51
|
Peroxisomal protein import pores. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:821-7. [DOI: 10.1016/j.bbamcr.2015.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
|
52
|
Human disorders of peroxisome metabolism and biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:922-33. [DOI: 10.1016/j.bbamcr.2015.11.015] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
|
53
|
Mast FD, Jamakhandi A, Saleem RA, Dilworth DJ, Rogers RS, Rachubinski RA, Aitchison JD. Peroxins Pex30 and Pex29 Dynamically Associate with Reticulons to Regulate Peroxisome Biogenesis from the Endoplasmic Reticulum. J Biol Chem 2016; 291:15408-27. [PMID: 27129769 DOI: 10.1074/jbc.m116.728154] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferation occurs by at least two routes, division of existing peroxisomes and de novo biogenesis from the endoplasmic reticulum (ER). The proteins and molecular mechanisms governing peroxisome emergence from the ER are poorly characterized. In this study, we report that two integral membrane peroxins (proteins required for peroxisome biogenesis) in Saccharomyces cerevisiae, Pex29 and Pex30, reside in distinct regions of the ER and associate with Rtn1 and Yop1, reticulon family members that contribute to ER morphology, to govern peroxisome emergence from the ER. In vivo and in vitro analyses reveal that peroxisome proliferation is therefore not restricted to the peroxisome but begins at the level of the ER.
Collapse
Affiliation(s)
- Fred D Mast
- From the Center for Infectious Disease Research and Institute for Systems Biology, Seattle, Washington 98109 and
| | - Arvind Jamakhandi
- From the Center for Infectious Disease Research and Institute for Systems Biology, Seattle, Washington 98109 and
| | - Ramsey A Saleem
- From the Center for Infectious Disease Research and Institute for Systems Biology, Seattle, Washington 98109 and
| | - David J Dilworth
- From the Center for Infectious Disease Research and Institute for Systems Biology, Seattle, Washington 98109 and
| | - Richard S Rogers
- From the Center for Infectious Disease Research and Institute for Systems Biology, Seattle, Washington 98109 and
| | - Richard A Rachubinski
- the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - John D Aitchison
- From the Center for Infectious Disease Research and Institute for Systems Biology, Seattle, Washington 98109 and
| |
Collapse
|
54
|
Tripathi DN, Walker CL. The peroxisome as a cell signaling organelle. Curr Opin Cell Biol 2016; 39:109-12. [PMID: 26967755 DOI: 10.1016/j.ceb.2016.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 11/27/2022]
Abstract
Peroxisomes participate in lipid metabolism, and are a major source of ROS in the cell. Their importance in cellular energy balance and redox homeostasis is well-established, as is the need to maintain peroxisome homeostasis to prevent pathologies associated with too few, or too many, of these organelles. How cells regulate peroxisome number has remained somewhat elusive. Recently, the tumor suppressors ATM and TSC, which regulate mTORC1 signaling, have been localized to peroxisomes. When activated by peroxisomal ROS, ATM signals to TSC to repress mTORC1 signaling and increase autophagic flux in cells, and also phosphorylates the peroxisomal protein PEX 5 to target peroxisomes for selective autophagy (pexophagy), providing a mechanism for regulation of peroxisomal homeostasis using ROS as a rheostat.
Collapse
Affiliation(s)
- Durga Nand Tripathi
- Center for Translational Cancer Research, Institute of Bioscience & Technology, Texas A&M University Health Science Center, Houston, TX 77030, United States
| | - Cheryl Lyn Walker
- Center for Translational Cancer Research, Institute of Bioscience & Technology, Texas A&M University Health Science Center, Houston, TX 77030, United States.
| |
Collapse
|
55
|
Liu Y, Wang J, Qin Y, Huang C, Archacki S, Ma J, Li D, Liu M. Identification of three mutations in the MVK gene in six patients associated with disseminated superficial actinic porokeratosis. Clin Chim Acta 2016; 454:124-9. [DOI: 10.1016/j.cca.2016.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 12/19/2022]
|
56
|
2,2′-dipyridyl induces pexophagy. Biochem Biophys Res Commun 2016; 469:941-7. [DOI: 10.1016/j.bbrc.2015.12.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/21/2015] [Indexed: 11/21/2022]
|
57
|
FUJIKI Y. Peroxisome biogenesis and human peroxisome-deficiency disorders. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:463-477. [PMID: 27941306 PMCID: PMC5328784 DOI: 10.2183/pjab.92.463] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Peroxisome is a single-membrane-bounded ubiquitous organelle containing a hundred different enzymes that catalyze various metabolic pathways such as β-oxidation of very long-chain fatty acids and synthesis of plasmalogens. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders (PBDs) including Zellweger syndrome, more than a dozen different complementation groups of Chinese hamster ovary (CHO) cell mutants impaired in peroxisome biogenesis are isolated as a model experimental system. By taking advantage of rapid functional complementation assay of the CHO cell mutants, successful cloning of PEX genes encoding peroxins required for peroxisome assembly invaluably contributed to the accomplishment of cloning of pathogenic genes responsible for PBDs. Peroxins are divided into three groups: 1) peroxins including Pex3p, Pex16p and Pex19p, are responsible for peroxisome membrane biogenesis via Pex19p- and Pex3p-dependent class I and Pex19p- and Pex16p-dependent class II pathways; 2) peroxins that function in matrix protein import; 3) those such as Pex11pβ are involved in peroxisome division where DLP1, Mff, and Fis1 coordinately function.
Collapse
Affiliation(s)
- Yukio FUJIKI
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Correspondence should be addressed: Y. Fujiki, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
58
|
Kırlı K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, Urlaub H, Görlich D. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLife 2015; 4:e11466. [PMID: 26673895 PMCID: PMC4764573 DOI: 10.7554/elife.11466] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/13/2015] [Indexed: 12/23/2022] Open
Abstract
CRM1 is a highly conserved, RanGTPase-driven exportin that carries proteins and RNPs from the nucleus to the cytoplasm. We now explored the cargo-spectrum of CRM1 in depth and identified surprisingly large numbers, namely >700 export substrates from the yeast S. cerevisiae, ≈1000 from Xenopus oocytes and >1050 from human cells. In addition, we quantified the partitioning of ≈5000 unique proteins between nucleus and cytoplasm of Xenopus oocytes. The data suggest new CRM1 functions in spatial control of vesicle coat-assembly, centrosomes, autophagy, peroxisome biogenesis, cytoskeleton, ribosome maturation, translation, mRNA degradation, and more generally in precluding a potentially detrimental action of cytoplasmic pathways within the nuclear interior. There are also numerous new instances where CRM1 appears to act in regulatory circuits. Altogether, our dataset allows unprecedented insights into the nucleocytoplasmic organisation of eukaryotic cells, into the contributions of an exceedingly promiscuous exportin and it provides a new basis for NES prediction.
Collapse
Affiliation(s)
- Koray Kırlı
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samir Karaca
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Heinz Jürgen Dehne
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Matthias Samwer
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kuan Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
59
|
Conserved targeting information in mammalian and fungal peroxisomal tail-anchored proteins. Sci Rep 2015; 5:17420. [PMID: 26627908 PMCID: PMC4667187 DOI: 10.1038/srep17420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/22/2015] [Indexed: 11/22/2022] Open
Abstract
The targeting signals and mechanisms of soluble peroxisomal proteins are well understood, whereas less is known about the signals and targeting routes of peroxisomal membrane proteins (PMP). Pex15 and PEX26, tail-anchored proteins in yeast and mammals, respectively, exert a similar cellular function in the recruitment of AAA peroxins at the peroxisomal membrane. But despite their common role, Pex15 and PEX26 are neither homologs nor they are known to follow similar targeting principles. Here we show that Pex15 targets to peroxisomes in mammalian cells, and PEX26 reaches peroxisomes when expressed in yeast cells. In both proteins C-terminal targeting information is sufficient for correct sorting to the peroxisomal membrane. In yeast, PEX26 follows the pathway that also ensures correct targeting of Pex15: PEX26 enters the endoplasmic reticulum (ER) in a GET-dependent and Pex19-independent manner. Like in yeast, PEX26 enters the ER in mammalian cells, however, independently of GET/TRC40. These data show that conserved targeting information is employed in yeast and higher eukaryotes during the biogenesis of peroxisomal tail-anchored proteins.
Collapse
|
60
|
Esmaeili M, Ghaedi K, Shoaraye Nejati A, Nematollahi M, Shiralyian H, Nasr-Esfahani MH. Pioglitazone significantly prevented decreased rate of neural differentiation of mouse embryonic stem cells which was reduced by Pex11β knock-down. Neuroscience 2015; 312:35-47. [PMID: 26562432 DOI: 10.1016/j.neuroscience.2015.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Peroxisomes constitute special cellular organelles which display a variety of metabolic functions including fatty acid oxidation and free radical elimination. Abundance of these flexible organelles varies in response to different environmental stimuli. It has been demonstrated that PEX11β, a peroxisomal membrane elongation factor, is involved in the regulation of size, shape and number of peroxisomes. To investigate the role of PEX11β in neural differentiation of mouse embryonic stem cells (mESCs), we generated a stably transduced mESCs line that derives the expression of a short hairpin RNA against Pex11β gene following doxycycline (Dox) induction. Knock-down of Pex11β, during neural differentiation, significantly reduced the expression of neural progenitor cells and mature neuronal markers (p<0.05) indicating that decreased expression of PEX11β suppresses neuronal maturation. Additionally, mRNA levels of other peroxisome-related genes such as PMP70, Pex11α, Catalase, Pex19 and Pex5 were also significantly reduced by Pex11β knock-down (p<0.05). Interestingly, pretreatment of transduced mESCs with peroxisome proliferator-activated receptor γ agonist (pioglitazone (Pio)) ameliorated the inhibitory effects of Pex11β knock down on neural differentiation. Pio also significantly (p<0.05) increased the expression of neural progenitor and mature neuronal markers besides the expression of peroxisomal genes in transduced mESC. Results elucidated the importance of Pex11β expression in neural differentiation of mESCs, thereby highlighting the essential role of peroxisomes in mammalian neural differentiation. The observation that Pio recovered peroxisomal function and improved neural differentiation of Pex11β knocked-down mESCs, proposes a potential new pharmacological implication of Pio for neurogenesis in patients with peroxisomal defects.
Collapse
Affiliation(s)
- M Esmaeili
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - K Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - A Shoaraye Nejati
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - M Nematollahi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - H Shiralyian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - M H Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
61
|
Rußmayer H, Buchetics M, Gruber C, Valli M, Grillitsch K, Modarres G, Guerrasio R, Klavins K, Neubauer S, Drexler H, Steiger M, Troyer C, Al Chalabi A, Krebiehl G, Sonntag D, Zellnig G, Daum G, Graf AB, Altmann F, Koellensperger G, Hann S, Sauer M, Mattanovich D, Gasser B. Systems-level organization of yeast methylotrophic lifestyle. BMC Biol 2015; 13:80. [PMID: 26400155 PMCID: PMC4580311 DOI: 10.1186/s12915-015-0186-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022] Open
Abstract
Background Some yeasts have evolved a methylotrophic lifestyle enabling them to utilize the single carbon compound methanol as a carbon and energy source. Among them, Pichia pastoris (syn. Komagataella sp.) is frequently used for the production of heterologous proteins and also serves as a model organism for organelle research. Our current knowledge of methylotrophic lifestyle mainly derives from sophisticated biochemical studies which identified many key methanol utilization enzymes such as alcohol oxidase and dihydroxyacetone synthase and their localization to the peroxisomes. C1 assimilation is supposed to involve the pentose phosphate pathway, but details of these reactions are not known to date. Results In this work we analyzed the regulation patterns of 5,354 genes, 575 proteins, 141 metabolites, and fluxes through 39 reactions of P. pastoris comparing growth on glucose and on a methanol/glycerol mixed medium, respectively. Contrary to previous assumptions, we found that the entire methanol assimilation pathway is localized to peroxisomes rather than employing part of the cytosolic pentose phosphate pathway for xylulose-5-phosphate regeneration. For this purpose, P. pastoris (and presumably also other methylotrophic yeasts) have evolved a duplicated methanol inducible enzyme set targeted to peroxisomes. This compartmentalized cyclic C1 assimilation process termed xylose-monophosphate cycle resembles the principle of the Calvin cycle and uses sedoheptulose-1,7-bisphosphate as intermediate. The strong induction of alcohol oxidase, dihydroxyacetone synthase, formaldehyde and formate dehydrogenase, and catalase leads to high demand of their cofactors riboflavin, thiamine, nicotinamide, and heme, respectively, which is reflected in strong up-regulation of the respective synthesis pathways on methanol. Methanol-grown cells have a higher protein but lower free amino acid content, which can be attributed to the high drain towards methanol metabolic enzymes and their cofactors. In context with up-regulation of many amino acid biosynthesis genes or proteins, this visualizes an increased flux towards amino acid and protein synthesis which is reflected also in increased levels of transcripts and/or proteins related to ribosome biogenesis and translation. Conclusions Taken together, our work illustrates how concerted interpretation of multiple levels of systems biology data can contribute to elucidation of yet unknown cellular pathways and revolutionize our understanding of cellular biology. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0186-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hannes Rußmayer
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria
| | - Markus Buchetics
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria
| | - Clemens Gruber
- Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria.,Department of Chemistry, BOKU - University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria
| | - Minoska Valli
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria
| | - Karlheinz Grillitsch
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria.,Austrian Centre of Industrial Biotechnology, A-8010 Graz, Austria
| | - Gerda Modarres
- Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria.,School of Bioengineering, University of Applied Sciences FH Campus, A-1190 Vienna, Austria
| | - Raffaele Guerrasio
- Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria.,Department of Chemistry, BOKU - University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria.,Present addresses: Sandoz GmbH, A-6250 Kundl, Austria
| | - Kristaps Klavins
- Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria.,Department of Chemistry, BOKU - University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria.,Present addresses: BIOCRATES Life Sciences AG, A-6020 Innsbruck, Austria
| | - Stefan Neubauer
- Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria.,Department of Chemistry, BOKU - University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria.,University of Tübingen, D-72076 Tübingen, Germany
| | - Hedda Drexler
- Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria.,Department of Chemistry, BOKU - University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria
| | - Matthias Steiger
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria
| | - Christina Troyer
- Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria.,Department of Chemistry, BOKU - University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria
| | | | | | | | - Günther Zellnig
- Institute of Plant Sciences, NAWI Graz, University of Graz, A-8010 Graz, Austria
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria.,Austrian Centre of Industrial Biotechnology, A-8010 Graz, Austria
| | - Alexandra B Graf
- Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, A-8010 Graz, Austria
| | - Friedrich Altmann
- Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria.,Department of Chemistry, BOKU - University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria
| | | | - Stephan Hann
- Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria.,Department of Chemistry, BOKU - University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria
| | - Michael Sauer
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria.
| | - Brigitte Gasser
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, A-1190, Vienna, Austria
| |
Collapse
|
62
|
Hagen S, Drepper F, Fischer S, Fodor K, Passon D, Platta HW, Zenn M, Schliebs W, Girzalsky W, Wilmanns M, Warscheid B, Erdmann R. Structural insights into cargo recognition by the yeast PTS1 receptor. J Biol Chem 2015; 290:26610-26. [PMID: 26359497 DOI: 10.1074/jbc.m115.657973] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 11/06/2022] Open
Abstract
The peroxisomal matrix protein import is facilitated by cycling import receptors that shuttle between the cytosol and the peroxisomal membrane. The import receptor Pex5p mediates the import of proteins harboring a peroxisomal targeting signal of type I (PTS1). Purified recombinant Pex5p forms a dimeric complex with the PTS1-protein Pcs60p in vitro with a KD of 0.19 μm. To analyze the structural basis for receptor-cargo recognition, the PTS1 and adjacent amino acids of Pcs60p were systematically scanned for Pex5p binding by an in vitro site-directed photo-cross-linking approach. The cross-linked binding regions of the receptor were subsequently identified by high resolution mass spectrometry. Most cross-links were found with TPR6, TPR7, as well as the 7C-loop of Pex5p. Surface plasmon resonance analysis revealed a bivalent interaction mode for Pex5p and Pcs60p. Interestingly, Pcs60p lacking its C-terminal tripeptide sequence was efficiently cross-linked to the same regions of Pex5p. The KD value of the interaction of truncated Pcs60p and Pex5p was in the range of 7.7 μm. Isothermal titration calorimetry and surface plasmon resonance measurements revealed a monovalent binding mode for the interaction of Pex5p and Pcs60p lacking the PTS1. Our data indicate that Pcs60p contains a second contact site for its receptor Pex5p, beyond the C-terminal tripeptide. The physiological relevance of the ancillary binding region was supported by in vivo import studies. The bivalent binding mode might be explained by a two-step concept as follows: first, cargo recognition and initial tethering by the PTS1-receptor Pex5p; second, lock-in of receptor and cargo.
Collapse
Affiliation(s)
- Stefanie Hagen
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Friedel Drepper
- the Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Sven Fischer
- the Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Krisztian Fodor
- the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Daniel Passon
- the European Molecular Biology Laboratory at Hamburg, D-22607 Hamburg, Germany
| | - Harald W Platta
- the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Biochemistry of Intracellular Transport Mechanism, Ruhr-University Bochum, D-44781 Bochum, Germany, and
| | - Michael Zenn
- the Biaffin GmbH and Co., KG, D-34132 Kassel, Germany
| | - Wolfgang Schliebs
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Wolfgang Girzalsky
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Matthias Wilmanns
- the European Molecular Biology Laboratory at Hamburg, D-22607 Hamburg, Germany
| | - Bettina Warscheid
- the Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Ralf Erdmann
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany,
| |
Collapse
|
63
|
Zhang J, Tripathi DN, Jing J, Alexander A, Kim J, Powell RT, Dere R, Tait-Mulder J, Lee JH, Paull TT, Pandita RK, Charaka VK, Pandita TK, Kastan MB, Walker CL. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol 2015; 17:1259-1269. [PMID: 26344566 PMCID: PMC4589490 DOI: 10.1038/ncb3230] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 07/24/2015] [Indexed: 12/13/2022]
Abstract
Peroxisomes are highly metabolic, autonomously replicating organelles that generate ROS as a by product of fatty acid β-oxidation. Consequently, cells must maintain peroxisome homeostasis, or risk pathologies associated with too few peroxisomes, such as peroxisome biogenesis disorders, or too many peroxisomes, inducing oxidative damage and promoting diseases such as cancer. We report that the PEX5 peroxisome import receptor binds ataxia-telangiectasia mutated (ATM) and localizes this kinase to the peroxisome. In response to reactive oxygen species (ROS), ATM signaling activates ULK1 and inhibits mTORC1 to induce autophagy. Specificity for autophagy of peroxisomes (pexophagy) is provided by ATM phosphorylation of PEX5 at Ser141, which promotes PEX5 mono-ubiquitination at K209, and recognition of ubiquitinated PEX5 by the autophagy adapter protein p62, directing the autophagosome to peroxisomes to induce pexophagy. These data reveal an important new role for ATM in metabolism as a sensor of ROS that regulates pexophagy.
Collapse
Affiliation(s)
- Jiangwei Zhang
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Durga Nand Tripathi
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Angela Alexander
- Department of Experimental Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinhee Kim
- Korea Institute of Oriental Medicine, Dajeon, 305-811, South Korea
| | - Reid T Powell
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Ruhee Dere
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | | | - Ji-Hoon Lee
- The Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712
| | - Tanya T Paull
- The Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712
| | - Raj K Pandita
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Vijaya K Charaka
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Michael B Kastan
- Departments of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105.,Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Cheryl Lyn Walker
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
64
|
Nakagawa T, Nakayama K. Protein monoubiquitylation: targets and diverse functions. Genes Cells 2015; 20:543-62. [PMID: 26085183 PMCID: PMC4744734 DOI: 10.1111/gtc.12250] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 12/14/2022]
Abstract
Ubiquitin is a 76-amino acid protein whose conjugation to protein targets is a form of post-translational modification. Protein ubiquitylation is characterized by the covalent attachment of the COOH-terminal carboxyl group of ubiquitin to an amino group of the substrate protein. Given that the NH2 -terminal amino group is usually masked, internal lysine residues are most often targeted for ubiquitylation. Polyubiquitylation refers to the formation of a polyubiquitin chain on the substrate as a result of the ubiquitylation of conjugated ubiquitin. The structures of such polyubiquitin chains depend on the specific lysine residues of ubiquitin targeted for ubiquitylation. Most of the polyubiquitin chains other than those linked via lysine-63 and methionine-1 of ubiquitin are recognized by the proteasome and serve as a trigger for substrate degradation. In contrast, polyubiquitin chains linked via lysine-63 and methionine-1 serve as a binding platform for proteins that function in immune signal transduction or DNA repair. With the exception of a few targets such as histones, the functions of protein monoubiquitylation have remained less clear. However, recent proteomics analysis has shown that monoubiquitylation occurs more frequently than polyubiquitylation, and studies are beginning to provide insight into its biologically important functions. Here, we summarize recent findings on protein monoubiquitylation to provide an overview of the targets and molecular functions of this modification.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Miyagi, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Miyagi, Japan
| |
Collapse
|
65
|
Uyama T, Kawai K, Kono N, Watanabe M, Tsuboi K, Inoue T, Araki N, Arai H, Ueda N. Interaction of Phospholipase A/Acyltransferase-3 with Pex19p: A POSSIBLE INVOLVEMENT IN THE DOWN-REGULATION OF PEROXISOMES. J Biol Chem 2015; 290:17520-34. [PMID: 26018079 DOI: 10.1074/jbc.m114.635433] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Indexed: 11/06/2022] Open
Abstract
Phospholipase A/acyltransferase (PLA/AT)-3 (also known as H-rev107 or AdPLA) was originally isolated as a tumor suppressor and was later shown to have phospholipase A1/A2 activity. We have also found that the overexpression of PLA/AT-3 in mammalian cells results in specific disappearance of peroxisomes. However, its molecular mechanism remained unclear. In the present study, we first established a HEK293 cell line, which stably expresses a fluorescent peroxisome marker protein (DsRed2-Peroxi) and expresses PLA/AT-3 in a tetracycline-dependent manner. The treatment with tetracycline, as expected, caused disappearance of peroxisomes within 24 h, as revealed by diffuse signals of DsRed2-Peroxi and a remarkable decrease in a peroxisomal membrane protein, PMP70. A time-dependent decrease in ether-type lipid levels was also seen. Because the activation of LC3, a marker of autophagy, was not observed, the involvement of autophagy was unlikely. Among various peroxins responsible for peroxisome biogenesis, Pex19p functions as a chaperone protein for the transportation of peroxisomal membrane proteins. Immunoprecipitation analysis showed that PLA/AT-3 binds to Pex19p through its N-terminal proline-rich and C-terminal hydrophobic domains. The protein level and enzyme activity of PLA/AT-3 were increased by its coexpression with Pex19p. Moreover, PLA/AT-3 inhibited the binding of Pex19 to peroxisomal membrane proteins, such as Pex3p and Pex11βp. A catalytically inactive point mutant of PLA/AT-3 could bind to Pex19p but did not inhibit the chaperone activity of Pex19p. Altogether, these results suggest a novel regulatory mechanism for peroxisome biogenesis through the interaction between Pex19p and PLA/AT-3.
Collapse
Affiliation(s)
- Toru Uyama
- From the Departments of Biochemistry and
| | - Katsuhisa Kawai
- Histology and Cell Biology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Nozomu Kono
- the Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Masahiro Watanabe
- From the Departments of Biochemistry and Kagawa University Hospital, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan, and
| | | | - Tomohito Inoue
- From the Departments of Biochemistry and the Department of Orthopedic Surgery, Shikoku Medical Center for Children and Adults, Zentsuji, Kagawa 765-0001, Japan
| | - Nobukazu Araki
- Histology and Cell Biology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Hiroyuki Arai
- the Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
66
|
Cysteine-specific ubiquitination protects the peroxisomal import receptor Pex5p against proteasomal degradation. Biosci Rep 2015; 35:BSR20150103. [PMID: 26182377 PMCID: PMC4613714 DOI: 10.1042/bsr20150103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 11/22/2022] Open
Abstract
Peroxisomal import receptors cycle between the peroxisomal membrane and the cytosol. A monoubiquitinated cysteine is required for efficient recycling of the peroxisomal import receptor Pex5p and prevents the protein from polyubiquitination, which leads to a rapid degradation of the protein. Peroxisomal matrix protein import is mediated by dynamic import receptors, which cycle between the peroxisomal membrane and the cytosol. Proteins with a type 1 peroxisomal targeting signal (PTS1) are bound by the import receptor Pex5p in the cytosol and guided to the peroxisomal membrane. After cargo translocation into the peroxisomal matrix, the receptor is released from the membrane back to the cytosol in an ATP-dependent manner by the AAA-type ATPases Pex1p and Pex6p. These mechanoenzymes recognize ubiquitinated Pex5p-species as substrates for membrane extraction. The PTS1-receptor is either polyubiquitinated via peptide bonds at two certain lysines and results in proteasomal degradation or monoubiquitinated via a thioester-bond at a conserved cysteine, which enables the recycling of Pex5p and further rounds of matrix protein import. To investigate the physiological relevance of the conserved N-terminal cysteine of Pex5p, the known target amino acids for ubiquitination were substituted by site-directed mutagenesis. In contrast with Pex5pC6A, Pex5pC6K turned out to be functional in PTS1 import and utilization of oleic acid, independent of the lysines at position 18 and 24. In contrast with wild-type Pex5p, Pex5pC6K displays an ubiquitination pattern, similar to the polyubiquitination pattern of Pex4p or Pex22p mutant strains. Moreover, Pex5pC6K displays a significantly reduced steady-state level when the deubiquitinating enzyme Ubp15p is missing. Thus, our results indicate that not the cysteine residue but the position of ubiquitination is important for Pex5p function. The presence of the cysteine prevents polyubiquitination and rapid degradation of Pex5p.
Collapse
|
67
|
Hua R, Gidda SK, Aranovich A, Mullen RT, Kim PK. Multiple Domains in PEX16 Mediate Its Trafficking and Recruitment of Peroxisomal Proteins to the ER. Traffic 2015; 16:832-52. [PMID: 25903784 DOI: 10.1111/tra.12292] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/27/2022]
Abstract
Peroxisomes rely on a diverse array of mechanisms to ensure the specific targeting of their protein constituents. Peroxisomal membrane proteins (PMPs), for instance, are targeted by at least two distinct pathways: directly to peroxisomes from their sites of synthesis in the cytosol or indirectly via the endoplasmic reticulum (ER). However, the extent to which each PMP targeting pathway is involved in the maintenance of pre-existing peroxisomes is unclear. Recently, we showed that human PEX16 plays a critical role in the ER-dependent targeting of PMPs by mediating the recruitment of two other PMPs, PEX3 and PMP34, to the ER. Here, we extend these results by carrying out a comprehensive mutational analysis of PEX16 aimed at gaining insights into the molecular targeting signals responsible for its ER-to-peroxisome trafficking and the domain(s) involved in PMP recruitment function at the ER. We also show that the recruitment of PMPs to the ER by PEX16 is conserved in plants. The implications of these results in terms of the function of PEX16 and the role of the ER in peroxisome maintenance in general are discussed.
Collapse
Affiliation(s)
- Rong Hua
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5G 1A8
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Alexander Aranovich
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Peter K Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5G 1A8
| |
Collapse
|
68
|
Abstract
Inherited retinal degeneration (IRD) may occur in isolation or as part of a multi-systemic condition. Ocular manifestations may be the presenting symptom of a syndromic disease and can include retinitis pigmentosa, cone-rod dystrophy, or maculopathy. Alternatively, patients affected with syndromic disease may already have other systemic manifestations at the time retinal disease is diagnosed. Some of these systemic diseases can cause significant morbidity. Here, we review several of these syndromic IRDs and their underlying genetic causes. Early recognition and referral for systemic evaluation and surveillance may lead to early intervention and an improved outcome. Obtaining a molecular diagnosis can be beneficial in securing a definitive diagnosis, especially in cases with atypical presentations. A genetic diagnosis may also be informative with regard to prognosis and potential therapies. Effective management and rehabilitation for patients with syndromic retinal dystrophy requires a comprehensive genetic-based team approach involving patients, family members, ophthalmologists, primary care physicians, and geneticists.
Collapse
Affiliation(s)
- Xiang Q Werdich
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts , USA
| | | | | |
Collapse
|
69
|
Yeast mRNA localization: protein asymmetry, organelle localization and response to stress. Biochem Soc Trans 2015; 42:1256-60. [PMID: 25110034 DOI: 10.1042/bst20140086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The localization of mRNA forms a key facet of the post-transcriptional control of gene expression and recent evidence suggests that it may be considerably more widespread than previously anticipated. For example, defined mRNA-containing granules can be associated with translational repression or activation. Furthermore, mRNA P-bodies (processing bodies) harbour much of the mRNA decay machinery and stress granules are thought to play a role in mRNA storage. In the present review, we explore the process of mRNA localization in the yeast Saccharomyces cerevisiae, examining connections between organellar mRNA localization and the response to stress. We also review recent data suggesting that even where there is a global relocalization of mRNA, the specificity and kinetics of this process can be regulated.
Collapse
|
70
|
Burnett SF, Farré JC, Nazarko TY, Subramani S. Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with the pexophagy receptor Atg30. J Biol Chem 2015; 290:8623-31. [PMID: 25694426 DOI: 10.1074/jbc.m114.619338] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pexophagy is a process that selectively degrades peroxisomes by autophagy. The Pichia pastoris pexophagy receptor Atg30 is recruited to peroxisomes under peroxisome proliferation conditions. During pexophagy, Atg30 undergoes phosphorylation, a prerequisite for its interactions with the autophagy scaffold protein Atg11 and the ubiquitin-like protein Atg8. Atg30 is subsequently shuttled to the vacuole along with the targeted peroxisome for degradation. Here, we defined the binding site for Atg30 on the peroxisomal membrane protein Pex3 and uncovered a role for Pex3 in the activation of Atg30 via phosphorylation and in the recruitment of Atg11 to the receptor protein complex. Pex3 is classically a docking protein for other proteins that affect peroxisome biogenesis, division, and segregation. We conclude that Pex3 has a role beyond simple docking of Atg30 and that its interaction with Atg30 regulates pexophagy in the yeast P. pastoris.
Collapse
Affiliation(s)
- Sarah F Burnett
- From the Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0322
| | - Jean-Claude Farré
- From the Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0322
| | - Taras Y Nazarko
- From the Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0322
| | - Suresh Subramani
- From the Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0322
| |
Collapse
|
71
|
Chen Y, Pieuchot L, Loh RA, Yang J, Kari TMA, Wong JY, Jedd G. Hydrophobic handoff for direct delivery of peroxisome tail-anchored proteins. Nat Commun 2014; 5:5790. [PMID: 25517356 DOI: 10.1038/ncomms6790] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/04/2014] [Indexed: 02/06/2023] Open
Abstract
Tail-anchored (TA) proteins are inserted into membranes post-translationally through a C-terminal transmembrane domain (TMD). The PEX19 protein binds peroxisome TA proteins in the cytoplasm and delivers them to the membrane through the PEX3 receptor protein. An amphipathic segment in PEX19 promotes docking on PEX3. However, how this leads to substrate insertion is unknown. Here we reconstitute peroxisome TA protein biogenesis into two sequential steps of substrate TMD engagement and membrane insertion. We identify a series of previously uncharacterized amphipathic segments in PEX19 and identify one whose hydrophobicity is required for membrane insertion, but not TMD chaperone activity or PEX3 binding. A membrane-proximal hydrophobic surface of PEX3 promotes an unconventional form of membrane intercalation, and is also required for TMD insertion. Together, these data support a mechanism in which hydrophobic moieties in the TMD chaperone and its membrane-associated receptor act in a concerted manner to prompt TMD release and membrane insertion.
Collapse
Affiliation(s)
- Yinxiao Chen
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Laurent Pieuchot
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Rachel Ann Loh
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Jing Yang
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Teuku Mahfuzh Aufar Kari
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Jie Yun Wong
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Gregory Jedd
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| |
Collapse
|
72
|
Proteasome inhibitors induce auditory hair cell death through peroxisome dysfunction. Biochem Biophys Res Commun 2014; 456:269-74. [PMID: 25446082 DOI: 10.1016/j.bbrc.2014.11.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 11/21/2022]
Abstract
Even though bortezomib, a proteasome inhibitor, is a powerful chemotherapeutic agent used to treat multiple myeloma (MM) and other lymphoma cells, recent clinical reports suggest that the proteasome inhibitor therapy may be associated with severe bilateral hearing loss. We herein investigated the adverse effect of proteasome inhibitor on auditory hair cells. Treatment of a proteasome inhibitor destroys stereocilia bundles of hair cells resulting in the disarray of stereocilia in the organ of Corti explants. Since proteasome activity may be potentially important for biogenesis and function of the peroxisome, we tested whether proteasome activity is necessary for maintaining functional peroxisomes. Our results showed that treatment of a proteasome inhibitor significantly decreases both the number of peroxisomes and expression of peroxisomal proteins such as PMP70 and Catalase. In addition, we also found that proteasome inhibitor impairs the import pathway of PTS1-peroxisome matrix proteins. Taken together, our findings support recent clinical reports of hearing loss associated with proteasome inhibition. Mechanistically, peroxisome dysfunction may contribute to hair cell damage and hearing loss in response to the treatment of a proteasome inhibitor.
Collapse
|
73
|
Voitsekhovskaja OV, Schiermeyer A, Reumann S. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells. FRONTIERS IN PLANT SCIENCE 2014; 5:629. [PMID: 25477890 PMCID: PMC4235271 DOI: 10.3389/fpls.2014.00629] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/23/2014] [Indexed: 05/07/2023]
Abstract
Very recently, autophagy has been recognized as an important degradation pathway for quality control of peroxisomes in Arabidopsis plants. To further characterize the role of autophagy in plant peroxisome degradation, we generated stable transgenic suspension-cultured cell lines of heterotrophic Nicotiana tabacum L. cv. Bright Yellow 2 expressing a peroxisome-targeted version of enhanced yellow fluorescent protein. Indeed, this cell line model system proved advantageous for detailed cytological analyses of autophagy stages and for quantification of cellular peroxisome pools under different culturing conditions and upon inhibitor applications. Complementary biochemical, cytological, and pharmacological analyses provided convincing evidence for peroxisome degradation by bulk autophagy during carbohydrate starvation. This degradation was slowed down by the inhibitor of autophagy, 3-methyladenine (3-MA), but the 3-MA effect ceased at advanced stages of starvation, indicating that another degradation mechanism for peroxisomes might have taken over. 3-MA also caused an increase particularly in peroxisomal proteins and cellular peroxisome numbers when applied under nutrient-rich conditions in the logarithmic growth phase, suggesting a high turnover rate for peroxisomes by basal autophagy under non-stress conditions. Together, our data demonstrate that a great fraction of the peroxisome pool is subject to extensive autophagy-mediated turnover under both nutrient starvation and optimal growth conditions. Our analyses of the cellular pool size of peroxisomes provide a new tool for quantitative investigations of the role of plant peroxisomes in reactive oxygen species metabolism.
Collapse
Affiliation(s)
- Olga V. Voitsekhovskaja
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-Universität GöttingenGöttingen, Germany
- Komarov Botanical Institute, Russian Academy of Sciences, Laboratory of Plant Ecological PhysiologySaint Petersburg, Russia
| | - Andreas Schiermeyer
- Abteilung Pflanzenbiotechnologie, Fraunhofer-Institut für Molekularbiologie und Angewandte OekologieAachen, Germany
| | - Sigrun Reumann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-Universität GöttingenGöttingen, Germany
- Institute for Mathematics and Natural Sciences, Faculty of Science and Technology, Centre for Organelle Research, University of StavangerStavanger, Norway
- Faculty of Mathematics, Informatics and Natural Sciences, Biocentre Klein Flottbek, University of HamburgHamburg, Germany
| |
Collapse
|
74
|
Jongsma MLM, Berlin I, Neefjes J. On the move: organelle dynamics during mitosis. Trends Cell Biol 2014; 25:112-24. [PMID: 25466831 DOI: 10.1016/j.tcb.2014.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
A cell constitutes the minimal self-replicating unit of all organisms, programmed to propagate its genome as it proceeds through mitotic cell division. The molecular processes entrusted with ensuring high fidelity of DNA replication and subsequent segregation of chromosomes between daughter cells have therefore been studied extensively. However, to process the information encoded in its genome a cell must also pass on its non-genomic identity to future generations. To achieve productive sharing of intracellular organelles, cells have evolved complex mechanisms of organelle inheritance. Many membranous compartments undergo vast spatiotemporal rearrangements throughout mitosis. These controlled organizational changes are crucial to enabling completion of the division cycle and ensuring successful progeny. Herein we review current understanding of intracellular organelle segregation during mitotic division in mammalian cells, with a focus on compartment organization and integrity throughout the inheritance process.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ilana Berlin
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
75
|
Otera H, Mihara K. Discovery of the membrane receptor for mitochondrial fission GTPase Drp1. Small GTPases 2014; 2:167-172. [PMID: 21776419 DOI: 10.4161/sgtp.2.3.16486] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/09/2011] [Accepted: 05/13/2011] [Indexed: 12/29/2022] Open
Abstract
Mitochondria frequently change their morphology by fusion and fission, and these dynamic morphologic changes are essential for maintaining both mitochondrial and cellular functions. The cytoplasmic dynamin-related guanosine triphosphatase (GTPase) Drp1 (Dnm1 in yeast) is recruited to mitochondrial fission sites and severs mitochondria. Although the mitochondrial outer membrane (MOM) protein Fis1 functions as a membrane receptor for Dnm1 in yeast, it is not yet known whether the human homolog of yeast Fis1 (hFis1) is a membrane receptor for Drp1 in mammals. We recently identified the C-tail anchored MOM protein Mff as the bona fide receptor essential for recruiting Drp1 to mitochondrial fission sites. Here, we focus on this key molecule for mitochondrial fission after a brief description of the proteins involved in mitochondrial fission and fusion reactions. Finally, we discuss the expected role of hFis1 for regulating the mitochondrial dynamics in mammals.
Collapse
Affiliation(s)
- Hidenori Otera
- Department of Molecular Biology; Graduate School of Medical Science; Kyushu University; Kyushu, Fukuoka Japan
| | | |
Collapse
|
76
|
Singer-Krüger B, Jansen RP. Here, there, everywhere. mRNA localization in budding yeast. RNA Biol 2014; 11:1031-9. [PMID: 25482891 DOI: 10.4161/rna.29945] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
mRNA localization and localized translation is a common mechanism that contributes to cell polarity and cellular asymmetry. In metazoan, mRNA transport participates in embryonic axis determination and neuronal plasticity. Since the mRNA localization process and its molecular machinery are rather complex in higher eukaryotes, the unicellular yeast Saccharomyces cerevisiae has become an attractive model to study mRNA localization. Although the focus has so far been on the mechanism of ASH1 mRNA transport, it has become evident that mRNA localization also assists in protein sorting to organelles, as well as in polarity establishment and maintenance. A diversity of different pathways has been identified that targets mRNA to their destination site, ranging from motor protein-dependent trafficking of translationally silenced mRNAs to co-translational targeting, in which mRNAs hitch-hike to organelles on ribosomes during nascent polypeptide chain elongation. The presence of these diverse pathways in yeast allows a systemic analysis of the contribution of mRNA localization to the physiology of a cell.
Collapse
Affiliation(s)
- Birgit Singer-Krüger
- a Interfaculty Institute of Biochemistry ; University of Tübingen ; Tübingen , Germany
| | | |
Collapse
|
77
|
Fujiki Y, Okumoto K, Mukai S, Honsho M, Tamura S. Peroxisome biogenesis in mammalian cells. Front Physiol 2014; 5:307. [PMID: 25177298 PMCID: PMC4133648 DOI: 10.3389/fphys.2014.00307] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/28/2014] [Indexed: 11/17/2022] Open
Abstract
To investigate peroxisome assembly and human peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome, thirteen different complementation groups (CGs) of Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis have been isolated and established as a model research system. Successful gene-cloning studies by a forward genetic approach utilized a rapid functional complementation assay of CHO cell mutants led to isolation of human peroxin (PEX) genes. Search for pathogenic genes responsible for PBDs of all 14 CGs is now completed together with the homology search by screening the human expressed sequence tag database using yeast PEX genes. Peroxins are divided into three groups: (1) peroxins including Pex3p, Pex16p, and Pex19p, are responsible for peroxisome membrane biogenesis via classes I and II pathways; (2) peroxins that function in matrix protein import; (3) those such as three forms of Pex11p, Pex11pα, Pex11pβ, and Pex11pγ, are involved in peroxisome proliferation where DLP1, Mff, and Fis1 coordinately function. In membrane assembly, Pex19p forms complexes in the cytosol with newly synthesized PMPs including Pex16p and transports them to the receptor Pex3p, whereby peroxisomal membrane is formed (Class I pathway). Pex19p likewise forms a complex with newly made Pex3p and translocates it to the Pex3p receptor, Pex16p (Class II pathway). In matrix protein import, newly synthesized proteins harboring peroxisome targeting signal type 1 or 2 are recognized by Pex5p or Pex7p in the cytoplasm and are imported to peroxisomes via translocation machinery. In regard to peroxisome-cytoplasmic shuttling of Pex5p, Pex5p initially targets to an 800-kDa docking complex consisting of Pex14p and Pex13p and then translocates to a 500-kDa RING translocation complex. At the terminal step, Pex1p and Pex6p of the AAA family mediate the export of Pex5p, where Cys-ubiquitination of Pex5p is essential for the Pex5p exit.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Masanori Honsho
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Shigehiko Tamura
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| |
Collapse
|
78
|
Association between the intrinsically disordered protein PEX19 and PEX3. PLoS One 2014; 9:e103101. [PMID: 25062251 PMCID: PMC4111287 DOI: 10.1371/journal.pone.0103101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
In peroxisomes, peroxins (PEXs) 3 and 19 are the principal protein components of the machinery required for early peroxisomal biogenesis. For further insight into the interaction of PEX3 and PEX19, we used hydrogen exchange mass spectrometry to monitor conformational changes during complex formation between PEX3 and PEX19 in vitro. Our data showed that PEX19 remained highly flexible during interaction with PEX3. However, we could detect three changes, one each in the N-and C-terminus along with a small stretch in the middle of PEX19 (F64-L74) which became shielded from hydrogen exchange when interacting with PEX3. PEX3 became more protected from hydrogen exchange in the binding groove for PEX19 with only small changes elsewhere. Most likely the N-terminus of PEX19 initiates the binding to PEX3, and then subtle conformational changes in PEX3 affect the surface of the PEX3 molecule. PEX19 in turn, is stabilized by folding of a short helix and its C-terminal folding core permitting PEX19 to bind to PEX3 with higher affinity than just the N-terminal interaction allows. Thus within the cell, PEX3 is stabilized by PEX19 preventing PEX3 aggregation.
Collapse
|
79
|
Hagstrom D, Ma C, Guha-Polley S, Subramani S. The unique degradation pathway of the PTS2 receptor, Pex7, is dependent on the PTS receptor/coreceptor, Pex5 and Pex20. Mol Biol Cell 2014; 25:2634-43. [PMID: 25009284 PMCID: PMC4148252 DOI: 10.1091/mbc.e13-12-0716] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Pichia pastoris, the PTS2 receptor, Pex7, is selectively degraded in a regulated manner. The shuttling of Pex7, and consequently its degradation, depends on the receptor recycling pathways used by Pex5 and Pex20 and relies on an interaction between Pex7 and Pex20. The shuttling and stability of Pex7 are divergent from those of Pex5 and Pex20. Peroxisomal matrix protein import uses two peroxisomal targeting signals (PTSs). Most matrix proteins use the PTS1 pathway and its cargo receptor, Pex5. The PTS2 pathway is dependent on another receptor, Pex7, and its coreceptor, Pex20. We found that during the matrix protein import cycle, the stability and dynamics of Pex7 differ from those of Pex5 and Pex20. In Pichia pastoris, unlike Pex5 and Pex20, Pex7 is constitutively degraded in wild-type cells but is stabilized in pex mutants affecting matrix protein import. Degradation of Pex7 is more prevalent in cells grown in methanol, in which the PTS2 pathway is nonessential, in comparison with oleate, suggesting regulation of Pex7 turnover. Pex7 must shuttle into and out of peroxisomes before it is polyubiquitinated and degraded by the proteasome. The shuttling of Pex7, and consequently its degradation, is dependent on the receptor recycling pathways of Pex5 and Pex20 and relies on an interaction between Pex7 and Pex20. We also found that blocking the export of Pex20 from peroxisomes inhibits PTS1-mediated import, suggesting sharing of limited components in the export of PTS receptors/coreceptors. The shuttling and stability of Pex7 are divergent from those of Pex5 and Pex20, exemplifying a novel interdependence of the PTS1 and PTS2 pathways.
Collapse
Affiliation(s)
- Danielle Hagstrom
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Changle Ma
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322 College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Soumi Guha-Polley
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| |
Collapse
|
80
|
Aranovich A, Hua R, Rutenberg AD, Kim PK. PEX16 contributes to peroxisome maintenance by constantly trafficking PEX3 via the ER. J Cell Sci 2014; 127:3675-86. [PMID: 25002403 PMCID: PMC4172262 DOI: 10.1242/jcs.146282] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The endoplasmic reticulum (ER) is required for the de novo biogenesis of peroxisomes in mammalian cells. However, its role in peroxisome maintenance is unclear. To explore ER involvement in the maintenance of peroxisomes, we redirect a peroxisomal membrane protein (PMP), PEX3, to directly target to the ER using the N-terminal ER signal sequence from preprolactin. Using biochemical techniques and fluorescent imaging, we find that ER-targeting PEX3 (ssPEX3) is continuously imported into pre-existing peroxisomes. This suggests that the ER constitutively provides membrane proteins and associated lipids to pre-existing peroxisomes. Using quantitative time-lapse live-cell fluorescence microscopy applied to cells that were either depleted of or exogenously expressing PEX16, we find that PEX16 mediates the peroxisomal trafficking of two distinct peroxisomal membrane proteins, PEX3 and PMP34, via the ER. These results not only provide insight into peroxisome maintenance and PMP trafficking in mammalian cells but also highlight important similarities and differences in the mechanisms of PMP import between the mammalian and yeast systems.
Collapse
Affiliation(s)
- Alexander Aranovich
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Rong Hua
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrew D Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 1Z9, Canada
| | - Peter K Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
81
|
Faust JE, Manisundaram A, Ivanova PT, Milne SB, Summerville JB, Brown HA, Wangler M, Stern M, McNew JA. Peroxisomes are required for lipid metabolism and muscle function in Drosophila melanogaster. PLoS One 2014; 9:e100213. [PMID: 24945818 PMCID: PMC4063865 DOI: 10.1371/journal.pone.0100213] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/22/2014] [Indexed: 01/19/2023] Open
Abstract
Peroxisomes are ubiquitous organelles that perform lipid and reactive oxygen species metabolism. Defects in peroxisome biogenesis cause peroxisome biogenesis disorders (PBDs). The most severe PBD, Zellweger syndrome, is characterized in part by neuronal dysfunction, craniofacial malformations, and low muscle tone (hypotonia). These devastating diseases lack effective therapies and the development of animal models may reveal new drug targets. We have generated Drosophila mutants with impaired peroxisome biogenesis by disrupting the early peroxin gene pex3, which participates in budding of pre-peroxisomes from the ER and peroxisomal membrane protein localization. pex3 deletion mutants lack detectible peroxisomes and die before or during pupariation. At earlier stages of development, larvae lacking Pex3 display reduced size and impaired lipid metabolism. Selective loss of peroxisomes in muscles impairs muscle function and results in flightless animals. Although, hypotonia in PBD patients is thought to be a secondary effect of neuronal dysfunction, our results suggest that peroxisome loss directly affects muscle physiology, possibly by disrupting energy metabolism. Understanding the role of peroxisomes in Drosophila physiology, specifically in muscle cells may reveal novel aspects of PBD etiology.
Collapse
Affiliation(s)
- Joseph E. Faust
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Arvind Manisundaram
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Pavlina T. Ivanova
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Stephen B. Milne
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - James B. Summerville
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - H. Alex Brown
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Michael Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael Stern
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - James A. McNew
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| |
Collapse
|
82
|
Abstract
Oxidative stress and inflammation underpin most diseases; their mechanisms are inextricably linked. Chronic inflammation is associated with oxidation, anti-inflammatory cascades are linked to decreased oxidation, increased oxidative stress triggers inflammation, and redox balance inhibits the inflammatory cellular response. Whether or not oxidative stress and inflammation represent the cause or consequence of cellular pathology, they contribute significantly to the pathogenesis of noncommunicable diseases (NCD). The incidence of obesity and other related metabolic disturbances are increasing, as are age-related diseases due to a progressively aging population. Relationships between oxidative stress, inflammatory signaling, and metabolism are, in the broad sense of energy transformation, being increasingly recognized as part of the problem in NCD. In this chapter, we summarize the pathologic consequences of an imbalance between circulating and cellular paraoxonases, the system for scavenging excessive reactive oxygen species and circulating chemokines. They act as inducers of migration and infiltration of immune cells in target tissues as well as in the pathogenesis of disease that perturbs normal metabolic function. This disruption involves pathways controlling lipid and glucose homeostasis as well as metabolically driven chronic inflammatory states that encompass several response pathways. Dysfunction in the endoplasmic reticulum and/or mitochondria represents an important feature of chronic disease linked to oxidation and inflammation seen as self-reinforcing in NCD. Therefore, correct management requires a thorough understanding of these relationships and precise interpretation of laboratory test results.
Collapse
|
83
|
Klug L, Tarazona P, Gruber C, Grillitsch K, Gasser B, Trötzmüller M, Köfeler H, Leitner E, Feussner I, Mattanovich D, Altmann F, Daum G. The lipidome and proteome of microsomes from the methylotrophic yeast Pichia pastoris. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:215-26. [PMID: 24246743 DOI: 10.1016/j.bbalip.2013.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 11/28/2022]
Abstract
The methylotrophic yeast Pichia pastoris is a popular yeast expression system for the production of heterologous proteins in biotechnology. Interestingly, cell organelles which play an important role in this process have so far been insufficiently investigated. For this reason, we started a systematic approach to isolate and characterize organelles from P. pastoris. In this study, we present a procedure to isolate microsomal membranes at high purity. These samples represent endoplasmic reticulum (ER) fractions which were subjected to molecular analysis of lipids and proteins. Organelle lipidomics included a detailed analysis of glycerophospholipids, fatty acids, sterols and sphingolipids. The microsomal proteome analyzed by mass spectrometry identified typical proteins of the ER known from other cell types, especially Saccharomyces cerevisiae, but also a number of unassigned gene products. The lipidome and proteome analysis of P. pastoris microsomes are prerequisite for a better understanding of functions of this organelle and for modifying this compartment for biotechnological applications.
Collapse
|
84
|
Arlia-Ciommo A, Leonov A, Piano A, Svistkova V, Titorenko VI. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae. MICROBIAL CELL 2014; 1:163-178. [PMID: 28357241 PMCID: PMC5354559 DOI: 10.15698/mic2014.06.152] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A body of evidence supports the view that the signaling pathways governing
cellular aging - as well as mechanisms of their modulation by
longevity-extending genetic, dietary and pharmacological interventions - are
conserved across species. The scope of this review is to critically analyze
recent advances in our understanding of cell-autonomous mechanisms of
chronological aging in the budding yeast Saccharomyces
cerevisiae. Based on our analysis, we propose a concept of a
biomolecular network underlying the chronology of cellular aging in yeast. The
concept posits that such network progresses through a series of lifespan
checkpoints. At each of these checkpoints, the intracellular concentrations of
some key intermediates and products of certain metabolic pathways - as well as
the rates of coordinated flow of such metabolites within an intricate network of
intercompartmental communications - are monitored by some checkpoint-specific
ʺmaster regulatorʺ proteins. The concept envisions that a synergistic action of
these master regulator proteins at certain early-life and late-life checkpoints
modulates the rates and efficiencies of progression of such processes as cell
metabolism, growth, proliferation, stress resistance, macromolecular
homeostasis, survival and death. The concept predicts that, by modulating these
vital cellular processes throughout lifespan (i.e., prior to an arrest of cell
growth and division, and following such arrest), the checkpoint-specific master
regulator proteins orchestrate the development and maintenance of a pro- or
anti-aging cellular pattern and, thus, define longevity of chronologically aging
yeast.
Collapse
Affiliation(s)
| | - Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
85
|
Aldridge C, Ma X, Gerard F, Cline K. Substrate-gated docking of pore subunit Tha4 in the TatC cavity initiates Tat translocase assembly. J Cell Biol 2014; 205:51-65. [PMID: 24711501 PMCID: PMC3987133 DOI: 10.1083/jcb.201311057] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/11/2014] [Indexed: 11/22/2022] Open
Abstract
The twin-arginine translocase (Tat) transports folded proteins across tightly sealed membranes. cpTatC is the core component of the thylakoid translocase and coordinates transport through interactions with the substrate signal peptide and other Tat components, notably the Tha4 pore-forming component. Here, Cys-Cys matching mapped Tha4 contact sites on cpTatC and assessed the role of signal peptide binding on Tha4 assembly with the cpTatC-Hcf106 receptor complex. Tha4 made contact with a peripheral cpTatC site in nonstimulated membranes. In the translocase, Tha4 made an additional contact within the cup-shaped cavity of cpTatC that likely seeds Tha4 polymerization to form the pore. Substrate binding triggers assembly of Tha4 onto the interior site. We provide evidence that the substrate signal peptide inserts between cpTatC subunits arranged in a manner that conceivably forms an enclosed chamber. The location of the inserted signal peptide and the Tha4-cpTatC contact data suggest a model for signal peptide-gated Tha4 entry into the chamber to form the translocase.
Collapse
Affiliation(s)
- Cassie Aldridge
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611
| | | | | | | |
Collapse
|
86
|
Cholesterol biosynthesis and ER stress in peroxisome deficiency. Biochimie 2014; 98:75-85. [DOI: 10.1016/j.biochi.2013.10.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/22/2013] [Indexed: 12/27/2022]
|
87
|
Neuhaus A, Kooshapur H, Wolf J, Meyer NH, Madl T, Saidowsky J, Hambruch E, Lazam A, Jung M, Sattler M, Schliebs W, Erdmann R. A novel Pex14 protein-interacting site of human Pex5 is critical for matrix protein import into peroxisomes. J Biol Chem 2013; 289:437-48. [PMID: 24235149 DOI: 10.1074/jbc.m113.499707] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein import into peroxisomes relies on the import receptor Pex5, which recognizes proteins with a peroxisomal targeting signal 1 (PTS1) in the cytosol and directs them to a docking complex at the peroxisomal membrane. Receptor-cargo docking occurs at the membrane-associated protein Pex14. In human cells, this interaction is mediated by seven conserved diaromatic penta-peptide motifs (WXXX(F/Y) motifs) in the N-terminal half of Pex5 and the N-terminal domain of Pex14. A systematic screening of a Pex5 peptide library by ligand blot analysis revealed a novel Pex5-Pex14 interaction site of Pex5. The novel motif composes the sequence LVAEF with the evolutionarily conserved consensus sequence LVXEF. Replacement of the amino acid LVAEF sequence by alanines strongly affects matrix protein import into peroxisomes in vivo. The NMR structure of a complex of Pex5-(57-71) with the Pex14-N-terminal domain showed that the novel motif binds in a similar α-helical orientation as the WXXX(F/Y) motif but that the tryptophan pocket is now occupied by a leucine residue. Surface plasmon resonance analyses revealed 33 times faster dissociation rates for the LVXEF ligand when compared with a WXXX(F/Y) motif. Surprisingly, substitution of the novel motif with the higher affinity WXXX(F/Y) motif impairs protein import into peroxisomes. These data indicate that the distinct kinetic properties of the novel Pex14-binding site in Pex5 are important for processing of the peroxisomal targeting signal 1 receptor at the peroxisomal membrane. The novel Pex14-binding site may represent the initial tethering site of Pex5 from which the cargo-loaded receptor is further processed in a sequential manner.
Collapse
Affiliation(s)
- Alexander Neuhaus
- From the Institut für Physiologische Chemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Knockdown of Pex11β reveals its pivotal role in regulating peroxisomal genes, numbers, and ROS levels in Xenopus laevis A6 cells. In Vitro Cell Dev Biol Anim 2013; 50:340-9. [PMID: 24234511 DOI: 10.1007/s11626-013-9710-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/18/2013] [Indexed: 02/05/2023]
Abstract
Peroxisomes are organelles that are ubiquitously found in all eukaryotic cells. Enzymes within their lumen are responsible for a variety of processes including the metabolism of fatty acids and eradication (neutralization) of free radicals. Peroxisomes are dynamic organelles, able to alter their numbers in response to a variety of different metabolic and cell-specific cues. Changes in peroxisome numbers can occur through division of preexisting peroxisomes or through de novo biogenesis from the ER. Proteins such as the Pex11 family of peroxins have been implicated as regulatory factors involved in peroxisome division. Division of peroxisomes involves elongation and membrane constriction followed by fission, which requires Pex11β. The regulation of peroxisome numbers in different cell types and tissues is variable and poorly understood. Here, we examine how knockdown of Pex11β affects peroxisomal genes, proteins, and peroxisome numbers in A6 kidney epithelial cells derived from Xenopus laevis. Pex11β morpholino use subsequently decreased mRNA levels of Pex1, PMP70, and PPARγ. Moreover, the Pex11β morpholino decreased PMP70 protein levels and PMP70-positive structures. Furthermore, the marker GFP-SKL revealed fewer peroxisome-like structures. These decreases resulted in increased levels of H2O2 and cellular and mitochondrial reactive oxygen species as measured by Amplex Red, DCFDA, and MitoTracker assays, respectively.
Collapse
|
89
|
Apanasets O, Grou CP, Van Veldhoven PP, Brees C, Wang B, Nordgren M, Dodt G, Azevedo JE, Fransen M. PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Traffic 2013; 15:94-103. [PMID: 24118911 DOI: 10.1111/tra.12129] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 01/11/2023]
Abstract
Peroxisome maintenance depends on the import of nuclear-encoded proteins from the cytosol. The vast majority of these proteins is destined for the peroxisomal lumen and contains a C-terminal peroxisomal targeting signal, called PTS1. This targeting signal is recognized in the cytosol by the receptor PEX5. After docking at the peroxisomal membrane and release of the cargo into the organelle matrix, PEX5 is recycled to the cytosol through a process requiring monoubiquitination of an N-terminal, cytosolically exposed cysteine residue (Cys11 in the human protein). At present, the reason why a cysteine, and not a lysine residue, is the target of ubiquitination remains unclear. Here, we provide evidence that PTS1 protein import into human fibroblasts is a redox-sensitive process. We also demonstrate that Cys11 in human PEX5 functions as a redox switch that regulates PEX5 activity in response to intracellular oxidative stress. Finally, we show that exposure of human PEX5 to oxidized glutathione results in a ubiquitination-deficient PEX5 molecule, and that substitution of Cys11 by a lysine can counteract this effect. In summary, these findings reveal that the activity of PEX5, and hence PTS1 import, is controlled by the redox state of the cytosol. The potential physiological implications of these findings are discussed.
Collapse
Affiliation(s)
- Oksana Apanasets
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Kopek BG, Shtengel G, Grimm JB, Clayton DA, Hess HF. Correlative photoactivated localization and scanning electron microscopy. PLoS One 2013; 8:e77209. [PMID: 24204771 PMCID: PMC3808397 DOI: 10.1371/journal.pone.0077209] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/03/2013] [Indexed: 11/26/2022] Open
Abstract
The ability to localize proteins precisely within subcellular space is crucial to understanding the functioning of biological systems. Recently, we described a protocol that correlates a precise map of fluorescent fusion proteins localized using three-dimensional super-resolution optical microscopy with the fine ultrastructural context of three-dimensional electron micrographs. While it achieved the difficult simultaneous objectives of high photoactivated fluorophore preservation and ultrastructure preservation, it required a super-resolution optical and specialized electron microscope that is not available to many researchers. We present here a faster and more practical protocol with the advantage of a simpler two-dimensional optical (Photoactivated Localization Microscopy (PALM)) and scanning electron microscope (SEM) system that retains the often mutually exclusive attributes of fluorophore preservation and ultrastructure preservation. As before, cryosections were prepared using the Tokuyasu protocol, but the staining protocol was modified to be amenable for use in a standard SEM without the need for focused ion beam ablation. We show the versatility of this technique by labeling different cellular compartments and structures including mitochondrial nucleoids, peroxisomes, and the nuclear lamina. We also demonstrate simultaneous two-color PALM imaging with correlated electron micrographs. Lastly, this technique can be used with small-molecule dyes as demonstrated with actin labeling using phalloidin conjugated to a caged dye. By retaining the dense protein labeling expected for super-resolution microscopy combined with ultrastructural preservation, simplifying the tools required for correlative microscopy, and expanding the number of useful labels we expect this method to be accessible and valuable to a wide variety of researchers.
Collapse
Affiliation(s)
- Benjamin G. Kopek
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail:
| | - Gleb Shtengel
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Jonathan B. Grimm
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - David A. Clayton
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Harald F. Hess
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| |
Collapse
|
91
|
|
92
|
Kim PK, Mullen RT. PEX16: a multifaceted regulator of peroxisome biogenesis. Front Physiol 2013; 4:241. [PMID: 24027535 PMCID: PMC3759792 DOI: 10.3389/fphys.2013.00241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/14/2013] [Indexed: 11/16/2022] Open
Abstract
Peroxisomes are formed by two distinct pathways: the growth and fission of mature peroxisomes and de novo synthesis at the endoplasmic reticulum (ER). While many of the molecular mechanisms underlying these two pathways remain to be elucidated, it is generally accepted that their relative contribution to peroxisome formation may vary depending on the species, cell type and/or physiological status of the organism. One pertinent example of the apparent differences in the regulation of peroxisome biogenesis among evolutionarily diverse species is the involvement of the peroxin PEX16. In Yarrowia lipolytica, for instance, PEX16 is an intraperoxisomal peripheral membrane protein that participates in peroxisomal fission. By contrast, Human PEX16 is an integral membrane protein that is thought to function at the ER during the early stages of de novo peroxisome formation and also recruits peroxisomal membrane proteins directly to mature peroxisomes. Similarly, PEX16 in the plant Arabidopsis thaliana is speculated to be a PMP receptor at the ER and peroxisomes, and is also required for the formation of other ER-derived organelles, such as oil and protein bodies. Here we briefly review the current knowledge of Y. lipolytica, human and A. thaliana PEX16 in the context of our overall understanding of peroxisome biogenesis and the role of the ER in this process in these three divergent species.
Collapse
Affiliation(s)
- Peter K Kim
- Cell Biology Program, Department of Biochemistry, Hospital for Sick Children, University of Toronto Toronto, ON, Canada ; Department of Biochemistry, University of Toronto Toronto, ON, Canada
| | | |
Collapse
|
93
|
Gualdrón-López M, Chevalier N, Van Der Smissen P, Courtoy PJ, Rigden DJ, Michels PAM. Ubiquitination of the glycosomal matrix protein receptor PEX5 in Trypanosoma brucei by PEX4 displays novel features. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3076-3092. [PMID: 23994617 DOI: 10.1016/j.bbamcr.2013.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
Trypanosomatids contain peroxisome-like organelles called glycosomes. Peroxisomal biogenesis involves a cytosolic receptor, PEX5, which, after its insertion into the organellar membrane, delivers proteins to the matrix. In yeasts and mammalian cells, transient PEX5 monoubiquitination at the membrane serves as the signal for its retrieval from the organelle for re-use. When its recycling is impaired, PEX5 is polyubiquitinated for proteasomal degradation. Stably monoubiquitinated TbPEX5 was detected in cytosolic fractions of Trypanosoma brucei, indicative for its role as physiological intermediate in receptor recycling. This modification's resistance to dithiothreitol suggests ubiquitin conjugation of a lysine residue. T. brucei PEX4, the functional homologue of the ubiquitin-conjugating (UBC) enzyme responsible for PEX5 monoubiquitination in yeast, was identified. It is associated with the cytosolic face of the glycosomal membrane, probably anchored by an identified putative TbPEX22. The involvement of TbPEX4 in TbPEX5 ubiquitination was demonstrated using procyclic ∆PEX4 trypanosomes. Surprisingly, glycosomal matrix protein import was only mildly affected in this mutant. Since other UBC homologues were upregulated, it might be possible that these have partially rescued PEX4's function in PEX5 ubiquitination. In addition, the altered expression of UBCs, notably of candidates involved in cell-cycle control, could be responsible for observed morphological and motility defects of the ∆PEX4 mutant.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- Research Unit for Tropical Diseases, de Duve Institute, and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Nathalie Chevalier
- Research Unit for Tropical Diseases, de Duve Institute, and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Patrick Van Der Smissen
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Pierre J Courtoy
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Paul A M Michels
- Research Unit for Tropical Diseases, de Duve Institute, and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium.
| |
Collapse
|
94
|
A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol 2013; 15:1186-96. [PMID: 23955302 PMCID: PMC3789865 DOI: 10.1038/ncb2822] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/10/2013] [Indexed: 12/12/2022]
Abstract
Subcellular localization is emerging as an important mechanism for mTORC1 regulation. We report that the tuberous sclerosis complex (TSC) signaling node, TSC1, TSC2 and Rheb, localizes to peroxisomes, where it regulates mTORC1 in response to reactive oxygen species (ROS). TSC1 and TSC2 were bound by PEX19 and PEX5, respectively, and peroxisome-localized TSC functioned as a Rheb GAP to suppress mTORC1 and induce autophagy. Naturally occurring pathogenic mutations in TSC2 decreased PEX5 binding, abrogated peroxisome localization, Rheb GAP activity, and suppression of mTORC1 by ROS. Cells lacking peroxisomes were deficient in mTORC1 repression by ROS and peroxisome-localization deficient TSC2 mutants caused polarity defects and formation of multiple axons in neurons. These data identify a role for TSC in responding to ROS at the peroxisome, and identify the peroxisome as a signaling organelle involved in regulation of mTORC1.
Collapse
|
95
|
Chang J, Tower RJ, Lancaster DL, Rachubinski RA. Dynein light chain interaction with the peroxisomal import docking complex modulates peroxisome biogenesis in yeast. J Cell Sci 2013; 126:4698-706. [PMID: 23943868 DOI: 10.1242/jcs.129056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynein is a large macromolecular motor complex that moves cargo along microtubules. A motor-independent role for the light chain of dynein, Dyn2p, in peroxisome biology in Saccharomyces cerevisiae was suggested from its interaction with Pex14p, a component of the peroxisomal matrix protein import docking complex. Here we show that cells of the yeast Yarrowia lipolytica deleted for the gene encoding the homologue of Dyn2p are impaired in peroxisome function and biogenesis. These cells exhibit compromised growth on medium containing oleic acid as the carbon source, the metabolism of which requires functional peroxisomes. Their peroxisomes have abnormal morphology, atypical matrix protein localization, and an absence of proteolytic processing of the matrix enzyme thiolase, which normally occurs upon its import into the peroxisome. We also show physical and genetic interactions between Dyn2p and members of the docking complex, particularly Pex17p. Together, our results demonstrate a role for Dyn2p in the assembly of functional peroxisomes and provide evidence that Dyn2p acts in cooperation with the peroxisomal matrix protein import docking complex to effect optimal matrix protein import.
Collapse
Affiliation(s)
- Jinlan Chang
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
96
|
Ma C, Hagstrom D, Polley SG, Subramani S. Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. J Biol Chem 2013; 288:27220-27231. [PMID: 23902771 DOI: 10.1074/jbc.m113.492694] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In its role as a mobile receptor for peroxisomal matrix cargo containing a peroxisomal targeting signal called PTS1, the protein Pex5 shuttles between the cytosol and the peroxisome lumen. Pex5 binds PTS1 proteins in the cytosol via its C-terminal tetratricopeptide domains and delivers them to the peroxisome lumen, where the receptor·cargo complex dissociates. The cargo-free receptor is exported to the cytosol for another round of import. How cargo release and receptor recycling are regulated is poorly understood. We found that Pex5 functions as a dimer/oligomer and that its protein interactions with itself (homo-oligomeric) and with Pex8 (hetero-oligomeric) control the binding and release of cargo proteins. These interactions are controlled by a redox-sensitive amino acid, cysteine 10 of Pex5, which is essential for the formation of disulfide bond-linked Pex5 forms, for high affinity cargo binding, and for receptor recycling. Disulfide bond-linked Pex5 showed the highest affinity for PTS1 cargo. Upon reduction of the disulfide bond by dithiothreitol, Pex5 transitioned to a noncovalent dimer, concomitant with the partial release of PTS1 cargo. Additionally, dissipation of the redox balance between the cytosol and the peroxisome lumen caused an import defect. A hetero-oligomeric interaction between the N-terminal domain (amino acids 1-110) of Pex5 and a conserved motif at the C terminus of Pex8 further facilitates cargo release, but only under reducing conditions. This interaction is also important for the release of PTS1 proteins. We suggest a redox-regulated model for Pex5 function during the peroxisomal matrix protein import cycle.
Collapse
Affiliation(s)
- Changle Ma
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322
| | - Danielle Hagstrom
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322
| | - Soumi Guha Polley
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322.
| |
Collapse
|
97
|
Vasko R, Ratliff BB, Bohr S, Nadel E, Chen J, Xavier S, Chander P, Goligorsky MS. Endothelial peroxisomal dysfunction and impaired pexophagy promotes oxidative damage in lipopolysaccharide-induced acute kidney injury. Antioxid Redox Signal 2013; 19:211-30. [PMID: 23088293 PMCID: PMC3691927 DOI: 10.1089/ars.2012.4768] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS We examined that (a) how the endotoxic stress affects peroxisomal function and autophagic degradation of peroxisomes-pexophagy, (b) how a superimposed dysfunction of lysosomes and pexophagy modifies responses to lipopolysaccharide (LPS), and (c) the mechanisms of peroxisomal contribution to renal injury. To accomplish this, we used lysosome-defective Lyst-mice in vivo and primary endothelial cells in vitro, and compared the responses with wild-type (WT) littermates. RESULTS LPS induced pexophagic degradation, followed by proliferation of peroxisomes in WT mice, which was abolished in Lyst-mice. Lyst-mice exhibited impaired activation of catalase, which together with preserved hydrogen peroxide-generating β-oxidation resulted in redox disequilibrium. LPS treatment induced a heightened inflammatory response, increased oxidative damage, and aggravated renal injury in Lyst-mice. Similarly, as in vivo, LPS-activated lysosomal (LYS) pexophagy and transiently repressed peroxisomes in vitro, supported by reduced peroxisomal density in the vicinity of lysosomes. Peroxisomal dynamics was also abolished in lysosome-defective cells, which accumulated peroxisomes with compromised functions and intraorganellar redox imbalance. INNOVATION We demonstrated that pexophagy is a default response to endotoxic injury. However, when LYS dysfunction (a frequent companion of chronic diseases) is superimposed, recycling and functioning of peroxisomes are impaired, and an imbalance between hydrogen peroxide-generating β-oxidation and hydrogen peroxide-detoxifying catalase ensues, which ultimately results in peroxisomal burnout. CONCLUSION Our data strongly suggest that pexophagy, a cellular mechanism per se, is essential in functional maintenance of peroxisomes during LPS exposure. Inhibition of pexophagy results in accumulation of impaired peroxisomes, redox disequilibrium, and aggravated renal damage.
Collapse
Affiliation(s)
- Radovan Vasko
- Department of Medicine, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Crystal structure of peroxisomal targeting signal-2 bound to its receptor complex Pex7p–Pex21p. Nat Struct Mol Biol 2013; 20:987-93. [DOI: 10.1038/nsmb.2618] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
|
99
|
Braverman NE, D'Agostino MD, MacLean GE. Peroxisome biogenesis disorders: Biological, clinical and pathophysiological perspectives. ACTA ACUST UNITED AC 2013; 17:187-96. [DOI: 10.1002/ddrr.1113] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/17/2012] [Indexed: 01/08/2023]
|
100
|
Nordgren M, Wang B, Apanasets O, Fransen M. Peroxisome degradation in mammals: mechanisms of action, recent advances, and perspectives. Front Physiol 2013; 4:145. [PMID: 23785334 PMCID: PMC3682127 DOI: 10.3389/fphys.2013.00145] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 12/18/2022] Open
Abstract
Peroxisomes are remarkably dynamic organelles that participate in a diverse array of cellular processes, including the metabolism of lipids and reactive oxygen species. In order to regulate peroxisome function in response to changing nutritional and environmental stimuli, new organelles need to be formed and superfluous and dysfunctional organelles have to be selectively removed. Disturbances in any of these processes have been associated with the etiology and progression of various congenital neurodegenerative and age-related human disorders. The aim of this review is to critically explore our current knowledge of how peroxisomes are degraded in mammalian cells and how defects in this process may contribute to human disease. Some of the key issues highlighted include the current concepts of peroxisome removal, the peroxisome quality control mechanisms, the initial triggers for peroxisome degradation, the factors for dysfunctional peroxisome recognition, and the regulation of peroxisome homeostasis. We also dissect the functional and mechanistic relationship between different forms of selective organelle degradation and consider how lysosomal dysfunction may lead to defects in peroxisome turnover. In addition, we draw lessons from studies on other organisms and extrapolate this knowledge to mammals. Finally, we discuss the potential pathological implications of dysfunctional peroxisome degradation for human health.
Collapse
Affiliation(s)
- Marcus Nordgren
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven Leuven, Vlaams-Brabant, Belgium
| | | | | | | |
Collapse
|