51
|
Genetic and biological characteristics of the globally circulating H5N8 avian influenza viruses and the protective efficacy offered by the poultry vaccine currently used in China. SCIENCE CHINA-LIFE SCIENCES 2021; 65:795-808. [PMID: 34757542 DOI: 10.1007/s11427-021-2025-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022]
Abstract
The H5N8 avian influenza viruses have been widely circulating in wild birds and are responsible for the loss of over 33 million domestic poultry in Europe, Russia, Middle East, and Asia since January 2020. To monitor the invasion and spread of the H5N8 virus in China, we performed active surveillance by analyzing 317 wild bird samples and swab samples collected from 41,172 poultry all over the country. We isolated 22 H5N8 viruses from wild birds and 14 H5N8 viruses from waterfowls. Genetic analysis indicated that the 36 viruses formed two different genotypes: one genotype viruses were widely detected from different wild birds and domestic waterfowls; the other genotype was isolated from a whopper swan. We further revealed the origin and spatiotemporal spread of these two distinct H5N8 virus genotypes in 2020 and 2021. Animal studies indicated that the H5N8 isolates are highly pathogenic to chickens, mildly pathogenic in ducks, but have distinct pathotypes in mice. Moreover, we found that vaccinated poultry in China could be completely protected against H5N8 virus challenge. Given that the H5N8 viruses are likely to continue to spread in wild birds, vaccination of poultry is highly recommended in high-risk countries to prevent H5N8 avian influenza.
Collapse
|
52
|
Re-emergence of highly pathogenic avian influenza A(H5N8) virus in domestic Goose, China. J Infect 2021; 83:709-737. [PMID: 34670125 DOI: 10.1016/j.jinf.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022]
|
53
|
Turner JCM, Barman S, Feeroz MM, Hasan MK, Akhtar S, Jeevan T, Walker D, Franks J, Seiler P, Mukherjee N, Kercher L, McKenzie P, Lam T, El-Shesheny R, Webby RJ. Highly Pathogenic Avian Influenza A(H5N6) Virus Clade 2.3.4.4h in Wild Birds and Live Poultry Markets, Bangladesh. Emerg Infect Dis 2021; 27:2492-2494. [PMID: 34424167 PMCID: PMC8386775 DOI: 10.3201/eid2709.210819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Migratory birds play a major role in spreading influenza viruses over long distances. We report highly pathogenic avian influenza A(H5N6) viruses in migratory and resident ducks in Bangladesh. The viruses were genetically similar to viruses detected in wild birds in China and Mongolia, suggesting migration-associated dissemination of these zoonotic pathogens.
Collapse
|
54
|
Genetic Characterization of Highly Pathogenic Avian Influenza A(H5N8) Virus in Pakistani Live Bird Markets Reveals Rapid Diversification of Clade 2.3.4.4b Viruses. Viruses 2021; 13:v13081633. [PMID: 34452498 PMCID: PMC8402709 DOI: 10.3390/v13081633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
The highly pathogenic (HPAI) avian influenza A(H5N1) viruses have undergone reassortment with multiple non-N1-subtype neuraminidase genes since 2008, leading to the emergence of H5Nx viruses. H5Nx viruses established themselves quickly in birds and disseminated from China to Africa, the Middle East, Europe and North America. Multiple genetic clades have successively evolved through frequent mutations and reassortment, posing a continuous threat to domestic poultry and causing substantial economic losses. Live bird markets are recognized as major sources of avian-to-human infection and for the emergence of zoonotic influenza. In Pakistan, the A(H5N1) virus was first reported in domestic birds in 2007; however, avian influenza surveillance is limited and there is a lack of knowledge on the evolution and transmission of the A(H5) virus in the country. We collected oropharyngeal swabs from domestic poultry and environmental samples from six different live bird markets during 2018–2019. We detected and sequenced HPAI A(H5N8) viruses from two chickens, one quail and one environmental sample in two markets. Temporal phylogenetics indicated that all novel HPAI A(H5N8) viruses belonged to clade 2.3.4.4b, with all eight genes of Pakistan A(H5N8) viruses most closely related to 2017 Saudi Arabia A(H5N8) viruses, which were likely introduced via cross-border transmission from neighboring regions approximately three months prior to virus detection into domestic poultry. Our data further revealed that clade 2.3.4.4b viruses underwent rapid lineage expansion in 2017 and acquired significant amino acid mutations, including mutations associated with increased haemagglutinin affinity to human α-2,6 receptors, prior to the first human A(H5N8) infection in Russian poultry workers in 2020. These results highlight the need for systematic avian influenza surveillance in live bird markets in Pakistan to monitor for potential A(H5Nx) variants that may arise from poultry populations.
Collapse
|
55
|
Tang H, Shen C, Zou L, Cai C, Wang Y, Robertson ID, Edwards J, Huang B, Bruce M. A mixed methods study of stakeholders' practices and attitudes on avian influenza H7N9 vaccination for the yellow broiler industry in Guangxi, China. Transbound Emerg Dis 2021; 69:e224-e235. [PMID: 34379893 DOI: 10.1111/tbed.14286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/18/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
In response to a sudden increase in H7N9 human infections, China introduced an H5/H7 bivalent inactivated vaccine for poultry in Guangxi and Guangdong provinces in July 2017, which subsequently became integrated into the existing compulsory national H5N1 vaccination programme from September 2017. Although the vaccination programme effectively reduced H7N9 infections in humans and poultry, there are ongoing arguments against continuing this long-term vaccination. These discussions have drawn policymakers to think about the possibility of stopping routine vaccination for H7N9 avian influenza viruses (AIVs) in China; however, they have not considered the poultry industry stakeholders' practices on and attitudes towards this vaccination. This study investigated H7N9 vaccination practices in the yellow broiler industry in Guangxi and stakeholders' attitudes on H7N9 vaccination, using a mixed methods design. The study found H7N9 vaccination was well adopted in the yellow broiler industry in Guangxi regardless of the source of the vaccines. Most stakeholders believed vaccination was the best measure to control H7N9 and H5N1 AIVs, and they showed a strong willingness to continue with vaccination even without government subsidies or freely provided vaccines. The motivations by stakeholders for using vaccines to control H7N9 and H5N1 were different due to the epidemiological differences between the two strains. Understanding poultry industry stakeholders' practices and attitudes on H7N9 vaccination has important practical implications in planning vaccination policies, particularly when considering the possibility of vaccination withdrawal.
Collapse
Affiliation(s)
- Hao Tang
- China Animal Health and Epidemiology Centre, Qingdao, China.,School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Chaojian Shen
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Lianbin Zou
- Guangxi Centre of Animal Disease Prevention and Control, Nanning, China
| | - Chang Cai
- China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Youming Wang
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Ian D Robertson
- School of Veterinary Medicine, Murdoch University, Perth, Australia.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - John Edwards
- China Animal Health and Epidemiology Centre, Qingdao, China.,School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Baoxu Huang
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Mieghan Bruce
- School of Veterinary Medicine, Murdoch University, Perth, Australia.,Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Australia
| |
Collapse
|
56
|
Li X, Lv X, Li Y, Peng P, Zhou R, Qin S, Ma E, Liu W, Fu T, Ma P, An Q, Li Y, Hua Y, Wang Y, Lei C, Chu D, Sun H, Li Y, Gao Y, Chai H. Highly Pathogenic Avian Influenza A(H5N8) Virus in Swans, China, 2020. Emerg Infect Dis 2021; 27:1732-1734. [PMID: 33834988 PMCID: PMC8153893 DOI: 10.3201/eid2706.204727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In October 2020, highly pathogenic avian influenza A(H5N8) viruses were detected in 2 dead swans in Inner Mongolia, China. Genetic analysis showed that the H5N8 isolates belong to clade 2.3.4.4b and that the isolates cluster with the H5N8 viruses isolated in Eurasia in the fall of 2020.
Collapse
|
57
|
Moatasim Y, Kandeil A, Mostafa A, Kutkat O, Sayes ME, El Taweel AN, AlKhazindar M, AbdElSalam ET, El-Shesheny R, Kayali G, Ali MA. Impact of Individual Viral Gene Segments from Influenza A/H5N8 Virus on the Protective Efficacy of Inactivated Subtype-Specific Influenza Vaccine. Pathogens 2021; 10:pathogens10030368. [PMID: 33808583 PMCID: PMC8003407 DOI: 10.3390/pathogens10030368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Since its emergence in 2014, the highly pathogenic avian influenza H5N8 virus has continuously and rapidly spread worldwide in the poultry sector resulting in huge economic losses. A typical inactivated H5N8 vaccine is prepared using the six internal genes from A/PR8/1934 (H1N1) and the two major antigenic proteins (HA and NA) from the circulating H5N8 strain with the HA modified to a low pathogenic form (PR8HA/NA-H5N8). The contribution of the other internal proteins from H5N8, either individually or in combination, to the overall protective efficacy of PR8-based H5N8 vaccine has not been investigated. Using reverse genetics, a set of PR8-based vaccines expressing the individual proteins from an H5N8 strain were rescued and compared to the parent PR8 and low pathogenic H5N8 strains and the commonly used PR8HA/NA-H5N8. Except for the PR8-based vaccine strains expressing the HA of H5N8, none of the rescued combinations could efficiently elicit virus-neutralizing antibodies. Compared to PR8, the non-HA viral proteins provided some protection to infected chickens six days post infection. We assume that this late protection was related to cell-based immunity rather than antibody-mediated immunity. This may explain the slight advantage of using full low pathogenic H5N8 instead of PR8HA/NA-H5N8 to improve protection by both the innate and the humoral arms of the immune system.
Collapse
Affiliation(s)
- Yassmin Moatasim
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed N. El Taweel
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Maha AlKhazindar
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Elsayed T. AbdElSalam
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ghazi Kayali
- Human Link, Dubai, United Arab Emirates
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
- Correspondence: (G.K.); (M.A.A.)
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- Correspondence: (G.K.); (M.A.A.)
| |
Collapse
|
58
|
Verhagen JH, Fouchier RAM, Lewis N. Highly Pathogenic Avian Influenza Viruses at the Wild-Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses 2021; 13:212. [PMID: 33573231 PMCID: PMC7912471 DOI: 10.3390/v13020212] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) outbreaks in wild birds and poultry are no longer a rare phenomenon in Europe. In the past 15 years, HPAI outbreaks-in particular those caused by H5 viruses derived from the A/Goose/Guangdong/1/1996 lineage that emerged in southeast Asia in 1996-have been occuring with increasing frequency in Europe. Between 2005 and 2020, at least ten HPAI H5 incursions were identified in Europe resulting in mass mortalities among poultry and wild birds. Until 2009, the HPAI H5 virus outbreaks in Europe were caused by HPAI H5N1 clade 2.2 viruses, while from 2014 onwards HPAI H5 clade 2.3.4.4 viruses dominated outbreaks, with abundant genetic reassortments yielding subtypes H5N1, H5N2, H5N3, H5N4, H5N5, H5N6 and H5N8. The majority of HPAI H5 virus detections in wild and domestic birds within Europe coincide with southwest/westward fall migration and large local waterbird aggregations during wintering. In this review we provide an overview of HPAI H5 virus epidemiology, ecology and evolution at the interface between poultry and wild birds based on 15 years of avian influenza virus surveillance in Europe, and assess future directions for HPAI virus research and surveillance, including the integration of whole genome sequencing, host identification and avian ecology into risk-based surveillance and analyses.
Collapse
Affiliation(s)
- Josanne H. Verhagen
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, Zuid-Holland, The Netherlands; (J.H.V.); (R.A.M.F.)
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, Zuid-Holland, The Netherlands; (J.H.V.); (R.A.M.F.)
| | - Nicola Lewis
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield AL9 7TA, Hertfordshire, UK
| |
Collapse
|
59
|
Li Y, Li M, Li Y, Tian J, Bai X, Yang C, Shi J, Ai R, Chen W, Zhang W, Li J, Kong Y, Guan Y, Chen H. Outbreaks of Highly Pathogenic Avian Influenza (H5N6) Virus Subclade 2.3.4.4h in Swans, Xinjiang, Western China, 2020. Emerg Infect Dis 2020; 26:2956-2960. [PMID: 33030424 PMCID: PMC7706961 DOI: 10.3201/eid2612.201201] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In January 2020, the subclade 2.3.4.4h of highly pathogenic avian influenza (H5N6) virus infected migratory whooper swans and mute swans in Xinjiang, western China. The virus is lethal to chickens and ducks but has low pathogenicity in mice. Antigenically, this subclade is similar to the H5N1 vaccine seed virus Re-11.
Collapse
|