreticulin, ATP, and HMGB1 and subsequently promotes DCs maturation and proliferation of CD4+ T cells. In summary, our results demonstrated that miR-130-3p inhibits HCC cell proliferation and migration by targeting EPHB4 and promotes drug-induced immunogenic cell death.
Collapse
|
85
|
Tulotta C, Lefley DV, Moore CK, Amariutei AE, Spicer-Hadlington AR, Quayle LA, Hughes RO, Ahmed K, Cookson V, Evans CA, Vadakekolathu J, Heath P, Francis S, Pinteaux E, Pockley AG, Ottewell PD. IL-1B drives opposing responses in primary tumours and bone metastases; harnessing combination therapies to improve outcome in breast cancer. NPJ Breast Cancer 2021; 7:95. [PMID: 34290237 PMCID: PMC8295314 DOI: 10.1038/s41523-021-00305-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer bone metastasis is currently incurable, ~75% of patients with late-stage breast cancer develop disease recurrence in bone and available treatments are only palliative. We have previously shown that production of the pro-inflammatory cytokine interleukin-1B (IL-1B) by breast cancer cells drives bone metastasis in patients and in preclinical in vivo models. In the current study, we have investigated how IL-1B from tumour cells and the microenvironment interact to affect primary tumour growth and bone metastasis through regulation of the immune system, and whether targeting IL-1 driven changes to the immune response improves standard of care therapy for breast cancer bone metastasis. Using syngeneic IL-1B/IL1R1 knock out mouse models in combination with genetic manipulation of tumour cells to overexpress IL-1B/IL1R1, we found that IL-1B signalling elicited an opposite response in primary tumours compared with bone metastases. In primary tumours, IL-1B inhibited growth, by impairing the infiltration of innate immune cell subsets with potential anti-cancer functions but promoted enhanced tumour cell migration. In bone, IL-1B stimulated the development of osteolytic metastases. In syngeneic models of breast cancer, combining standard of care treatments (Doxorubicin and Zoledronic acid) with the IL-1 receptor antagonist Anakinra inhibited both primary tumour growth and metastasis. Anakinra had opposite effects on the immune response compared to standard of care treatment, and its anti-inflammatory signature was maintained in the combination therapy. These data suggest that targeting IL-1B signalling may provide a useful therapeutic approach to inhibit bone metastasis and improve efficacy of current treatments for breast cancer patients.
Collapse
Affiliation(s)
- Claudia Tulotta
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Diane V Lefley
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Charlotte K Moore
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Ana E Amariutei
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Amy R Spicer-Hadlington
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Lewis A Quayle
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Russell O Hughes
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Khawla Ahmed
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Victoria Cookson
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Catherine A Evans
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Paul Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sheila Francis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - A Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Penelope D Ottewell
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK.
| |
Collapse
|
86
|
de Miguel D, Ramirez-Labrada A, Uranga I, Hidalgo S, Santiago L, Galvez EM, Arias M, Pardo J. Inflammatory cell death induced by cytotoxic lymphocytes: a dangerous but necessary liaison. FEBS J 2021; 289:4398-4415. [PMID: 34174027 DOI: 10.1111/febs.16093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/09/2021] [Accepted: 06/25/2021] [Indexed: 01/20/2023]
Abstract
Cytotoxic lymphocytes (CLs), and more specifically Tc and NK cells, are the main executors of cell death in the immune system, playing a key role during both immunosurveillance and immunotherapy. These cells induce regulated cell death (RCD) by different mechanisms, being granular exocytosis and expression of death ligands the most prominent and best characterized ones. Apoptosis, a traditionally considered low-inflammatory type of cell death, has been accepted for years as the paradigm of RCD induced by CLs. However, several recent studies have demonstrated that NK cells and Tc cells can also induce more inflammatory forms of cell death, namely, necroptosis, pyroptosis, and ferroptosis. Activation of these highly inflammatory types of cell death appears to critically contribute to the activation of a successful antitumour immune response. Additionally, the role of specific cell death pathways in immunogenic cell death is still under intense debate, especially considering the interconnections with other inflammatory forms of cell death. These evidences, together with the advent of new cancer immunotherapies, highlight the necessity to deepen our understanding of the link between the cell death triggered by CLs and inflammation. This knowledge will be instrumental to maximize the antitumour potential of immunotherapies, minimizing deleterious effects associated with these treatments. In this review, we will briefly summarize the main features of apoptosis, necroptosis, pyroptosis and ferroptosis, to subsequently discuss the most recent evidences about the role of these RCD pathways during the elimination of cancer cells mediated by CLs and its modulation to increase the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Diego de Miguel
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Iratxe Uranga
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Sandra Hidalgo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Llipsy Santiago
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - Maykel Arias
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Spain.,Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| |
Collapse
|
87
|
Wang Y, Shen W, Liu S, Zhu G, Meng X, Mao K, Wang J, Yang YG, Xiao C, Sun T. The Host-Defense-Peptide-Mimicking Synthetic Polypeptides Effectively Enhance Antitumor Immunity through Promoting Immunogenic Tumor Cell Death. Macromol Biosci 2021; 21:e2100171. [PMID: 34169661 DOI: 10.1002/mabi.202100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy is to artificially stimulate the immune system against tumor cells. Effectively increasing the immunogenicity of dying tumor cells has great potential to stimulate the anticancer immune responses. Recently, a synthetic cationic anticancer polypeptide (ACPP) is prepared, which mimics the host defense peptides, to effectively inhibit tumor growth by directly inducing rapid necrosis of cancer cells through a membrane-lytic mechanism. Thus, this ACPP has the potential ability to induce immunogenic cancer cell death (ICD) and promote antitumor immunity. Herein, it is reported that ACPP successfully induces ICD in mouse colon cancer cells, resulting in effectively promoting T-cell-dependent antitumor immune responses by enhanced activation of dendritic cells. Interestingly, the level of natural killer cells, which are another kind of antitumor effector cell, in tumor microenvironment is also significantly increased by ACPP. The ratio of M1/M2 tumor-associated macrophages is further obviously increased, indicating that tumor immunosuppressive microenvironment has been effectively reprogramed. More importantly, it is found that the anticancer immunity induced by ACPP is dose dependent. Finally, 40% of the established CT26 tumors are completely eliminated by ACPP treatment with an optimized dose. This study proposes a simple and effective strategy for promoting cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Wei Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Ge Zhu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China.,International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China.,International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
| |
Collapse
|
88
|
Serrano-Del Valle A, Reina-Ortiz C, Benedi A, Anel A, Naval J, Marzo I. Future prospects for mitosis-targeted antitumor therapies. Biochem Pharmacol 2021; 190:114655. [PMID: 34129859 DOI: 10.1016/j.bcp.2021.114655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
Dysregulation of cell cycle progression is a hallmark of cancer cells. In recent years, efforts have been devoted to the development of new therapies that target proteins involved in cell cycle regulation and mitosis. Novel targeted antimitotic drugs include inhibitors of aurora kinase family, polo-like kinase 1, Mps1, Eg5, CENP-5 and the APC/cyclosome complex. While certain new inhibitors reached the clinical trial stage, most were discontinued due to negative results. However, these therapies should not be readily dismissed. Based on recent advances concerning their mechanisms of action, new strategies could be devised to increase their efficacy and promote further clinical trials. Here we discuss three main lines of action to empower these therapeutic approaches: increasing cell death signals during mitotic arrest, targeting senescent cells and facilitating antitumor immune response through immunogenic cell death (ICD).
Collapse
Affiliation(s)
| | - Chantal Reina-Ortiz
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Andrea Benedi
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Alberto Anel
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Javier Naval
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Isabel Marzo
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain.
| |
Collapse
|
89
|
Abstract
The immune tumor microenvironment (TME) of colorectal cancer (CRC) is a crucial contributor to disease biology, making it an important target for therapeutic intervention. The diversity of immune cell populations within various subsets of CRC has led to the discovery that immune characterization of the TME has both prognostic and predictive value for patients. The convergence of improved molecular and cellular characterization of CRC along with the widespread use of immunotherapy in solid tumors has led to a revolution in the approach to clinical care. Monoclonal antibodies (mAbs) which target key immune checkpoints, such as programmed death-1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4), have demonstrated remarkable clinical activity in microsatellite instability-high (MSI-H) CRCs and are now used in routine practice. The observation that MSI-H cancers are highly infiltrated with immune cells and carry a high neoantigen load led to the successful targeting of these cancers with immunotherapy. More recently, the Food and Drug Administration (FDA) approved a PD-1 inhibitor for microsatellite stable (MSS) cancers with high tumor mutation burden. However, the anti-tumor activity of immunotherapy is rare in the majority of CRC. While immune cell characterization does provide prognostic value in these patients, these observations have not yet led to therapeutic interventions. By delineating factors that predict efficacy, resistance, and therapeutic targets, ongoing research will inform the development of effective combination strategies for the vast majority of MSS CRC and immunotherapy-resistant MSI-H cancers.
Collapse
Affiliation(s)
- Parul Agarwal
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Dung T Le
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, United States.
| | - Patrick M Boland
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
90
|
Hernández ÁP, Juanes-Velasco P, Landeira-Viñuela A, Bareke H, Montalvillo E, Góngora R, Fuentes M. Restoring the Immunity in the Tumor Microenvironment: Insights into Immunogenic Cell Death in Onco-Therapies. Cancers (Basel) 2021; 13:2821. [PMID: 34198850 PMCID: PMC8201010 DOI: 10.3390/cancers13112821] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Immunogenic cell death (ICD) elicited by cancer therapy reshapes the tumor immune microenvironment. A long-term adaptative immune response can be initiated by modulating cell death by therapeutic approaches. Here, the major hallmarks of ICD, endoplasmic reticulum (ER) stress, and damage-associated molecular patterns (DAMPs) are correlated with ICD inducers used in clinical practice to enhance antitumoral activity by suppressing tumor immune evasion. Approaches to monitoring the ICD triggered by antitumoral therapeutics in the tumor microenvironment (TME) and novel perspective in this immune system strategy are also reviewed to give an overview of the relevance of ICD in cancer treatment.
Collapse
Affiliation(s)
- Ángela-Patricia Hernández
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Halin Bareke
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Institute of Health Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Enrique Montalvillo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Rafael Góngora
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
91
|
Vankerckhoven A, Baert T, Riva M, De Bruyn C, Thirion G, Vandenbrande K, Ceusters J, Vergote I, Coosemans A. Type of chemotherapy has substantial effects on the immune system in ovarian cancer. Transl Oncol 2021; 14:101076. [PMID: 33770618 PMCID: PMC8022256 DOI: 10.1016/j.tranon.2021.101076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 11/27/2022] Open
Abstract
Chemotherapy induces a variety of immunological changes. Studying these effects can reveal opportunities for successful combining chemotherapy and immunotherapy. Immuno-chemotherapeutic combinations in ovarian cancer are currently not generating the anticipated positive effects. To date, only scattered and inconsistent information is available about the immune-induced changes by chemotherapy in ovarian cancer. In this study, we compared six common chemotherapeutics used in ovarian cancer patients (carboplatin, paclitaxel, pegylated liposomal doxorubicin, gemcitabine, carboplatin-paclitaxel and carboplatin-gemcitabine) and studied their effects on the immune system in an ovarian cancer mouse model. Mice received a single chemotherapy or vehicle injection 21 days after tumor inoculation with ID8-fluc cells. One week after therapy administration, we collected peritoneal washings for flow cytometry, serum for cytokine analysis with cytometric bead array and tumor biopsies for immunohistochemistry. Carboplatin-paclitaxel showed the most favorable profile with a decrease in immunosuppressive cells in the peritoneal cavity and an increase of interferon-gamma in serum. In contrast, carboplatin-gemcitabine seemed to promote a hostile immune environment with an increase in regulatory T-cells in tumor tissue and an increase of macrophage-inflammatory-protein-1-beta in the serum.
Collapse
Affiliation(s)
- Ann Vankerckhoven
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Thaïs Baert
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium; Department of Gynecology and Gynecologic Oncology, Kliniken Essen Mitte (KEM), Essen, Germany
| | - Matteo Riva
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium; Department of Neurosurgery, CHU UCL Namur, University Hospital of Godinne, Yvoir, Belgium
| | - Christine De Bruyn
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium; Department of Obstetrics and Gynecology, University Hospital Antwerp, Edegem, Belgium
| | - Gitte Thirion
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Katja Vandenbrande
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Jolien Ceusters
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Ignace Vergote
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium; Department of Oncology, Leuven Cancer Institute, Laboratory of Gynaecologic Oncology, KU Leuven, Belgium; Department of Gynaecology and Obstetrics, Leuven Cancer Institute, UZ Leuven, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium.
| |
Collapse
|
92
|
Managing side effects of immune checkpoint inhibitors in breast cancer. Crit Rev Oncol Hematol 2021; 162:103354. [PMID: 34029683 DOI: 10.1016/j.critrevonc.2021.103354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs) represent a major development in cancer therapy. The indications for these agents continue to expand across malignancies and disease settings. For years breast cancer (BC) has been considered immunologically quiescent compared with other tumor types. However, recent findings highlighted the immunogenicity of some BCs and paved the way for clinical trials of immunotherapy in BC that led to recent landmark approvals. As a drawback, the safety profile of ICIs is shaped by a specific spectrum of immune-related adverse events (irAEs) that can vary according to ICI class and tumor histology. This review will discuss the epidemiology of these adverse events, their kinetics, risk factors and the most important aspects in their management. A particular focus will be put on BC as the current landscape of immunotherapy for this disease is rapidly increasing the number of people treated with ICIs, thus susceptible to irAEs.
Collapse
|
93
|
Ortiz-Aguirre JP, Velandia-Vargas EA, Rodríguez-Bohorquez OM, Amaya-Ramírez D, Bernal-Estévez D, Parra-López CA. Inmunoterapia personalizada contra el cáncer basada en neoantígenos. Revisión de la literatura. REVISTA DE LA FACULTAD DE MEDICINA 2021. [DOI: 10.15446/revfacmed.v69n3.81633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. Los avances que se han hecho en inmunoterapia contra el cáncer y la respuesta clínica de los pacientes que han recibido este tipo de terapia la han convertido en el cuarto pilar para el tratamiento del cáncer.
Objetivo. Describir brevemente el fundamento biológico de la inmunoterapia personalizada contra el cáncer basada en neoantígenos, las perspectivas actuales de su desarrollo y algunos resultados clínicos de esta terapia.
Materiales y métodos. Se realizó una búsqueda de la literatura en PubMed, Scopus y EBSCO utilizando la siguiente estrategia de búsqueda: tipo de artículos: estudios experimentales originales, ensayos clínicos y revisiones narrativas y sistemáticas sobre métodos de identificación de mutaciones generadas en los tumores y estrategias de inmunoterapia del cáncer con vacunas basadas en neoantígenos; población de estudio: humanos y modelos animales; periodo de publicación: enero 1989- diciembre 2019; idioma: inglés y español; términos de búsqueda: “Immunotherapy”, “Neoplasms”, “Mutation” y “Cancer Vaccines”.
Resultados. La búsqueda inicial arrojó 1344 registros; luego de remover duplicados (n=176), 780 fueron excluidos luego de leer su resumen y título, y se evaluó el texto completo de 338 para verificar cuáles cumplían con los criterios de inclusión, seleccionándose finalmente 73 estudios para análisis completo. Todos los artículos recuperados se publicaron en inglés, y fueron realizados principalmente en EE. UU. (43.83%) y Alemania (23.65%). En el caso de los estudios originales (n=43), 20 se realizaron únicamente en humanos, 9 solo en animales, 2 en ambos modelos, y 12 usaron metodología in silico.
Conclusión. La inmunoterapia personalizada contra el cáncer con vacunas basadas en neoantígenos tumorales se está convirtiendo de forma contundente en una nueva alternativa para tratar el cáncer. Sin embargo, para lograr su implementación adecuada, es necesario usarla en combinación con tratamientos convencionales, generar más conocimiento que contribuya a aclarar la inmunobiología del cáncer, y reducir los costos asociados con su producción.
Collapse
|
94
|
Cueto FJ, Del Fresno C, Brandi P, Combes AJ, Hernández-García E, Sánchez-Paulete AR, Enamorado M, Bromley CP, Gomez MJ, Conde-Garrosa R, Mañes S, Zelenay S, Melero I, Iborra S, Krummel MF, Sancho D. DNGR-1 limits Flt3L-mediated antitumor immunity by restraining tumor-infiltrating type I conventional dendritic cells. J Immunother Cancer 2021; 9:e002054. [PMID: 33980589 PMCID: PMC8118081 DOI: 10.1136/jitc-2020-002054] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Conventional type 1 dendritic cells (cDC1s) are central to antitumor immunity and their presence in the tumor microenvironment associates with improved outcomes in patients with cancer. DNGR-1 (CLEC9A) is a dead cell-sensing receptor highly restricted to cDC1s. DNGR-1 has been involved in both cross-presentation of dead cell-associated antigens and processes of disease tolerance, but its role in antitumor immunity has not been clarified yet. METHODS B16 and MC38 tumor cell lines were inoculated subcutaneously into wild-type (WT) and DNGR-1-deficient mice. To overexpress Flt3L systemically, we performed gene therapy through the hydrodynamic injection of an Flt3L-encoding plasmid. To characterize the immune response, we performed flow cytometry and RNA-Seq of tumor-infiltrating cDC1s. RESULTS Here, we found that cross-presentation of tumor antigens in the steady state was DNGR-1-independent. However, on Flt3L systemic overexpression, tumor growth was delayed in DNGR-1-deficient mice compared with WT mice. Of note, this protection was recapitulated by anti-DNGR-1-blocking antibodies in mice following Flt3L gene therapy. This improved antitumor immunity was associated with Batf3-dependent enhanced accumulation of CD8+ T cells and cDC1s within tumors. Mechanistically, the deficiency in DNGR-1 boosted an Flt3L-induced specific inflammatory gene signature in cDC1s, including Ccl5 expression. Indeed, the increased infiltration of cDC1s within tumors and their protective effect rely on CCL5/CCR5 chemoattraction. Moreover, FLT3LG and CCL5 or CCR5 gene expression signatures correlate with an enhanced cDC1 signature and a favorable overall survival in patients with cancer. Notably, cyclophosphamide elevated serum Flt3L levels and, in combination with the absence of DNGR-1, synergized against tumor growth. CONCLUSION DNGR-1 limits the accumulation of tumor-infiltrating cDC1s promoted by Flt3L. Thus, DNGR-1 blockade may improve antitumor immunity in tumor therapy settings associated to high Flt3L expression.
Collapse
MESH Headings
- Animals
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Coculture Techniques
- Colonic Neoplasms/genetics
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/therapy
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Gene Expression Regulation, Neoplastic
- Genetic Therapy
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/therapy
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/therapy
- Tumor Burden
- Tumor Escape
- Tumor Microenvironment
- Mice
Collapse
Affiliation(s)
- Francisco J Cueto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Carlos Del Fresno
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Hospital la Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Paola Brandi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Alexis J Combes
- Department of Pathology, University of California, San Francisco, California, USA
- ImmunoX Initiative, University of California, San Francisco, California, USA
- UCSF CoLabs, University of California, San Francisco, California, USA
| | - Elena Hernández-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Alfonso R Sánchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Michel Enamorado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christian P Bromley
- Cancer Inflammation and Immunity Group, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Manuel J Gomez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ruth Conde-Garrosa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, Madrid, Spain
| | - Santiago Zelenay
- Cancer Inflammation and Immunity Group, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- University Clinic, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, California, USA
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
95
|
Tukaramrao DB, Malla S, Saraiya S, Hanely RA, Ray A, Kumari S, Raman D, Tiwari AK. A Novel Thienopyrimidine Analog, TPH104, Mediates Immunogenic Cell Death in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13081954. [PMID: 33919653 PMCID: PMC8074041 DOI: 10.3390/cancers13081954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is the most lethal and aggressive subtype of breast cancer that lacks an estrogen receptor, the progesterone receptor and the human epidermal growth factor receptor 2 (HER2), making it unsuitable for hormonal- or HER2-based therapy. TNBC is known for its higher relapse rate, poorer prognosis and higher rate of metastasis compared to non-TNBC because although patients initially respond to chemotherapy that kills cancer cells through a form of programmed cell death called apoptosis, they later develop chemoresistance and stop responding to the treatment, accounting for one fourth of all breast cancer deaths. In this study, we report a novel compound, TPH104, that elicits a unique, non-apoptotic cell death in TNBC cells. Upon treatment with TPH104, TNBC cells swell and burst, releasing immunogenic markers that alert and activate the immune system to further recognize and attack the neighboring breast cancer cells. Abstract Enhancing the tumor immunogenic microenvironment has been suggested to circumvent triple-negative breast cancer (TNBC) resistance and increase the efficacy of conventional chemotherapy. Here, we report a novel chemotherapeutic compound, TPH104, which induces immunogenic cell death in the TNBC cell line MDA-MB-231, by increasing the stimulatory capacity of dendritic cells (DCs), with an IC50 value of 140 nM. TPH104 (5 µM) significantly increased ATP levels in the supernatant and mobilized intracellular calreticulin to the plasma membrane in MDA-MB-231 cells, compared to cells incubated with the vehicle. Incubating MDA-MB-231 cells for 12 h with TPH104 (1–5 µM) significantly increased TNF-α mRNA levels. The supernatants of dying MDAMB-231 cells incubated with TPH104 increased mouse bone marrow-derived DC maturation, the expression of MHC-II and CD86 and the mRNA expression of TNF-α, IL-6 and IL-12. Overall, these results indicate that TPH104 induces immunogenic cell death in TNBC cells, in part, by activating DCs.
Collapse
Affiliation(s)
- Diwakar Bastihalli Tukaramrao
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
| | - Siddharth Saraiya
- Department of Radiation Oncology, College of Medicine, University of Toledo, Toledo, OH 43614, USA;
| | - Ross Allen Hanely
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
| | - Aniruddha Ray
- Department of Physics, College of Natural Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
| | - Dayanidhi Raman
- Department of Cancer Biology, College of Medicine, University of Toledo, Toledo, OH 43614, USA;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
- Department of Cancer Biology, College of Medicine, University of Toledo, Toledo, OH 43614, USA;
- Correspondence: ; Tel.: +1-419-383-1913
| |
Collapse
|
96
|
El Sissy C, Kirilovsky A, Zeitoun G, Marliot F, Haicheur N, Lagorce-Pagès C, Galon J, Pagès F. Therapeutic Implications of the Immunoscore in Patients with Colorectal Cancer. Cancers (Basel) 2021; 13:1281. [PMID: 33805758 PMCID: PMC8001764 DOI: 10.3390/cancers13061281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Four decades were needed to progress from the first demonstration of the independent prognostic value of lymphocytes infiltration in rectal cancers to the first recommendation from the international guidelines for the use of a standardized immune assay, namely the "Immunoscore" (IS), to accurately prognosticate colon cancers beyond the TNM-system. The standardization process included not only the IS conceptualization, development, fine-tuning, and validation by a large international consortium, but also a demonstration of the robustness and reproducibility across the world and testing of international norms and their effects on the IS. This is the first step of a major change of paradigm that now perceives cancer as the result of contradicting driving forces, i.e., the tumor expansion and the immune response, interacting dynamically and influencing the prognosis and the response to therapies. This prompted us to evaluate and evidence the capacity of the tumor immune status, as reflected by the IS, to accurately predict chemotherapy responses in an international, randomized cohort study of colon cancer. Moreover, we developed a derived IS performed on initial diagnostic biopsies (ISB) to assess response levels to neoadjuvant therapies. In rectal cancer, ISB was positively correlated with the degree of histologic response to neoadjuvant chemoradiotherapy and identified - alone and even more accurately if combined with clinical data- patients eligible for a noninvasive strategy. Based on these results, we are currently setting up an international cohort for confirmation. The potential role of IS with immunotherapies must be anticipated.
Collapse
Affiliation(s)
- Carine El Sissy
- INSERM, Laboratory of Integrative Cancer Immunology, Immunology and Cancer department, 75006 Paris, France; (C.E.S.); (A.K.); (F.M.); (C.L.-P.); (J.G.)
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Université de Paris, 75006 Paris, France
- Immunomonitoring Platform, Department of Immunology, Assistance Publique-Hôpitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France; (G.Z.); (N.H.)
| | - Amos Kirilovsky
- INSERM, Laboratory of Integrative Cancer Immunology, Immunology and Cancer department, 75006 Paris, France; (C.E.S.); (A.K.); (F.M.); (C.L.-P.); (J.G.)
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Université de Paris, 75006 Paris, France
- Immunomonitoring Platform, Department of Immunology, Assistance Publique-Hôpitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France; (G.Z.); (N.H.)
| | - Guy Zeitoun
- Immunomonitoring Platform, Department of Immunology, Assistance Publique-Hôpitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France; (G.Z.); (N.H.)
| | - Florence Marliot
- INSERM, Laboratory of Integrative Cancer Immunology, Immunology and Cancer department, 75006 Paris, France; (C.E.S.); (A.K.); (F.M.); (C.L.-P.); (J.G.)
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Université de Paris, 75006 Paris, France
- Immunomonitoring Platform, Department of Immunology, Assistance Publique-Hôpitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France; (G.Z.); (N.H.)
| | - Nacilla Haicheur
- Immunomonitoring Platform, Department of Immunology, Assistance Publique-Hôpitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France; (G.Z.); (N.H.)
| | - Christine Lagorce-Pagès
- INSERM, Laboratory of Integrative Cancer Immunology, Immunology and Cancer department, 75006 Paris, France; (C.E.S.); (A.K.); (F.M.); (C.L.-P.); (J.G.)
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Université de Paris, 75006 Paris, France
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Immunology and Cancer department, 75006 Paris, France; (C.E.S.); (A.K.); (F.M.); (C.L.-P.); (J.G.)
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Université de Paris, 75006 Paris, France
| | - Franck Pagès
- INSERM, Laboratory of Integrative Cancer Immunology, Immunology and Cancer department, 75006 Paris, France; (C.E.S.); (A.K.); (F.M.); (C.L.-P.); (J.G.)
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Université de Paris, 75006 Paris, France
- Immunomonitoring Platform, Department of Immunology, Assistance Publique-Hôpitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France; (G.Z.); (N.H.)
| |
Collapse
|
97
|
Eriau E, Paillet J, Kroemer G, Pol JG. Metabolic Reprogramming by Reduced Calorie Intake or Pharmacological Caloric Restriction Mimetics for Improved Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13061260. [PMID: 33809187 PMCID: PMC7999281 DOI: 10.3390/cancers13061260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Caloric restriction and fasting have been known for a long time for their health- and life-span promoting effects, with coherent observations in multiple model organisms as well as epidemiological and clinical studies. This holds particularly true for cancer. The health-promoting effects of caloric restriction and fasting are mediated at least partly through their cellular effects-chiefly autophagy induction-rather than reduced calorie intake per se. Interestingly, caloric restriction has a differential impact on cancer and healthy cells, due to the atypical metabolic profile of malignant tumors. Caloric restriction mimetics are non-toxic compounds able to mimic the biochemical and physiological effects of caloric restriction including autophagy induction. Caloric restriction and its mimetics induce autophagy to improve the efficacy of some cancer treatments that induce immunogenic cell death (ICD), a type of cellular demise that eventually elicits adaptive antitumor immunity. Caloric restriction and its mimetics also enhance the therapeutic efficacy of chemo-immunotherapies combining ICD-inducing agents with immune checkpoint inhibitors targeting PD-1. Collectively, preclinical data encourage the application of caloric restriction and its mimetics as an adjuvant to immunotherapies. This recommendation is subject to confirmation in additional experimental settings and in clinical trials. In this work, we review the preclinical and clinical evidence in favor of such therapeutic interventions before listing ongoing clinical trials that will shed some light on this subject.
Collapse
Affiliation(s)
- Erwan Eriau
- Centre de Cancérologie de Lyon, Université de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, 69008 Lyon, France; or
- Ecole Normale Supérieure de Lyon, 69342 Lyon, France
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
| | - Juliette Paillet
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
- Institut Universitaire de France, 75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique–Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou 215163, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Jonathan G. Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
- Correspondence: or ; Tel.: +33-1-44-27-76-66
| |
Collapse
|
98
|
Sequeira GR, Sahores A, Dalotto-Moreno T, Perrotta RM, Pataccini G, Vanzulli SI, Polo ML, Radisky DC, Sartorius CA, Novaro V, Lamb CA, Rabinovich GA, Salatino M, Lanari C. Enhanced Antitumor Immunity via Endocrine Therapy Prevents Mammary Tumor Relapse and Increases Immune Checkpoint Blockade Sensitivity. Cancer Res 2021; 81:1375-1387. [PMID: 33268529 DOI: 10.1158/0008-5472.can-20-1441] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/28/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
The role of active antitumor immunity in hormone receptor-positive (HR+) breast cancer has been historically underlooked. The aim of this study was to determine the contribution of the immune system to antiprogestin-induced tumor growth inhibition using a hormone-dependent breast cancer model. BALB/c-GFP+ bone marrow (BM) cells were transplanted into immunodeficient NSG mice to generate an immunocompetent NSG/BM-GFP+ (NSG-R) mouse model. Treatment with the antiprogestin mifepristone (MFP) inhibited growth of 59-2-HI tumors with similar kinetics in both animal models. Interestingly, MFP treatment reshaped the tumor microenvironment, enhancing the production of proinflammatory cytokines and chemokines. Tumors in MFP-treated immunocompetent mice showed increased infiltration of F4/80+ macrophages, natural killer, and CD8 T cells, displaying a central memory phenotype. Mechanistically, MFP induced immunogenic cell death (ICD) in vivo and in vitro, as depicted by the expression and subcellular localization of the alarmins calreticulin and HMGB-1 and the induction of an ICD gene program. Moreover, MFP-treated tumor cells efficiently activated immature dendritic cells, evidenced by enhanced expression of MHC-II and CD86, and induced a memory T-cell response, attenuating tumor onset and growth after re-challenge. Finally, MFP treatment increased the sensitivity of HR+ 59-2-HI tumor to PD-L1 blockade, suggesting that antiprogestins may improve immunotherapy response rates. These results contribute to a better understanding of the mechanisms underlying the antitumor effect of hormonal treatment and the rational design of therapeutic combinations based on endocrine and immunomodulatory agents in HR+ breast cancer. SIGNIFICANCE: Antiprogestin therapy induces immunogenic tumor cell death in PRA-overexpressing tumors, eliciting an adaptive immune memory response that protects mice from future tumor recurrence and increases sensitivity to PD-L1 blockade. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/5/1375/F1.large.jpg.
Collapse
Affiliation(s)
- Gonzalo R Sequeira
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
- Hospital Público de Gestión Descentralizada Dr. Arturo Oñativia, Ciudad de Salta, Salta, Argentina
| | - Ana Sahores
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tomás Dalotto-Moreno
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Ramiro M Perrotta
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Gabriela Pataccini
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | | | - María L Polo
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Derek C Radisky
- Mayo Clinic Comprehensive Cancer Center, Department of Cancer Biology, Jacksonville, Florida
| | - Carol A Sartorius
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Virginia Novaro
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Salatino
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina.
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| |
Collapse
|
99
|
Mantovani A, Marchesi F, Jaillon S, Garlanda C, Allavena P. Tumor-associated myeloid cells: diversity and therapeutic targeting. Cell Mol Immunol 2021; 18:566-578. [PMID: 33473192 PMCID: PMC8027665 DOI: 10.1038/s41423-020-00613-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloid cells in tumor tissues constitute a dynamic immune population characterized by a non-uniform phenotype and diverse functional activities. Both tumor-associated macrophages (TAMs), which are more abundantly represented, and tumor-associated neutrophils (TANs) are known to sustain tumor cell growth and invasion, support neoangiogenesis and suppress anticancer adaptive immune responses. In recent decades, several therapeutic approaches have been implemented in preclinical cancer models to neutralize the tumor-promoting roles of both TAMs and TANs. Some of the most successful strategies have now reached the clinic and are being investigated in clinical trials. In this review, we provide an overview of the recent literature on the ever-growing complexity of the biology of TAMs and TANs and the development of the most promising approaches to target these populations therapeutically in cancer patients.
Collapse
Affiliation(s)
- Alberto Mantovani
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.
- Department of Biomedical Science, Humanitas University, Rozzano, Italy.
- The William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Federica Marchesi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sebastien Jaillon
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Paola Allavena
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| |
Collapse
|
100
|
DeRogatis JM, Viramontes KM, Neubert EN, Tinoco R. PSGL-1 Immune Checkpoint Inhibition for CD4 + T Cell Cancer Immunotherapy. Front Immunol 2021; 12:636238. [PMID: 33708224 PMCID: PMC7940186 DOI: 10.3389/fimmu.2021.636238] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
Immune checkpoint inhibition targeting T cells has shown tremendous promise in the treatment of many cancer types and are now standard therapies for patients. While standard therapies have focused on PD-1 and CTLA-4 blockade, additional immune checkpoints have shown promise in promoting anti-tumor immunity. PSGL-1, primarily known for its role in cellular migration, has also been shown to function as a negative regulator of CD4+ T cells in numerous disease settings including cancer. PSGL-1 is highly expressed on T cells and can engage numerous ligands that impact signaling pathways, which may modulate CD4+ T cell differentiation and function. PSGL-1 engagement in the tumor microenvironment may promote CD4+ T cell exhaustion pathways that favor tumor growth. Here we highlight that blocking the PSGL-1 pathway on CD4+ T cells may represent a new cancer therapy approach to eradicate tumors.
Collapse
Affiliation(s)
| | | | | | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|