51
|
D'souza S, Lau KCK, Coffin CS, Patel TR. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J Gastroenterol 2020; 26:5759-5783. [PMID: 33132633 PMCID: PMC7579760 DOI: 10.3748/wjg.v26.i38.5759] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with viral hepatitis affects half a billion individuals worldwide and can lead to cirrhosis, cancer, and liver failure. Liver cancer is the third leading cause of cancer-associated mortality, of which hepatocellular carcinoma (HCC) represents 90% of all primary liver cancers. Solid tumors like HCC are complex and have heterogeneous tumor genomic profiles contributing to complexity in diagnosis and management. Chronic infection with hepatitis B virus (HBV), hepatitis delta virus (HDV), and hepatitis C virus (HCV) are the greatest etiological risk factors for HCC. Due to the significant role of chronic viral infection in HCC development, it is important to investigate direct (viral associated) and indirect (immune-associated) mechanisms involved in the pathogenesis of HCC. Common mechanisms used by HBV, HCV, and HDV that drive hepatocarcinogenesis include persistent liver inflammation with an impaired antiviral immune response, immune and viral protein-mediated oxidative stress, and deregulation of cellular signaling pathways by viral proteins. DNA integration to promote genome instability is a feature of HBV infection, and metabolic reprogramming leading to steatosis is driven by HCV infection. The current review aims to provide a brief overview of HBV, HCV and HDV molecular biology, and highlight specific viral-associated oncogenic mechanisms and common molecular pathways deregulated in HCC, and current as well as emerging treatments for HCC.
Collapse
Affiliation(s)
- Simmone D'souza
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Keith CK Lau
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Carla S Coffin
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Trushar R Patel
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge T1K3M4, AB, Canada
| |
Collapse
|
52
|
El-Tahan RR, Ghoneim AM, Zaghloul H. Dissection of two drug-targeted regions of Hepatitis C virus subtype 4a infecting Egyptian patients. Virus Genes 2020; 56:564-581. [PMID: 32572756 PMCID: PMC7307947 DOI: 10.1007/s11262-020-01776-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Recently, treatment of HCV infection has been improved after the development of direct acting antivirals (DAAs) which target different viral proteins (NS3-4A, NS5A and NS5B). The activity and effectiveness of these DAAs are affected by the presence of resistance associated substitutions (RASs). This study aimed to characterize HCV genotypes circulating among Egyptian HCV patients, to dissect the full sequences of HCV NS3-4A and NS5B regions, and to characterize RASs associated with NS3-4A and NS5B inhibitors in HCV treatment-naïve patients. Genotyping of 80 HCV samples from treatment-naïve patients was done using restriction fragment length polymorphism and phylogenetic analysis based on some full NS5B sequences. Results showed the prevalence of HCV subtype 4a. Twenty four new full sequences of NS3-4A and NS5B regions of subtype 4a were deposited in the GenBank database. In general, the substitutions associated with NS3-4A-targeting drugs were absent predicting possible responsiveness of Egyptian HCV patients to these drugs. In addition, the absence of amino acid substitutions associated with resistance to Sofosbuvir may predict good response to treatment with Sofosbuvir. Some amino acid substitutions associated with resistance to different classes of non-nucleoside inhibitors were detected. Further investigations on treated Egyptian HCV patients may evaluate the effectiveness of the massively used drugs. Many predicted T-cell-binding epitopes in NS3-4A and NS5B regions were found to be highly conserved in the currently studied isolates; a finding that might be important for HCV vaccine development. We demonstrated potential NS3 epitopes that could be used in engineering T cells against HCV epitopes.
Collapse
Affiliation(s)
- Radwa R. El-Tahan
- Zoology Department, Faculty of Science, Damietta University, New Damietta, P.O. 34517, Damietta, Egypt
| | - Ahmed M. Ghoneim
- Zoology Department, Faculty of Science, Damietta University, New Damietta, P.O. 34517, Damietta, Egypt
| | - Hosam Zaghloul
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
53
|
Carlisle JW, Jansen CS, Bilen MA, Kissick H. Considerations for cancer immunotherapy biomarker research during COVID-19. Endocr Relat Cancer 2020; 27:C1-C8. [PMID: 32508308 PMCID: PMC7385701 DOI: 10.1530/erc-20-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Jennifer W Carlisle
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Caroline S Jansen
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Haydn Kissick
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
54
|
Mondino A, Manzo T. To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors. Front Immunol 2020; 11:1915. [PMID: 32973794 PMCID: PMC7481451 DOI: 10.3389/fimmu.2020.01915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The generation of immunological memory is a hallmark of adaptive immunity by which the immune system "remembers" a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also "bad memories"-in the form of antigen-experienced T cell subsets-co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy.
Collapse
Affiliation(s)
- Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| |
Collapse
|
55
|
Gavriil A, Barisa M, Halliwell E, Anderson J. Engineering Solutions for Mitigation of Chimeric Antigen Receptor T-Cell Dysfunction. Cancers (Basel) 2020; 12:E2326. [PMID: 32824734 PMCID: PMC7463974 DOI: 10.3390/cancers12082326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
The clinical successes of chimeric antigen receptor (CAR)-T-cell therapy targeting cell surface antigens in B cell leukaemias and lymphomas has demonstrated the proof of concept that appropriately engineered T-cells have the capacity to destroy advanced cancer with long term remissions ensuing. Nevertheless, it has been significantly more problematic to effect long term clinical benefit in a solid tumour context. A major contributing factor to the clinical failure of CAR-T-cells in solid tumours has been named, almost interchangeably, as T-cell "dysfunction" or "exhaustion". While unhelpful ambiguity surrounds the term "dysfunction", "exhaustion" is canonically regarded as a pejorative term for T-cells. Recent understanding of T-cell developmental biology now identifies exhausted cells as vital for effective immune responses in the context of ongoing antigenic challenge. The purpose of this review is to explore the critical stages in the CAR-T-cell life-cycle and their various contributions to T-cell exhaustion. Through an appreciation of the predominant mechanisms of CAR-T-cell exhaustion and resultant dysfunction, we describe a range of engineering approaches to improve CAR-T-cell function.
Collapse
Affiliation(s)
| | | | | | - John Anderson
- UCL Great Ormond Street, Institute of Child Health, London WC1N 1EH, UK; (A.G.); (M.B.); (E.H.)
| |
Collapse
|
56
|
Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020; 21:ijms21165644. [PMID: 32781731 PMCID: PMC7460648 DOI: 10.3390/ijms21165644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Correspondence: ; Tel.: +49-761-270-32800
| |
Collapse
|
57
|
Han JW, Sung PS, Hong SH, Lee H, Koh JY, Lee H, White S, Maslow JN, Weiner DB, Park SH, Jeong M, Heo J, Ahn SH, Shin EC. IFNL3-adjuvanted HCV DNA vaccine reduces regulatory T cell frequency and increases virus-specific T cell responses. J Hepatol 2020; 73:72-83. [PMID: 32088322 DOI: 10.1016/j.jhep.2020.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Although direct-acting antiviral (DAA) treatment results in a sustained virologic response (SVR) in most patients with chronic HCV infection, they are at risk of re-infection. Moreover, the immune system is not completely normalized even after SVR (e.g. increased regulatory T [Treg] cell frequency). We developed a DNA vaccine, GLS-6150, to prevent re-infection of patients with DAA-induced SVR and evaluated its safety and immunogenicity in individuals with chronic HCV infection. METHODS GLS-6150 consists of plasmids encoding HCV non-structural proteins (NS3-NS5A) and adjuvant IFNL3. The vaccine was administered 4 times at 4-weekly intervals to 3 groups (1, 3, or 6 mg/vaccination; n = 6 per group), followed by a 6 mg boost at 24 weeks (n = 14). Peripheral blood T cell responses were evaluated by interferon (IFN)-γ enzyme-linked immunospot assays, intracellular cytokine staining, and major histocompatibility complex class-I (MHC-I) dextramer staining. Treg cell frequency was assessed by flow cytometry. RESULTS Severe adverse events or vaccine discontinuation were not reported. The IFN-γ spot-forming cells specific to NS3-NS5A were increased by GLS-6150. Both CD4+ and CD8+ T cells produced multiple cytokines. However, the frequency and phenotype of HCV-specific MHC-I dextramer+CD8+ T cells were not changed. Interestingly, the frequency of Treg cells, particularly activated Treg cells, was decreased by GLS-6150, as expected from previous reports that IFNL3 adjuvants decrease Treg cell frequency. Ex vivo IFN-λ3 treatment reduced Treg frequency in pre-vaccination peripheral blood mononuclear cells. Finally, Treg cell frequency inversely correlated with HCV-specific, IFN-γ-producing T cell responses in the study participants. CONCLUSIONS We demonstrate that GLS-6150 decreases Treg cell frequency and enhances HCV-specific T cell responses without significant side effects. A phase I clinical trial of GLS-6150 is currently underway in patients with DAA-induced SVR. CLINICAL TRIAL NUMBER NCT02027116. LAY SUMMARY Although direct-acting antivirals (DAAs) are successfully used for the treatment of chronic hepatitis C virus (HCV) infection, a prophylactic HCV vaccine needs to be developed, especially for patients who achieve a sustained virologic response. In the current study, we show that a DNA vaccine (GLS-6150) was safe and increased HCV-specific T cell responses. A clinical trial is underway to test this vaccine in patients with a sustained virologic response following DAA therapy.
Collapse
Affiliation(s)
- Ji Won Han
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Pil Soo Sung
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seon-Hui Hong
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea
| | - Hoyoung Lee
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea
| | - June Young Koh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hyojin Lee
- GeneOne Life Science, Inc., Seoul 06060, Republic of Korea
| | - Scott White
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | - Joel N Maslow
- GeneOne Life Science, Inc., Seoul 06060, Republic of Korea
| | | | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea
| | - Moonsup Jeong
- GeneOne Life Science, Inc., Seoul 06060, Republic of Korea
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University, Busan 49241, Republic of Korea.
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
58
|
Sepulveda-Crespo D, Resino S, Martinez I. Innate Immune Response against Hepatitis C Virus: Targets for Vaccine Adjuvants. Vaccines (Basel) 2020; 8:vaccines8020313. [PMID: 32560440 PMCID: PMC7350220 DOI: 10.3390/vaccines8020313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Despite successful treatments, hepatitis C virus (HCV) infections continue to be a significant world health problem. High treatment costs, the high number of undiagnosed individuals, and the difficulty to access to treatment, particularly in marginalized susceptible populations, make it improbable to achieve the global control of the virus in the absence of an effective preventive vaccine. Current vaccine development is mostly focused on weakly immunogenic subunits, such as surface glycoproteins or non-structural proteins, in the case of HCV. Adjuvants are critical components of vaccine formulations that increase immunogenic performance. As we learn more information about how adjuvants work, it is becoming clear that proper stimulation of innate immunity is crucial to achieving a successful immunization. Several hepatic cell types participate in the early innate immune response and the subsequent inflammation and activation of the adaptive response, principally hepatocytes, and antigen-presenting cells (Kupffer cells, and dendritic cells). Innate pattern recognition receptors on these cells, mainly toll-like receptors, are targets for new promising adjuvants. Moreover, complex adjuvants that stimulate different components of the innate immunity are showing encouraging results and are being incorporated in current vaccines. Recent studies on HCV-vaccine adjuvants have shown that the induction of a strong T- and B-cell immune response might be enhanced by choosing the right adjuvant.
Collapse
Affiliation(s)
| | - Salvador Resino
- Correspondence: (S.R.); (I.M.); Tel.: +34-91-8223266 (S.R.); +34-91-8223272 (I.M.); Fax: +34-91-5097919 (S.R. & I.M.)
| | - Isidoro Martinez
- Correspondence: (S.R.); (I.M.); Tel.: +34-91-8223266 (S.R.); +34-91-8223272 (I.M.); Fax: +34-91-5097919 (S.R. & I.M.)
| |
Collapse
|
59
|
Impact of IFN-Free and IFN-Based Treatment on Blood Myeloid Dendritic Cell, Monocyte, Slan-DC, and Activated T Lymphocyte Dynamics during HCV Infection. J Immunol Res 2020; 2020:2781350. [PMID: 32258171 PMCID: PMC7102477 DOI: 10.1155/2020/2781350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 11/18/2022] Open
Abstract
Chronic hepatitis C virus infection leads to the activation of innate immunity, a key component in HCV fibrosis. In the past, the use of IFN-based treatment regimens did not permit an adequate evaluation of the impact of HCV clearance on immune cells, because of their antiviral and immunomodulatory properties. The recent development of direct-acting antiviral (DAA) therapy, which is associated with high rates of sustained virological response, enables a more accurate analysis of the immunological modifications following HCV eradication. We studied the dynamics of blood myeloid dendritic cells, monocytes, slan-DCs, and T lymphocytes during IFN-free and IFN-based regimens in hepatitis C virus infection.
Collapse
|
60
|
Szereday L, Meggyes M, Berki T, Miseta A, Farkas N, Gervain J, Par A, Par G. Direct-acting antiviral treatment downregulates immune checkpoint inhibitor expression in patients with chronic hepatitis C. Clin Exp Med 2020; 20:219-230. [PMID: 32108916 PMCID: PMC7181552 DOI: 10.1007/s10238-020-00618-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis C (CHC) infection is associated with increased TIM-3, PD-1 immune checkpoint receptors expression that inhibits adaptive T cells and increases NK cell cytotoxicity against T helper cells, both resulting T cell exhaustion. Elimination of the virus with direct-acting antivirals (DAAs) may modify host immune response via altering these immune checkpoint receptors’ expression. We conducted a prospective study to analyze changes in TIM-3, PD-1 and their ligands galectin-9, PD-L1 expression by peripheral blood T cell subpopulations, NK cell subpopulations, and monocytes by multicolor flow cytometry in 14 CHC patients successfully treated with 12 weeks of dasabuvir, ombitasvir, and paritaprevir/ritonavir plus ribavirin. Blood samples were collected before, at the end of treatment, and 12 and 24 weeks later. Sustained virological response (SVR) was associated with increased percentage of peripheral blood CD3+ T and CD8+ cytotoxic T lymphocytes and decreased percentage of NKbright cells. After DAA treatment, decreased TIM-3 expression by CD4+ T cells, by NKbright, and by NKT cells was found. Expression of immune checkpoint molecules’ ligand PD-L1 by NK cells and by regulatory T cells and galectin-9 by NK cells and monocytes also decreased significantly at SVR. Our data suggest that DAA treatment not only inhibits viral replication but may alter host adaptive and innate immune responses. A decrease in immune checkpoint molecules and their ligands expression both on adaptive and on innate immune cells may contribute to the recovery of exhausted adaptive immune responses and to sustained virological response.
Collapse
Affiliation(s)
- Laszlo Szereday
- Department of Medical Microbiology and Immunology, University of Pecs, Medical School, 12 Szigeti Street, Pecs, 7624, Hungary. .,Janos Szentagothai Research Centre, Pecs, Hungary.
| | - Matyas Meggyes
- Department of Medical Microbiology and Immunology, University of Pecs, Medical School, 12 Szigeti Street, Pecs, 7624, Hungary.,Janos Szentagothai Research Centre, Pecs, Hungary
| | - Timea Berki
- Department of Biotechnology and Immunology, University of Pecs, Medical School, Pecs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Judit Gervain
- County Hospital Fejér, Szent György Hospital, Szekesfehervar, Hungary
| | - Alajos Par
- Division of Gastroenterology, First Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Gabriella Par
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary.,Division of Gastroenterology, First Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
| |
Collapse
|
61
|
Im SJ, Ha SJ. Re-defining T-Cell Exhaustion: Subset, Function, and Regulation. Immune Netw 2020; 20:e2. [PMID: 32158590 PMCID: PMC7049579 DOI: 10.4110/in.2020.20.e2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/29/2022] Open
Abstract
Acute viral infection or vaccination generates highly functional memory CD8 T cells following the Ag resolution. In contrast, persistent antigenic stimulation in chronic viral infection and cancer leads to a state of T-cell dysfunction termed T-cell exhaustion. We and other have recently identified a novel subset of exhausted CD8 T cells that act as stem cells for maintaining virus-specific CD8 T cells in a mouse model of chronic lymphocytic choriomeningitis virus infection. This stem cell-like CD8 T-cell subset has been also observed in both mouse and human tumor models. Most importantly, in both chronic viral infection and tumor models, the proliferative burst of Ag-specific CD8 T cells driven by PD-1-directed immunotherapy comes exclusively from this stem cell-like CD8 T-cell subset. Therefore, a better understanding of the mechanisms how CD8 T-cell subsets are regulated during chronic viral infection and cancer is required to improve the current immunotherapies that restore the function of exhausted CD8 T cells. In this review, we discuss the differentiation of virus-specific CD8 T cells during chronic viral infection, the characteristics and function of CD8 T-cell subsets, and the therapeutic intervention of PD-1-directed immunotherapy in cancer.
Collapse
Affiliation(s)
- Se Jin Im
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA.,Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
62
|
Safety Profile of a Multi-Antigenic DNA Vaccine Against Hepatitis C Virus. Vaccines (Basel) 2020; 8:vaccines8010053. [PMID: 32013228 PMCID: PMC7158683 DOI: 10.3390/vaccines8010053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Despite direct acting antivirals (DAAs) curing >95% of individuals infected with hepatitis C (HCV), in order to achieve the World Health Organization HCV Global Elimination Goals by 2030 there are still major challenges that need to be overcome. DAAs alone are unlikely to eliminate HCV in the absence of a vaccine that can limit viral transmission. Consequently, a prophylactic HCV vaccine is necessary to relieve the worldwide burden of HCV disease. DNA vaccines are a promising vaccine platform due to their commercial viability and ability to elicit robust T-cell-mediated immunity (CMI). We have developed a novel cytolytic DNA vaccine that encodes non-structural HCV proteins and a truncated mouse perforin (PRF), which is more immunogenic than the respective canonical DNA vaccine lacking PRF. Initially we assessed the ability of the HCV pNS3-PRF and pNS4/5-PRF DNA vaccines to elicit robust long-term CMI without any adverse side-effects in mice. Interferon-γ (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay was used to evaluate CMI against NS3, NS4 and NS5B in a dose-dependent manner. This analysis showed a dose-dependent bell-curve of HCV-specific responses in vaccinated animals. We then thoroughly examined the effects associated with reactogenicity of cytolytic DNA vaccination with the multi-antigenic HCV DNA vaccine (pNS3/4/5B). Hematological, biochemical and histological studies were performed in male Sprague Dawley rats with a relative vaccine dose 10–20-fold higher than the proposed dose in Phase I clinical studies. The vaccine was well tolerated, and no toxicity was observed. Thus, the cytolytic multi-antigenic DNA vaccine is safe and elicits broad memory CMI.
Collapse
|
63
|
Pirozyan MR, Nguyen N, Cameron B, Luciani F, Bull RA, Zekry A, Lloyd AR. Chemokine-Regulated Recruitment of Antigen-Specific T-Cell Subpopulations to the Liver in Acute and Chronic Hepatitis C Infection. J Infect Dis 2020; 219:1430-1438. [PMID: 30496498 DOI: 10.1093/infdis/jiy679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In hepatitis C virus (HCV) infection, virus-specific CD8+ T cells are recruited to the liver for antiviral activity. Multiple chemokine ligands are induced by the infection, notably interferon-inducible chemokine, CXCL10. In HCV, intrahepatic T cells express chemokine receptors (CCRs), including CXCR3, CXCR6, CCR1, and CCR5, but CCR expression on antigen-specific effector and memory T cells has not been investigated. METHODS Paired blood and liver samples were collected from subjects with chronic HCV for flow cytometric analysis of CCR expression on CD8+ T cells. Expression of these CCRs was then examined on HCV-specific CD8+ T-cell subpopulations in the blood from subjects with acute or chronic HCV. RESULTS Relative to peripheral blood, the liver was enriched with CD8+ T cells expressing CCR2, CCR5, CXCR3, and CXCR6 either singly or in combinations. CXCR3 was preferentially expressed on HCV-specific CD8+ T cells in both acute and chronic phases of infection in blood. Both CXCR3 and CCR2 were overexpressed on HCV-specific CD8+CCR7+CD45RO+ (central memory) cells, whereas effector memory (CD8+CCR7-CD45RO+) cells expressed more CXCR6. CONCLUSIONS CXCR3-mediated signals support the accumulation of HCV-specific CD8+ memory T cells in the infected liver, and emphasize the importance of the CXCL10/CXCR3 trafficking pathway during acute and chronic HCV infection.
Collapse
Affiliation(s)
- Mehdi R Pirozyan
- Viral Immunology Systems Program, The Kirby Institute.,School of Medical Sciences, Faculty of Medicine.,Melanoma Immunology and Oncology, The Centenary Institute, Sydney, Australia
| | - Nam Nguyen
- School of Medical Sciences, Faculty of Medicine
| | | | - Fabio Luciani
- Viral Immunology Systems Program, The Kirby Institute
| | - Rowena A Bull
- Viral Immunology Systems Program, The Kirby Institute
| | - Amany Zekry
- School of Medical Sciences, Faculty of Medicine.,St George Hospital Clinical School, University of New South Wales
| | | |
Collapse
|
64
|
Agrawal B. Heterologous Immunity: Role in Natural and Vaccine-Induced Resistance to Infections. Front Immunol 2019; 10:2631. [PMID: 31781118 PMCID: PMC6856678 DOI: 10.3389/fimmu.2019.02631] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
The central paradigm of vaccination is to generate resistance to infection by a specific pathogen when the vacinee is re-exposed to that pathogen. This paradigm is based on two fundamental characteristics of the adaptive immune system, specificity and memory. These characteristics come from the clonal specificity of T and B cells and the long-term survival of previously-encountered memory cells which can rapidly and specifically expand upon re-exposure to the same specific antigen. However, there is an increasing awareness of the concept, as well as experimental documentation of, heterologous immunity and cross-reactivity of adaptive immune lymphocytes in protection from infection. This awareness is supported by a number of human epidemiological studies in vaccine recipients and/or individuals naturally-resistant to certain infections, as well as studies in mouse models of infections, and indeed theoretical considerations regarding the disproportional repertoire of available T and B cell clonotypes compared to antigenic epitopes found on pathogens. Heterologous immunity can broaden the protective outcomes of vaccinations, and natural resistance to infections. Besides exogenous microbes/pathogens and/or vaccines, endogenous microbiota can also impact the outcomes of an infection and/or vaccination through heterologous immunity. Moreover, utilization of viral and/or bacterial vaccine vectors, capable of inducing heterologous immunity may also influence the natural course of many infections/diseases. This review article will briefly discuss these implications and redress the central dogma of specificity in the immune system.
Collapse
Affiliation(s)
- Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
65
|
Immunological Dynamics Associated with Direct-Acting Antiviral Therapies in Naive and Experimented HCV Chronic-Infected Patients. Mediators Inflamm 2019; 2019:4738237. [PMID: 31780860 PMCID: PMC6875334 DOI: 10.1155/2019/4738237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/09/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
The therapeutic strategies used in the treatment of hepatitis C are essentially based on the combination of direct-acting antiviral agents (DAAs). This therapy has been shown to be very effective in relation to patient adherence to treatment and has shown high rates of sustained virological response (SVR). However, the immunological dynamics of patients infected with HCV is poorly understood. This fact led us to investigate the immune system of naive and experienced patients, who we followed before the therapy and three months after the end of treatment. In this study, 35 naive and experienced Brazilian patients with chronic hepatitis C and 50 healthy donors (HD group) were studied. The analysis of the soluble immunological biomarkers was performed using the flow cytometry methodology. The SVR rate was >90% among the 35 patients. Before treatment, correlations in the naive HCV group demonstrated a mix of inflammatory response occurring with moderate correlations between chemokines, inflammatory cytokines, and Th2 profile, with a strong regulation between IL-10 and IL-17A. On the other hand, experienced patients demonstrated a poor interaction between cytokines, chemokines, and cells with a strong correlation between IL-10, IL-6, CXCL-10, and CD8+ besides the interactions between IFN-γ and IL-4. Furthermore, naive and experienced patients seem to have a distinct soluble biomarker profile; therefore, a long-term follow-up is needed to evaluate patients treated with DAAs.
Collapse
|
66
|
Acosta Rodríguez EV, Araujo Furlan CL, Fiocca Vernengo F, Montes CL, Gruppi A. Understanding CD8 + T Cell Immunity to Trypanosoma cruzi and How to Improve It. Trends Parasitol 2019; 35:899-917. [PMID: 31607632 PMCID: PMC6815727 DOI: 10.1016/j.pt.2019.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
The protozoan Trypanosoma cruzi is the causative agent of Chagas' disease, endemic in Latin America but present worldwide. Research efforts have focused on the examination of immune mechanisms that mediate host protection as well as immunopathology during this parasitic infection. The study of CD8+ T cell immunity emerges as a key aspect given the critical importance of parasite-specific CD8+ T cells for host resistance throughout the infection. In recent years, new research has shed light on novel pathways that modulate the induction, maintenance, and regulation of CD8+ T cell responses to T. cruzi. This new knowledge is setting the ground for future vaccines and/or immunotherapies. Herein, we critically review and analyze the latest results published in the field.
Collapse
Affiliation(s)
- Eva V Acosta Rodríguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| | - Cintia L Araujo Furlan
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| |
Collapse
|
67
|
Retamal-Díaz A, Covián C, Pacheco GA, Castiglione-Matamala AT, Bueno SM, González PA, Kalergis AM. Contribution of Resident Memory CD8 + T Cells to Protective Immunity Against Respiratory Syncytial Virus and Their Impact on Vaccine Design. Pathogens 2019; 8:pathogens8030147. [PMID: 31514485 PMCID: PMC6789444 DOI: 10.3390/pathogens8030147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022] Open
Abstract
Worldwide, human respiratory syncytial virus (RSV) is the most common etiological agent for acute lower respiratory tract infections (ALRI). RSV-ALRI is the major cause of hospital admissions in young children, and it can cause in-hospital deaths in children younger than six months old. Therefore, RSV remains one of the pathogens deemed most important for the generation of a vaccine. On the other hand, the effectiveness of a vaccine depends on the development of immunological memory against the pathogenic agent of interest. This memory is achieved by long-lived memory T cells, based on the establishment of an effective immune response to viral infections when subsequent exposures to the pathogen take place. Memory T cells can be classified into three subsets according to their expression of lymphoid homing receptors: central memory cells (TCM), effector memory cells (TEM) and resident memory T cells (TRM). The latter subset consists of cells that are permanently found in non-lymphoid tissues and are capable of recognizing antigens and mounting an effective immune response at those sites. TRM cells activate both innate and adaptive immune responses, thus establishing a robust and rapid response characterized by the production of large amounts of effector molecules. TRM cells can also recognize antigenically unrelated pathogens and trigger an innate-like alarm with the recruitment of other immune cells. It is noteworthy that this rapid and effective immune response induced by TRM cells make these cells an interesting aim in the design of vaccination strategies in order to establish TRM cell populations to prevent respiratory infectious diseases. Here, we discuss the biogenesis of TRM cells, their contribution to the resolution of respiratory viral infections and the induction of TRM cells, which should be considered for the rational design of new vaccines against RSV.
Collapse
Affiliation(s)
- Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Camila Covián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Gaspar A Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Angelo T Castiglione-Matamala
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
- Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
| |
Collapse
|
68
|
Chernykh ER, Oleynik EA, Leplina OY, Starostina NM, Ostanin AA. Dendritic cells in the pathogenesis of viral hepatitis C. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2019. [DOI: 10.15789/2220-7619-2019-2-239-252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
69
|
Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, Werner MT, Huang AC, Alexander KA, Wu JE, Attanasio J, Yan P, George SM, Bengsch B, Staupe RP, Donahue G, Xu W, Amaravadi RK, Xu X, Karakousis GC, Mitchell TC, Schuchter LM, Kaye J, Berger SL, Wherry EJ. TOX transcriptionally and epigenetically programs CD8 + T cell exhaustion. Nature 2019; 571:211-218. [PMID: 31207603 PMCID: PMC6713202 DOI: 10.1038/s41586-019-1325-x] [Citation(s) in RCA: 1030] [Impact Index Per Article: 171.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Abstract
Exhausted CD8+ T (Tex) cells in chronic infections and cancer have limited effector function, high co-expression of inhibitory receptors and extensive transcriptional changes compared with effector (Teff) or memory (Tmem) CD8+ T cells. Tex cells are important clinical targets of checkpoint blockade and other immunotherapies. Epigenetically, Tex cells are a distinct immune subset, with a unique chromatin landscape compared with Teff and Tmem cells. However, the mechanisms that govern the transcriptional and epigenetic development of Tex cells remain unknown. Here we identify the HMG-box transcription factor TOX as a central regulator of Tex cells in mice. TOX is largely dispensable for the formation of Teff and Tmem cells, but it is critical for exhaustion: in the absence of TOX, Tex cells do not form. TOX is induced by calcineurin and NFAT2, and operates in a feed-forward loop in which it becomes calcineurin-independent and sustained in Tex cells. Robust expression of TOX therefore results in commitment to Tex cells by translating persistent stimulation into a distinct Tex cell transcriptional and epigenetic developmental program.
Collapse
Affiliation(s)
- Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Arsenal Biosciences, South San Francisco, CA, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sierra McDonald
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kunal P Patel
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael T Werner
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine A Alexander
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Wu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Attanasio
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Yan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sangeeth M George
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bertram Bengsch
- Department of Medicine II: Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, Freiburg, Germany
| | - Ryan P Staupe
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi K Amaravadi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giorgos C Karakousis
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tara C Mitchell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Kaye
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shelley L Berger
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
70
|
Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Sci Rep 2019; 9:9251. [PMID: 31239471 PMCID: PMC6592879 DOI: 10.1038/s41598-019-45461-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
The introduction of directly acting antiviral agents (DAAs) has produced significant improvements in the ability to cure chronic hepatitis C infection. However, with over 2% of the world’s population infected with HCV, complications arising from the development of cirrhosis of the liver, chronic hepatitis C infection remains the leading indication for liver transplantation. Several modelling studies have indicated that DAAs alone will not be sufficient to eliminate HCV, but if combined with an effective vaccine this regimen would provide a significant advance towards achieving this critical World Health Organisation goal. We have previously generated a genotype 1a, 1b, 2a, 3a HCV virus like particle (VLP) quadrivalent vaccine. The HCV VLPs contain the core and envelope proteins (E1 and E2) of HCV and the vaccine has been shown to produce broad humoral and T cell immune responses following vaccination of mice. In this report we further advanced this work by investigating vaccine responses in a large animal model. We demonstrate that intradermal microneedle vaccination of pigs with our quadrivalent HCV VLP based vaccine produces long-lived multi-genotype specific and neutralizing antibody (NAb) responses together with strong T cell and granzyme B responses and normal Th1 and Th2 cytokine responses. These responses were achieved without the addition of adjuvant. Our study demonstrates that our vaccine is able to produce broad immune responses in a large animal that, next to primates, is the closest animal model to humans. Our results are important as they show that the vaccine can produce robust immune responses in a large animal model before progressing the vaccine to human trials.
Collapse
|
71
|
Yamamoto Y, Morita D, Shima Y, Midorikawa A, Mizutani T, Suzuki J, Mori N, Shiina T, Inoko H, Tanaka Y, Mikami B, Sugita M. Identification and Structure of an MHC Class I-Encoded Protein with the Potential to Present N-Myristoylated 4-mer Peptides to T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3349-3358. [PMID: 31043477 DOI: 10.4049/jimmunol.1900087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/11/2019] [Indexed: 11/19/2022]
Abstract
Similar to host proteins, N-myristoylation occurs for viral proteins to dictate their pathological function. However, this lipid-modifying reaction creates a novel class of "lipopeptide" Ags targeted by host CTLs. The primate MHC class I-encoded protein, Mamu-B*098, was previously shown to bind N-myristoylated 5-mer peptides. Nevertheless, T cells exist that recognize even shorter lipopeptides, and much remains to be elucidated concerning the molecular mechanisms of lipopeptide presentation. We, in this study, demonstrate that the MHC class I allele, Mamu-B*05104, binds the N-myristoylated 4-mer peptide (C14-Gly-Gly-Ala-Ile) derived from the viral Nef protein for its presentation to CTLs. A phylogenetic tree analysis indicates that these classical MHC class I alleles are not closely associated; however, the high-resolution x-ray crystallographic analyses indicate that both molecules share lipid-binding structures defined by the exceptionally large, hydrophobic B pocket to accommodate the acylated glycine (G1) as an anchor. The C-terminal isoleucine (I4) of C14-Gly-Gly-Ala-Ile anchors at the F pocket, which is distinct from that of Mamu-B*098 and is virtually identical to that of the peptide-presenting MHC class I molecule, HLA-B51. The two central amino acid residues (G2 and A3) are only exposed externally for recognition by T cells, and the methyl side chain on A3 constitutes a major T cell epitope, underscoring that the epitopic diversity is highly limited for lipopeptides as compared with that for MHC class I-presented long peptides. These structural features suggest that lipopeptide-presenting MHC class I alleles comprise a distinct MHC class I subset that mediates an alternative pathway for CTL activation.
Collapse
Affiliation(s)
- Yukie Yamamoto
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daisuke Morita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Shima
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akihiro Midorikawa
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsuaki Mizutani
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Juri Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Naoki Mori
- Laboratory of Chemical Ecology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; and
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
72
|
Masavuli MG, Wijesundara DK, Underwood A, Christiansen D, Earnest-Silveira L, Bull R, Torresi J, Gowans EJ, Grubor-Bauk B. A Hepatitis C Virus DNA Vaccine Encoding a Secreted, Oligomerized Form of Envelope Proteins Is Highly Immunogenic and Elicits Neutralizing Antibodies in Vaccinated Mice. Front Immunol 2019; 10:1145. [PMID: 31178869 PMCID: PMC6543710 DOI: 10.3389/fimmu.2019.01145] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) persistently infects approximately 71 million people globally. To prevent infection a vaccine which elicits neutralizing antibodies against the virus envelope proteins (E1/E2) which are required for entry into host cells is desirable. DNA vaccines are cost-effective to manufacture globally and despite recent landmark studies highlighting the therapeutic efficacy of DNA vaccines in humans against cervical cancer, DNA vaccines encoding E1/E2 developed thus far are poorly immunogenic. We now report a novel and highly immunogenic DNA vaccination strategy that incorporates secreted E1 and E2 (sE1 and sE2) into oligomers by fusion with the oligomerization domain of the C4b-binding protein, IMX313P. The FDA approved plasmid, pVax, was used to encode sE1, sE2, or sE1E2 with or without IMX313P, and intradermal prime-boost vaccination studies in BALB/c mice showed that vaccines encoding IMX313P were the most effective in eliciting humoral and cell-mediated immunity against the envelope proteins. Further boosting with recombinant E1E2 proteins but not DNA nor virus-like particles (VLPs) expressing E1E2 increased the immunogenicity of the DNA prime-boost regimen. Nevertheless, the antibodies generated by the homologous DNA prime-boost vaccinations more effectively inhibited the binding of VLPs to target cells and neutralized transduction with HCV pseudoparticles (HCVpp) derived from different genotypes including genotypes 1, 2, 3, 4, 5, and 6. This report provides the first evidence that IMX313P can be used as an adjuvant for E1/E2-based DNA vaccines and represents a translatable approach for the development of a HCV DNA vaccine.
Collapse
Affiliation(s)
- Makutiro Ghislain Masavuli
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Alexander Underwood
- Faculty of Medicine, The Kirby Institute, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dale Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Linda Earnest-Silveira
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Rowena Bull
- Faculty of Medicine, The Kirby Institute, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
73
|
Chigbu DI, Loonawat R, Sehgal M, Patel D, Jain P. Hepatitis C Virus Infection: Host⁻Virus Interaction and Mechanisms of Viral Persistence. Cells 2019; 8:cells8040376. [PMID: 31027278 PMCID: PMC6523734 DOI: 10.3390/cells8040376] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C (HCV) is a major cause of liver disease, in which a third of individuals with chronic HCV infections may develop liver cirrhosis. In a chronic HCV infection, host immune factors along with the actions of HCV proteins that promote viral persistence and dysregulation of the immune system have an impact on immunopathogenesis of HCV-induced hepatitis. The genome of HCV encodes a single polyprotein, which is translated and processed into structural and nonstructural proteins. These HCV proteins are the target of the innate and adaptive immune system of the host. Retinoic acid-inducible gene-I (RIG-I)-like receptors and Toll-like receptors are the main pattern recognition receptors that recognize HCV pathogen-associated molecular patterns. This interaction results in a downstream cascade that generates antiviral cytokines including interferons. The cytolysis of HCV-infected hepatocytes is mediated by perforin and granzyme B secreted by cytotoxic T lymphocyte (CTL) and natural killer (NK) cells, whereas noncytolytic HCV clearance is mediated by interferon gamma (IFN-γ) secreted by CTL and NK cells. A host-HCV interaction determines whether the acute phase of an HCV infection will undergo complete resolution or progress to the development of viral persistence with a consequential progression to chronic HCV infection. Furthermore, these host-HCV interactions could pose a challenge to developing an HCV vaccine. This review will focus on the role of the innate and adaptive immunity in HCV infection, the failure of the immune response to clear an HCV infection, and the factors that promote viral persistence.
Collapse
Affiliation(s)
- DeGaulle I Chigbu
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
- Pennsylvania College of Optometry at Salus University, Elkins Park, PA 19027, USA.
| | - Ronak Loonawat
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Mohit Sehgal
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Dip Patel
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| |
Collapse
|
74
|
Antibody and Memory B Cell Responses in Hepatitis E Recovered Individuals, 1-30 Years Post Hepatitis E Virus Infection. Sci Rep 2019; 9:4090. [PMID: 30858463 PMCID: PMC6411774 DOI: 10.1038/s41598-019-40603-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/15/2019] [Indexed: 01/16/2023] Open
Abstract
Generation and persistence of anti-hepatitis E virus (HEV) antibodies are synonymous with the development of immunity and considered as correlates of protection against HEV infection. However, issues like longevity of immunological memory following recovery from hepatitis E still remains a puzzle. It is critical to understand whether anamnestic response exists for protection from HEV re-infection. The levels and persistence of anti-HEV antibodies were assessed in hepatitis E recovered individuals 1–30 years post HEV infection. The frequencies and functionality of recombinant HEV capsid protein (rORF2p)-stimulated memory B and T cells were also investigated 1–16 years post infection. Anti-HEV antibodies persisted in 91% of hepatitis E recovered individuals. HEV-specific memory B cell responses were detected in 95% of seropositive hepatitis E recovered individuals. CD4+ and CD8+ T cells displayed an effector memory cell phenotype in hepatitis E recovered individuals. In conclusion, long-lived anti-HEV antibodies and HEV-specific memory B cells are maintained for several years in hepatitis E recovered individuals. Involvement of CD4+ and CD8+ effector memory T cells is an important observation since it is inextricably linked to long-lasting protective immunity. In addition to anti-HEV antibodies, possible role of memory B cell response against HEV re-infection could also be considered.
Collapse
|
75
|
Hartlage AS, Murthy S, Kumar A, Trivedi S, Dravid P, Sharma H, Walker CM, Kapoor A. Vaccination to prevent T cell subversion can protect against persistent hepacivirus infection. Nat Commun 2019; 10:1113. [PMID: 30846697 PMCID: PMC6405742 DOI: 10.1038/s41467-019-09105-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
Efforts to develop an effective vaccine against the hepatitis C virus (HCV; human hepacivirus) have been stymied by a lack of small animal models. Here, we describe an experimental rat model of chronic HCV-related hepacivirus infection and its response to T cell immunization. Immune-competent rats challenged with a rodent hepacivirus (RHV) develop chronic viremia characterized by expansion of non-functional CD8+ T cells. Single-dose vaccination with a recombinant adenovirus vector expressing hepacivirus non-structural proteins induces effective immunity in majority of rats. Resolution of infection coincides with a vigorous recall of intrahepatic cellular responses. Host selection of viral CD8 escape variants can subvert vaccine-conferred immunity. Transient depletion of CD8+ cells from vaccinated rats prolongs infection, while CD4+ cell depletion results in chronic viremia. These results provide direct evidence that co-operation between CD4+ and CD8+ T cells is important for hepacivirus immunity, and that subversion of responses can be prevented by prophylactic vaccination. Development of a HCV vaccine is hampered by a lack of appropriate small animal models. Here, Hartlage et al. describe a rat model of hepacivirus persistence and show that persistence can be prevented by vaccination with viral non-structural proteins.
Collapse
Affiliation(s)
- Alex S Hartlage
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Arvind Kumar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Piyush Dravid
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Himanshu Sharma
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA. .,Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
76
|
Sette LHBC, Lopes EPDA, Guedes dos Anjos NC, Valente LM, Vieira de Oliveira SA, Lucena-Silva N. High prevalence of occult hepatitis C infection in predialysis patients. World J Hepatol 2019; 11:109-118. [PMID: 30705723 PMCID: PMC6354127 DOI: 10.4254/wjh.v11.i1.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Occult hepatitis C virus (HCV) infection (OCI) may be associated with extrahepatic diseases and it is known that the patients with chronic kidney disease (CKD) who are on hemodialysis (HD) present a higher prevalence of this type of infection than the general population, with a worse clinical outcome. However, there are no data in the literature to assess the presence of OCI in patients prior to the initiation of renal replacement therapy (RRT). Therefore, this study aimed to evaluate the occurrence and epidemiological aspects of OCI in patients with Predialysis CKD. We hypothesize that this infection could occur before RRT initiation.
AIM To research the status in predialysis patients when HD patients have high prevalence of OCI.
METHODS A cross-sectional study was conducted between 2015 and 2017. Adults with creatinine clearance < 60 mL/min·1.73 m2 (predialysis patients) were recruited to the study. Pregnant and postpartum women, patients with glomerulopathies, and patients showing positivity for serological markers of hepatitis B virus (HBV), HCV or human immunodeficiency virus infection were excluded. Patients were diagnosed with OCI according to test results of anti-HCV antibody negativity and HCV RNA positivity in either ultracentrifuged serum or, if serum-negative, in peripheral blood mononuclear cells.
RESULTS Among the 91 total patients included in the study, the prevalence of OCI was 16.5%. Among these 15 total OCI patients, 1 was diagnosed by 14 ultracentrifuged serum results and 14 were diagnosed by peripheral blood mononuclear cell results. Compared to the non-OCI group, the OCI patients presented higher frequency of older age (P = 0.002), patients with CKD of mixed etiology (P = 0.019), and patients with markers of previous HBV infection (i.e., combined positivity for anti-hepatitis B core protein antibody and anti-hepatitis B surface protein antibody) (P = 0.001).
CONCLUSION Among predialysis patients, OCI involved the elderly, patients with CKD of mixed etiology, and patients with previous HBV infection.
Collapse
Affiliation(s)
| | | | | | - Lucila Maria Valente
- Nephrology-Department of Clinical Medicine, Federal University of Pernambuco, Pernambuco 50670-901, Brazil
| | | | - Norma Lucena-Silva
- Laboratory of Immunogenetics of the Aggeu Magalhães Institute - Fiocruz Pernambuco, Pernambuco 50670-420, Brazil
| |
Collapse
|
77
|
Abstract
Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Laura M McLane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mohamed S Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
78
|
Xia Y, Pan W, Ke X, Skibbe K, Walker A, Hoffmann D, Lu Y, Yang X, Feng X, Tong Q, Timm J, Yang D. Differential escape of HCV from CD8 + T cell selection pressure between China and Germany depends on the presenting HLA class I molecule. J Viral Hepat 2019; 26:73-82. [PMID: 30260541 PMCID: PMC7379502 DOI: 10.1111/jvh.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
Abstract
Adaptation of hepatitis C virus (HCV) to CD8+ T cell selection pressure is well described; however, it is unclear if HCV differentially adapts in different populations. Here, we studied HLA class I-associated viral sequence polymorphisms in HCV 1b isolates in a Chinese population and compared viral substitution patterns between Chinese and German populations. We identified three HLA class I-restricted epitopes in HCV NS3 with statistical support for selection pressure and found evidence for differential escape pathways between isolates from China and Germany depending on the HLA class I molecule. The substitution patterns particularly differed in the epitope VTLTHPITK1635-1643 , which was presented by HLA-A*03 as well as HLA-A*11, two alleles with highly different frequencies in the two populations. In Germany, a substitution in position seven of the epitope was the most frequent substitution in the presence of HLA-A*03, functionally associated with immune escape and nearly absent in Chinese isolates. In contrast, the most frequent substitution in China was located at position two of the epitope and became the predominant consensus residue. Moreover, substitutions in position one of the epitope were significantly enriched in HLA-A*11-positive individuals in China and associated with different patterns of CD8+ T cell reactivity. Our study confirms the differential escape pathways selected by HCV that depended on different HLA class I alleles in Chinese and German populations, indicating that HCV differentially adapts to distinct HLA class I alleles in these populations. This result has important implications for vaccine design against highly variable and globally distributed pathogens, which may require matching antigen sequences to geographic regions for T cell-based vaccine strategies.
Collapse
Affiliation(s)
- Youchen Xia
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gastroenterology and HepatologyShanghai General HospitalShanghai Jiao Tong University School of Medicine (originally named “Shanghai First People's Hospital”)ShanghaiChina
| | - Wen Pan
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoyu Ke
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of EmergencyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kathrin Skibbe
- Institute of VirologyUniversity Hospital DüsseldorfHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Andreas Walker
- Institute of VirologyUniversity Hospital DüsseldorfHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Daniel Hoffmann
- Bioinformatics and Computational BiophysicsFaculty of BiologyUniversity of Duisburg‐EssenEssenGermany
| | - Yinping Lu
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuecheng Yang
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuemei Feng
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiaoxia Tong
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jörg Timm
- Institute of VirologyUniversity Hospital DüsseldorfHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Dongliang Yang
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
79
|
Villani R, Vendemiale G, Serviddio G. Molecular Mechanisms Involved in HCC Recurrence after Direct-Acting Antiviral Therapy. Int J Mol Sci 2018; 20:ijms20010049. [PMID: 30583555 PMCID: PMC6337751 DOI: 10.3390/ijms20010049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis C is associated with a high risk of developing hepatocellular carcinoma (HCC) because of a direct effect of the Hepatitis C Virus (HCV) proteins and an indirect oncogenic effect of chronic inflammation and impaired immune response. The treatment of chronic hepatitis C markedly reduces all-cause mortality; in fact, interferon-based treatment has shown a reduction of HCC incidence of more than 70%. The recent introduction of the highly effective direct-acting antivirals (DAAs) has completely changed the scenario of chronic hepatitis C (CHC) with rates of HCV cure over 90%. However, an unexpectedly high incidence of HCC recurrence was observed in patients after DAA treatment (27% versus 0.4–2% in patients who received interferon treatment). The mechanism that underlies the high rate of tumor relapse is currently unknown and is one of the main issues in hepatology. We reviewed the possible mechanisms involved in HCC recurrence after DAA treatment.
Collapse
MESH Headings
- Animals
- Antiviral Agents/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/epidemiology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/virology
- Hepacivirus/drug effects
- Hepacivirus/immunology
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/epidemiology
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Humans
- Incidence
- Interferons/therapeutic use
- Liver Neoplasms/drug therapy
- Liver Neoplasms/epidemiology
- Liver Neoplasms/immunology
- Liver Neoplasms/virology
- Macrophages/drug effects
- Monocytes/drug effects
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/virology
- Neutrophils/drug effects
Collapse
Affiliation(s)
- Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Gianluigi Vendemiale
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Gaetano Serviddio
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| |
Collapse
|
80
|
Ponziani FR, Putignani L, Paroni Sterbini F, Petito V, Picca A, Del Chierico F, Reddel S, Calvani R, Marzetti E, Sanguinetti M, Gasbarrini A, Pompili M. Influence of hepatitis C virus eradication with direct-acting antivirals on the gut microbiota in patients with cirrhosis. Aliment Pharmacol Ther 2018; 48:1301-1311. [PMID: 30345704 DOI: 10.1111/apt.15004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The cure of hepatitis C virus (HCV) infection may contribute to the reduction of liver fibrosis progression and potentially influence the gut-liver axis. AIM To investigate the influence of HCV infection eradication with direct-acting antivirals (DAAs) on the gut microbiota composition as well as on intestinal and systemic inflammatory parameters in patients with cirrhosis. METHODS Consecutive patients with HCV-related cirrhosis receiving DAA treatment were included. The gut microbiota composition, intestinal permeability, and inflammation were assessed before treatment and after 1 year. Clinical outcomes such as episodes of decompensation and markers of liver fibrosis were evaluated over a 2-year follow-up period. RESULTS The gut microbiota alpha diversity in cirrhotic patients, which was lower than that in healthy subjects, was significantly improved by the cure of HCV infection and a shift in the overall gut microbiota composition was observed compared to baseline. The abundance of potentially pathogenic bacteria (Enterobacteriaceae, Enterococcus, and Staphylococcus) was decreased after treatment. The gut microbiota composition was associated with the inflammatory profile and markers of liver fibrosis. Although a significant reduction in the serum levels of cytokines and chemokines was observed post-DAA treatment, measures of intestinal permeability and inflammation remained unchanged. CONCLUSIONS Cure of HCV infection with DAAs in patients with cirrhosis is associated with a modification of the gut microbiota, which correlates with fibrosis and inflammation but does not improve intestinal barrier function.
Collapse
Affiliation(s)
- Francesca Romana Ponziani
- Internal Medicine, Gastroenterology and Hepatology Unit, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.,Parasitology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco Paroni Sterbini
- Microbiology Unit, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Petito
- Internal Medicine, Gastroenterology and Hepatology Unit, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Picca
- Department of Geriatrics, Neuroscience and Orthopedics, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Sofia Reddel
- Human Microbiome Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Neuroscience and Orthopedics, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Neuroscience and Orthopedics, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine, Gastroenterology and Hepatology Unit, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Pompili
- Internal Medicine, Gastroenterology and Hepatology Unit, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
81
|
Tsai JP, Tseng KC, Lin MN, Su CC. A high seroprevalence of human herpesvirus type 8 already present in patients with chronic hepatitis before the development of cirrhosis. Pathology 2018; 51:86-90. [PMID: 30497802 DOI: 10.1016/j.pathol.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 09/05/2018] [Accepted: 10/10/2018] [Indexed: 01/02/2023]
Abstract
A high seroprevalence of human herpesvirus type 8 (HHV-8) in mild cirrhotics is significantly associated with hepatitis activity. Cirrhosis is always derived from chronic hepatitis. We aimed to evaluate the prevalence of HHV-8 infection in patients with chronic hepatitis. Blood samples collected from 129 patients with chronic hepatitis and 129 age- and sex-matched healthy controls were analysed for monocyte and platelet counts, hepatitis B surface antigen (HBsAg), anti-hepatitis C virus (anti-HCV), HHV-8 antibody and DNA, and alanine aminotransferase (ALT). Mean monocyte and platelet counts were significantly higher and lower in patients than in healthy controls (p = 0.02 and < 0.0001, respectively). Seropositive rate for HHV-8 antibodies was significantly greater in patients (32.6%) than in controls (20.9%, p = 0.04), particularly in patients with HCV infection, or higher plasma ALT levels, or both (p = 0.004, 0.01, and 0.0009, respectively). Antibody titres for HHV-8 in patients also exceeded those in controls (p = 0.02). The mean age of HHV-8 seropositive patients (60.3 years) was significantly older than that of seronegatives (52.3 years) (p = 0.0007). Patients aged 55 or older had higher seropositive rate and titres for HHV-8 antibodies than those younger (p = 0.005 and 0.007, respectively). A significantly high HHV-8 seroprevalence is already present in patients with chronic hepatitis before the development of cirrhosis, particularly in patients with HCV infection and/or higher plasma ALT levels. Advancing age seems to play an important role in HHV-8 seroprevalence in patients with chronic hepatitis.
Collapse
Affiliation(s)
- Jen-Pi Tsai
- Department of Internal Medicine, Buddhist Dalin Tzu Chi Hospital, Chiayi County, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kuo-Chih Tseng
- Department of Internal Medicine, Buddhist Dalin Tzu Chi Hospital, Chiayi County, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Nan Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Family Medicine, Buddhist Dalin Tzu Chi Hospital, Chiayi County, Taiwan
| | - Cheng-Chuan Su
- School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Clinical Pathology, Buddhist Dalin Tzu Chi Hospital, Chiayi County, Taiwan; Department of Anatomic Pathology, Buddhist Dalin Tzu Chi Hospital, Chiayi County, Taiwan.
| |
Collapse
|
82
|
Luxenburger H, Neumann-Haefelin C, Thimme R, Boettler T. HCV-Specific T Cell Responses During and After Chronic HCV Infection. Viruses 2018; 10:v10110645. [PMID: 30453612 PMCID: PMC6265781 DOI: 10.3390/v10110645] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV)-specific T cell responses are closely linked to the clinical course of infection. While T cell responses in self-limiting infection are typically broad and multi-specific, they display several distinct features of functional impairment in the chronic phase. Moreover, HCV readily adapts to immune pressure by developing escape mutations within epitopes targeted by T cells. Much of our current knowledge on HCV-specific T cell responses has been gathered under the assumption that this might eventually pave the way for a therapeutic vaccine. However, with the development of highly efficient direct acting antivirals (DAAs), there is less interest in the development of a therapeutic vaccine for HCV and the scope of T cell research has shifted. Indeed, the possibility to rapidly eradicate an antigen that has persisted over years or decades, and has led to T cell exhaustion and dysfunction, provides the unique opportunity to study potential T cell recovery after antigen cessation in a human in vivo setting. Findings from such studies not only improve our basic understanding of T cell immunity but may also advance immunotherapeutic approaches in cancer or chronic hepatitis B and D infection. Moreover, in order to edge closer to the WHO goal of HCV elimination by 2030, a prophylactic vaccine is clearly required. Thus, in this review, we will summarize our current knowledge on HCV-specific T cell responses and also provide an outlook on the open questions that require answers in this field.
Collapse
Affiliation(s)
- Hendrik Luxenburger
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Robert Thimme
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Tobias Boettler
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
83
|
Umemura T, Yamazaki T, Joshita S, Sugiura A, Fujimori N, Matsumoto A, Ota M, Tanaka E. Quantitative analysis of serum chemokines associated with treatment failure of direct-acting antivirals in chronic hepatitis C. Cytokine 2018; 111:357-363. [PMID: 30296712 DOI: 10.1016/j.cyto.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Although serum chemokine levels have been reported to influence the outcome of interferon-based treatment in patients with chronic hepatitis C, their effect on the hepatitis C virus (HCV) response to direct-acting antiviral agents (DAAs), which can achieve high rates of a sustained virological response (SVR), is largely unknown. To clarify this relationship, 9 chemokines (eotaxin, GRO-α, IL-8, IP-10, MCP-1, MIP-1α, MIP-1β, RANTES, and SDF-1α) were quantified before, during, and after DAA treatment using serum samples obtained from 57 patients with chronic hepatitis C. All baseline median chemokine levels were significantly higher in patients with chronic hepatitis C than in healthy subjects (P < 0.05). In particular, lower MIP-1β (≤71.5 pg/mL) and higher RANTES (>671.5 pg/mL) levels were significantly associated with patients who failed to clear HCV RNA (P = 0.0039 and 0.013, respectively). Prediction of a clinical response based on a combination of these chemokines demonstrated high sensitivity (82%), specificity (85%), negative predictive value (95%), and area under the curve (0.833). The non-SVR rate (56.3%; 9 of 16) was significantly higher in patients with low MIP-1β and high RANTES compared with other combinations. Moreover, baseline MIP-1β and RANTES were both additive and independent for predicting a non-SVR. Apart from an increase in eotaxin, all chemokines became decreased in patients with a SVR. In conclusion, a combination of serum MIP-1β and RANTES levels may be predictive of a treatment response to DAAs in Japanese patients with chronic hepatitis C.
Collapse
Affiliation(s)
- Takeji Umemura
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan; Research Center for Next Generation Medicine, Shinshu University, Matsumoto, Japan.
| | - Tomoo Yamazaki
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan; Research Center for Next Generation Medicine, Shinshu University, Matsumoto, Japan
| | - Ayumi Sugiura
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoyuki Fujimori
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akihiro Matsumoto
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masao Ota
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eiji Tanaka
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
84
|
Prevalence and Risk Factors of Hepatitis C Virus in Irula Tribal Community, Tamilnadu, India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
85
|
Shrivastava S, Bhatta M, Ward H, Romani S, Lee R, Rosenthal E, Osinusi A, Kohli A, Masur H, Kottilil S, Wilson E. Multitarget Direct-Acting Antiviral Therapy Is Associated With Superior Immunologic Recovery in Patients Coinfected With Human Immunodeficiency Virus and Hepatitis C Virus. Hepatol Commun 2018; 2:1451-1466. [PMID: 30556035 PMCID: PMC6287478 DOI: 10.1002/hep4.1258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
Patients coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) have higher levels of immune activation, impaired antigen‐specific responses, and accelerated fibrogenesis compared to patients monoinfected with HCV. Whether different direct‐acting antiviral (DAA) combinations have differential effects on immunophenotypes and functions following successful HCV therapy remain unknown. Therefore, we aimed to assess the peripheral T‐cell immunophenotypes and functions in patients coinfected with HIV/HCV who were successfully treated with combination DAA treatment regimens. We analyzed peripheral blood mononuclear cells (PBMCs) at baseline and at the time of sustained viral response (SVR) from subjects treated with three different combination DAA regimens: daclatasvir (DCV) and asunaprevir (ASV) for 24 weeks (CONQUER 2‐DAA), DCV/ASV/beclabuvir (BCV) for 12 weeks (CONQUER 3‐DAA), and sofosbuvir (SOF) and ledipasvir (LDV) for 12 weeks (ERADICATE study). We used flow cytometry to assess T‐cell phenotypes (activation and exhaustion) and HCV‐specific T‐cell functions (cytokine secretion and cytotoxicity). Statistical analyses were conducted using the Wilcoxon matched‐pairs signed‐rank test with P < 0.05 considered significant. Overall, there was an improvement in T‐cell exhaustion markers, a decrease in T‐cell activation, an increase in the effector memory population, and improved T‐cell function after achieving SVR, with the largest effects noted with CONQUER 3‐DAA treatment. Conclusion: Treatment with DCV/ASV/BCV in patients coinfected with HIV/HCV resulted in greater restoration of the T‐cell impairments and perturbations associated with HIV/HCV coinfection to an extent that was greater than that observed in either two‐drug regimens. We showed that different DAA‐based therapies have different immunologic outcomes after successful HCV treatment in patients coinfected with HIV/HCV. This information will be beneficial for providers when selecting the regimens for patients coinfected with HIV/HCV.
Collapse
Affiliation(s)
- Shikha Shrivastava
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | - Manasa Bhatta
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD.,Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD
| | - Haley Ward
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD.,Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD
| | - Sara Romani
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | - Rebecca Lee
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | - Elana Rosenthal
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | | | - Anita Kohli
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD
| | - Henry Masur
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD
| | - Shyam Kottilil
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | - Eleanor Wilson
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| |
Collapse
|
86
|
Najafi Fard S, Schietroma I, Corano Scheri G, Giustini N, Serafino S, Cavallari EN, Pinacchio C, De Girolamo G, Ceccarelli G, Scagnolari C, Vullo V, d'Ettorre G. Direct-acting antiviral therapy enhances total CD4+ and CD8+ T-cells responses, but does not alter T-cells activation among HCV mono-infected, and HCV/HIV-1 co-infected patients. Clin Res Hepatol Gastroenterol 2018; 42:319-329. [PMID: 29279268 DOI: 10.1016/j.clinre.2017.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/08/2017] [Indexed: 02/04/2023]
Abstract
AIM Chronic immune activation and poor T-cell immune response are strongly associated with disease progression and pathogenesis of both hepatitis C virus (HCV) and human immunodeficiency virus (HIV)-1 infections. Little is known about the impact of anti-HCV Interferon (IFN)-free direct-acting antiviral (DAA) therapy on the systemic T-cells activation and patterns of peripheral T-cells producing pro-inflammatory cytokines. PATIENTS AND METHODS Forty-five subjects including 18 HCV mono-infected, 17 HCV/HIV-1 co-infected patients under antiretroviral therapy (ART), and 10 healthy controls (HCs) were recruited. Blood samples were collected at baseline (T0) and 12 weeks after the end of DAA therapy (T1). Cell phenotypes (CD3, CD4, CD8), activation markers (CD38 and HLA-DR), and frequency of IFN-γ, interleukin (IL)-17, and IL-22 producing CD4+ and CD8+ T-cells were measured by flow cytometry. Plasma levels of related cytokines were also measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Both HCV, and HCV/HIV-1 patients before and after therapy, showed significant higher percentages of any T-cell subset expressing CD38 and/or HLA-DR compared to HCs. No differences were observed in T-cells activation at T1 compared to T0 in patient groups, and when HCV patients were compared to HCV/HIV-1 group (P>0.05). After therapy, the potential of total circulating T helper (Th) and T cytotoxic (Tc) cells producing IFN-γ, IL-17, and IL-22 were increased. Plasma level of IFN-γ at baseline was showed difference compared to HCs, and significantly reduced after therapy (P<0.05). CONCLUSION Total T-cells immune response enhances after therapy, however, the state of immune activation may remain elevated for a longtime after the end of treatment and contribute to post-Sustained Virologic Response (SVR) consequences.
Collapse
Affiliation(s)
- Saeid Najafi Fard
- Department of public health and infectious diseases, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Ivan Schietroma
- Department of public health and infectious diseases, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy
| | - Giuseppe Corano Scheri
- Department of public health and infectious diseases, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy
| | - Noemi Giustini
- Department of public health and infectious diseases, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy
| | - Sara Serafino
- Department of public health and infectious diseases, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy
| | - Eugenio Nelson Cavallari
- Department of public health and infectious diseases, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy
| | - Claudia Pinacchio
- Department of public health and infectious diseases, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy
| | - Gabriella De Girolamo
- Department of public health and infectious diseases, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy
| | - Giancarlo Ceccarelli
- Department of public health and infectious diseases, Azienda Policlinico Umberto I of Rome, Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Virology, Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Vullo
- Department of public health and infectious diseases, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy
| | - Gabriella d'Ettorre
- Department of public health and infectious diseases, Azienda Policlinico Umberto I of Rome, Rome, Italy
| |
Collapse
|
87
|
Shoukry NH. Hepatitis C Vaccines, Antibodies, and T Cells. Front Immunol 2018; 9:1480. [PMID: 30002657 PMCID: PMC6031729 DOI: 10.3389/fimmu.2018.01480] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
The development of vaccines that protect against persistent hepatitis C virus (HCV) infection remain a public health priority. The broad use of highly effective direct-acting antivirals (DAAs) is unlikely to achieve HCV elimination without vaccines that can limit viral transmission. Two vaccines targeting either the antibody or the T cell response are currently in preclinical or clinical trials. Next-generation vaccines will likely involve a combination of these two strategies. This review summarizes the state of knowledge about the immune protective role of HCV-specific antibodies and T cells and the current vaccine strategies. In addition, it discusses the potential efficacy of vaccination in DAA-cured individuals. Finally, it summarizes the challenges to vaccine development and the collaborative efforts required to overcome them.
Collapse
Affiliation(s)
- Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
88
|
Young KG, Haq K, MacLean S, Dudani R, Elahi SM, Gilbert R, Weeratna RD, Krishnan L. Development of a recombinant murine tumour model using hepatoma cells expressing hepatitis C virus nonstructural antigens. J Viral Hepat 2018; 25:649-660. [PMID: 29316037 DOI: 10.1111/jvh.12856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) chronically infects 2%-3% of the world's population, causing liver disease and cancer with prolonged infection. The narrow host range of the virus, being restricted largely to human hepatocytes, has made the development of relevant models to evaluate the efficacy of vaccines a challenge. We have developed a novel approach to accomplish this by generating a murine hepatoma cell line stably expressing nonstructural HCV antigens which can be used in vitro or in vivo to test HCV vaccine efficacies. These HCV-recombinant hepatoma cells formed large solid-mass tumours when implanted into syngeneic mice, allowing us to test candidate HCV vaccines to demonstrate the development of an HCV-specific immune response that limited tumour growth. Using this model, we tested the therapeutic potential of recombinant anti-HCV-specific vaccines based on two fundamentally different attenuated pathogen vaccine systems-attenuated Salmonella and recombinant adenoviral vector based vaccine. While attenuated Salmonella that secreted HCV antigens limited growth of the HCV-recombinant tumours when used in a therapeutic vaccination trial, replication-competent but noninfectious adenovirus expressing nonstructural HCV antigens showed overall greater survival and reduced weight loss compared to non-replicating nondisseminating adenovirus. Our results demonstrate a model with anti-tumour responses to HCV nonstructural (NS) protein antigens and suggest that recombinant vaccine vectors should be explored as a therapeutic strategy for controlling HCV and HCV-associated cancers.
Collapse
Affiliation(s)
- K G Young
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - K Haq
- National Research Council Canada, Ottawa, ON, Canada
| | - S MacLean
- National Research Council Canada, Ottawa, ON, Canada
| | - R Dudani
- National Research Council Canada, Ottawa, ON, Canada
| | - S M Elahi
- National Research Council Canada, Montréal, QC, Canada
| | - R Gilbert
- National Research Council Canada, Montréal, QC, Canada
| | - R D Weeratna
- National Research Council Canada, Ottawa, ON, Canada
| | - L Krishnan
- National Research Council Canada, Ottawa, ON, Canada
| |
Collapse
|
89
|
Abstract
Current evidence supports a protective role for virus-neutralizing antibodies in immunity against hepatitis C virus (HCV) infection. Many cross-neutralizing monoclonal antibodies have been identified. These antibodies have been shown to provide protection or to clear infection in animal models. Previous clinical trials have shown that a gpE1/gpE2 vaccine can induce antibodies that neutralize the in vitro infectivity of all the major cell culture-derived HCV (HCVcc) genotypes around the world. However, cross-neutralization appeared to favor certain genotypes, with significant but lower neutralization against others. HCV may employ epitope masking to avoid antibody-mediated neutralization. Hypervariable region 1 (HVR1) at the amino terminus of glycoprotein E2 has been shown to restrict access to many neutralizing antibodies. Consistent with this, other groups have reported that recombinant viruses lacking HVR1 are hypersensitive to neutralization. It has been proposed that gpE1/gpE2 lacking this domain could be a better vaccine antigen to induce broadly neutralizing antibodies. In this study, we examined the immunogenicity of recombinant gpE1/gpE2 lacking HVR1 (ΔHVR1). Our results indicate that wild-type (WT) and ΔHVR1 gpE1/gpE2 antigens induced antibodies targeting many well-characterized cross-genotype-neutralizing epitopes. However, while the WT gpE1/gpE2 vaccine can induce cross-genotype protection against various genotypes of HCVcc and/or HCV-pseudotyped virus (HCVpp), antisera from ΔHVR1 gpE1/gpE2-immunized animals exhibited either reduced homologous neutralization activity compared to that of the WT or heterologous neutralization activity similar to that of the WT. These data suggest that ΔHVR1 gpE1/gpE2 is not a superior vaccine antigen. Based on previously reported chimpanzee protection data using WT gpE1/gpE2 and our current findings, we are preparing a combination vaccine including wild-type recombinant gpE1/gpE2 for clinical testing in the future. IMPORTANCE An HCV vaccine is an unmet medical need. Current evidence suggests that neutralizing antibodies play an important role in virus clearance, along with cellular immune responses. Previous clinical data showed that gpE1/gpE2 can effectively induce cross-neutralizing antibodies, although they favor certain genotypes. HCV employs HVR1 within gpE2 to evade host immune control. It has been hypothesized that the removal of this domain would improve the production of cross-neutralizing antibodies. In this study, we compared the immunogenicities of WT and ΔHVR1 gpE1/gpE2 antigens as vaccine candidates. Our results indicate that the ΔHVR1 gpE1/gpE2 antigen confers no advantages in the neutralization of HCV compared with the WT antigen. Previously, we showed that this WT antigen remains the only vaccine candidate to protect chimpanzees from chronic infection, contains multiple cross-neutralizing epitopes, and is well tolerated and immunogenic in humans. The current data support the further clinical development of this vaccine antigen component.
Collapse
|
90
|
Dustin LB. Innate and Adaptive Immune Responses in Chronic HCV Infection. Curr Drug Targets 2018; 18:826-843. [PMID: 26302811 DOI: 10.2174/1389450116666150825110532] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) remains a public health problem of global importance, even in the era of potent directly-acting antiviral drugs. In this chapter, I discuss immune responses to acute and chronic HCV infection. The outcome of HCV infection is influenced by viral strategies that limit or delay the initiation of innate antiviral responses. This delay may enable HCV to establish widespread infection long before the host mounts effective T and B cell responses. HCV's genetic agility, resulting from its high rate of replication and its error prone replication mechanism, enables it to evade immune recognition. Adaptive immune responses fail to keep up with changing viral epitopes. Neutralizing antibody epitopes may be hidden by decoy structures, glycans, and lipoproteins. T cell responses fail due to changing epitope sequences and due to exhaustion, a phenomenon that may have evolved to limit immune-mediated pathology. Despite these difficulties, innate and adaptive immune mechanisms do impact HCV replication. Immune-mediated clearance of infection is possible, occurring in 20-50% of people who contract the disease. New developments raise hopes for effective immunological interventions to prevent or treat HCV infection.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
91
|
Hofmann M, Wieland D, Pircher H, Thimme R. Memory vs memory-like: The different facets of CD8+T-cell memory in HCV infection. Immunol Rev 2018; 283:232-237. [DOI: 10.1111/imr.12642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Maike Hofmann
- Department of Medicine II; University Hospital Freiburg; Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Dominik Wieland
- Department of Medicine II; University Hospital Freiburg; Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Hanspeter Pircher
- Institute for Immunology; Medical Center; Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Robert Thimme
- Department of Medicine II; University Hospital Freiburg; Faculty of Medicine; University of Freiburg; Freiburg Germany
| |
Collapse
|
92
|
Shan Z, Huang J, Liao Q, Huang K, Wang M, Xu R, Tang X, Zhang W, Nelson K, Fu Y, Li C, Rong X. Association of killer cell immunoglobulin-like receptors with spontaneous clearance of hepatitis C virus in the Chinese population. Transfusion 2018; 58:1028-1035. [PMID: 29446443 DOI: 10.1111/trf.14527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Natural killer (NK) cells are critical components in innate immune response to viral infection. Killer cell immunoglobulin-like receptors (KIRs) are involved in regulating the balance of activation or inhibitory function of NK cells. However, the association of KIRs with the spontaneous clearance of hepatitis C virus (HCV) remains unclear in the Chinese population. STUDY DESIGN AND METHODS A total of 407 HCV-seropositive voluntary blood donors were recruited, including 203 with spontaneous viral clearance and 204 with chronic infection. The presence of KIR genes was detected individually by polymerase chain reaction with sequence-specific primers. Data of HLA and interleukin-28B (IL28B) genotypes were extracted from our previous study. RESULTS Our results showed that KIR2DL2, 2DS2, 2DL2/2DL3, and 2DL5A-/2DL5B+ were more frequent in subjects with HCV clearance than those with chronic infection (odds ratio [OR], 1.640, p = 0.034; OR, 1.664, p = 0.032; OR, 1.636, p = 0.040; and OR, 2.601, p = 0.012, respectively). Multivariate logistic regression analysis showed that KIR2DL5A-/2DL5B+ associated with HCV clearance (OR, 2.448, p = 0.027), independent of sex, IL28B, and other KIRs. In contrast, KIR2DL3/2DL3 (OR, 0.610, p = 0.034) as well as 2DL3/2DL3+HLA-C1 or C1C1 (OR, 0.580, p = 0.017; and OR, 0.639, p = 0.025, respectively) was found associated with chronic HCV infection. The presence of the homozygous KIR2DL3 with or without its HLA ligand increased the OR of developing chronic HCV infection in the context of IL28B. CONCLUSIONS In this study we identified KIR2DL5A-/2DL5B+ associated with HCV spontaneous clearance, while KIR2DL3/2DL3, 2DL3/2DL3+HLA-C1, or C1C1 associated with chronic infection. Our study highlighted the fact that the roles of KIR and KIR-HLA contributed to the control of HCV infection by innate immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi Tang
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University; and
| | - Weiyun Zhang
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University; and
- Department of Laboratory Medicine, Guangzhou General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong, China
| | - Kenrad Nelson
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Yongshui Fu
- Guangzhou Blood Center
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University; and
| | - Chengyao Li
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University; and
| | - Xia Rong
- Guangzhou Blood Center
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University; and
| |
Collapse
|
93
|
He QF, Xu Y, Li J, Huang ZM, Li XH, Wang X. CD8+ T-cell exhaustion in cancer: mechanisms and new area for cancer immunotherapy. Brief Funct Genomics 2018; 18:99-106. [DOI: 10.1093/bfgp/ely006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
| | | | - Jun Li
- Nanjing Medical University
| | | | - Xiu-Hui Li
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Beijing Youan Hospital, Capital Medical University
| | | |
Collapse
|
94
|
Lai L, Rouphael N, Xu Y, Natrajan MS, Beck A, Hart M, Feldhammer M, Feldpausch A, Hill C, Wu H, Fairley JK, Lankford-Turner P, Kasher N, Rago P, Hu YJ, Edupuganti S, Patel SM, Murray KO, Mulligan MJ. Innate, T-, and B-Cell Responses in Acute Human Zika Patients. Clin Infect Dis 2018; 66:1-10. [PMID: 29020226 PMCID: PMC5850027 DOI: 10.1093/cid/cix732] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/11/2017] [Indexed: 12/24/2022] Open
Abstract
Background There is an urgent need for studies of viral persistence and immunity during human Zika infections to inform planning and conduct of vaccine clinical trials. Methods In 5 returned US travelers with acute symptomatic Zika infection, clinical features, viral RNA levels, and immune responses were characterized. Results Two pregnant, flavivirus-experienced patients had viral RNA persist in plasma for >44 and >26 days. Three days after symptom onset, transient increases in proinflammatory monocytes began followed at 5 days by transient decreases in myeloid dendritic cells. Anti-Zika virus immunoglobulin M was detected at day 7 after symptom onset, persisted beyond 103 days, and remained equivocal through day 172. Zika virus-specific plasmablasts and neutralizing antibodies developed quickly; dengue virus-specific plasmablasts and neutralizing antibodies at high titers developed only in flavivirus-experienced patients. Zika virus- and dengue virus-specific memory B cells developed in both flavivirus-naive and -experienced patients. CD4+ T cells were moderately activated and produced antiviral cytokines after stimulation with Zika virus C, prM, E, and NS5 peptides in 4/4 patients. In contrast, CD8+ T cells were massively activated, but virus-specific cells that produced cytokines were present in only 2/4 patients assessed. Conclusions Acute infections with Zika virus modulated antigen-presenting cell populations early. Flavivirus-experienced patients quickly recalled cross-reactive MBCs to secrete antibodies. Dengue virus-naive patients made little dengue-specific antibody but developed MBCs that cross-reacted against dengue virus. Zika virus-specific functional CD4+ T cells were readily detected, but few CD8+ T cells specific for the tested peptides were found.
Collapse
Affiliation(s)
- Lilin Lai
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur
| | - Yongxian Xu
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur
| | - Muktha S Natrajan
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur
| | - Allison Beck
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur
| | - Mari Hart
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur
| | - Matthew Feldhammer
- Department of Pathology, School of Medicine, Emory University, Atlanta, Georgia
| | - Amanda Feldpausch
- Georgia Department of Public Health, Emory University, Atlanta, Georgia
| | - Charles Hill
- Department of Pathology, School of Medicine, Emory University, Atlanta, Georgia
| | - Henry Wu
- Emory TravelWell Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Jessica K Fairley
- Emory TravelWell Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Pamela Lankford-Turner
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur
| | - Nicole Kasher
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur
| | - Patrick Rago
- Department of Pathology, School of Medicine, Emory University, Atlanta, Georgia
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Srilatha Edupuganti
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur
| | - Shital M Patel
- Section of Infectious Diseases, Departments of Medicine and Molecular Virology and Microbiology
| | - Kristy O Murray
- Pediatrics-Tropical Medicine, Texas Children’s Hospital, Baylor College of Medicine, Houston
| | - Mark J Mulligan
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur
| |
Collapse
|
95
|
St. John TM. Chronic Hepatitis. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
96
|
Méndez-Lagares G, Lu D, Chen C, Terrault N, Segal MR, Khalili M, Monto A, Shen H, Manos MM, Lanier LL, Ryan JC, McCune JM, Hartigan-O'Connor DJ. Memory T Cell Proliferation before Hepatitis C Virus Therapy Predicts Antiviral Immune Responses and Treatment Success. THE JOURNAL OF IMMUNOLOGY 2017; 200:1124-1132. [PMID: 29263212 DOI: 10.4049/jimmunol.1701364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 01/20/2023]
Abstract
The contribution of the host immune system to the efficacy of new anti-hepatitis C virus (HCV) drugs is unclear. We undertook a longitudinal prospective study of 33 individuals with chronic HCV treated with combination pegylated IFN-α, ribavirin, and telaprevir/boceprevir. We characterized innate and adaptive immune cells to determine whether kinetics of the host response could predict sustained virologic response (SVR). We show that characteristics of the host immune system present before treatment were correlated with successful therapy. Augmentation of adaptive immune responses during therapy was more impressive among those achieving SVR. Most importantly, active memory T cell proliferation before therapy predicted SVR and was associated with the magnitude of the HCV-specific responses at week 12 after treatment start. After therapy initiation, the most important correlate of success was minimal monocyte activation, as predicted by previous in vitro work. In addition, subjects achieving SVR had increasing expression of the transcription factor T-bet, a driver of Th1 differentiation and cytotoxic effector cell maturation. These results show that host immune features present before treatment initiation predict SVR and eventual development of a higher frequency of functional virus-specific cells in blood. Such host characteristics may also be required for successful vaccine-mediated protection.
Collapse
Affiliation(s)
- Gema Méndez-Lagares
- California National Primate Research Center, University of California, Davis, Davis, CA 95616; .,Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| | - Ding Lu
- California National Primate Research Center, University of California, Davis, Davis, CA 95616.,Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| | - Connie Chen
- California National Primate Research Center, University of California, Davis, Davis, CA 95616.,Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| | - Norah Terrault
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Mark R Segal
- Center for Bioinformatics and Molecular Biostatistics, Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94107
| | - Mandana Khalili
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Division of Gastroenterology and Hepatology, San Francisco General Hospital, San Francisco, CA 94110
| | - Alexander Monto
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Veterans Affairs Medical Center, San Francisco, CA 94121
| | - Hui Shen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Veterans Affairs Medical Center, San Francisco, CA 94121
| | - M Michele Manos
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94129; and
| | - James C Ryan
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Veterans Affairs Medical Center, San Francisco, CA 94121
| | - Joseph M McCune
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, Davis, CA 95616.,Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616.,Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110
| |
Collapse
|
97
|
Shrivastava S, Wilson E, Poonia B, Tang L, Osinusi A, Kohli A, Kottilil S. Augmentation of hepatitis C virus-specific immunity and sustained virologic response. J Viral Hepat 2017; 24:742-749. [PMID: 28267900 PMCID: PMC10836410 DOI: 10.1111/jvh.12702] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/12/2017] [Indexed: 12/23/2022]
Abstract
Treatment for chronic hepatitis C virus (HCV) infection has rapidly evolved into interferon-free directly acting antiviral regimens (DAA) that result in high sustained virologic response. DAAs primarily work by suppressing HCV replication and rely less on the immune system than interferon-based therapies. However, it is unclear whether the immune system recovers with suppression of HCV replication and contributes to HCV clearance with DAA therapy. We previously demonstrated HCV clearance is associated with increased HCV-specific immunity in CHCV-GT-1-infected patients during treatment with sofosbuvir (SOF)+ribavirin (RBV). Here, we aimed to analyse changes in HCV-specific immunological responses associated with viral clearance with combination DAA therapy of SOF+ledipasvir (LDV) for 12 weeks in CHCV-GT1 (N=14) patients who relapsed without augmentation of HCV-specific immunity during treatment with SOF+RBV. Phenotypic and functional changes within the T-cell compartment of PBMCs pre- and post-treatment were analysed. Retreatment of relapsers with LDV/SOF resulted in all patients attaining SVR12 . Suppression of HCV was associated with a decline in T-cell exhaustion markers (CD57; Tim3; PD1) along with augmented of HCV-specific T-cell IFN-gamma responses post-treatment. Addition of LDV to SOF was associated with augmentation of HCV-specific immunity and SVR in patients who previously failed SOF+RBV therapy without increased immunity. These findings demonstrate a novel effect of DAA in inducing host immune responses to aid HCV clearance and achieve SVR.
Collapse
Affiliation(s)
- S Shrivastava
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - E Wilson
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - B Poonia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Tang
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - A Osinusi
- Gilead Sciences Inc., Foster City, CA, USA
| | - A Kohli
- Creighton University School of Medicine, St Joseph's Hospital, Phoenix, AZ, USA
| | - S Kottilil
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
98
|
Merat SJ, van de Berg D, Bru C, Yasuda E, Breij E, Kootstra N, Prins M, Molenkamp R, Bakker AQ, de Jong MD, Spits H, Schinkel J, Beaumont T. Multiplex flow cytometry-based assay to study the breadth of antibody responses against E1E2 glycoproteins of hepatitis C virus. J Immunol Methods 2017; 454:15-26. [PMID: 28855105 DOI: 10.1016/j.jim.2017.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/30/2022]
Abstract
Hepatitis C virus (HCV) infection is a major global public health problem. Early induction of cross-reactive neutralizing antibodies during acute infection correlates with the spontaneous clearance of HCV. Understanding the antibody response in multiple subjects in large-scale studies would greatly benefit vaccine development. To determine the breadth of a polyclonal-serum antibody response, and or, the monoclonal antibodies against the different HCV E1E2 genotypes, we developed a quick and high throughput flow cytometry assay using fluorescent cell barcoding to distinguish cells transfected with different E1E2 sequences in a single measurement. HCV-specific antibodies recognizing conformational epitopes were tested for binding to cells transfected with E1E2 from six genotypes. In this assay, 1500 samples can be analyzed for specific binding to 6 different HCV E1E2 sequences within 8h. Plasma of HCV infected subjects were tested in our assay allowing us to determine the breadth of their antibody response. In summary, we developed a quick and high throughput assay to study the specificity of an antibody response against multiple HCV E1E2 sequences simultaneously. This assay can also be used to facilitate the discovery of novel antibodies, and because other flavi- and picornaviruses have similar intracellular assembly mechanisms, this approach can be used to study the antibody response against such viruses.
Collapse
Affiliation(s)
- Sabrina J Merat
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Camille Bru
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Etsuko Yasuda
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther Breij
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Neeltje Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, Amsterdam, The Netherlands; Center for Infectious Diseases and Immunity Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Maria Prins
- Department of Infectious Diseases Research and Prevention, Cluster of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands; Department of infectious diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Richard Molenkamp
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjen Q Bakker
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hergen Spits
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Janke Schinkel
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tim Beaumont
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
99
|
Ellwanger JH, Kaminski VDL, Valverde-Villegas JM, Simon D, Lunge VR, Chies JAB. Immunogenetic studies of the hepatitis C virus infection in an era of pan-genotype antiviral therapies - Effective treatment is coming. INFECTION GENETICS AND EVOLUTION 2017; 66:376-391. [PMID: 28811194 DOI: 10.1016/j.meegid.2017.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 02/08/2023]
Abstract
What are the factors that influence human hepatitis C virus (HCV) infection, hepatitis status establishment, and disease progression? Firstly, one has to consider the genetic background of the host and HCV genotypes. The immunogenetic host profile will reflect how each infected individual deals with infection. Secondly, there are environmental factors that drive susceptibility or resistance to certain viral strains. These will dictate (I) the susceptibility to infection; (II) whether or not an infected person will promote viral clearance; (III) the immune response and the response profile to therapy; and (IV) whether and how long it would take to the development of HCV-associated diseases, as well as their severity. Looking at this scenario, this review addresses clinical aspects of HCV infection, following by an update of molecular and cellular features of the immune response against the virus. The evasion mechanisms used by HCV are presented, considering the potential role of exosomes in infection. Genetic factors influencing HCV infection and pathogenesis are the main topics of the article. Shortly, HLAs, MBLs, TLRs, ILs, and IFNLs genes have relevant roles in the susceptibility to HCV infection. In addition, ILs, IFNLs, as well as TLRs genes are important modulators of HCV-associated diseases. The viral aspects that influence HCV infection are presented, followed by a discussion about evolutionary aspects of host and HCV interaction. HCV and HIV infections are close related. Thus, we also present a discussion about HIV/HCV co-infection, focusing on cellular and molecular aspects of this interaction. Pharmacogenetics and treatment of HCV infection are the last topics of this review. The understanding of how the host genetics interacts with viral and environmental factors is crucial for the development of new strategies to prevent HCV infection, even in an era of potential development of pan-genotypic antivirals.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jacqueline María Valverde-Villegas
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Daniel Simon
- Laboratório de Genética Molecular Humana, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | - Vagner Ricardo Lunge
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
100
|
Tan WG, Zubkova I, Kachko A, Wells F, Adler H, Sutter G, Major ME. Qualitative differences in cellular immunogenicity elicited by hepatitis C virus T-Cell vaccines employing prime-boost regimens. PLoS One 2017; 12:e0181578. [PMID: 28732046 PMCID: PMC5521799 DOI: 10.1371/journal.pone.0181578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/03/2017] [Indexed: 12/31/2022] Open
Abstract
T-cell based vaccines have been considered as attractive candidates for prevention of hepatitis C virus (HCV) infections. In this study we compared the magnitude and phenotypic characteristics of CD8+ T-cells induced by three commonly used viral vectors, Adenovirus-5 (Ad5), Vaccinia virus (VV) and Modified Vaccinia Ankara (MVA) expressing the HCV NS3/4A protein. C57/BL6 mice were primed with DNA expressing NS3/4A and boosted with each of the viral vectors in individual groups of mice. We then tracked the vaccine-induced CD8+ T-cell responses using pentamer binding and cytokine production analysis. Overall, our data indicate that the memory cells induced by Ad5 were inferior to those induced by VV or MVA. We found that Ad5 boosting resulted in rapid expansion and significantly higher frequencies of NS3-specific T-cells compared to VV and MVA boosting. However, the functional profiles, assessed through analysis of the memory cell marker CD127 and the anti-apoptotic molecule Bcl-2 in the blood, spleen, and liver; and measurements of interferon-gamma, tumor necrosis factor-alpha, and interleukin-2 production indicated significantly lower frequencies of long-lived memory T-cells following Ad5 boosting compared to VV and MVA. This same set of analyses suggested that the memory cells induced following boosting with MVA were superior to those induced by both Ad5 and VV. This superiority of the MVA-induced CD8+ T-cells was confirmed following surrogate challenge of mice with a recombinant mouse herpes virus expressing the HCV NS3 protein. Higher levels of NS3-specific CD8+ T-cells displaying the functional markers CD69, Ki67 and Granzyme B were found in the spleens of mice boosted with MVA compared to VV and Ad5, both alone and in combination. These data suggest that MVA may be a more successful viral vector for induction of effective CD8+ T-cell responses against hepatitis C virus.
Collapse
Affiliation(s)
- Wendy G. Tan
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD United States of America
| | - Iryna Zubkova
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD United States of America
| | - Alla Kachko
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD United States of America
| | - Frances Wells
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD United States of America
| | - Heiko Adler
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany
| | - Marian E. Major
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD United States of America
- * E-mail:
| |
Collapse
|