51
|
Munroe ME. Functional roles for T cell CD40 in infection and autoimmune disease: the role of CD40 in lymphocyte homeostasis. Semin Immunol 2009; 21:283-8. [PMID: 19539498 DOI: 10.1016/j.smim.2009.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/13/2009] [Indexed: 11/27/2022]
Abstract
CD40 stimulation on monocytes/macrophages, dendritic cells, and B-lymphocytes has been the subject of much study. It is well recognized that activation of CD40 on antigen presenting cells by its ligand, CD154, expressed on T-lymphocytes, contributes to the pro-inflammatory response necessary for eradication of infection, yet pathological in autoimmunity. However, there is evidence that CD40 is also expressed on T-lymphocytes and can act as a costimulatory molecule. While the exact role of CD40 on CD8 T cells remains controversial, it does appear to contribute to the adaptive immune response against infection. CD40 on CD4 T cells, on the other hand, plays a functional role in the autoimmune disease process. Further dissection of the exact nature and role of CD40 in T cell activation could lead the way to more effective vaccines and novel therapeutics for autoimmune diseases.
Collapse
Affiliation(s)
- Melissa E Munroe
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
52
|
Krangel MS. Mechanics of T cell receptor gene rearrangement. Curr Opin Immunol 2009; 21:133-9. [PMID: 19362456 DOI: 10.1016/j.coi.2009.03.009] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/13/2009] [Indexed: 11/20/2022]
Abstract
The four T cell receptor genes (Tcra, Tcrb, Tcrg, Tcrd) are assembled by V(D)J recombination according to distinct programs during intrathymic T cell development. These programs depend on genetic factors, including gene segment order and recombination signal sequences. They also depend on epigenetic factors. Regulated changes in chromatin structure, directed by enhancers and promoter, can modify the availability of recombination signal sequences to the RAG recombinase. Regulated changes in locus conformation may control the synapsis of distant recombination signal sequences, and regulated changes in subnuclear positioning may influence locus recombination events by unknown mechanisms. Together these influences may explain the ordered activation and inactivation of T cell receptor locus recombination events and the phenomenon of Tcrb allelic exclusion.
Collapse
Affiliation(s)
- Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
53
|
Shakib S, Desanti GE, Jenkinson WE, Parnell SM, Jenkinson EJ, Anderson G. Checkpoints in the development of thymic cortical epithelial cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:130-7. [PMID: 19109143 DOI: 10.4049/jimmunol.182.1.130] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the thymus, interactions between immature thymocytes and thymic epithelial cells (TECs) regulate the development and selection of self-tolerant MHC-restricted T cells. Despite the importance of cortical (cTEC) and medullary (mTEC) thymic epithelial cells in fostering T cell production, events in TEC development are still unclear. Although precursor-product relationships during mTEC development have been reported, and some genetic regulators of mTEC development have been identified, stages in cTEC development occurring downstream of recently identified bipotent cTEC/mTEC progenitors remain poorly defined. In this study, we combine analysis of differentiation, proliferation, and gene expression of TECs in the murine thymus, that has enabled us to identify cTEC progenitors, define multiple stages in cTEC development, and identify novel checkpoints in development of the cTEC lineage. We show an essential requirement for FoxN1 in the initial development of cTEC from bipotent progenitors, and demonstrate a stage-specific requirement for CD4(-)8(-) thymocytes in later stages of cTEC development. Collectively, our data establish a program of cTEC development that should provide insight into the formation and function of the thymic cortex for T cell development.
Collapse
Affiliation(s)
- Saba Shakib
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
54
|
Ohm-Laursen L, Nielsen C, Fisker N, Lillevang ST, Barington T. Lack of nonfunctional B-cell receptor rearrangements in a patient with normal B cell numbers despite partial RAG1 deficiency and atypical SCID/Omenn syndrome. J Clin Immunol 2008; 28:588-92. [PMID: 18592361 DOI: 10.1007/s10875-008-9210-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 05/19/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION A 2.5-month old boy presented with recurrent wheezing, protracted diarrhea, erythrodermia, and failure to thrive. METHODS AND RESULTS Laboratory analysis showed lymphocytopenia with severely reduced T-cell numbers but normal numbers of B and NK cells. Serum IgE was increased and the patient had eosinophilia. These presentations are consistent with atypical severe combined immunodeficiency (SCID)/Omenn Syndrome and the diagnosis was confirmed by demonstration of homozygosity for the R841W mutation in the catalytic core of RAG1. Comparison of the patient's immunoglobulin heavy chain rearrangements to those of age-matched controls, cord blood, and adults revealed an almost total lack of nonproductive rearrangements (2.7% versus 14.7%, 27.6%, and 19.8% in the controls, respectively) indicating failure to correct out-of-frame rearrangements by a second rearrangement on the homologous chromosome 14. CONCLUSION We hypothesize that the R841W mutation causes a malfunction of RAG1 that has differential outcome on V(D)J recombination in B and T cells, as the patient had normal B cell numbers but suffered severe alpha-beta T-cell immunodeficiency.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Chromosomes, Human, Pair 14
- Gene Rearrangement, B-Lymphocyte/genetics
- Gene Rearrangement, B-Lymphocyte/immunology
- Homeodomain Proteins/genetics
- Humans
- Immunoglobulin E/blood
- Infant
- Lymphopenia/immunology
- Male
- Mutation/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Respiratory Sounds/immunology
- Severe Combined Immunodeficiency/blood
- Severe Combined Immunodeficiency/genetics
- Severe Combined Immunodeficiency/immunology
- Severe Combined Immunodeficiency/physiopathology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Line Ohm-Laursen
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | | | | | | | | |
Collapse
|
55
|
Abstract
The role of the thymus is vital for orchestration of T-cell development and maturation. With increasing age the thymus undergoes a process of involution which results in a reduction in thymic size, function and output. Until relatively recent it was not feasible to accurately measure the magnitude of age-related loss of thymic function. With the discovery of T-cell receptor excision circles (TRECs), which are the stable by-products of the newly generated T-cells, it is now possible to quantitatively measure the extent of thymic output. This review examines the available data on immune function and zinc deficiency and places them in the context of the aims of the ZINCAGE project which include the evaluation of the role played by zinc in maintaining thymic output in healthy elderly individuals.
Collapse
Affiliation(s)
- Wayne A Mitchell
- Department of Immunology, Imperial College of Science, Technology and Medicine, Faculty of Investigative Sciences, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK.
| | | | | | | |
Collapse
|
56
|
Petrie HT, Zúñiga-Pflücker JC. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol 2007; 25:649-79. [PMID: 17291187 DOI: 10.1146/annurev.immunol.23.021704.115715] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All hematopoietic cells, including T lymphocytes, originate from stem cells that reside in the bone marrow. Most hematopoietic lineages also mature in the bone marrow, but in this respect, T lymphocytes differ. Under normal circumstances, most T lymphocytes are produced in the thymus from marrow-derived progenitors that circulate in the blood. Cells that home to the thymus from the marrow possess the potential to generate multiple T and non-T lineages. However, there is little evidence to suggest that, once inside the thymus, they give rise to anything other than T cells. Thus, signals unique to the thymic microenvironment compel multipotent progenitors to commit to the T lineage, at the expense of other potential lineages. Summarizing what is known about the signals the thymus delivers to uncommitted progenitors, or to immature T-committed progenitors, to produce functional T cells is the focus of this review.
Collapse
Affiliation(s)
- Howard T Petrie
- Scripps Florida Research Institute, Jupiter, Florida 33458, USA.
| | | |
Collapse
|
57
|
Hamrouni A, Olsson A, Wiegers GJ, Villunger A. Impact of cellular lifespan on the T cell receptor repertoire. Eur J Immunol 2007; 37:1978-85. [PMID: 17559169 DOI: 10.1002/eji.200636632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pro-survival members of the Bcl-2 family are potent inhibitors of cell death and determine the lifespan of immature thymocytes by counteracting the intrinsically active apoptotic program in these cells. BH3-only proteins are potent antagonists of Bcl-2-like molecules and regulate death and survival of lymphocytes during their development and homeostasis. The intrinsic lifespan of CD4(+)8(+) double-positive thymocytes was reported to actively shape the diversity of the immune repertoire, since mice overexpressing Bcl-x(L) were reported to show a bias towards the usage of distal 3' Jalpha elements 1. To gain support for this concept, we analyzed TCRalpha rearrangements in T lymphocytes that show an extended lifespan due to either loss of the BH3-only protein Bim or overexpression of Bcl-2. A minor but reproducible skewing towards the usage of the more distal 3' Jalpha elements was observed in developing thymocytes and mature T cells from bim(-/-) and vav-bcl-2 transgenic mice, indicating that prolonged survival of double-positive thymocytes does have a significant impact on the selected TCRalpha repertoire. However, the changes that we observed were less pronounced than those found in lck-bcl-x(L) transgenic mice, pointing towards qualitative differences between Bcl-2- and Bcl-x(L)-mediated cell death inhibition during T cell development.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/biosynthesis
- Bcl-2-Like Protein 11
- Blotting, Southern
- Cell Differentiation/immunology
- Cell Survival/immunology
- Flow Cytometry
- Gene Expression Regulation/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/immunology
- Membrane Proteins/biosynthesis
- Mice
- Mice, Transgenic
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/cytology
Collapse
Affiliation(s)
- Abdelbasset Hamrouni
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
58
|
Mao C, Tili EG, Dose M, Haks MC, Bear SE, Maroulakou I, Horie K, Gaitanaris GA, Fidanza V, Ludwig T, Wiest DL, Gounari F, Tsichlis PN. Unequal Contribution of Akt Isoforms in the Double-Negative to Double-Positive Thymocyte Transition. THE JOURNAL OF IMMUNOLOGY 2007; 178:5443-53. [PMID: 17442925 DOI: 10.4049/jimmunol.178.9.5443] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pre-TCR signals regulate the transition of the double-negative (DN) 3 thymocytes to the DN4, and subsequently to the double-positive (DP) stage. In this study, we show that pre-TCR signals activate Akt and that pharmacological inhibition of the PI3K/Akt pathway, or combined ablation of Akt1 and Akt2, and to a lesser extent Akt1 and Akt3, interfere with the differentiation of DN3 and the accumulation of DP thymocytes. Combined ablation of Akt1 and Akt2 inhibits the proliferation of DN4 cells, while combined ablation of all Akt isoforms also inhibits the survival of all the DN thymocytes. Finally, the combined ablation of Akt1 and Akt2 inhibits the survival of DP thymocytes. Constitutively active Lck-Akt1 transgenes had the opposite effects. We conclude that, following their activation by pre-TCR signals, Akt1, Akt2, and, to a lesser extent, Akt3 promote the transition of DN thymocytes to the DP stage, in part by enhancing the proliferation and survival of cells undergoing beta-selection. Akt1 and Akt2 also contribute to the differentiation process by promoting the survival of the DP thymocytes.
Collapse
Affiliation(s)
- Changchuin Mao
- Molecular Oncology Research Institute, Tufts-New England Medical Center, 750 Washington Street, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Hawwari A, Krangel MS. Role for rearranged variable gene segments in directing secondary T cell receptor alpha recombination. Proc Natl Acad Sci U S A 2007; 104:903-7. [PMID: 17210914 PMCID: PMC1783412 DOI: 10.1073/pnas.0608248104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Indexed: 11/18/2022] Open
Abstract
During the recombination of variable (V) and joining (J) gene segments at the T cell receptor alpha locus, a ValphaJalpha joint resulting from primary rearrangement can be replaced by subsequent rounds of secondary rearrangement that use progressively more 5' Valpha segments and progressively more 3' Jalpha segments. To understand the mechanisms that target secondary T cell receptor alpha recombination, we studied the behavior of a T cell receptor alpha allele (HYalpha) engineered to mimic a natural primary rearrangement of TRAV17 to Jalpha57. The introduced ValphaJalpha segment was shown to provide chromatin accessibility to Jalpha segments situated within several kilobases downstream and to suppress germ-line Jalpha promoter activity and accessibility at greater distances. As a consequence, the ValphaJalpha segment directed secondary recombination events to a subset of Jalpha segments immediately downstream from the primary rearrangement. The data provide the mechanistic basis for a model of primary and secondary T cell receptor alpha recombination in which recombination events progress in multiple small steps down the Jalpha array.
Collapse
Affiliation(s)
- Abbas Hawwari
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Michael S. Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
60
|
Abstract
This review considers a crucially new mechanism of T-cell antigen-recognizing repertoire formation. It includes the revision of T-cell antigen receptor (TCR), which implies the secondary rearrangement of TCR genes in peripheral T-lymphocytes and surface expression of a new antigen receptor with altered specificity. Factors and mechanisms involved in the induction of this process have been analyzed. Certain attention is paid to a possible role of TCR revision in the formation of peripheral tolerance in the processes of "avidity maturation" of T-lymphocytes during immune response and also negative consequences related to appearance of potentially autoreactive clones in the periphery.
Collapse
Affiliation(s)
- E M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| |
Collapse
|
61
|
Abstract
The specificities of lymphocytes for antigen are generated by a quasi-random process of gene rearrangement that often results in non-functional or autoreactive antigen receptors. Regulation of lymphocyte specificities involves not only the elimination of cells that display 'unsuitable' receptors for antigen but also the active genetic correction of these receptors by secondary recombination of the DNA. As I discuss here, an important mechanism for the genetic correction of antigen receptors is ongoing recombination, which leads to receptor editing. Receptor editing is probably an adaptation that is necessitated by the high probability of receptor autoreactivity. In both B cells and T cells, the genes that encode the two chains of the antigen receptor seem to be specialized to promote, on the one hand, the generation of diverse specificities and, on the other hand, the regulation of these specificities through efficient editing.
Collapse
Affiliation(s)
- David Nemazee
- Department of Immunology, The Scripps Research Institute, Mail Drop IMM-29, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
62
|
Matei IR, Gladdy RA, Nutter LMJ, Canty A, Guidos CJ, Danska JS. ATM deficiency disrupts Tcra locus integrity and the maturation of CD4+CD8+ thymocytes. Blood 2006; 109:1887-96. [PMID: 17077325 DOI: 10.1182/blood-2006-05-020917] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractMutations in ATM (ataxia-telangiectasia mutated) cause ataxia-telangiectasia (AT), a disease characterized by neurodegeneration, sterility, immunodeficiency, and T-cell leukemia. Defective ATM-mediated DNA damage responses underlie many aspects of the AT syndrome, but the basis for the immune deficiency has not been defined. ATM associates with DNA double-strand breaks (DSBs), and some evidence suggests that ATM may regulate V(D)J recombination. However, it remains unclear how ATM loss compromises lymphocyte development in vivo. Here, we show that T-cell receptor β (TCRβ)–dependent proliferation and production of TCRβlow CD4+CD8+ (DP) thymocytes occurred normally in Atm−/− mice. In striking contrast, the postmitotic maturation of TCRβlow DP precursors into TCRβint DP cells and TCRβhi mature thymocytes was profoundly impaired. Furthermore, Atm−/− thymocytes expressed abnormally low amounts of TCRα mRNA and protein. These defects were not attributable to the induction of a BCL-2–sensitive apoptotic pathway. Rather, they were associated with frequent biallelic loss of distal Va gene segments in DP thymocytes, revealing that ATM maintains Tcra locus integrity as it undergoes V(D)J recombination. Collectively, our data demonstrate that ATM loss increases the frequency of aberrant Tcra deletion events, which compromise DP thymocyte maturation and likely promote the generation of oncogenic TCR translocations.
Collapse
Affiliation(s)
- Irina R Matei
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, University of Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
63
|
Wagner DH. Re-shaping the T cell repertoire: TCR editing and TCR revision for good and for bad. Clin Immunol 2006; 123:1-6. [PMID: 16990051 DOI: 10.1016/j.clim.2006.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/03/2006] [Accepted: 08/04/2006] [Indexed: 11/22/2022]
Abstract
Protection against the universe of pathogens requires a functional, diverse T cell repertoire. However, the price that is paid for an evolved, effective immune system includes the potential danger of generating autoaggressive T cells. Autoimmune diseases result from inherent breach of tolerance to self-antigens leading to disruption of the regulatory to autoaggressive T cell homeostatic balance. The immune system has evolved mechanisms to control those processes. For T cells, positive and negative selection in the thymus assures that only fully functional, non-self-reactive T cells will populate the periphery. Failure of this central tolerance would result in autoaggressive T cells escaping into the periphery. However, other means of escaping negative selection can occur in the periphery, i.e., TCR revision, or the altering of TCR expression after thymic egress. Here the potential benefits, i.e., expansion and re-shaping of the T cell repertoire as potentiated by TCR editing and revision are considered. Furthermore, the potential to develop autoaggressive TCR and thus enhance autoimmunity is considered.
Collapse
Affiliation(s)
- David H Wagner
- Webb-Waring Institute, Department of Medicine, University of Colorado Denver and Health Sciences Center, 4200 East 9th Ave, Denver, CO, USA.
| |
Collapse
|
64
|
Yélamos J, Monreal Y, Saenz L, Aguado E, Schreiber V, Mota R, Fuente T, Minguela A, Parrilla P, de Murcia G, Almarza E, Aparicio P, Ménissier-de Murcia J. PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes. EMBO J 2006; 25:4350-60. [PMID: 16946705 PMCID: PMC1570435 DOI: 10.1038/sj.emboj.7601301] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 08/01/2006] [Indexed: 12/18/2022] Open
Abstract
Poly-(ADP-ribose) polymerase-2 (PARP-2) belongs to a large family of enzymes that synthesize and transfer ADP-ribose polymers to acceptor proteins, modifying their functional properties. PARP-2-deficient (Parp-2-/-) cells, similar to Parp-1-/- cells, are sensitive to both ionizing radiation and alkylating agents. Here we show that inactivation of mouse Parp-2, but not Parp-1, produced a two-fold reduction in CD4+CD8+ double-positive (DP) thymocytes associated with decreased DP cell survival. Microarray analyses revealed increased expression of the proapoptotic Bcl-2 family member Noxa in Parp-2-/- DP thymocytes compared to littermate controls. In addition, DP thymocytes from Parp-2-/- have a reduced expression of T-cell receptor (TCR)alpha and a skewed repertoire of TCRalpha toward the 5' Jalpha segments. Our results show that in the absence of PARP-2, the survival of DP thymocytes undergoing TCRalpha recombination is compromised despite normal amounts of Bcl-xL. These data suggest a novel role for PARP-2 as an important mediator of T-cell survival during thymopoiesis by preventing the activation of DNA damage-dependent apoptotic response during the multiple rounds of TCRalpha rearrangements preceding a positively selected TCR.
Collapse
Affiliation(s)
- José Yélamos
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Murcia, Spain
- These authors contributed equally to this work
- Departamento de Bioquímica, Biología Molecular e Inmunología, Facultad de Medicina, Campus de Espinardo, Apartado de Correos 4021, Universidad de Murcia, 30100-Murcia, Spain. Tel.: +34 968 369090; Fax: +34 968 369678; E-mail:
| | - Yolanda Monreal
- Transplant Unit, University Hospital ‘Virgen de la Arrixaca', Murcia, Spain
- These authors contributed equally to this work
| | - Luis Saenz
- Transplant Unit, University Hospital ‘Virgen de la Arrixaca', Murcia, Spain
| | - Enrique Aguado
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Valérie Schreiber
- UPR 9003 du Centre National de la Recherche Scientifique, Strasbourg, France
| | - Rubén Mota
- Transplant Unit, University Hospital ‘Virgen de la Arrixaca', Murcia, Spain
| | - Teodomiro Fuente
- Transplant Unit, University Hospital ‘Virgen de la Arrixaca', Murcia, Spain
| | - Alfredo Minguela
- Immunology Unit, University Hospital ‘Virgen de la Arrixaca', Murcia, Spain
| | - Pascual Parrilla
- Transplant Unit, University Hospital ‘Virgen de la Arrixaca', Murcia, Spain
| | - Gilbert de Murcia
- UPR 9003 du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | - Pedro Aparicio
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Josiane Ménissier-de Murcia
- UPR 9003 du Centre National de la Recherche Scientifique, Strasbourg, France
- UPR 9003 du Centre National de la Recherche Scientifique, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP10413, 67412 Illkirch, Strasbourg, France. Tel.: +33 390 244704; Fax: +33 390 244686; E-mail:
| |
Collapse
|
65
|
Abstract
Recent elucidation of the role of central tolerance in preventing organ-specific autoimmunity has changed our concepts of self/nonself discrimination. This paradigmatic shift is largely attributable to the discovery of promiscuous expression of tissue-restricted self-antigens (TRAs) by medullary thymic epithelial cells (mTECs). TRA expression in mTECs mirrors virtually all tissues of the body, irrespective of developmental or spatio-temporal expression patterns. This review summarizes current knowledge on the cellular and molecular regulation of TRA expression in mTECs, outlines relevant mechanisms of antigen presentation and modes of tolerance induction, and discusses implications for the pathogenesis of autoimmune diseases and other biological processes such as fertility, pregnancy, puberty, and tumor defense.
Collapse
Affiliation(s)
- Bruno Kyewski
- Division of Developmental Immunology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany.
| | | |
Collapse
|
66
|
Aspinall R. T cell development, ageing and Interleukin-7. Mech Ageing Dev 2006; 127:572-8. [PMID: 16529797 DOI: 10.1016/j.mad.2006.01.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 10/05/2005] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
Interleukin-7 (IL-7) is a cytokine with a central role in the development and maintenance of the peripheral T cell pool. In the mouse, expression of the IL-7 gene in the thymus has been carefully followed from gestation onwards throughout the lifespan. One of the features of its expression in the thymus is that it changes with time, declining measurably as the animal ages. This reduction is associated with a decrease in thymic size, cellularity and output. Analysis of transgenic animals carrying either IL-7 or IL-7 receptor transgenes reveals that the intrathymic level of IL-7 has a critical effect on the production of T cells, and that this may not be a linear relationship. This is an important consideration for therapy involving treatment of old animals with IL-7 of which there are reports indicating some rejuvenation of the thymus following IL-7 treatment, which is never complete. The thymus does not appear to return to the size and cellularity seen in youth. Several possible scenarios could account for this, including the inability to maintain IL-7 within defined limits in the thymus during the therapy.
Collapse
Affiliation(s)
- Richard Aspinall
- Department of Immunology, Faculty of Medicine, Imperial College London, London SW10 9NH, UK.
| |
Collapse
|
67
|
Konrad MAP, Zúñiga-Pflücker JC. The BTG/TOB family protein TIS21 regulates stage-specific proliferation of developing thymocytes. Eur J Immunol 2005; 35:3030-42. [PMID: 16163674 DOI: 10.1002/eji.200526345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As thymocytes undergo differentiation in the thymus, they progress through distinct phases of quiescence and proliferation. Identifying cellular mechanisms that maintain thymocytes in a non-dividing state is critical to fully understand T cell development. A member of the B cell translocation gene/transducer of ErbB-2 (BTG/TOB) family of anti-proliferative proteins was identified as a key mediator of the quiescent state in peripheral anergic and unstimulated T cells. Here, we demonstrate that the BTG/TOB family member TPA-inducible sequence 21 (TIS21) is expressed in quiescent CD44+ CD25- early progenitor thymocytes and CD44- CD25+ cells prior to TCR beta-selection. However, TIS21 expression is decreased in proliferating CD25+ CD44+ progenitor thymocytes and CD25(low) CD44- beta-selected cells, suggesting that its regulated expression may enable thymocytes to remain quiescent in the absence of mitogenic signals. We addressed the role of TIS21 in regulating thymocyte stage-specific expansion by ectopically expressing TIS21 in developing thymocytes and hematopoietic progenitors. Dysregulated expression of TIS21 inhibited the expansion of thymocytes even in the presence of endogenous mitogenic signals, while thymocyte differentiation was unimpeded. These findings imply that the intracellular mechanisms regulating thymocyte differentiation and proliferation, which are induced downstream of developmental cues, function independently during early T cell development.
Collapse
Affiliation(s)
- Mark A P Konrad
- Department of Immunology, University of Toronto, Sunnybrook and Women's Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
68
|
Huang CY, Sleckman BP, Kanagawa O. Revision of T cell receptor {alpha} chain genes is required for normal T lymphocyte development. Proc Natl Acad Sci U S A 2005; 102:14356-61. [PMID: 16186502 PMCID: PMC1242309 DOI: 10.1073/pnas.0505564102] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To become mature alphabeta T cells, developing thymocytes must first assemble a T cell receptor (TCR) beta chain gene encoding a TCRbeta chain that forms a pre-TCR. These cells then need to generate a TCRalpha chain gene encoding a TCRalpha chain, which, when paired with the TCRbeta chain, forms a selectable alphabeta TCR. Newly generated VJalpha rearrangements that do not encode TCRalpha chains capable of forming selectable alphabeta TCRs can be excised from the chromosome and replaced with new VJalpha rearrangements. Such replacement occurs through the process of TCRalpha chain gene revision whereby a Valpha gene segment upstream of the VJalpha rearrangement is appended to a downstream Jalpha gene segment. A multistep, gene-targeting approach was used to generate a modified TCRalpha locus (TCRalpha(sJ)) with a limited capacity to undergo revision of TCRalpha chain genes. Thymocytes from mice homozygous for the TCRalpha(sJ) allele are defective in their ability to generate an alphabeta TCR. Furthermore, those thymocytes that do generate an alphabeta TCR have a diminished capacity to be positively selected, and TCRalpha(sJ/sJ) mice have significantly reduced numbers of mature alphabeta T cells. Together, these findings demonstrate that normal T cell development relies on the ability of developing thymocytes to revise their TCRalpha chain genes.
Collapse
Affiliation(s)
- Ching-Yu Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | | | | |
Collapse
|
69
|
Stephens R, Albano FR, Quin S, Pascal BJ, Harrison V, Stockinger B, Kioussis D, Weltzien HU, Langhorne J. Malaria-specific transgenic CD4+ T cells protect immunodeficient mice from lethal infection and demonstrate requirement for a protective threshold of antibody production for parasite clearance. Blood 2005; 106:1676-84. [PMID: 15890689 DOI: 10.1182/blood-2004-10-4047] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
T cells are important in the immune response to malaria, both for their cytokines and their help for antibody production. To look at the relative importance of these roles, a T-cell receptor (TCR) transgenic mouse has been generated carrying a TCR specific for an epitope of the merozoite surface protein 1 (MSP-1) of the malaria parasite, Plasmodium chabaudi. In adoptive transfer experiments, malaria-specific CD4+ T cells expand and produce interferon γ (IFN-γ) early in infection, but the population contracts quickly despite prolonged persistence of the parasite. MSP-1-specific CD4+ cells can protect immunodeficient mice from lethal infection; however, the parasite is only completely cleared in the presence of B cells showing that T helper cells are critical. Levels of malaria-specific antibody and the speed of their production clearly correlate with the time of resolution of infection, indicating that a critical threshold of antibody production is required for parasite clearance. Furthermore, T cells specific for a shed portion of MSP-1 are able to provide help for antibody to the protective region, which remains bound to the infected erythrocyte, suggesting that MSP-1 has all of the components necessary for a good vaccine. (Blood. 2005;106:1676-1684)
Collapse
Affiliation(s)
- Robin Stephens
- National Institute of Medical Research, The Ridgeway, Mill Hill London, NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Badami E, Maiuri L, Quaratino S. High incidence of spontaneous autoimmune thyroiditis in immunocompetent self-reactive human T cell receptor transgenic mice. J Autoimmun 2005; 24:85-91. [PMID: 15829400 DOI: 10.1016/j.jaut.2005.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 12/14/2004] [Indexed: 11/23/2022]
Abstract
Autoantigen-specific TCR transgenic mice allow us to assess the role of T cells in autoimmunity. We have recently generated humanized TAZ10 transgenic mice expressing the human TCR specific for the immunodominant epitope of thyroid peroxidase (TPO). We have shown that these transgenic mice do not undergo tolerance in vivo and that on Rag deficient background they are susceptible to spontaneous autoimmune thyroiditis. Here we show that, in contrast to other transgenic models of autoimmunity, almost all TCR(+)Rag1+ (T+R+) T cells are activated in vivo leading to the development of spontaneous autoimmune thyroiditis. In these mice, disease is also accompanied by a significant reduction of CD4+CD25hi regulatory T cells. These data indicate that the pathogenic activity of the self-reactive TCR can circumvent the regulatory function operated by the non-transgenic T cells that are normally present in T+R+ mice, leading to autoimmunity.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Humans
- Immunocompetence/immunology
- Lymphocyte Activation
- Lymphocyte Count
- Male
- Mice
- Mice, Transgenic
- Phenotype
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Interleukin-2/immunology
- Thyroiditis, Autoimmune/genetics
- Thyroiditis, Autoimmune/immunology
- Thyroiditis, Autoimmune/pathology
Collapse
Affiliation(s)
- Ester Badami
- Cancer Sciences Division, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
| | | | | |
Collapse
|
71
|
Hofstetter HH, Targoni OS, Karulin AY, Forsthuber TG, Tary-Lehmann M, Lehmann PV. Does the Frequency and Avidity Spectrum of the Neuroantigen-Specific T Cells in the Blood Mirror the Autoimmune Process in the Central Nervous System of Mice Undergoing Experimental Allergic Encephalomyelitis? THE JOURNAL OF IMMUNOLOGY 2005; 174:4598-605. [PMID: 15814682 DOI: 10.4049/jimmunol.174.8.4598] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In humans, studies of autoreactive T cells that mediate multiple sclerosis have been largely confined to testing peripheral blood lymphocytes. Little is known how such measurements reflect the disease-mediating autoreactive T cells in the CNS. This information is also not available for murine experimental allergic encephalomyelitis (EAE); the low number of T cells that can be obtained from the blood or the brain of mice prevented such comparisons. We used single-cell resolution IFN-gamma ELISPOT assays to measure the frequencies and functional avidities of myelin basic protein (MBP:87-99)-specific CD4 cells in SJL mice immunized with this peptide. Functional MBP:87-99-specific IFN-gamma-producing cells were present in the CNS during clinical signs of EAE, but not during phases of recovery. In contrast, MBP:87-99-specific T cells persisted in the blood during all stages of the disease, and were also present in mice that did not develop EAE. Therefore, the increased frequency of MBP:87-99-reactive T cells in the blood reliably reflected the primed state, but not the inflammatory activity of these cells in the brain. The functional avidity of the MBP:87-99-reactive T cells was identical in the brain and blood and did not change over 2 mo as the mice progressed from acute to chronic EAE. Therefore, high-affinity T cells did not become selectively enriched in the target organ, and avidity maturation of the MBP:87-99-specific T cell repertoire did not occur in the observation period. The data may help the interpretation of measurements made with peripheral blood lymphocytes of multiple sclerosis patients.
Collapse
Affiliation(s)
- Harald H Hofstetter
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4943, USA
| | | | | | | | | | | |
Collapse
|
72
|
Oble DA, Collett E, Hsieh M, Ambjørn M, Law J, Dutz J, Teh HS. A Novel T Cell Receptor Transgenic Animal Model of Seborrheic Dermatitis-Like Skin Disease. J Invest Dermatol 2005; 124:151-9. [PMID: 15654969 DOI: 10.1111/j.0022-202x.2004.23565.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have characterized a novel animal model of the common inflammatory skin disease seborrheic dermatitis (SD) that involves the expression of the self-specific 2C transgenic T cell receptor on the DBA/2 genetic background. Opportunistic fungal pathogens are present in the primary histological lesions and severe disease can be mitigated by the administration of fluconazole, demonstrating a role for infection in disease pathogenesis. Spontaneous disease convalescence occurs at 70-90 d of age and is preceded by an expansion of CD4+ T cells that partially restores the T cell lymphopenia that occurs in these animals. The adoptive transfer of syngeneic CD4+ T cells into pre-diseased DBA/2 2C mice completely abrogates the development of cutaneous disease. The pattern of disease inheritance in DBA/2 backcrosses suggests that one, or a closely linked group of genes, may control disease penetrance. Bone marrow reconstitution experiments demonstrated that the DBA/2 susceptibility factor(s) governing disease penetrance is likely non-hematopoietic since bone marrow from disease-resistant 2C mice can adoptively transfer the full disease phenotype to non-transgenic DBA/2 animals. This model implicates fungal organisms and CD4+ T cell lymphopenia in the development of a SD-like condition and, as such, may mimic the development of SD in acquired immunodeficiency syndrome.
Collapse
MESH Headings
- Adoptive Transfer
- Age Factors
- Animals
- Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/transplantation
- Dermatitis, Seborrheic/genetics
- Dermatitis, Seborrheic/immunology
- Dermatitis, Seborrheic/pathology
- Disease Models, Animal
- Genetic Predisposition to Disease
- Immunocompromised Host/genetics
- Immunocompromised Host/immunology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Lymphopenia/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Mice, Transgenic
- Mycoses/immunology
- Mycoses/pathology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Sexual Maturation
Collapse
Affiliation(s)
- Darryl A Oble
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
73
|
Lacorazza HD, Nikolich-Zugich J. Exclusion and inclusion of TCR alpha proteins during T cell development in TCR-transgenic and normal mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:5591-600. [PMID: 15494509 DOI: 10.4049/jimmunol.173.9.5591] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allelic exclusion of immune receptor genes (and molecules) is incompletely understood. With regard to TCRalphabeta lineage T cells, exclusion at the tcr-b, but not tcr-a, locus seems to be strictly controlled at the locus rearrangement level. Consequently, while nearly all developing TCRalphabeta thymocytes express a single TCRbeta protein, many thymocytes rearrange and express two different TCRalpha chains and, thus, display two alphabetaTCRs on the cell surface. Of interest, the number of such dual TCR-expressing cells is appreciably lower among the mature T cells. To understand the details of TCR chain regulation at various stages of T cell development, we analyzed TCR expression in mice transgenic for two rearranged alphabetaTCR. We discovered that in such TCR double-transgenic (TCRdTg) mice peripheral T cells were functionally monospecific. Molecularly, this monospecificity was due to TCRalpha exclusion: one transgenic TCRalpha protein was selectively down-regulated from the thymocyte and T cell surface. In searching for the mechanism(s) governing this selective TCRalpha down-regulation, we present evidence for the role of protein tyrosine kinase signaling and coreceptor involvement. This mechanism may be operating in normal thymocytes.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Female
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Genes, Dominant
- Genes, T-Cell Receptor alpha
- Immunophenotyping
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- H Daniel Lacorazza
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
74
|
Xi H, Kersh GJ. Sustained early growth response gene 3 expression inhibits the survival of CD4/CD8 double-positive thymocytes. THE JOURNAL OF IMMUNOLOGY 2004; 173:340-8. [PMID: 15210792 DOI: 10.4049/jimmunol.173.1.340] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the absence of selection, CD4+, CD8+ double-positive (DP) thymocytes will die after 3-4 days. The mechanism for regulating the life span of DP cells is unknown. Previously, we demonstrated that the zinc finger transcription factor, early growth response gene 3 (Egr3), promotes proliferation during the transition from double negative (DN) to DP. In this study we demonstrate a novel role for Egr3 in controlling DP thymocyte survival in mice. Constitutive transgenic expression of Egr3 in thymocytes increases apoptosis among DP cells and shortens their survival in vitro. In addition, DP cells in Egr3 transgenic mice have poor expression of TCRalpha, and based on the predominant usage of 3' Valpha and 5' Jalpha gene segments, the low level of TCRalpha expression is a result of DP death soon after the initiation of TCRalpha rearrangements. Constitutive transgenic expression of Egr3 results in poor expression of Bcl-x(L) and the thymic isoform of retinoic acid receptor-related orphan receptor gamma (RORgammat) in DP thymocytes, two molecules that are required in DP cells for normal life span. Egr3 expression induced by pre-TCR signals in nontransgenic mice is transient and returns to background levels before RORgammat or Bcl-x(L) is induced. The data support a model in which Egr3 must be transiently induced in response to pre-TCR signals, so that the expression of the prosurvival molecules, RORgammat and Bcl-x(L), can be elevated only after the proliferative signal provided by Egr3 has subsided.
Collapse
MESH Headings
- Animals
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- Cell Survival
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Early Growth Response Protein 3
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Mice
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Proto-Oncogene Proteins c-bcl-2/analysis
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Retinoic Acid/genetics
- Receptors, Thyroid Hormone/genetics
- T-Lymphocytes/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- bcl-X Protein
Collapse
Affiliation(s)
- Hongkang Xi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | | |
Collapse
|
75
|
Abstract
Autoreactive antibodies are etiologic agents in a number of autoimmune diseases. Like all other antibodies these antibodies are produced in developing B cells by V(D)J recombination in the bone marrow. Three mechanisms regulate autoreactive B cells: deletion, receptor editing, and anergy. Here we review the prevalence of autoantibodies in the initial antibody repertoire, their regulation by receptor editing, and the role of the recombinase proteins (RAG1 and RAG2) in this process.
Collapse
Affiliation(s)
- Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
76
|
Singer A, Bosselut R. CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision. Adv Immunol 2004; 83:91-131. [PMID: 15135629 DOI: 10.1016/s0065-2776(04)83003-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
77
|
Zhou P, Borojevic R, Streutker C, Snider D, Liang H, Croitoru K. Expression of dual TCR on DO11.10 T cells allows for ovalbumin-induced oral tolerance to prevent T cell-mediated colitis directed against unrelated enteric bacterial antigens. THE JOURNAL OF IMMUNOLOGY 2004; 172:1515-23. [PMID: 14734729 DOI: 10.4049/jimmunol.172.3.1515] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The triggering Ag for inflammatory bowel disease and animal models of colitis is not known, but may include gut flora. Feeding OVA to DO11.10 mice with OVA-specific transgenic (Tg) TCR generates Ag-specific immunoregulatory CD4(+) T cells (Treg) cells. We examined the ability of oral Ag-induced Treg cells to suppress T cell-mediated colitis in mice. SCID-bg mice given DO11.10 CD4(+)CD45RB(high) T cells developed colitis, and cotransferring DO11.10 CD45RB(low)CD4(+) T cells prevented CD4(+)CD45RB(high) T cell-induced colitis in the absence of OVA. The induction and prevention of disease by DO11.10 CD4(+) T cell subsets were associated with an increase in endogenous TCRalpha chain expression on Tg T cells. Feeding OVA to SCID-bg mice reconstituted with DO11.10 CD4(+)CD45RB(high) attenuated the colitis in association with increased TGF-beta and IL-10 secretion, and decreased proliferative responses to both OVA and cecal bacteria Ag. OVA feeding also attenuated colitis in SCID-bg mice reconstituted with a mix of BALB/c and DO11.10 CD45RB(high) T cells, suggesting that OVA-induced Treg cells suppressed BALB/c effector cells. The expression of endogenous non-Tg TCR allowed for DO11.10-derived T cells to respond to enteric flora Ag. Furthermore, feeding OVA-induced Treg cells prevented colitis by inducing tolerance in both OVA-reactive and non-OVA-reactive T cells and by inducing Ag-nonspecific Treg cells. Such a mechanism might allow for Ag-nonspecific modulation of intestinal inflammation in inflammatory bowel disease.
Collapse
MESH Headings
- Administration, Oral
- Adoptive Transfer
- Animals
- Antigens, Bacterial/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/transplantation
- Cecum/immunology
- Cecum/microbiology
- Cell Division/genetics
- Cell Division/immunology
- Cell Line
- Colitis/genetics
- Colitis/immunology
- Colitis/pathology
- Colitis/prevention & control
- Cytokines/biosynthesis
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Immune Tolerance/genetics
- Immunity, Mucosal/genetics
- Immunophenotyping
- Intestinal Mucosa/immunology
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/pathology
- Leukocyte Common Antigens/administration & dosage
- Leukocyte Common Antigens/biosynthesis
- Leukocyte Common Antigens/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, SCID
- Mice, Transgenic
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Interleukin-2/biosynthesis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
Collapse
Affiliation(s)
- Pengfei Zhou
- Intestinal Disease Research Program, Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
78
|
Nikolich-Zugich J, Slifka MK, Messaoudi I. The many important facets of T-cell repertoire diversity. Nat Rev Immunol 2004; 4:123-32. [PMID: 15040585 DOI: 10.1038/nri1292] [Citation(s) in RCA: 479] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the thymus, a diverse and polymorphic T-cell repertoire is generated by random recombination of discrete T-cell receptor (TCR)-alphabeta gene segments. This repertoire is then shaped by intrathymic selection events to generate a peripheral T-cell pool of self-MHC restricted, non-autoaggressive T cells. It has long been postulated that some optimal level of TCR diversity allows efficient protection against pathogens. This article focuses on several recent advances that address the required diversity for the generation of an optimal immune response.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Vaccine and Gene Therapy Institute, Department of Molecular Microbiology and Immunology and the Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA.
| | | | | |
Collapse
|
79
|
Yannoutsos N, Barreto V, Misulovin Z, Gazumyan A, Yu W, Rajewsky N, Peixoto BR, Eisenreich T, Nussenzweig MC. A cis element in the recombination activating gene locus regulates gene expression by counteracting a distant silencer. Nat Immunol 2004; 5:443-50. [PMID: 15021880 DOI: 10.1038/ni1053] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 01/22/2004] [Indexed: 12/22/2022]
Abstract
We have identified a silencer and an antisilencing element that interact at a distance of 85 kilobases to regulate expression of the recombination activating genes Rag1 and Rag2 in thymocytes. Transgenic experiments showed that Rag promoter-proximal cis elements directed tissue-specific expression and that a Runx-dependent intergenic silencer suppressed expression in developing T cells. Deletion of the antisilencing element from the genomic Rag locus unmasked the intergenic silencer and abrogated Rag expression in developing CD4(+)CD8(+) T cells. We speculate that the Rag antisilencing element belongs to a class of cis elements that might be useful for genome diversification by activating genes encoded by otherwise silent transposable elements.
Collapse
Affiliation(s)
- Nikos Yannoutsos
- Laboratory of Molecular Immunology, Rockefeller University, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Holman PO, Walsh ER, Hogquist KA. The central tolerance response to male antigen in normal mice is deletion and not receptor editing. THE JOURNAL OF IMMUNOLOGY 2004; 171:4048-53. [PMID: 14530325 DOI: 10.4049/jimmunol.171.8.4048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is widely accepted that developing T cells can undergo clonal deletion in the thymus in response to a high affinity self-Ag. This is largely based on studies of TCR transgenics. However, encounter with high affinity self-Ag can also result in receptor editing in TCR transgenic models. Because all TCR transgenics display ectopic receptor expression, the tolerance mechanism that predominates in normal mice remains an open question. When self-Ag drives receptor editing during T cell development, one expects to find in-frame, self-reactive TCRalpha joins on TCR excision circles (TRECs), which are the products of secondary V/J recombination in the TCRalpha locus. Such joins are not expected if clonal deletion occurs, because the progenitor cell would be eliminated by apoptosis. To test the relative utilization of receptor editing vs clonal deletion, we determined the frequency of in-frame, male-specific joins on TRECs in male and female HYbeta transgenic mice. In comparison with female HYbeta transgenic mice, our analysis showed a lower frequency of TRECs with male-reactive V17J57 joins in male mice. Thus, it would appear that receptor editing is not a predominant tolerance mechanism for this self-Ag.
Collapse
MESH Headings
- Animals
- Clonal Deletion/genetics
- Female
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- H-Y Antigen/genetics
- H-Y Antigen/immunology
- Immune Tolerance/genetics
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- RNA Editing/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transgenes/immunology
Collapse
Affiliation(s)
- Philmore O Holman
- Department of Laboratory Medicine and Pathology and Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
81
|
Shockett PE, Zhou S, Hong X, Schatz DG. Partial reconstitution of V(D)J rearrangement and lymphocyte development in RAG-deficient mice expressing inducible, tetracycline-regulated RAG transgenes. Mol Immunol 2004; 40:813-29. [PMID: 14687938 DOI: 10.1016/j.molimm.2003.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Previously, we described a tetracycline-based autoregulatory system for inducible gene expression in mammalian cells and transgenic mice [Proc. Natl. Acad. Sci. U.S.A. 92 (1995) 6522]. We have tested the ability of this system to drive functional expression in vivo of the V(D)J recombination activating genes, RAG1 and RAG2. In induced transgenic mice, transgenic RAG1 and RAG2 mRNA is observed in thymus and spleen, and expression of both transgenes on the RAG1 or RAG2 knockout backgrounds allows partial, inducible, lymphocyte reconstitution. In thymus and peripheral lymphoid organs of reconstituted animals, cells expressing CD4 and/or CD8 on their surface, also express CD3 and TCR beta chain. In these animals, V(D)J rearrangements are detected in thymus, lymph nodes, and spleen at the TRB locus, and in thymus and lymph nodes at the TRD locus. At the TRA locus, broken ends at V(D)J recombination signals are detected only in thymus, as are reciprocal signal joint products derived from deletional rearrangement. T cell reconstitution occurs in these animals whether they are induced in utero during development, or shortly after birth. A low level of B cell reconstitution is also observed. B220+IgM+ cells are observed in spleen only in induced animals, and rearrangements at IGH and IGK loci are detected in bone marrow and spleen. Broken signal ends at the IGK locus, are not detected in peripheral lymphoid organs. Inducible reconstitution of normal levels of serum immunoglobulin, including heavy chain class switch isotype variants is also observed in these animals. Further, these transgenes do not appear to interfere with lymphocyte development mediated by functionally rearranged TRB chain or IGH chain transgenes in RAG-deficient animals. These mice provide a unique system for the inducible activation of V(D)J recombination and the development of primary lymphocytes.
Collapse
Affiliation(s)
- Penny E Shockett
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
82
|
Abstract
The recent advances in molecular biology and genetics, as well as the progress of in vitro techniques, have provided a more coherent image of the thymic function on the molecular level. But they have shifted the attention away from studies on the cellular level, which are necessary to clarify the biological roles of different cell types of the thymic microenvironment. The structure and function of the normal thymus depend on mutual interactions between thymocytes and nonlymphocyte cells. In this review a detailed description of morphological and phenotypic features of both maturing thymocytes and nonlymphocyte cells is given. The recent genetic and biochemical data are presented in conjunction with cytological results to enlighten the thymus cell-cell interactions during thymopoiesis and organization of thymic microstructure. Special emphasis is put on the experimental approaches, which may be used to study the interactions between thymocytes and nonlymphocyte cells in vivo.
Collapse
Affiliation(s)
- Novica M Milićević
- Institute of Histology and Embryology, Faculty of Medicine, University of Beograd, YU-11000 Beograd, Serbia and Montenegro
| | | |
Collapse
|
83
|
von Boehmer H. Selection of the T-Cell Repertoire: Receptor-Controlled Checkpoints in T-Cell Development. Adv Immunol 2004; 84:201-38. [PMID: 15246254 DOI: 10.1016/s0065-2776(04)84006-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Harald von Boehmer
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts USA
| |
Collapse
|
84
|
Abstract
Apoptotic cell death plays a critical role in the development and functioning of the immune system. During differentiation, apoptosis weeds out lymphocytes lacking useful antigen receptors and those expressing dangerous ones. Lymphocyte death is also involved in limiting the magnitude and duration of immune responses to infection. In this review, we describe the role of the Bcl-2 protein family, and to a lesser extent that of death receptors (members of the tumor necrosis factor receptor family with a death domain), in the control of lymphoid and myeloid cell survival. We also consider the pathogenic consequences of failure of apoptosis in the immune system.
Collapse
Affiliation(s)
- Vanessa S Marsden
- Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | |
Collapse
|
85
|
Abstract
A functional immune system requires the selection of T lymphocytes expressing receptors that are major histocompatibility complex restricted but tolerant to self-antigens. This selection occurs predominantly in the thymus, where lymphocyte precursors first assemble a surface receptor. In this review we summarize the current state of the field regarding the natural ligands and molecular factors required for positive and negative selection and discuss a model for how these disparate outcomes can be signaled via the same receptor. We also discuss emerging data on the selection of regulatory T cells. Such cells require a high-affinity interaction with self-antigens, yet differentiate into regulatory cells instead of being eliminated.
Collapse
Affiliation(s)
- Timothy K Starr
- Center for Immunology and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA.
| | | | | |
Collapse
|
86
|
Held W, Coudert JD, Zimmer J. The NK cell receptor repertoire: formation, adaptation and exploitation. Curr Opin Immunol 2003; 15:233-7. [PMID: 12633675 DOI: 10.1016/s0952-7915(02)00031-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identification of NK cell receptors specific for MHC class I molecules has greatly improved our knowledge of NK cell reactivity and specificity. Inhibitory receptors prevent NK cell activation directed against cells expressing self-MHC class I molecules. Consequently, diseased cells that do not express self-MHC class I molecules become susceptible to NK cell-mediated attack. Because of the specificity and distribution of inhibitory NK cell receptors, cells that express non-self (allogeneic) MHC class I molecules are also susceptible to NK cell reactions. This feature has been exploited in a clinical setting to treat leukemia patients.
Collapse
Affiliation(s)
- Werner Held
- Ludwig Institute for Cancer Research, Lausanne Branch and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | | | | |
Collapse
|
87
|
Vaitaitis GM, Poulin M, Sanderson RJ, Haskins K, Wagner DH. Cutting edge: CD40-induced expression of recombination activating gene (RAG) 1 and RAG2: a mechanism for the generation of autoaggressive T cells in the periphery. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3455-9. [PMID: 12646605 DOI: 10.4049/jimmunol.170.7.3455] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been speculated that autoimmune diseases are caused by failure of central tolerance. However, this remains controversial. We have suggested that CD40 expression identifies autoaggressive T cells in the periphery of autoimmune prone mice. In this study, we report that CD40 was cloned from autoaggressive T cells and that engagement induces expression and nuclear translocation of the recombinases, recombination activating gene (RAG) 1 and RAG2 in the autoaggressive, but not in the nonautoaggressive, peripheral T cell population. Furthermore, we demonstrate that CD40 engagement induces altered TCR Valpha, but not Vbeta, expression in these cells. Therefore, CD40-regulated expression of RAG1 and RAG2 in peripheral T cells may constitute a novel pathway for the generation of autoaggressive T cells.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- CD40 Antigens/genetics
- CD40 Antigens/physiology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Clone Cells
- Cloning, Molecular
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Female
- Gene Expression Regulation/immunology
- Genes, RAG-1/immunology
- Genes, T-Cell Receptor alpha/genetics
- Genes, T-Cell Receptor beta/genetics
- Mice
- Mice, Inbred NOD
- RNA, Messenger/biosynthesis
- RNA, Messenger/isolation & purification
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Gisela M Vaitaitis
- Department of Medicine and Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
88
|
Hamrouni A, Aublin A, Guillaume P, Maryanski JL. T cell receptor gene rearrangement lineage analysis reveals clues for the origin of highly restricted antigen-specific repertoires. J Exp Med 2003; 197:601-14. [PMID: 12615901 PMCID: PMC2193826 DOI: 10.1084/jem.20021945] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Due to ordered, stage-specific T cell receptor (TCR)-beta and -alpha locus gene rearrangements and cell division during T cell development, a given, ancestral TCR-beta locus VDJ rearrangement might be selected into the mature T cell repertoire as a small cohort of "half-sibling" progeny expressing identical TCR-beta chains paired with different TCR-alpha chains. The low frequency of such a cohort relative to the total alphabeta TCR repertoire precludes their direct identification and characterization in normal mice. We considered it possible that positive selection constraints might limit the diversity of TCR-alpha chains selected to pair with beta chains encoded by an ancestral VDJ-beta rearrangement. If so, half-sibling T cells expressing structurally similar, but different TCR-alpha chains might recognize the same foreign antigen. By single cell polymerase chain reaction analysis of antigen-specific TCRs selected during a model anti-tumor response, we were able to identify clusters of T cells sharing identical VDJ-beta rearrangements but expressing different TCR-alpha chains. The amplification of residual DJ-beta rearrangements as clonal markers allowed us to track T cells expressing different TCR-alpha chains back to a common ancestral VDJ-beta rearrangement. Thus, the diversity of TCR-alpha's selected as partners for a given VDJ-beta rearrangement into the mature TCR repertoire may indeed be very limited.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens/immunology
- Antigens/metabolism
- Base Sequence
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/physiology
- Cell Lineage
- Female
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Mice
- Models, Genetic
- Polymerase Chain Reaction/methods
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombination, Genetic
- Sequence Alignment
Collapse
Affiliation(s)
- Abdelbasset Hamrouni
- INSERM U503, Centre d'Etudes et de Recherches en Virologie et Immunologie (CERVI), 69007 Lyon, France
| | | | | | | |
Collapse
|
89
|
Liu X, Adams A, Wildt KF, Aronow B, Feigenbaum L, Bosselut R. Restricting Zap70 expression to CD4+CD8+ thymocytes reveals a T cell receptor-dependent proofreading mechanism controlling the completion of positive selection. J Exp Med 2003; 197:363-73. [PMID: 12566420 PMCID: PMC2193832 DOI: 10.1084/jem.20021698] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Although T cell receptor (TCR) signals are essential for intrathymic T cell-positive selection, it remains controversial whether they only serve to initiate this process, or whether they are required throughout to promote thymocyte differentiation and survival. To address this issue, we have devised a novel approach to interfere with thymocyte TCR signaling in a developmental stage-specific manner in vivo. We have reconstituted mice deficient for Zap70, a tyrosine kinase required for TCR signaling and normally expressed throughout T cell development, with a Zap70 transgene driven by the adenosine deaminase (ADA) gene enhancer, which is active in CD4(+)CD8(+) thymocytes but inactive in CD4(+) or CD8(+) single-positive (SP) thymocytes. In such mice, termination of Zap70 expression impaired TCR signal transduction and arrested thymocyte development after the initiation, but before the completion, of positive selection. Arrested thymocytes had terminated Rag gene expression and up-regulated TCR and Bcl-2 expression, but failed to differentiate into mature CD4 or CD8 SP thymocytes, to be rescued from death by neglect or to sustain interleukin 7R alpha expression. These observations identify a TCR-dependent proofreading mechanism that verifies thymocyte TCR specificity and differentiation choices before the completion of positive selection.
Collapse
Affiliation(s)
- Xiaolong Liu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
90
|
von Boehmer H, Aifantis I, Gounari F, Azogui O, Haughn L, Apostolou I, Jaeckel E, Grassi F, Klein L. Thymic selection revisited: how essential is it? Immunol Rev 2003; 191:62-78. [PMID: 12614352 DOI: 10.1034/j.1600-065x.2003.00010.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intrathymic T cell development represents one of the best studied paradigms of mammalian development. Lymphoid committed precursors enter the thymus and the Notch1 receptor plays an essential role in committing them to the T cell lineages. The pre-T cell receptor (TCR), as an autonomous cell signaling receptor, commits cells to the alphabeta lineage while its rival, the gammadeltaTCR, is involved in generating the gammadelta lineage of T cells. Positive and negative selection of immature alphabetaTCR-expressing cells are essential mechanisms for generating mature T cells, committing them to the CD4 and CD8 lineages and avoiding autoimmunity. Additional lineages of alphabetaT cells, such as the natural killer T cell lineage and the CD25+ regulatory T cell lineage, are formed when the alphabetaTCR encounters specific ligands in suitable microenvironments. Thus, positive selection and receptor-instructed lineage commitment represent a hallmark of the thymus. Ectopically expressed organ-specific antigens contribute to thymic self-nonself discrimination, which represents an essential feature for the evolutionary fitness of mammalian species.
Collapse
Affiliation(s)
- Harald von Boehmer
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Pasqual N, Gallagher M, Aude-Garcia C, Loiodice M, Thuderoz F, Demongeot J, Ceredig R, Marche PN, Jouvin-Marche E. Quantitative and qualitative changes in V-J alpha rearrangements during mouse thymocytes differentiation: implication for a limited T cell receptor alpha chain repertoire. J Exp Med 2002; 196:1163-73. [PMID: 12417627 PMCID: PMC2194109 DOI: 10.1084/jem.20021074] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Knowledge of the complete nucleotide sequence of the mouse TCRAD locus allows an accurate determination V-J rearrangement status. Using multiplex genomic PCR assays and real time PCR analysis, we report a comprehensive and systematic analysis of the V-J recombination of TCR alpha chain in normal mouse thymocytes during development. These respective qualitative and quantitative approaches give rise to four major points describing the control of gene rearrangements. (a) The V-J recombination pattern is not random during ontogeny and generates a limited TCR alpha repertoire; (b) V-J rearrangement control is intrinsic to the thymus; (c) each V gene rearranges to a set of contiguous J segments with a gaussian-like frequency; (d) there are more rearrangements involving V genes at the 3' side than 5' end of V region. Taken together, this reflects a preferential association of V and J gene segments according to their respective positions in the locus, indicating that accessibility of both V and J regions is coordinately regulated, but in different ways. These results provide a new insight into TCR alpha repertoire size and suggest a scenario for V usage during differentiation.
Collapse
Affiliation(s)
- Nicolas Pasqual
- Laboratoire d'Immunochimie, Commissariat à l'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, Unité 548, Université Joseph Fourier, 38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Livák F, Petrie HT. Access roads for RAG-ged terrains: control of T cell receptor gene rearrangement at multiple levels. Semin Immunol 2002; 14:297-309. [PMID: 12220931 DOI: 10.1016/s1044-5323(02)00063-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antigen-specific immune response requires the generation of a diverse antigen (Ag)-receptor repertoire. The primary repertoire is generated through somatic gene rearrangement and molded by subsequent cellular selection. Constraints during gene recombination influence the ultimate shape of the repertoire. One major control mechanism of gene rearrangement, investigated for many years, is exerted through regulated chromosomal accessibility of the recombinase to the antigen receptor loci. More recent studies began to explore the role of interactions between the recombinase and its cognate recognition DNA sequences. The emerging results suggest that formation of the primary repertoire is controlled by two, partially independent factors: chromosomal accessibility and direct recombinase-DNA interactions.
Collapse
Affiliation(s)
- Ferenc Livák
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
93
|
Carrasco YR, Navarro MN, de Yébenes VG, Ramiro AR, Toribio ML. Regulation of surface expression of the human pre-T cell receptor complex. Semin Immunol 2002; 14:325-34. [PMID: 12220933 DOI: 10.1016/s1044-5323(02)00065-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Considerable progress has recently been made in defining the role that pre-antigen receptor complexes, namely the pre-T and pre-B cell receptors, play in lymphocyte development. It is now established that these receptors direct, in a similar way, the survival, expansion, clonality and further differentiation of pre-T and pre-B lymphocytes, respectively. However, less is known about the mechanisms which ensure that only minute amounts of pre-TCR and pre-BCR reach the plasma membrane of developing lymphocytes. In this review, we discuss the implications of recent experimental approaches which address the developmental regulation of human pre-TCR expression and the molecular mechanisms that control surface pre-TCR expression levels.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Cell Membrane/metabolism
- Gene Expression Regulation, Developmental/immunology
- Humans
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Protein Processing, Post-Translational
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Yolanda R Carrasco
- Centro de Biología Molecular Severo Ochoa, CSIC, Facultad de Biología, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
94
|
Middlebrook AJ, Martina C, Chang Y, Lukas RJ, DeLuca D. Effects of nicotine exposure on T cell development in fetal thymus organ culture: arrest of T cell maturation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2915-24. [PMID: 12218105 DOI: 10.4049/jimmunol.169.6.2915] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is evidence for both physiological functions of the natural neurotransmitter, acetylcholine, and pharmacological actions of the plant alkaloid, nicotine, on the development and function of the immune system. The effects of continuous exposure to nicotine over a 12-day course of fetal thymus organ culture (FTOC) were studied, and thymocytes were analyzed by flow cytometry. In the presence of very low concentrations of nicotine many more immature T cells (defined by low or negative TCR expression) and fewer mature T cells (intermediate or high expression of TCR) were produced. In addition, the numbers of cells expressing CD69 and, to a lesser extent, CD95 (Fas) were increased. These effects took place when fetal thymus lobes from younger (13-14 days gestation) pups were used for FTOC. If FTOC were set up using tissue from older (15-16 days gestation pups), nicotine had little effect, suggesting that it may act only on immature T cell precursors. Consistent with an increase in immature cells, the expression of recombinase-activating genes was found to be elevated. Nicotine effects were partially blocked by the simultaneous addition of the nicotinic antagonist d-tubocurarine. Furthermore, d-tubocurarine alone blocked the development of both immature and mature murine thymocytes, suggesting the presence of an endogenous ligand that may engage nicotinic acetylcholine receptors on developing thymocytes and influence the course of normal thymic ontogeny.
Collapse
Affiliation(s)
- Aaron J Middlebrook
- Department of Microbiology and Immunology, University of Arizona College of Medicine, Tucson, AZ 85274, USA
| | | | | | | | | |
Collapse
|
95
|
He Y. Orphan nuclear receptors in T lymphocyte development. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.3.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- You‐Wen He
- Department of Immunology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
96
|
Guo J, Hawwari A, Li H, Sun Z, Mahanta SK, Littman DR, Krangel MS, He YW. Regulation of the TCRalpha repertoire by the survival window of CD4(+)CD8(+) thymocytes. Nat Immunol 2002; 3:469-76. [PMID: 11967541 DOI: 10.1038/ni791] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
T cell receptor (TCR) alpha alleles undergo primary and secondary rearrangement in double-positive (DP) thymocytes. By analyzing TCRalpha rearrangement in orphan nuclear receptor RORgamma-deficient mice, in which the DP lifespan is shorter, and in Bcl-x(L)-transgenic mice, in which the DP lifespan is extended, we show that the progression of secondary V(alpha) to J(alpha) rearrangements is controlled by DP thymocyte survival. In addition, because Bcl-x(L) induces a bias towards 3' J(alpha) usage in peripheral T cells, we conclude that the programmed cell death of DP thymocytes is not simply a consequence of failed positive selection. Rather, it limits the progression of rearrangement along the J(alpha) locus and the opportunities for positive selection, thereby regulating the TCRalpha repertoire.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation/immunology
- Cell Survival/immunology
- Chromatin/immunology
- DNA/chemistry
- DNA/genetics
- DNA/isolation & purification
- Flow Cytometry
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Polymerase Chain Reaction
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/immunology
- Receptors, Retinoic Acid
- Receptors, Thyroid Hormone
- Specific Pathogen-Free Organisms
- bcl-X Protein
Collapse
Affiliation(s)
- Jian Guo
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Yassai M, Ammon K, Goverman J, Marrack P, Naumov Y, Gorski J. A molecular marker for thymocyte-positive selection: selection of CD4 single-positive thymocytes with shorter TCRB CDR3 during T cell development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3801-7. [PMID: 11937532 DOI: 10.4049/jimmunol.168.8.3801] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The generation of the naive T cell repertoire is a direct result of maturation and selection events in the thymus. Although maturation events are judged predominantly on the expression of surface markers, molecular markers, more intimately involved in the selection process, can be informative. We have identified a molecular marker for selection in later stages of maturation in humans. Thymocytes are selected for the expression of TCR beta-chains with shorter CDR3 at the double-positive to single-positive (SP) transition. Here we extend these studies to the mouse and show that the selection phenotype is not related to alpha-chain pairing but is a function of the MHC haplotype. Interestingly, the selection is much more apparent in CD4 SP thymocytes than in CD8 SP cells. This is in contrast to human thymocytes, where the selection is equally apparent in both lineages. The involvement of MHC in the process argues that this is a positive selection stage. The difference in the extent of this selection between the two SP lineages may indicate a class difference in the nature of the TCR-MHC interaction, the role of coreceptors in the selection process, or both.
Collapse
MESH Headings
- Animals
- Biomarkers/analysis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Complementarity Determining Regions/analysis
- Complementarity Determining Regions/blood
- Complementarity Determining Regions/genetics
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genes, MHC Class II/physiology
- Immunophenotyping
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/blood
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Maryam Yassai
- Blood Research Institute, Blood Center of Southeastern Wisconsin, Milwaukee, WI 53201, USA
| | | | | | | | | | | |
Collapse
|
98
|
Borowski C, Martin C, Gounari F, Haughn L, Aifantis I, Grassi F, von Boehmer H. On the brink of becoming a T cell. Curr Opin Immunol 2002; 14:200-6. [PMID: 11869893 DOI: 10.1016/s0952-7915(02)00322-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent studies provide fresh insight into the mechanisms by which precursor cells are committed to and develop within the T-lymphocyte lineage. Precursor/product studies have identified developmental stages between that of the pluripotent hematopoietic stem cell and thymocytes committed to the T lineage. Specific ligands and signaling pathways interacting with the Notch-1 receptor and its ability to influence commitment within the lymphoid lineage have been described. Although the structural features or putative ligands endowing the pre-TCR with constitutive signaling capacity remain elusive, numerous distal mediators of pre-TCR signaling have been identified. It remains for the future to determine what roles they may have in survival, proliferation, lineage commitment and allelic exclusion of TCR genes. Receptor editing and lineage commitment of alphabeta T cells still represent controversial topics that need further study.
Collapse
Affiliation(s)
- Christine Borowski
- Department of Pathology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
He X, Janeway CA, Levine M, Robinson E, Preston-Hurlburt P, Viret C, Bottomly K. Dual receptor T cells extend the immune repertoire for foreign antigens. Nat Immunol 2002; 3:127-34. [PMID: 11812989 DOI: 10.1038/ni751] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the discovery of T cells that express two T cell receptors (TCRs), termed dual TCR cells, most studies have focused on their autoimmune potential, while their beneficial roles remained elusive. We identified, in normal mice, dual TCR cells that participated in the immune response to a foreign antigen. Unlike single TCR cells, dual TCR cells used the nonselected TCR to respond in the periphery, but relied on coexpression of a second TCR for intrathymic selection. We found that they were selected at low frequency in the naïve repertoire, but dominated the response to antigen through clonal expansion. Thus, dual TCR cells can extend the TCR repertoire for foreign antigens by rescuing functional TCRs that cannot be selected on single TCR cells; they can, therefore, benefit the immune system.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Gene Rearrangement, T-Lymphocyte
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocyte Activation
- Mice
- Mice, Transgenic
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Selection, Genetic
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Xin He
- Section of Immunobiology, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06520-8011, USA.
| | | | | | | | | | | | | |
Collapse
|
100
|
|