51
|
Wagner SC, Ichim TE, Bogin V, Min WP, Silva F, Patel AN, Kesari S. Induction and characterization of anti-tumor endothelium immunity elicited by ValloVax therapeutic cancer vaccine. Oncotarget 2018; 8:28595-28613. [PMID: 28404894 PMCID: PMC5438675 DOI: 10.18632/oncotarget.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
ValloVax is a placental endothelium derived vaccine which induces tissue-nonspecific antitumor immunity by blocking tumor angiogesis. To elucidate mechanisms of action, we showed that production of ValloVax, which involves treating placental endothelial cells with IFN-gamma, results in upregulation of HLA and costimulatory molecules. It was shown that in mixed lymphocyte reaction, ValloVax induces Type I cytokines and allo-proliferative responses. Plasma from ValloVax immunized mice was capable of killing in vitro tumor-like endothelium but not control endothelium. Using defined antigens associated with tumor endothelial cells, specific molecular entities were identified as being targeted by ValloVax induced antibodies. Binding of predominantly IgG antibodies to ValloVax cells was confirmed by flow cytometry. Further suggesting direct killing of tumor endothelial cells was expression of TUNEL positive cells, as well as, reduction in tumor oxygenation. Supporting a role for antibody mediated responses, cell depletion experiments suggested a predominant role of B cells in maintaining an intact anti-tumor endothelial response. Adoptive transfer experiments suggested that infusion of CD3+ T cells from immunized mice was sufficient to transfer tumor protection. Generation of memory T cells selective to tumor endothelial specific markers was observed. Functional confirmation of memory responses was observed in tumor rechallenge experiments. Furthermore, we observed that both PD-1 or CTLA-4 blockade augmented antitumor effects of ValloVax. These data suggest a T cell induced B cell mediated anti-tumor endothelial response and set the framework clinical trials through elucidation of mechanism of action.
Collapse
Affiliation(s)
| | | | | | - Wei-Ping Min
- Department of Immunology, University of Western Ontario, London, Ontario, Canada
| | - Francisco Silva
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Amit N Patel
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA
| |
Collapse
|
52
|
Posttransplant chimeric antigen receptor therapy. Blood 2018; 131:1045-1052. [PMID: 29358181 DOI: 10.1182/blood-2017-08-752121] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022] Open
Abstract
Therapeutic T-cell engineering is emerging as a powerful approach to treat refractory hematological malignancies. Its most successful embodiment to date is based on the use of second-generation chimeric antigen receptors (CARs) targeting CD19, a cell surface molecule found in most B-cell leukemias and lymphomas. Remarkable complete remissions have been obtained with autologous T cells expressing CD19 CARs in patients with relapsed, chemo-refractory B-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma. Allogeneic CAR T cells may also be harnessed to treat relapse after allogeneic hematopoietic stem cell transplantation. However, the use of donor T cells poses unique challenges owing to potential alloreactivity. We review different approaches to mitigate the risk of causing or aggravating graft-versus-host disease (GVHD), including CAR therapies based on donor leukocyte infusion, virus-specific T cells, T-cell receptor-deficient T cells, lymphoid progenitor cells, and regulatory T cells. Advances in CAR design, T-cell selection and gene editing are poised to enable the safe use of allogeneic CAR T cells without incurring GVHD.
Collapse
|
53
|
Abstract
PURPOSE OF REVIEW Hyperlipidemia is a comorbidity affecting a significant number of transplant patients despite treatment with cholesterol lowering drugs. Recently, it has been shown that hyperlipidemia can significantly alter T-cell responses to cardiac allografts in mice, and graft rejection is accelerated in dyslipidemic mice. Here, we review recent advances in our understanding of hyperlipidemia in graft rejection. RECENT FINDINGS Hyperlipidemic mice have significant increases in serum levels of proinflammatory cytokines, and neutralization of interleukin 17 (IL-17) slows graft rejection, suggesting that IL-17 production by Th17 cells was necessary but not sufficient for rejection. Hyperlipidemia also causes an increase in alloreactive T-cell responses prior to antigen exposure. Analysis of peripheral tolerance mechanisms indicated that this was at least in part due to alterations in FoxP3 T cells that led to reduced Treg function and the expansion of FoxP3 CD4 T cells expressing low levels of CD25. Functionally, alterations in Treg function prevented the ability to induce operational tolerance to fully allogeneic heart transplants through costimulatory-molecule blockade, a strategy that requires Tregs. SUMMARY These findings highlight the importance of considering the contribution of inflammatory comorbidities to cardiac allograft rejection, and point to the potential importance of managing hyperlipidemia in the transplant population.
Collapse
|
54
|
León-Rodríguez E, Rivera-Franco MM, Gómez-Martín D, Romo-Tena J, Juárez-Vega G, Merayo-Chalico J, Alcocer-Varela J. Differential T cell subsets and cytokine profile between steady-state and G-CSF-primed bone marrow and its association with graft-versus-host disease. Leuk Res 2017; 63:47-52. [PMID: 29101827 DOI: 10.1016/j.leukres.2017.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 11/19/2022]
Abstract
Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). At our Institution, patients transplanted using G-CSF-primed bone marrow (G-BM), have a lower incidence of GVHD when compared to other sources. The objective of this study was to analyze and compare T cell subsets and cytokines in donor G-BM and steady-state BM (SS-BM). A prospective study was performed in 48 donor samples. Mononuclear cells were isolated by gradient density. T cell subsets and cytokine production in supernatants were analyzed by multiparametric flow cytometry. Six and 16 patients developed acute and chronic GVHD, respectively. Patients who developed GVHD were characterized by a predominant pro-inflammatory response (IL-17A (10.02 vs 0.43pg/mL, p=0.006), TNF-α (54.57 vs 0.81pg/mL, p=0.001)), in contrast to a deficient suppressor profile (IL-10 (7.87 vs 41.37pg/mL, p=0.003)) and Tregs (0.95% vs 1.52%, p=0.004). G-BM showed an enhanced suppressive phenotype (increased Th2 and Tregs) in comparison to SS-BM. GVHD is associated with an imbalance between pro-inflammatory and suppressor immune responses. G-BM showed a more favorable immunologic profile characterized by diminished pro-inflammatory cytokine production, which was associated with a lower frequency of GVHD in our cohort.
Collapse
Affiliation(s)
- Eucario León-Rodríguez
- Stem Cell Transplantation Program, Hematology and Oncology Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga 15, Belisario Dominguez Seccion XVI, Tlalpan, 14080, Mexico City, Mexico.
| | - Monica M Rivera-Franco
- Stem Cell Transplantation Program, Hematology and Oncology Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico
| | - Diana Gómez-Martín
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico
| | - Jorge Romo-Tena
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico
| | - Guillermo Juárez-Vega
- Flow Cytometry Unit. Red de Apoyo a la Investigación CIC-UNAM, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico
| | - Javier Merayo-Chalico
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico
| | - Jorge Alcocer-Varela
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico
| |
Collapse
|
55
|
Smith P, O'Sullivan C, Gergely P. Sphingosine 1-Phosphate Signaling and Its Pharmacological Modulation in Allogeneic Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2017; 18:ijms18102027. [PMID: 28934113 PMCID: PMC5666709 DOI: 10.3390/ijms18102027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022] Open
Abstract
Allogeneic haemopoietic stem cell transplantation (HSCT) is increasingly used to treat haematological malignant diseases via the graft-versus-leukaemia (GvL) or graft-versus-tumour effects. Although improvements in infectious disease prophylaxis, immunosuppressive treatments, supportive care, and molecular based tissue typing have contributed to enhanced outcomes, acute graft-versus-host disease and other transplant related complications still contribute to high mortality and significantly limit the more widespread use of HSCT. Sphingosine 1-phosphate (S1P) is a zwitterionic lysophospholipid that has been implicated as a crucial signaling regulator in many physiological and pathophysiological processes including multiple cell types such as macrophages, dendritic cells, T cells, T regulatory cells and endothelial cells. Recent data suggested important roles for S1P signaling in engraftment, graft-versus-host disease (GvHD), GvL and other processes that occur during and after HSCT. Based on such data, pharmacological intervention via S1P modulation may have the potential to improve patient outcome by regulating GvHD and enhancing engraftment while permitting effective GvL.
Collapse
Affiliation(s)
- Philip Smith
- Novartis Institutes for BioMedical Research, WSJ-386, CH-4002 Basel, Switzerland.
| | - Catherine O'Sullivan
- Novartis Institutes for BioMedical Research, WSJ-386, CH-4002 Basel, Switzerland.
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Peter Gergely
- Novartis Institutes for BioMedical Research, WSJ-386, CH-4002 Basel, Switzerland.
| |
Collapse
|
56
|
In Vivo Costimulation Blockade-Induced Regulatory T Cells Demonstrate Dominant and Specific Tolerance to Porcine Islet Xenografts. Transplantation 2017; 101:1587-1599. [PMID: 27653300 DOI: 10.1097/tp.0000000000001482] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Although islet xenotransplantation is a promising therapy for type 1 diabetes, its clinical application has been hampered by cellular rejection and the requirement for high levels of immunosuppression. The aim of this study was to determine the role of Foxp3 regulatory T (Treg) cells in costimulation blockade-induced dominant tolerance to porcine neonatal islet cell cluster (NICC) xenografts in mice. METHODS Porcine-NICC were transplanted under the renal capsule of BALB/c or C57BL/6 recipients and given a single dose of CTLA4-Fc at the time of transplant and 4doses of anti-CD154 mAb to day 6. Depletion of Foxp3Treg cell was performed in DEpletion of REGulatory T cells mice at day 80 posttransplantation. Foxp3Treg cell from spleens of treated BALB/c mice (tolerant Treg cell), and splenocytes were cotransferred into islet transplanted nonobese diabetic background with severe combined immunodeficiency mice to assess suppressive function. RESULTS In treated mice, increased numbers of Foxp3Treg cell were identified in the porcine-NICC xenografts, draining lymph node, and spleen. Porcine-NICC xenografts from treated mice expressed elevated levels of TGF-β, IL-10 and IFN-γ. Porcine-NICC xenograft tolerance was abrogated after depletion of Foxp3Treg cell. Tolerant Treg cell produced high levels of IL-10 and had diverse T cell receptor Vβ repertoires with an oligoclonal expansion in CDR3 of T cell receptor Vβ14. These tolerant Treg cells had the capacity to transfer dominant tolerance and specifically exhibited more potent regulatory function to porcine-NICC xenografts that naive Treg cell. CONCLUSIONS This study demonstrated that short-term costimulation blockade-induced dominant tolerance and that Foxp3Treg cell played an essential role in its maintenance. Foxp3Treg cells were activated and had more potent regulatory function in vivo than naive Treg cells.
Collapse
|
57
|
Merani S, Truong WW, Hancock W, Anderson CC, Shapiro AMJ. Chemokines and Their Receptors in Islet Allograft Rejection and as Targets for Tolerance Induction. Cell Transplant 2017; 15:295-309. [PMID: 28863747 DOI: 10.3727/000000006783981963] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Graft rejection is a major barrier to successful outcome of transplantation surgery. Islet transplantation introduces insulin secreting tissue into type 1 diabetes mellitus recipients, relieving patients from exogenous insulin injection. However, insulitis of grafted tissue and allograft rejection prevent long-term insulin independence. Leukocyte trafficking is necessary for the launch of successful immune responses to pathogen or allograft. Chemokines, small chemotactic cytokines, direct the migration of leukocytes through their interaction with chemokine receptors found on cell surfaces of immune cells. Unique receptor expression of leukocytes, and the specificity of chemokine secretion during various states of immune response, suggest that the extracellular chemokine milieu specifically homes certain leukocyte subsets. Thus, only those leukocytes required for the current immune task are attracted to the inflammatory site. Chemokine blockade, using antagonists and monoclonal antibodies directed against chemokine receptors, is an emerging and specific immunosuppressive strategy. Importantly, chemokine blockade may potentiate tolerance induction regimens to be used following transplantation surgery, and prevent the need for life-long immunosuppression of islet transplant recipients. Here, the role for chemokine blockade in islet transplant rejection and tolerance is reviewed.
Collapse
Affiliation(s)
- Shaheed Merani
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - Wayne W Truong
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - Wayne Hancock
- Department of Pathology and Laboratory Medicine, Joseph Stokes, Jr. Research Institute and Biesecker Pediatric Liver Center, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Colin C Anderson
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - A M James Shapiro
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| |
Collapse
|
58
|
Pan B, Wang X, Kojima S, Nishioka C, Yokoyama A, Honda G, Xu K, Ikezoe T. The Fifth Epidermal Growth Factor–like Region of Thrombomodulin Alleviates Murine Graft-versus-Host Disease in a G-Protein Coupled Receptor 15 Dependent Manner. Biol Blood Marrow Transplant 2017; 23:746-756. [DOI: 10.1016/j.bbmt.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/01/2017] [Indexed: 01/04/2023]
|
59
|
Kim SC, Wakwe W, Higginbotham LB, Mathews DV, Breeden CP, Stephenson AC, Jenkins J, Strobert E, Price K, Price L, Kuhn R, Wang H, Yamniuk A, Suchard S, Farris AB, Pearson TC, Larsen CP, Ford ML, Suri A, Nadler S, Adams AB. Fc-Silent Anti-CD154 Domain Antibody Effectively Prevents Nonhuman Primate Renal Allograft Rejection. Am J Transplant 2017; 17:1182-1192. [PMID: 28097811 PMCID: PMC5409881 DOI: 10.1111/ajt.14197] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 01/25/2023]
Abstract
The advent of costimulation blockade provides the prospect for targeted therapy with improved graft survival in transplant patients. Perhaps the most effective costimulation blockade in experimental models is the use of reagents to block the CD40/CD154 pathway. Unfortunately, successful clinical translation of anti-CD154 therapy has not been achieved. In an attempt to develop an agent that is as effective as previous CD154 blocking antibodies but lacks the risk of thromboembolism, we evaluated the efficacy and safety of a novel anti-human CD154 domain antibody (dAb, BMS-986004). The anti-CD154 dAb effectively blocked CD40-CD154 interactions but lacked crystallizable fragment (Fc) binding activity and resultant platelet activation. In a nonhuman primate kidney transplant model, anti-CD154 dAb was safe and efficacious, significantly prolonging allograft survival without evidence of thromboembolism (Median survival time 103 days). The combination of anti-CD154 dAb and conventional immunosuppression synergized to effectively control allograft rejection (Median survival time 397 days). Furthermore, anti-CD154 dAb treatment increased the frequency of CD4+ CD25+ Foxp3+ regulatory T cells. This study demonstrates that the use of a novel anti-CD154 dAb that lacks Fc binding activity is safe without evidence of thromboembolism and is equally as potent as previous anti-CD154 agents at prolonging renal allograft survival in a nonhuman primate preclinical model.
Collapse
Affiliation(s)
- Steven C Kim
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| | - Walter Wakwe
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| | - Laura B Higginbotham
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| | - David V Mathews
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| | - Cynthia P Breeden
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| | - Allison C Stephenson
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| | - Joe Jenkins
- Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - Elizabeth Strobert
- Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - Karen Price
- Bristol Myers-Squibb Pharmaceutical Research Institute, Princeton, NJ, USA
| | - Laura Price
- Bristol Myers-Squibb Pharmaceutical Research Institute, Princeton, NJ, USA
| | - Robert Kuhn
- Bristol Myers-Squibb Pharmaceutical Research Institute, Princeton, NJ, USA
| | - Haiqing Wang
- Bristol Myers-Squibb Pharmaceutical Research Institute, Princeton, NJ, USA
| | - Aaron Yamniuk
- Bristol Myers-Squibb Pharmaceutical Research Institute, Princeton, NJ, USA
| | - Suzanne Suchard
- Bristol Myers-Squibb Pharmaceutical Research Institute, Princeton, NJ, USA
| | - Alton B Farris
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| | - Thomas C Pearson
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| | - Christian P Larsen
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| | - Anish Suri
- Bristol Myers-Squibb Pharmaceutical Research Institute, Princeton, NJ, USA
| | - Steven Nadler
- Bristol Myers-Squibb Pharmaceutical Research Institute, Princeton, NJ, USA
| | - Andrew B Adams
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
60
|
Abstract
Regulatory T cells (Tregs) represent a cell type that promotes immune tolerance to autologous components and maintains immune system homeostasis. The abnormal function of Tregs is relevant to the pathogenesis of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and other autoimmune diseases. Therefore, therapeutic modulation of Tregs could be a potent means of treating autoimmune diseases. Human Tregs are diverse, however, and not all of them have immunosuppressive effects. Forkhead box P3 (Foxp3), a pivotal transcription factor of Tregs that is crucial in maintaining Treg immunosuppressive function, can be expressed heterogeneously or unstably across Treg subpopulations. Insights into modulating Treg differentiation on the level of DNA transcription or protein modification may improve the success of Treg modifying immunotherapies. In this review, we will summarize three main prospects: the regulatory mechanism of Foxp3, the influence on Foxp3 and Tregs in autoimmune diseases, then finally, how Tregs can be used to treat autoimmune diseases.
Collapse
|
61
|
Giraldo JA, Molano RD, Rengifo HR, Fotino C, Gattás-Asfura KM, Pileggi A, Stabler CL. The impact of cell surface PEGylation and short-course immunotherapy on islet graft survival in an allogeneic murine model. Acta Biomater 2017; 49:272-283. [PMID: 27915019 DOI: 10.1016/j.actbio.2016.11.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
Abstract
Islet transplantation is a promising therapy for Type 1 diabetes mellitus; however, host inflammatory and immune responses lead to islet dysfunction and destruction, despite potent systemic immunosuppression. Grafting of poly(ethylene glycol) (PEG) to the periphery of cells or tissues can mitigate inflammation and immune recognition via generation of a steric barrier. Herein, we sought to evaluate the complementary impact of islet PEGylation with a short-course immunotherapy on the survival of fully-MHC mismatched islet allografts (DBA/2 islets into diabetic C57BL/6J recipients). Anti-Lymphocyte Function-associated Antigen 1 (LFA-1) antibody was selected as a complementary, transient, systemic immune monotherapy. Islets were PEGylated via an optimized protocol, with resulting islets exhibiting robust cell viability and function. Following transplantation, a significant subset of diabetic animals receiving PEGylated islets (60%) or anti-LFA-1 antibody (50%) exhibited long-term (>100d) normoglycemia. The combinatorial approach proved synergistic, with 78% of the grafts exhibiting euglycemia long-term. Additional studies examining graft cellular infiltrates at early time points characterized the local impact of the transplant protocol on graft survival. Results illustrate the capacity of a simple polymer grafting approach to impart significant immunoprotective effects via modulation of the local transplant environment, while short-term immunotherapy serves to complement this effect. STATEMENT OF SIGNIFICANCE We believe this study is important and of interest to the biomaterials and transplant community for several reasons: 1) it provides an optimized protocol for the PEGylation of islets, with minimal impact on the coated islets, which can be easily translated for clinical applications; 2) this optimized protocol demonstrates the benefits of islet PEGylation in providing modest immunosuppression in a murine model; 3) this work demonstrates the combinatory impact of PEGylation with short-course immunotherapy (via LFA-1 blockage), illustrating the capacity of PEGylation to complement existing immunotherapy; and 4) it suggests macrophage phenotype shifting as the potential mechanism for this observed benefit.
Collapse
Affiliation(s)
- Jaime A Giraldo
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - R Damaris Molano
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA
| | - Hernán R Rengifo
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Carmen Fotino
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Kerim M Gattás-Asfura
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Antonello Pileggi
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA; Department of Microbiology & Immunology, University of Miami, Miami, FL, USA
| | - Cherie L Stabler
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA; Department of Microbiology & Immunology, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
62
|
Fuji S, Shindo T. Friend or foe? Mogamulizumab in allogeneic hematopoietic stem cell transplantation for adult T-cell leukemia/lymphoma. Stem Cell Investig 2016; 3:70. [PMID: 27868052 DOI: 10.21037/sci.2016.09.13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATL/ATLL) is a peripheral T-cell neoplasm associated with human T-lymphotropic virus type-1 (HTLV-1). Even the currently most intensive chemotherapy regimen modified LSG15 (mLSG15, VCAP-AMP-VECP) results in a dismal clinical outcome, with a median overall survival of only around 1 year. Although allogeneic hematopoietic stem cell transplantation (allo-HSCT) may lead to long-term remission in a proportion of patients with aggressive ATL, the clinical outcome in patients with refractory or relapsed ATL is unsatisfactory. The anti-CCR4 antibody mogamulizumab (moga) has been recently approved for ATL in Japan, and it is effective in a significant proportion of patients with refractory or relapsed ATL. However, there are major concerns about the harmful influences of pretransplant moga on the immune reconstitution after allo-HSCT. Specifically, moga depletes regulatory T cells (Tregs) for at least a few months, which may increase the risk of graft-versus-host disease (GVHD) after allo-HSCT. A recent retrospective study from Japan clearly showed that pretransplant moga increased the risk of severe and steroid-refractory GVHD, which led to increases in non-relapse mortality and overall mortality. To improve the overall clinical outcome in patients with relapsed or refractory ATL, more studies are needed to incorporate moga without increasing adverse effects on the clinical outcome after allo-HSCT. In this review, we aim to provide an updated summary of the research related to moga and allo-HSCT.
Collapse
Affiliation(s)
- Shigeo Fuji
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Takero Shindo
- Department of Hematology, Respiratory Medicine and Oncology, Saga University School of Medicine, Saga, Japan
| |
Collapse
|
63
|
Hu M, Wang YM, Wang Y, Zhang GY, Zheng G, Yi S, O'Connell PJ, Harris DCH, Alexander SI. Regulatory T cells in kidney disease and transplantation. Kidney Int 2016; 90:502-514. [PMID: 27263492 DOI: 10.1016/j.kint.2016.03.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/06/2016] [Accepted: 03/17/2016] [Indexed: 01/03/2023]
Abstract
Regulatory T cells (Tregs) have been shown to be important in maintaining immune homeostasis and preventing autoimmune disease, including autoimmune kidney disease. It is also likely that they play a role in limiting kidney transplant rejection and potentially in promoting transplant tolerance. Although other subsets of Tregs exist, the most potent and well-defined Tregs are the Foxp3 expressing CD4(+) Tregs derived from the thymus or generated peripherally. These CD4(+)Foxp3(+) Tregs limit autoimmune renal disease in animal models, especially chronic kidney disease, and kidney transplantation. Furthermore, other subsets of Tregs, including CD8 Tregs, may play a role in immunosuppression in kidney disease. The development and protective mechanisms of Tregs in kidney disease and kidney transplantation involve multiple mechanisms of suppression. Here we review the development and function of CD4(+)Foxp3(+) Tregs. We discuss the specific application of Tregs as a therapeutic strategy to prevent kidney disease and to limit kidney transplant rejection and detail clinical trials in this area of transplantation.
Collapse
Affiliation(s)
- Min Hu
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, University of Sydney, Westmead, New South Wales, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, The Children's Hospital at Westmead, University of Sydney, Westmead, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Geoff Y Zhang
- Centre for Kidney Research, The Children's Hospital at Westmead, University of Sydney, Westmead, New South Wales, Australia
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Shounan Yi
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Philip J O'Connell
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - David C H Harris
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, The Children's Hospital at Westmead, University of Sydney, Westmead, New South Wales, Australia.
| |
Collapse
|
64
|
Saha A, O'Connor RS, Thangavelu G, Lovitch SB, Dandamudi DB, Wilson CB, Vincent BG, Tkachev V, Pawlicki JM, Furlan SN, Kean LS, Aoyama K, Taylor PA, Panoskaltsis-Mortari A, Foncea R, Ranganathan P, Devine SM, Burrill JS, Guo L, Sacristan C, Snyder NW, Blair IA, Milone MC, Dustin ML, Riley JL, Bernlohr DA, Murphy WJ, Fife BT, Munn DH, Miller JS, Serody JS, Freeman GJ, Sharpe AH, Turka LA, Blazar BR. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest 2016; 126:2642-60. [PMID: 27294527 DOI: 10.1172/jci85796] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/28/2016] [Indexed: 12/20/2022] Open
Abstract
Programmed death ligand-1 (PD-L1) interaction with PD-1 induces T cell exhaustion and is a therapeutic target to enhance immune responses against cancer and chronic infections. In murine bone marrow transplant models, PD-L1 expression on host target tissues reduces the incidence of graft-versus-host disease (GVHD). PD-L1 is also expressed on T cells; however, it is unclear whether PD-L1 on this population influences immune function. Here, we examined the effects of PD-L1 modulation of T cell function in GVHD. In patients with severe GVHD, PD-L1 expression was increased on donor T cells. Compared with mice that received WT T cells, GVHD was reduced in animals that received T cells from Pdl1-/- donors. PD-L1-deficient T cells had reduced expression of gut homing receptors, diminished production of inflammatory cytokines, and enhanced rates of apoptosis. Moreover, multiple bioenergetic pathways, including aerobic glycolysis, oxidative phosphorylation, and fatty acid metabolism, were also reduced in T cells lacking PD-L1. Finally, the reduction of acute GVHD lethality in mice that received Pdl1-/- donor cells did not affect graft-versus-leukemia responses. These data demonstrate that PD-L1 selectively enhances T cell-mediated immune responses, suggesting a context-dependent function of the PD-1/PD-L1 axis, and suggest selective inhibition of PD-L1 on donor T cells as a potential strategy to prevent or ameliorate GVHD.
Collapse
|
65
|
Vogel I, Verbinnen B, Van Gool S, Ceuppens JL. Regulatory T Cell-Dependent and -Independent Mechanisms of Immune Suppression by CD28/B7 and CD40/CD40L Costimulation Blockade. THE JOURNAL OF IMMUNOLOGY 2016; 197:533-40. [PMID: 27288533 DOI: 10.4049/jimmunol.1502039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 05/10/2016] [Indexed: 02/04/2023]
Abstract
Blocking of costimulatory CD28/B7 and CD40/CD40L interactions is an experimental approach to immune suppression and tolerance induction. We previously reported that administration of a combination of CTLA-4Ig and MR1 (anti-CD40L mAb) for blockade of these interactions induces tolerance in a fully mismatched allogeneic splenocyte transfer model in mice. We now used this model to study whether regulatory T cells (Tregs) contribute to immune suppression and why both pathways have to be blocked simultaneously. Mice were injected with allogeneic splenocytes, CD4(+) T cells, or CD8(+) T cells and treated with MR1 mAb and different doses of CTLA-4Ig. The graft-versus-host reaction of CD4(+) T cells, but not of CD8(+) T cells, was inhibited by MR1. CTLA-4Ig was needed to cover CD8(+) T cells but had only a weak effect on CD4(+) T cells. Consequently, only the combination provided full protection when splenocytes were transferred. Importantly, MR1 and low-dose CTLA-4Ig treatment resulted in a relative increase in Tregs, and immune suppressive efficacy was abolished in the absence of Tregs. High-dose CTLA-4Ig treatment, in contrast, prevented Treg expansion and activity, and in combination with MR1 completely inhibited CD4(+) and CD8(+) T cell activation in a Treg-independent manner. In conclusion, MR1 and CTLA-4Ig act synergistically as they target different T cell populations. The contribution of Tregs to immune suppression by costimulation blockade depends on the concentration of CTLA-4Ig and thus on the degree of available CD28 costimulation.
Collapse
Affiliation(s)
- Isabel Vogel
- Laboratory of Clinical Immunology, KULeuven, University Hospital Gasthuisberg, 3000 Leuven, Belgium; and
| | - Bert Verbinnen
- Laboratory of Clinical Immunology, KULeuven, University Hospital Gasthuisberg, 3000 Leuven, Belgium; and
| | - Stefaan Van Gool
- Laboratory of Clinical Immunology, KULeuven, University Hospital Gasthuisberg, 3000 Leuven, Belgium; and Childhood Immunology, KULeuven, University Hospital Gasthuisberg, 3000 Leuven, Belgium
| | - Jan L Ceuppens
- Laboratory of Clinical Immunology, KULeuven, University Hospital Gasthuisberg, 3000 Leuven, Belgium; and
| |
Collapse
|
66
|
Dumontet E, Danger R, Vagefi PA, Londoño MC, Pallier A, Lozano JJ, Giral M, Degauque N, Soulillou JP, Martínez-Llordella M, Lee H, Latournerie M, Boudjema K, Dulong J, Tarte K, Sanchez-Fueyo A, Feng S, Brouard S, Conchon S. Peripheral phenotype and gene expression profiles of combined liver-kidney transplant patients. Liver Int 2016; 36:401-9. [PMID: 26193627 PMCID: PMC5395096 DOI: 10.1111/liv.12917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The beneficial effect of one graft on another has been reported in combined transplantation but the associated mechanisms and biological influence of each graft have not yet been established. METHODS In multiple analyses, we explored the PBMC phenotype and signature of 45 immune-related messenger RNAs and 754 microRNAs from a total of 235 patients, including combined liver-kidney transplant recipients (CLK), patients with a liver (L-STA) or kidney (K-STA) graft only under classical immunosuppression and patients with tolerated liver (L-TOL) or kidney grafts (K-TOL). RESULTS CLK show an intermediary phenotype with a higher percentage of peripheral CD19(+) CD24(+) CD38(Low) memory B cells and Helios(+) Treg cells, two features associated with tolerance profiles, compared to L-STA and K-STA (P < 0.05, P < 0.01). Very few miRNA were significantly differentially expressed in CLK vs. K-STA and even fewer when compared to L-STA (35 and 8, P < 0.05). Finally, CLK are predicted to share common miRNA targets with K-TOL and even more with L-TOL (344 and 411, P = 0.005). Altogether CLK display an intermediary phenotype and gene profile, which is closer to that of liver transplant patients, with possible similarities with the profiles of tolerant patients. CONCLUSION These data suggest that CLK patients show the immunological influence of both allografts with liver having a greater influence.
Collapse
Affiliation(s)
- Erwan Dumontet
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France,Université de Nantes, Nantes, France,Centre Hospitalier Universitaire Pontchaillou, Rennes,
France
| | - Richard Danger
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France,Department of Liver Studies, Medical Research Council (MRC)
Centre for Transplantation, School of Life Sciences & Medicine,
King’s College London University, London, UK
| | - Parsia A. Vagefi
- Division of Transplantation Surgery, Massachusetts General
Hospital, and Harvard medical school, Boston, MA, USA
| | | | - Annaïck Pallier
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France
| | - Juan José Lozano
- Liver Unit and Bioinformatic platform, Hospital Clinic
Barcelona, Barcelona, Spain
| | - Magali Giral
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France,Université de Nantes, Nantes, France,CIC Biothérapie, Nantes, France
| | - Nicolas Degauque
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France
| | - Jean-Paul Soulillou
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France,Université de Nantes, Nantes, France
| | - Marc Martínez-Llordella
- Department of Liver Studies, Medical Research Council (MRC)
Centre for Transplantation, School of Life Sciences & Medicine,
King’s College London University, London, UK,Liver Unit and Bioinformatic platform, Hospital Clinic
Barcelona, Barcelona, Spain
| | - Herman Lee
- Department of Surgery, Division of Transplantation,
University of California, San Francisco, CA, USA
| | | | - Karim Boudjema
- Centre Hospitalier Universitaire Pontchaillou, Rennes,
France
| | - Joelle Dulong
- Centre Hospitalier Universitaire Pontchaillou, Rennes,
France,EFS Bretagne, Rennes, France,INSERM UMR 917, Rennes, France
| | - Karin Tarte
- Centre Hospitalier Universitaire Pontchaillou, Rennes,
France,EFS Bretagne, Rennes, France,INSERM UMR 917, Rennes, France
| | - Alberto Sanchez-Fueyo
- Department of Liver Studies, Medical Research Council (MRC)
Centre for Transplantation, School of Life Sciences & Medicine,
King’s College London University, London, UK,Liver Unit and Bioinformatic platform, Hospital Clinic
Barcelona, Barcelona, Spain
| | - Sandy Feng
- Department of Surgery, Division of Transplantation,
University of California, San Francisco, CA, USA
| | - Sophie Brouard
- INSERM UMR 1064, Nantes, France,CHU de Nantes, ITUN, Nantes, France,Université de Nantes, Nantes, France,CIC Biothérapie, Nantes, France,CHU Nantes, CRB, Nantes, France
| | - Sophie Conchon
- INSERM UMR 1064, Nantes, France,Université de Nantes, Nantes, France
| |
Collapse
|
67
|
Akimova T, Levine MH, Beier UH, Hancock WW. Standardization, Evaluation, and Area-Under-Curve Analysis of Human and Murine Treg Suppressive Function. Methods Mol Biol 2016; 1371:43-78. [PMID: 26530794 DOI: 10.1007/978-1-4939-3139-2_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
FOXP3+ T-regulatory (Treg) cells have important roles in immune homeostasis, and alterations in their number and function can predispose to diseases ranging from autoimmunity to allograft rejection and tumor growth. Reliable identification of human Tregs remains a persistent problem due to a lack of specific markers. The most definitive Treg characterization currently involves combined assessment of phenotypic, epigenetic and functional parameters, with the latter typically involving in vitro Treg suppression assays. Unfortunately, suppression assays are frequently performed using differing methods and readouts, limiting comparisons between studies. We provide a perspective on our experience with human and murine Treg suppression assay conditions, including Treg data obtained in clinical transplant studies, Tregs isolated from healthy donors and treated with epigenetically active compounds, and Tregs from standard murine strains (C57BL/6 and BALB/c). We provide detailed descriptions and illustrations of typical problems, shortcomings and troubleshooting; describe new modifications and approaches; and present a new method for calculation of suppressive assay data using a modified area-under-curve (AUC) method. This method allows us to directly compare Treg suppressive function between multiple patients (such as in clinical transplant studies), to reliably track changes in Treg function from the same person over time, or compare effects of Treg-modulating compounds tested with different healthy donors Tregs in separate or combined experimental settings.
Collapse
Affiliation(s)
- Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Matthew H Levine
- Department of Surgery, Penn Transplant Institute, Hospital of the University of Pennsylvania and University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
68
|
Cho JH, Yoon YD, Jang HM, Kwon E, Jung HY, Choi JY, Park SH, Kim YL, Kim HK, Huh S, Won DI, Kim CD. Immunologic Monitoring of T-Lymphocyte Subsets and Hla-Dr-Positive Monocytes in Kidney Transplant Recipients: A Prospective, Observational Cohort Study. Medicine (Baltimore) 2015; 94:e1902. [PMID: 26554788 PMCID: PMC4915889 DOI: 10.1097/md.0000000000001902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The clinical significance of circulating T-lymphocyte subsets and human leukocyte antigen (HLA)-DR-positive monocytes in the peripheral blood of kidney transplant recipients (KTRs) remains unclear. We examined the efficacy of enumerating these cells for the immunologic monitoring of KTRs.Blood samples were obtained before transplantation, 2 weeks after transplantation and at diagnosis, and 2 weeks after treating biopsy-proven acute cellular rejection and cytomegalovirus (CMV) infection. Serial flow cytometric analysis was performed using peripheral blood obtained from 123 patients to identify the frequencies of HLA-DR, CD3, CD4, CD8, and CD25 T-lymphocytes and HLA-DR-positive monocytes.Frequencies of CD4CD25/CD4 T cells, CD8CD25/CD8 T cells, and HLA-DR-positive monocytes were significantly lower at 2 weeks after transplantation than before transplantation (all P < 0.001). This decrease was not correlated with clinical parameters. The frequency of CD4CD25/CD4 T cells was significantly higher in KTRs with acute rejection than in KTRs at 2 weeks after transplantation (9.10% [range 4.30-25.6%] vs 5.10% [range 0.10-33.3%]; P = 0.024). However, no significant differences were observed between stable KTRs and KTRs with CMV infection. Analysis of the receiver operating characteristic curve adjusted by covariates showed that acute rejection could be predicted with 75.0% sensitivity and 68.4% specificity by setting the cutoff value of CD4CD25/CD4 T cell frequency as 5.8%.Circulating T-lymphocyte and monocyte subsets showed significant and consistent changes in their frequencies after immunosuppression. Of the various immune cells examined, circulating levels of CD4CD25 T cells might be a useful noninvasive immunologic indicator for detecting acute rejection.
Collapse
Affiliation(s)
- Jang-Hee Cho
- From the Department of Internal Medicine (J-HC, Y-DY, EK, H-YJ, J-YC, S-HP, Y-LK, C-DK); Department of Statistics (HMJ); Department of Surgery (H-KK, SH); and Department of Clinical Pathology, Kyungpook National University Hospital, Daegu, Korea (D-IW)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Kim KW, Moon SJ, Park MJ, Kim BM, Kim EK, Lee SH, Lee EJ, Chung BH, Yang CW, Cho ML. Optimization of adipose tissue-derived mesenchymal stem cells by rapamycin in a murine model of acute graft-versus-host disease. Stem Cell Res Ther 2015; 6:202. [PMID: 26497134 PMCID: PMC4619057 DOI: 10.1186/s13287-015-0197-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/07/2015] [Accepted: 10/05/2015] [Indexed: 01/05/2023] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) can protect bone marrow transplantation (BMT) recipients from the lethal acute graft-versus-host disease (aGVHD) development. However, the mechanisms underlying the anti-inflammatory properties of MSCs in aGVHD remain to be elucidated. The immunoregulatory properties of MSCs are mediated by their production of anti-inflammatory molecules, including IL-10 and TGF-β. On the other hand, MSCs can also produce proinflammatory cytokines during their normal growth, such as IL-1β and IL-6. These opposite actions may limit their therapeutic application in aGVHD. Therefore, optimization of the functional properties of MSCs can increase their benefits. Methods The expressions of mRNA and protein were analyzed by real-time PCR and western blotting, respectively. Expression of MSC markers was assessed by flow cytometry. An animal model of aGVHD was established by transplanting C57BL/6 donor bone marrow cells and spleen cells into lethally irradiated BALB/c recipient mice. The recipient mice were divided into the control group and the therapy [adipose tissue-derived human MSCs (Ad-hMSCs) or rapamycin-treated Ad-hMSCs] groups. The survival, body weight and clinical score of aGVHD in transplanted mice were monitored. Results Rapamycin pre-treatment of Ad-hMSCs increased mRNA synthesis of IL-10, indoleamine 2,3-dioxygenase, and TGF-β compared with untreated Ad-hMSCs. Rapamycin-treated Ad-hMSCs suppressed clonal expansion of interleukin-17-producing CD4+ T (Th17) cells more effectively than untreated cells. mRNA expression of autophagy markers such as ATG5, LC3A and LC3B was significantly increased in the rapamycin-treated Ad-hMSCs compared with untreated Ad-hMSCs. Transmission electron microscopy revealed that Ad-hMSCs exposure to rapamycin resulted in the appearance of autophagic vacuoles. Interestingly, in vitro migration efficiency of rapamycin-treated Ad-hMSCs toward the CD4+ T cells was increased significantly compared with the untreated cells. And, these effects were associated with autophagy induction capacity of rapamycin. In vivo, the inhibiting properties of MSCs on the clinical severities of aGVHD were greater in the mice receiving rapamycin-treated Ad-hMSCs compared with untreated Ad-hMSCs. The beneficial effects of rapamycin treatment in Ad-hMSCs shown in vivo were associated with a reduction of Th17 cells and an increase in regulatory T cells. Conclusions Rapamycin can optimize the immunomodulatory potential of Ad-hMSCs, suggesting a promising strategy of MSC use in aGVHD treatment.
Collapse
Affiliation(s)
- Kyoung-Woon Kim
- Convergent Research Consortium for Immunologic disease, Transplant Research Center, The Catholic University of Korea, Seoul, South Korea.
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Min-Jung Park
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.
| | - Bo-Mi Kim
- Convergent Research Consortium for Immunologic disease, Transplant Research Center, The Catholic University of Korea, Seoul, South Korea.
| | - Eun-Kyung Kim
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.
| | - Sung-Hee Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.
| | - Eun-Jung Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.
| | - Byung-Ha Chung
- Convergent Research Consortium for Immunologic disease, Transplant Research Center, The Catholic University of Korea, Seoul, South Korea. .,Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Chul-Woo Yang
- Convergent Research Consortium for Immunologic disease, Transplant Research Center, The Catholic University of Korea, Seoul, South Korea. .,Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea. .,Department of Internal Medicine, Seoul St. Mary's Hospital, 505 Banpo-Dong, Seocho-Ku, 137-040, , Seoul, Korea.
| | - Mi-La Cho
- Convergent Research Consortium for Immunologic disease, Transplant Research Center, The Catholic University of Korea, Seoul, South Korea. .,The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
70
|
Gattringer M, Baranyi U, Pilat N, Hock K, Klaus C, Ramsey HE, Wrba F, Valenta R, Wekerle T. Anti-OX40L alone or in combination with anti-CD40L and CTLA4Ig does not inhibit the humoral and cellular response to a major grass pollen allergen. Clin Exp Allergy 2015; 46:354-64. [PMID: 26464312 DOI: 10.1111/cea.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND IgE-mediated allergy is a common disease characterized by a harmful immune response towards otherwise harmless environmental antigens. Induction of specific immunological non-responsiveness towards allergens would be a desirable goal. Blockade of costimulatory pathways is a promising strategy to modulate the immune response in an antigen-specific manner. Recently, OX40 (CD134) was identified as a costimulatory receptor important in Th2-mediated immune responses. Moreover, synergy between OX40 blockade and 'conventional' costimulation blockade (anti-CD40L, CTLA4Ig) was observed in models of alloimmunity. OBJECTIVE We investigated the potential of interfering with OX40 alone or in combination with CD40/CD28 signals to influence the allergic immune response. METHODS The OX40 pathway was investigated in an established murine model of IgE-mediated allergy where BALB/c mice are repeatedly immunized with the clinically relevant grass pollen allergen Phl p 5. Groups were treated with combinations of anti-OX40L, CTLA4Ig and anti-CD40L. In selected mice, Tregs were depleted with anti-CD25. RESULTS Blockade of OX40L alone at the time of first or second immunization did not modulate the allergic response on the humoral or effector cell levels but slightly on T cell responses. Administration of a combination of anti-CD40L/CTLA4Ig delayed the allergic immune response, but antibody production could not be inhibited after repeated immunization even though the allergen-specific T cell response was suppressed in the long run. Notably, additional blockade of OX40L had no detectable supplementary effect. Immunomodulation partly involved regulatory T cells as depletion of CD25(+) cells led to restored T cell proliferation. CONCLUSIONS AND CLINICAL RELEVANCE Collectively, our data provide evidence that the allergic immune response towards Phl p 5 is independent of OX40L, although reduction on T cell responses and slightly on the asthmatic phenotype was detectable. Besides, no relevant synergistic effect of OX40L blockade in addition to CD40L/CD28 blockade could be detected. Thus, the therapeutic potential of OX40L blockade for IgE-mediated allergy appears to be ineffective in this setting.
Collapse
Affiliation(s)
- M Gattringer
- Department of Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - U Baranyi
- Department of Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - N Pilat
- Department of Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - K Hock
- Department of Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - C Klaus
- Department of Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - H E Ramsey
- Department of Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - F Wrba
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - R Valenta
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - T Wekerle
- Department of Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
71
|
Shipounova IN, Petinati NA, Bigildeev AE, Zezina EA, Drize NI, Kuzmina LA, Parovichnikova EN, Savchenko VG. Analysis of results of acute graft-versus-host disease prophylaxis with donor multipotent mesenchymal stromal cells in patients with hemoblastoses after allogeneic bone marrow transplantation. BIOCHEMISTRY (MOSCOW) 2015; 79:1363-70. [PMID: 25716730 DOI: 10.1134/s0006297914120104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allogeneic bone marrow transplantation (allo-BMT) is currently the only way to cure many hematoproliferative disorders. However, allo-BMT use is limited by severe complications, the foremost being graft-versus-host disease (GVHD). Due to the lack of efficiency of the existing methods of GVHD prophylaxis, new methods are being actively explored, including the use of donors' multipotent mesenchymal stromal cells (MMSC). In this work, we analyzed the results of acute GVHD (aGVHD) prophylaxis by means of MMSC injections after allo-BMT in patients with hematological malignancies. The study included 77 patients. They were randomized into two groups - those receiving standard prophylaxis of aGVHD and those who were additionally infused with MMSC derived from the bone marrow of hematopoietic stem cell donors. We found that the infusion of MMSC halves the incidence of aGVHD and increases the overall survival of patients. Four of 39 MMSC samples were ineffective for preventing aGVHD. Analysis of individual donor characteristics (gender, age, body mass index) and the MMSC properties of these donors (growth parameters, level of expression of 30 genes involved in proliferation, differentiation, and immunomodulation) revealed no significant difference between the MMSC that were effective or ineffective for preventing aGVHD. We used multiple logistic regression to establish a combination of features that characterize the most suitable MMSC samples for the prevention of aGVHD. A model predicting MMSC sample success for aGVHD prophylaxis was constructed. Significant model parameters were increased relative expression of the FGFR1 gene in combination with reduced expression levels of the PPARG and IGF1 genes. Depending on the chosen margin for probability of successful application of MMSC, this model correctly predicts the outcome of the use of MMSC in 82-94% of cases. The proposed model of prospective evaluation of the effectiveness of MMSC samples will enable prevention of the development of aGVHD in the maximal number of patients.
Collapse
Affiliation(s)
- I N Shipounova
- Hematological Scientific Center, Ministry of Health of Russian Federation, Moscow, 125167, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Kawahara M, Takaku H. A tumor lysate is an effective vaccine antigen for the stimulation of CD4(+) T-cell function and subsequent induction of antitumor immunity mediated by CD8(+) T cells. Cancer Biol Ther 2015; 16:1616-25. [PMID: 26391871 DOI: 10.1080/15384047.2015.1078027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To develop a potent cancer vaccine, it is important to study how to prepare highly immunogenic antigens and to identify the most appropriate adjuvants for the antigens. Here we show that a tumor lysate works as an effective antigen to prime CD4(+) T-cell help when baculovirus is employed as an adjuvant. When immunized intradermally with the combination (BLP) of baculovirus, a CT26 tumor lysate, and a cytotoxic T-cell epitope peptide before a tumor challenge, 60% of mice rejected tumors. In contrast, all mice vaccinated with baculovirus plus a tumor lysate (BL) developed tumors. In addition, flow cytometry showed that tumor-specific, interferon γ-producing CD8(+) cytotoxic T lymphocytes (CTLs) were robustly activated by intradermal immunization with BLP. When BLP was administered therapeutically to tumor-bearing mice, antitumor efficacy was better compared to BL. The established tumor was completely eradicated in 50-60% of BLP-treated mice, and induction of tumor-specific CTLs was observed, suggesting that the antitumor efficacy of BLP is mediated by CD8(+) T cells. Numerous CD4(+) T cells infiltrated the tumors of BLP-treated mice, whereas the antitumor effect of BLP almost disappeared after removal of the tumor lysate from BLP or after depletion of BLP-immunized mice of CD4(+) T cells. Thus, the combination of a peptide, lysate, and baculovirus provides stronger antitumor immunity than does a peptide plus baculovirus or a lysate plus baculovirus; effectiveness of BLP is determined by functioning of CD4(+) T cells stimulated with a tumor lysate.
Collapse
Affiliation(s)
- Mamoru Kawahara
- a Research and Development Department ; Japan BCG Laboratory ; Kiyose , Tokyo , Japan.,b Department of Life and Environmental Sciences ; Chiba Institute of Technology ; Narashino , Chiba , Japan
| | - Hiroshi Takaku
- b Department of Life and Environmental Sciences ; Chiba Institute of Technology ; Narashino , Chiba , Japan.,c High Technology Research Center ; Chiba Institute of Technology ; Narashino , Chiba , Japan
| |
Collapse
|
73
|
Bagley J, Yuan J, Chandrakar A, Iacomini J. Hyperlipidemia Alters Regulatory T Cell Function and Promotes Resistance to Tolerance Induction Through Costimulatory Molecule Blockade. Am J Transplant 2015; 15:2324-35. [PMID: 26079467 PMCID: PMC5125018 DOI: 10.1111/ajt.13351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 01/25/2023]
Abstract
Recent work from our laboratory has shown that hyperlipidemia promotes accelerated rejection of vascularized cardiac allografts in mice by inducing anti-donor Th17 reactivity and production of IL-17. Here, we show that hyperlipidemia also affects FoxP3(+) regulatory T cells (Tregs). Hyperlipidemia promotes the development of Tregs that express low levels of CD25. Hyperlipidemia also promotes a decrease in central Tregs and an increase in effector Tregs that appears to account for the increase in the frequency of CD25(low) Tregs. Alterations in Treg subsets also appear to lead to alterations in Treg function. The ability of FoxP3(+) , CD25(high) , CD4(+) Tregs from hyperlipidemic mice to inhibit proliferation of effector T cells stimulated with anti-CD3 and CD28 was reduced when compared with Tregs from control mice. Regulatory T cells isolated from hyperlipidemic recipients exhibit increased activation of Akt, and a reduction in Bim levels that permits the expansion of FoxP3(+) CD25(low) CD4(+) T cells. Hyperlipidemic mice were also resistant to tolerance induction using costimulatory molecule blockade consisting of anti-CD154 and CTLA4Ig, a strategy that requires Tregs. Together, our data suggest that hyperlipidemia profoundly affects Treg subsets and function as well as the ability to induce tolerance.
Collapse
Affiliation(s)
- J. Bagley
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Tufts University School of Medicine, Boston, MA
| | - J. Yuan
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Tufts University School of Medicine, Boston, MA
| | - A. Chandrakar
- Schuster Family Transplantation Research Center Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - J. Iacomini
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Tufts University School of Medicine, Boston, MA,Corresponding author: John Iacomini,
| |
Collapse
|
74
|
Abstract
Generation of an effective immune response against foreign antigens requires two distinct molecular signals: a primary signal provided by the binding of antigen-specific T-cell receptor to peptide-MHC on antigen-presenting cells and a secondary signal delivered via the engagement of costimulatory molecules. Among various costimulatory signaling pathways, the interactions between CD40 and its ligand CD154 have been extensively investigated given their essential roles in the modulation of adaptive immunity. Here, we review current understanding of the role CD40/CD154 costimulation pathway has in alloimmunity, and summarize recent mechanistic and preclinical advances in the evaluation of candidate therapeutic approaches to target this receptor-ligand pair in transplantation.
Collapse
Affiliation(s)
- Tianshu Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard N Pierson
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore VA Medical Center, Baltimore, MD, USA
| | - Agnes M Azimzadeh
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
75
|
Gatza E, Choi SW. Approaches for the prevention of graft-versus-host disease following hematopoietic cell transplantation. Int J Hematol Oncol 2015; 4:113-126. [PMID: 27182433 DOI: 10.2217/ijh.15.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is an important therapeutic option for malignant and non-malignant diseases, but the more widespread application of the therapy remains limited by the occurrence of graft versus host disease (GVHD). GVHD results from immune-mediated injury by donor immune cells against tissues in the HCT recipient, and can be characterized as acute or chronic depending on the time of onset and site of organ involvement. The majority of efforts have focused on GVHD prevention. Calcineurin inhibitors are the most widely used agents and are included in almost all regimens. Despite current prophylaxis strategies, 40-70% of patients remain at risk for developing GVHD. Herein, we review standard and emerging therapies used in GVHD management.
Collapse
Affiliation(s)
- Erin Gatza
- Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, United States; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Sung Won Choi
- Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, United States; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
76
|
Large-scale Isolation of Highly Pure “Untouched” Regulatory T Cells in a GMP Environment for Adoptive Cell Therapy. J Immunother 2015; 38:250-8. [DOI: 10.1097/cji.0000000000000083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
77
|
Graca L. Transplantation tolerance: context matters. Eur J Immunol 2015; 45:1921-5. [PMID: 26031651 DOI: 10.1002/eji.201545762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/13/2015] [Accepted: 05/27/2015] [Indexed: 11/07/2022]
Abstract
Costimulation blockade has been one of the most studied strategies to achieve immune tolerance, particularly in transplantation. Yet, in spite of the robust nature of the tolerance-inducing potential of costimulation blockade, a comprehensive understanding of the molecular and cellular mechanisms underlying tolerance induction is still missing. Nevertheless, progress has been continuously made. In this issue of the European Journal of Immunology, Chai et al. [Eur. J. Immunol. 2015. 45: 2017-2027] show that transplantation tolerance induced with an anti-CD154 monoclonal antibody relies on the coexistence of several tolerogenic mechanisms rather than one simple regulatory mechanism. These observations highlight the importance of concerted actions involving multiple pathways, namely apoptosis, acquisition of regulatory cells, or inhibition of proliferation, all of which contribute to the induction and maintenance of robust immune tolerance. A better understanding of these distinct tolerogenic pathways may lead to the development of better tolerance-inducing therapeutics.
Collapse
Affiliation(s)
- Luis Graca
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Instituto Gulbenkian de Ciências, Oeiras, Portugal
| |
Collapse
|
78
|
Yang WY, Shao Y, Lopez-Pastrana J, Mai J, Wang H, Yang XF. Pathological conditions re-shape physiological Tregs into pathological Tregs. BURNS & TRAUMA 2015; 3. [PMID: 26623425 PMCID: PMC4662545 DOI: 10.1186/s41038-015-0001-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4+FOXP3+ regulatory T cells (Tregs) are a subset of CD4 T cells that play an essential role in maintaining peripheral immune tolerance, controlling acute and chronic inflammation, allergy, autoimmune diseases, and anti-cancer immune responses. Over the past 20 years, significant progress has been made since Tregs were first characterized in 1995. Many concepts and principles regarding Tregs generation, phenotypic features, subsets (tTregs, pTregs, iTregs, and iTreg35), tissue specificity (central Tregs, effector Tregs, and tissue resident Tregs), homeostasis (highly dynamic and apoptotic), regulation of Tregs by receptors for PAMPs and DAMPs, Treg plasticity (re-differentiation to other CD4 T helper cell subsets, Th1, Th2, Tfh and Th17), and epigenetic regulation of Tregs phenotypes and functions have been innovated. In this concise review, we want to briefly analyze these eight new progresses in the study of Tregs. We have also proposed for the first time a novel concept that "physiological Tregs" have been re-shaped into "pathological Tregs" in various pathological environments. Continuing of the improvement in our understanding on this important cellular component about the immune tolerance and immune suppression, would lead to the future development of novel therapeutics approaches for acute and chronic inflammatory diseases, allergy, allogeneic transplantation-related immunity, sepsis, autoimmune diseases, and cancers.
Collapse
Affiliation(s)
- William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Ying Shao
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Jahaira Lopez-Pastrana
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Jietang Mai
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A ; Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| |
Collapse
|
79
|
Chai JG, Ratnasothy K, Bucy RP, Noelle RJ, Lechler R, Lombardi G. Allospecific CD4(+) T cells retain effector function and are actively regulated by Treg cells in the context of transplantation tolerance. Eur J Immunol 2015; 45:2017-27. [PMID: 25944401 DOI: 10.1002/eji.201545455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/12/2015] [Accepted: 04/30/2015] [Indexed: 01/31/2023]
Abstract
Although donor-specific transfusion (DST) plus CD154 blockade represents a robust protocol for inducing transplantation tolerance, the underlying mechanisms are incompletely understood. In a murine T-cell adoptive transfer model, we have visualized alloantigen-specific, TCR-transgenic for H2-A(b) /H2-K(d) 54-68 epitope (TCR75) CD4(+) T cells with indirect allospecificity during the course of tolerance induction. Three main observations were made. First, although the majority of TCR75 CD4(+) T cells were deleted following DST plus CD154 blockade, the surviving TCR75 CD4(+) T cells were capable of making IL-2, upregulating CD44, and undergoing cell division, suggesting that they were functionally active. Indeed, residual TCR75 CD4(+) T cells reisolated from the primary recipients given DST plus CD154 blockade were fully capable of rejecting allografts upon secondary transfer. Second, in tolerant mice, TCR75 CD4(+) T cells were not induced to express Foxp3 in the graft-draining lymph node. TCR75 CD4(+) T cells were also absent in accepted graft tissues in which endogenous Treg cells were enriched. Finally, DST plus CD154 blockade resulted in an abortive expansion of TCR75 CD4(+) T cells, a process that required the presence of endogenous Treg cells. Collectively, surviving TCR75 CD4(+) T cells are immunocompetent but kept in check by an endogenous immunosuppressive network induced by DST plus CD154 blockade.
Collapse
Affiliation(s)
- Jian-Guo Chai
- MRC Centre for Transplantation, King's College London, London, UK.,Therapeutic Immunology Group, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - R Pat Bucy
- Department of Pathology, University of Alabama, Birmingham, AL, USA
| | - Randolph J Noelle
- MRC Centre for Transplantation, King's College London, London, UK.,Department of Microbiology and Immunology, Dartmouth Medical School, Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Robert Lechler
- MRC Centre for Transplantation, King's College London, London, UK
| | | |
Collapse
|
80
|
Zhang C, Zhang X, Chen XH. Inhibition of the interleukin-6 signaling pathway: a strategy to induce immune tolerance. Clin Rev Allergy Immunol 2015; 47:163-73. [PMID: 24647663 DOI: 10.1007/s12016-014-8413-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine that is multifunctional, with multifaceted effects. IL-6 signaling plays a vital role in the control of the differentiation and activation of T lymphocytes by inducing different pathways. In particular, IL-6 controls the balance between Th17 cells and regulatory T (Treg) cells. An imbalance between Treg and Th17 cells is thought to play a pathological role in various immune-mediated diseases. Deregulated IL-6 production and signaling are associated with immune tolerance. Therefore, methods of inhibiting IL-6 production, receptors, and signaling pathways are strategies that are currently being widely pursued to develop novel therapies that induce immune tolerance. This survey aims to provide an updated account of why IL-6 inhibitors are becoming a vital class of drugs that are potentially useful for inducing immune tolerance as a treatment for autoimmune diseases and transplant rejection. In addition, we discuss the effect of targeting IL-6 in recent experimental and clinical studies on autoimmune diseases and transplant rejection.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China,
| | | | | |
Collapse
|
81
|
Deng G, Nagai Y, Xiao Y, Li Z, Dai S, Ohtani T, Banham A, Li B, Wu SL, Hancock W, Samanta A, Zhang H, Greene MI. Pim-2 Kinase Influences Regulatory T Cell Function and Stability by Mediating Foxp3 Protein N-terminal Phosphorylation. J Biol Chem 2015; 290:20211-20. [PMID: 25987564 DOI: 10.1074/jbc.m115.638221] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 01/28/2023] Open
Abstract
Regulation of the extent of immune responses is a requirement to maintain self-tolerance and limit inflammatory processes. CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells play a role in regulation. The Foxp3 transcription factor is considered a dominant regulator for Treg cell development and function. Foxp3 function itself is directly regulated by multiple posttranslational modifications that occur in response to various external stimuli. The Foxp3 protein is a component of several dynamic macromolecular regulatory complexes. The complexes change constituents over time and through different signals to regulate the development and function of regulatory T cells. Here we identified a mechanism regulating Foxp3 level and activity that operates through discrete phosphorylation. The Pim-2 kinase can phosphorylate Foxp3, leading to decreased suppressive functions of Treg cells. The amino-terminal domain of Foxp3 is modified at several sites by Pim-2 kinase. This modification leads to altered expression of proteins related to Treg cell functions and increased Treg cell lineage stability. Treg cell suppressive function can be up-regulated by either pharmacologically inhibiting Pim-2 kinase activity or by genetically knocking out Pim-2 in rodent Treg cells. Deficiency of Pim-2 activity increases murine host resistance to dextran sodium sulfate-induced colitis in vivo, and a Pim-2 small molecule kinase inhibitor also modified Treg cell functions. Our studies define a pathway for limiting the regulation of Foxp3 function because the Pim-2 kinase represents a potential therapeutic target for modulating the Treg cell suppressive activities in controlling immune responses.
Collapse
Affiliation(s)
- Guoping Deng
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yasuhiro Nagai
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yan Xiao
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhiyuan Li
- the Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shujia Dai
- the Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts 02115-5000
| | - Takuya Ohtani
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alison Banham
- the Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom, and
| | - Bin Li
- the Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiaw-Lin Wu
- the Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts 02115-5000
| | - Wayne Hancock
- the Division of Transplant Immunology and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Arabinda Samanta
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hongtao Zhang
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mark I Greene
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| |
Collapse
|
82
|
Flies DB, Higuchi T, Chen L. Mechanistic Assessment of PD-1H Coinhibitory Receptor-Induced T Cell Tolerance to Allogeneic Antigens. THE JOURNAL OF IMMUNOLOGY 2015; 194:5294-304. [PMID: 25917101 DOI: 10.4049/jimmunol.1402648] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/29/2015] [Indexed: 01/28/2023]
Abstract
PD-1H is a recently identified cell surface coinhibitory molecule of the B7/CD28 immune modulatory gene family. We showed previously that single injection of a PD-1H agonistic mAb protected mice from graft-versus-host disease (GVHD). In this study, we report two distinct mechanisms operate in PD-1H-induced T cell tolerance. First, signaling via PD-1H coinhibitory receptor potently arrests alloreactive donor T cells from activation and expansion in the initiation phase. Second, donor regulatory T cells are subsequently expanded to maintain long-term tolerance and GVHD suppression. Our study reveals the crucial function of PD-1H as a coinhibitory receptor on alloreactive T cells and its function in the regulation of T cell tolerance. Therefore, PD-1H may be a target for the modulation of alloreactive T cells in GVHD and transplantation.
Collapse
Affiliation(s)
- Dallas B Flies
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06511
| | - Tomoe Higuchi
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06511
| | - Lieping Chen
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
83
|
Liu Y, Wu Y, Wang Y, Cai Y, Hu B, Bao G, Fang H, Zhao L, Ma S, Cheng Q, Song Y, Liu Y, Zhu Z, Chang H, Yu X, Sun A, Zhang Y, Vignali DAA, Wu D, Liu H. IL-35 mitigates murine acute graft-versus-host disease with retention of graft-versus-leukemia effects. Leukemia 2015; 29:939-46. [PMID: 25363669 PMCID: PMC4391991 DOI: 10.1038/leu.2014.310] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 01/09/2023]
Abstract
IL-35 is a newly discovered inhibitory cytokine secreted by regulatory T cells (Tregs) and may have therapeutic potential in several inflammatory disorders. Acute graft-versus-host disease (aGVHD) is a major complication of allogeneic hematopoietic stem cell transplantation and caused by donor T cells and inflammatory cytokines. The role of IL-35 in aGVHD is still unknown. Here we demonstrate that IL-35 overexpression suppresses CD4(+) effector T-cell activation, leading to a reduction in alloreactive T-cell responses and aGVHD severity. It also leads to the expansion of CD4(+)Foxp3(+) Tregs in the aGVHD target organs. Furthermore, IL-35 overexpression results in a selective decrease in the frequency of Th1 cells and an increase of IL-10-producing CD4(+) T cells in aGVHD target tissues. Serum levels of TNF-α, IFN-γ, IL-6, IL-22 and IL-23 decrease and IL-10 increases in response to IL-35. Most importantly, IL-35 preserves graft-versus-leukemia effect. Finally, aGVHD grade 2-4 patients have decreased serum IL-35 levels comparing with time-matched patients with aGVHD grade 0-1. Our findings indicate that IL-35 has an important role in reducing aGVHD through promoting the expansion of Tregs and repressing Th1 responses, and should be investigated as the therapeutic strategy for aGVHD.
Collapse
Affiliation(s)
- Yuejun Liu
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Yan Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Ying Wang
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Yifeng Cai
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Bo Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Guangming Bao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Hongying Fang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Lixiang Zhao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Shoubao Ma
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Qiao Cheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Yuan Song
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Yonghao Liu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Ziling Zhu
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Huirong Chang
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Xiao Yu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Aining Sun
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Yi Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dario A. A. Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Depei Wu
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Haiyan Liu
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
84
|
Horwitz ME, Frassoni F. Improving the outcome of umbilical cord blood transplantation through ex vivo expansion or graft manipulation. Cytotherapy 2015; 17:730-738. [PMID: 25778757 DOI: 10.1016/j.jcyt.2015.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/14/2015] [Indexed: 12/14/2022]
Abstract
The outcome of umbilical cord blood transplantation for adult patients with hematologic malignancies now rivals that of matched unrelated donor transplantation. However, relatively low lymphocyte and hematopoietic stem and progenitor cell dose is a source of significant morbidity and mortality. Multiple strategies are now being studied to overcome these limitations. One strategy involves ex vivo expansion of the umbilical cord blood unit before transplantation. Ex vivo expansion has the potential to increase the number of lymphocytes, committed progenitors and long-term repopulating hematopoietic stem cells. Increasing the numbers of lymphocytes and committed progenitor cells will address the issue of delayed hematopoietic recovery after umbilical cord blood transplantation. Increasing the hematopoietic stem cell content will improve the availability of adequately sized and matched cord blood units for transplantation. It may also eliminate the need for dual umbilical cord blood transplantation for those without an adequately sized single umbilical cord blood graft. The second strategy involves exposure of the umbilical cord blood graft to compounds aimed at improving homing and engraftment following transplantation. Such a strategy may also address the problem of slow hematopoietic recovery as well as the increased risk of graft failure. Many of these strategies are now being tested in late-phase multi-center clinical trials. If proven cost-effective and efficacious, they may alter the landscape of donor options for allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Mitchell E Horwitz
- Adult Blood and Marrow Transplant Program, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Francesco Frassoni
- Department of Hemato-Oncology and Center for Stem Cell and Cell Therapy, Istituto G. Gaslini Children's Hospital Scientific Institute, Genova, Italy
| |
Collapse
|
85
|
Liao C, Xiao W, Zhu N, Liu Z, Yang J, Wang Y, Hong M. Radiotherapy suppressed tumor-specific recruitment of regulator T cells via up-regulating microR-545 in Lewis lung carcinoma cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2535-2544. [PMID: 26045759 PMCID: PMC4440068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Radiotherapy is an important treatment for cancer. The main irradiated action is thought to be the irreversible damage to tumor cell DNA, but recent studies showed that high dose radiotherapy related to the tumor immune response. This study was designed to determine the relationship between Lewis lung tumor radiosensitivity and CD4+CD25+ regulatory T cells (Tregs) infiltration and elucidate the underlying mechanisms in vitro. METHODS With tumor transplantation method to establish mice Lewis lung tumor mice model, to observe the inhibition rate of radiotherapy to tumor growth. Proliferation profiles of CD4+CD25+ Tregs and CD4+ T cells were assessed by flow cytometry. MiR-545 and CCL-22 mRNA were determined by Quantitative Real-Time PCR. CCL-22 protein was determined by western blot assay. RESULTS Radiotherapy caused a time-dependent inhibition of tumor growth as well as a decrease in the percentage of tumor-infiltrating CD4+CD25+ Tregs of CD4+ T cells compared with no treatment group. And the miR-545 was significantly upregulated and CCL-22 was significantly down-regulated in irradiated tumor and Lewis lung cancer cells. In Lewis lung cancer cell transfection experiments, mimic or inhibitor for miR-545 negatively regulated CCL-22 expression when cells treated or treated without irradiation. Silenced miR-545 promotes CD4+CD25+ Treg proliferation. Additionally, silenced miR-545 reversed radiosensitivity of Lewis lung cancer. CONCLUSION Radiotherapy suppressed specific recruitment of regulator CD4+CD25+ Treg cells in Lewis lung carcinoma via up-regulating microR-545.
Collapse
Affiliation(s)
- Chen Liao
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University Nanjing 210029, Jiangsu, P. R. China
| | - Wei Xiao
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University Nanjing 210029, Jiangsu, P. R. China
| | - Nuo Zhu
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University Nanjing 210029, Jiangsu, P. R. China
| | - Zhiyuan Liu
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University Nanjing 210029, Jiangsu, P. R. China
| | - Jiu Yang
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University Nanjing 210029, Jiangsu, P. R. China
| | - Yanhu Wang
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University Nanjing 210029, Jiangsu, P. R. China
| | - Mei Hong
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University Nanjing 210029, Jiangsu, P. R. China
| |
Collapse
|
86
|
Ferrer IR, Hester J, Bushell A, Wood KJ. Induction of transplantation tolerance through regulatory cells: from mice to men. Immunol Rev 2015; 258:102-16. [PMID: 24517428 DOI: 10.1111/imr.12158] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organ transplantation results in the activation of both innate and adaptive immune responses to the foreign antigens. While these responses can be limited with the use of systemic immunosuppressants, the induction of regulatory cell populations may be a novel strategy for the maintenance of specific immunological unresponsiveness that can reduce the severity of the detrimental side effects of current therapies. Our group has extensively researched different regulatory T-cell induction protocols for use as cellular therapy in transplantation. In this review, we address the cellular and molecular mechanisms behind regulatory T-cell suppression and their stability following induction protocols. We further discuss the use of different hematopoietically derived regulatory cell populations, including regulatory B cells, regulatory macrophages, tolerogenic dendritic cells, and myeloid-derived suppressor cells, for the induction of transplantation tolerance in light of new clinical trials developing therapies with some of these populations.
Collapse
Affiliation(s)
- Ivana R Ferrer
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
87
|
Khalifian S, Raimondi G, Lee WA, Brandacher G. Taming inflammation by targeting cytokine signaling: new perspectives in the induction of transplantation tolerance. Immunotherapy 2015; 6:637-53. [PMID: 24896631 DOI: 10.2217/imt.14.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transplantation tolerance remains an elusive goal, partly due to limitations in our understanding of the interplay between inflammatory mediators and their role in the activation and regulation of T lymphocytes. Although multiple mechanisms acting both centrally and peripherally are responsible for tolerance induction, the signaling pathways leading to activation or regulation of adaptive immunity are often complex, branched, redundant and modulated by the microenvironment's inflammatory milieu. Accumulating evidence clearly indicates that inflammatory cytokines limit the tolerogenic potential of immunomodulatory protocols by supporting priming of the immune system and counteracting regulatory mechanisms, ultimately promoting rejection. In this review, we summarize recent progress in the development of novel therapeutics to manipulate this inflammatory environment and achievements in targeted inhibition of inflammatory cytokine signaling. Ultimately, robust transplant tolerance induction will probably require a multifaceted, holistic approach that integrates the various mechanisms of tolerance induction, incorporates the dynamic alterations in costimulatory requirements of alloreactive T cells, while maintaining endogenous mechanisms of immune regulation.
Collapse
Affiliation(s)
- Saami Khalifian
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
88
|
Abstract
BACKGROUND CTLA-4 immunoglobulin fusion proteins (CTLA4-Ig) suppress immune reactions by blocking the T-cell costimulatory CD28-CD80-86 pathway and are used in clinical trials for diseases featuring exaggerated T-cell reactivity including autoimmune diseases and allograft rejection. However, because CTLA4-Ig has been suspected to interfere with T regulatory (Treg) cell homeostasis and function, recently, substantial concerns on CTLA4-Ig's potentially antitolerogenic effects have been raised. METHODS We tested immunoregulatory CTLA4-Ig explicitly for its effect on Treg cell numbers, frequencies and function in an in vitro murine major histocompatibility complex mismatched setting using C57BL/6 bone marrow-derived dendritic cells as stimulators of allogeneic Balb/c Foxp3 T cells, which allowed for tracing Treg cells in a straightforward fashion. RESULTS The presence of CTLA4-Ig in mixed leukocyte reactions-while dampening the global proliferative response of allostimulated Balb/c T cells-resulted in a relative increase of the frequency of thymus-derived CD4CD25Foxp3 Treg cells with intact suppressive activity. This relative increase was caused by a selective inhibitory effect of CTLA4-Ig on proliferating conventional T cells, whereas the proliferative capacity of Treg cells in cell cultures remained unaffected. Additionally, in the presence of CTLA4-Ig, the frequency of apoptosis was decreased in these cells. CONCLUSION Our findings unequivocally demonstrate that CTLA4-Ig does not negatively affect Treg cell frequencies and function in vitro.
Collapse
|
89
|
Janikashvili N, Trad M, Gautheron A, Samson M, Lamarthée B, Bonnefoy F, Lemaire-Ewing S, Ciudad M, Rekhviashvili K, Seaphanh F, Gaugler B, Perruche S, Bateman A, Martin L, Audia S, Saas P, Larmonier N, Bonnotte B. Human monocyte-derived suppressor cells control graft-versus-host disease by inducing regulatory forkhead box protein 3-positive CD8+ T lymphocytes. J Allergy Clin Immunol 2015; 135:1614-24.e4. [PMID: 25630940 DOI: 10.1016/j.jaci.2014.12.1868] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/17/2014] [Accepted: 12/09/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Adoptive transfer of immunosuppressive cells has emerged as a promising strategy for the treatment of immune-mediated disorders. However, only a limited number of such cells can be isolated from in vivo specimens. Therefore efficient ex vivo differentiation and expansion procedures are critically needed to produce a clinically relevant amount of these suppressive cells. OBJECTIVE We sought to develop a novel, clinically relevant, and feasible approach to generate ex vivo a subpopulation of human suppressor cells of monocytic origin, referred to as human monocyte-derived suppressive cells (HuMoSCs), which can be used as an efficient therapeutic tool to treat inflammatory disorders. METHODS HuMoSCs were generated from human monocytes cultured for 7 days with GM-CSF and IL-6. The immune-regulatory properties of HuMoSCs were investigated in vitro and in vivo. The therapeutic efficacy of HuMoSCs was evaluated by using a graft-versus-host disease (GvHD) model of humanized mice (NOD/SCID/IL-2Rγc(-/-) [NSG] mice). RESULTS CD33+ HuMoSCs are highly potent at inhibiting the proliferation and activation of autologous and allogeneic effector T lymphocytes in vitro and in vivo. The suppressive activity of these cells depends on signal transducer and activator of transcription 3 activation. Of therapeutic relevance, HuMoSCs induce long-lasting memory forkhead box protein 3-positive CD8+ regulatory T lymphocytes and significantly reduce GvHD induced with human PBMCs in NSG mice. CONCLUSION Ex vivo-generated HuMoSCs inhibit effector T lymphocytes, promote the expansion of immunosuppressive forkhead box protein 3-positive CD8+ regulatory T cells, and can be used as an efficient therapeutic tool to prevent GvHD.
Collapse
Affiliation(s)
- Nona Janikashvili
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France.
| | - Malika Trad
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Alexandrine Gautheron
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Maxime Samson
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France; Department of Internal Medicine, University Hospital, Dijon, France
| | - Baptiste Lamarthée
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Francis Bonnefoy
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | | | - Marion Ciudad
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Khatuna Rekhviashvili
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Famky Seaphanh
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Béatrice Gaugler
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Sylvain Perruche
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Andrew Bateman
- Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Laurent Martin
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France; Department of Pathology and Cytology, University Hospital, Dijon, France
| | - Sylvain Audia
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France; Department of Internal Medicine, University Hospital, Dijon, France
| | - Philippe Saas
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France; CHU Besançon, CIC-BT506, FHU INCREASE, Besançon, France
| | - Nicolas Larmonier
- Department of Pediatrics, Steele Children's Research Center, Department of Immunobiology, BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, Ariz
| | - Bernard Bonnotte
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France; Department of Internal Medicine, University Hospital, Dijon, France
| |
Collapse
|
90
|
Hanley PJ, Bollard CM, Brunstein CG. Adoptive immunotherapy with the use of regulatory T cells and virus-specific T cells derived from cord blood. Cytotherapy 2015; 17:749-755. [PMID: 25632003 DOI: 10.1016/j.jcyt.2014.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 01/05/2023]
Abstract
Cord blood transplantation, an alternative to traditional stem cell transplants (bone marrow or peripheral blood stem cell transplantation), is an attractive option for patients lacking suitable stem cell transplant donors. Cord blood units have also proven to be a valuable donor source for the development of cellular therapeutics. Virus-specific T cells and regulatory T cells are two cord blood-derived products that have shown promise in early-phase clinical trials to prevent and/or treat viral infections and graft-versus-host disease, respectively. We describe how current strategies that use cord blood-derived regulatory T cells and virus-specific T cells have been developed to improve outcomes for cord blood transplant recipients.
Collapse
Affiliation(s)
- Patrick J Hanley
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Medical Center and The George Washington University, Washington, DC, USA; Center for Cancer and Immunology Research, Children's National Medical Center and The George Washington University, Washington, DC, USA; Division of Blood and Marrow Transplantation, Children's National Medical Center and The George Washington University, Washington, DC, USA; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center and The George Washington University, Washington, DC, USA.
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Medical Center and The George Washington University, Washington, DC, USA; Center for Cancer and Immunology Research, Children's National Medical Center and The George Washington University, Washington, DC, USA; Division of Blood and Marrow Transplantation, Children's National Medical Center and The George Washington University, Washington, DC, USA; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center and The George Washington University, Washington, DC, USA
| | - Claudio G Brunstein
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
91
|
Zhang Q, Ichimaru N, Higuchi S, Cai S, Hou J, Fujino M, Nonomura N, Kobayashi M, Ando H, Uno A, Sakurai K, Mochizuki S, Adachi Y, Ohno N, Zou H, Xu J, Li XK, Takahara S. Permanent acceptance of mouse cardiac allografts with CD40 siRNA to induce regulatory myeloid cells by use of a novel polysaccharide siRNA delivery system. Gene Ther 2015; 22:217-26. [DOI: 10.1038/gt.2014.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 01/27/2023]
|
92
|
Pinelli DF, Ford ML. Novel insights into anti-CD40/CD154 immunotherapy in transplant tolerance. Immunotherapy 2015; 7:399-410. [PMID: 25917630 PMCID: PMC5441999 DOI: 10.2217/imt.15.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since the discovery of the CD40-CD154 costimulatory pathway and its critical role in the adaptive immune response, there has been considerable interest in therapeutically targeting this interaction with monoclonal antibodies in transplantation. Unfortunately, initial promise in animal models gave way to disappointment in clinical trials following a number of thromboembolic complications. However, recent mechanistic studies have identified the mechanism of these adverse events, as well as detailed a myriad of interactions between CD40 and CD154 on a wide variety of immune cell types and the critical role of this pathway in generating both humoral and cell-mediated alloreactive responses. This has led to resurgence in interest and the potential resurrection of anti-CD154 and anti-CD40 antibodies as clinically viable therapeutic options.
Collapse
Affiliation(s)
| | - Mandy L. Ford
- Emory Transplant Center, Emory University, Atlanta, GA
| |
Collapse
|
93
|
Fanigliulo D, Lazzerini PE, Capecchi PL, Ulivieri C, Baldari CT, Laghi-Pasini F. Clinically-relevant cyclosporin and rapamycin concentrations enhance regulatory T cell function to a similar extent but with different mechanisms: an in-vitro study in healthy humans. Int Immunopharmacol 2014; 24:276-284. [PMID: 25536542 DOI: 10.1016/j.intimp.2014.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022]
Abstract
Evidence indicates that regulatory T cells (Tregs) are profoundly involved in promoting allograft tolerance after organ transplantation. Since a successful transplantation currently still requires a long-term immunosuppressive treatment, clarifying the specific impact of these drugs on Tregs may be of high clinical relevance. Conflicting results arise from the literature, particularly as concerns cyclosporine (CsA). The specific aim of this work was to evaluate in-vitro the direct effects of clinically-relevant drug concentrations of three widely used immunosuppressive drugs, i.e. CsA, rapamycin (RAPA) and mycophenolic acid (MPA), on Treg activity, number and forkhead/winged helix transcription factor (FoxP3) expression in humans. Tregs (CD4(+)CD25(+)) isolated from healthy donors were cultured in the presence of different concentrations of CsA, RAPA or MPA. The suppressive activity of Tregs was evaluated in mixed lymphocyte reactions with CD4(+)CD25(-) T cells. Phenotype analysis and FoxP3 expression were assessed by flow cytometry. Clinically-relevant CsA and RAPA concentrations significantly enhanced to a similar extent the suppressive activity of Tregs. Although this effect was associated with an increase in Treg number as well as in FoxP3 expression with both drugs, the driving mechanism seemed to be primarily quantitative (i.e. increase of the cell number) for RAPA, whereas mainly qualitative (i.e. increase in FoxP3 levels) for CsA, respectively. Conversely, MPA did not show any effect on Treg function and number. These findings suggest that both RAPA and CsA may be beneficial in promoting Treg-dependent allograft tolerance after organ transplantation.
Collapse
Affiliation(s)
- Daniela Fanigliulo
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena, Italy
| | - Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, Policlinico Le Scotte, University of Siena, Viale Bracci, Siena, Italy.
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, Policlinico Le Scotte, University of Siena, Viale Bracci, Siena, Italy
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena, Italy
| | | | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, Policlinico Le Scotte, University of Siena, Viale Bracci, Siena, Italy
| |
Collapse
|
94
|
Li R, Kou X, Tian J, Meng Z, Cai Z, Cheng F, Dong C. Effect of sulfur dioxide on inflammatory and immune regulation in asthmatic rats. CHEMOSPHERE 2014; 112:296-304. [PMID: 25048919 DOI: 10.1016/j.chemosphere.2014.04.065] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 05/28/2023]
Abstract
BACKGROUND Exposure to sulfur dioxide (SO2) increases asthma risk. Inflammatory and immune responses are typical in asthma disease. The exact effect of SO2 on modulation of the inflammatory and immune responses in asthmatic rats remains unclear. OBJECTIVES Here we sought to investigate the molecular mechanisms underlying the NF-κB inflammatory pathway and the Th1/Th2 imbalance in asthmatic rats exposed to SO2. METHODS Male Wistar rats were challenged by ovalbumin (OVA) or SO2 alone or together, and then mRNA and protein levels of some inflammatory and immune genes were measured. NF-κB nuclear translocation was analyzed. Bronchoalveolar lavage (BAL), inflammatory cell counts and histopathologic examination were performed. RESULTS (1) OVA plus SO2 induced abnormal pathological changes and inflammatory responses in lung relative to exposure to OVA alone; (2) showing NF-κB nuclear translocation and activation through up-regulating IKKβ mRNA and protein expression and down-regulating IκBα expression in the presence of OVA or OVA plus SO2; (3) OVA plus SO2 significantly raised TNF-α and IL-6 levels in BALF compared with the OVA group; (4) SO2 markedly elevated IL-4 levels and decreased IFN-γ levels in BALF in the asthmatic rats, stimulating IgE generation which was closely related to inhibiting the expression of Foxp3, a specific marker of regulatory T cells. CONCLUSIONS SO2 affects the airway inflammatory and immune responses of the asthmatic rats and enhances the susceptibility to OVA by aggravating inflammatory responses in lungs, up-regulating pro-inflammatory cytokine expression, and causing the Th1/Th2 imbalance, which might contribute to the increased risk of asthma disease.
Collapse
Affiliation(s)
- Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China; State Environmental Protection Key Laboratory of Efficient Utilization of Coal Waste Resources, Shanxi University, Taiyuan, PR China
| | - Xiaojing Kou
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Jingjing Tian
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Ziqiang Meng
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Zongwei Cai
- Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Fangqin Cheng
- State Environmental Protection Key Laboratory of Efficient Utilization of Coal Waste Resources, Shanxi University, Taiyuan, PR China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China.
| |
Collapse
|
95
|
Rengifo HR, Giraldo JA, Labrada I, Stabler CL. Long-term survival of allograft murine islets coated via covalently stabilized polymers. Adv Healthc Mater 2014; 3:1061-70. [PMID: 24497465 DOI: 10.1002/adhm.201300573] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/13/2013] [Indexed: 12/20/2022]
Abstract
Clinical islet transplantation (CIT) has emerged as a promising treatment option for type 1 diabetes mellitus (T1DM); however, the antirejection drug regimen necessary to mitigate allograft islet rejection is undesirable. The use of polymeric coatings to immunocamouflage the transplant from host immune attack has great potential. Alginate and poly(ethylene glycol) (PEG)-based polymers, functionalized with azide and phosphine, respectively, which form spontaneous and chemoselective crosslinks via the bioorthogonal Staudinger ligation scheme, were recently developed. Here, the utility of these polymers to form immunoprotective, ultrathin coatings on murine primary pancreatic islets is explored. Resulting coatings are nontoxic, with unimpaired glucose stimulated insulin secretion. Transplantation of coated BALB/c (H-2(d) ) islets into streptozotozin-induced diabetic C57BL/6 (H-2(b) ) results in prompt achievement of normoglycemia, at a rate comparable to controls. A significant subset of animals receiving coated islets (57%) exhibits long-term (>100 d) function, with robust islets observed upon explantation. Control islets rejected after 15 d (±9 d). Results illustrate the capacity of chemoselectively functionalized polymers to form coatings on islets, imparting no detrimental effect to the underlying cells, with resulting coatings exhibiting significant protective effects in an allograft murine model.
Collapse
Affiliation(s)
- Hernán R. Rengifo
- Diabetes Research Institute; Leonard M. Miller School of Medicine; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
| | - Jaime A. Giraldo
- Diabetes Research Institute; Leonard M. Miller School of Medicine; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
- Department of Biomedical Engineering; College of Engineering; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
| | - Irayme Labrada
- Diabetes Research Institute; Leonard M. Miller School of Medicine; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
| | - Cherie L. Stabler
- Diabetes Research Institute; Leonard M. Miller School of Medicine; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
- Department of Biomedical Engineering; College of Engineering; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
- Department of Surgery; Leonard M. Miller School of Medicine; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
| |
Collapse
|
96
|
Abstract
Graft-versus-host disease (GVHD) represents the most serious and challenging complication of allogeneic haematopoietic stem-cell transplantation (HSCT). New insights on the role of regulatory T-cells, T cells, and antigen-presenting cells have led to an improved understanding of the pathophysiology of GVHD. However, little progress has been made since the introduction of calcineurin-inhibitor-based regimens in the mid-1980s. Despite standard prophylaxis with these regimens, GVHD still develops in approximately 40-60% of recipients. Thus, there is a need for developing newer approaches to mitigate GVHD, which may facilitate the use of allogeneic HSCT for the treatment of a wider range of haematological cancers. We discuss the rationale, clinical evidence, and outcomes of current (and widely employed) strategies for GVHD prophylaxis, namely calcineurin-inhibitor-based regimens (such as cyclosporine or tacrolimus) combined with methotrexate or mycophenolate mofetil. We assess the clinical evidence for emerging approaches in the prevention of GVHD, including therapies targeting T cells or B cells, the use of mesenchymal stem cells, chemo-cytokine antagonists (such as maraviroc, TNF-α inhibitor, IL-2 receptor antagonist, IL-6 inhibitor), and the use of novel molecular regulators that target multiple cell types simultaneously, including atorvastatin, bortezomib, and epigenetic modulators.
Collapse
|
97
|
Twu YC, Teh HS. The ThPOK transcription factor differentially affects the development and function of self-specific CD8(+) T cells and regulatory CD4(+) T cells. Immunology 2014; 141:431-45. [PMID: 24708418 DOI: 10.1111/imm.12205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/29/2022] Open
Abstract
The zinc finger transcription factor ThPOK plays a crucial role in CD4 T-cell development and CD4/CD8 lineage decision. In ThPOK-deficient mice, developing T cells expressing MHC class II-restricted T-cell receptors are redirected into the CD8 T-cell lineage. In this study, we investigated whether the ThPOK transgene affected the development and function of two additional types of T cells, namely self-specific CD8 T cells and CD4(+) FoxP3(+) T regulatory cells. Self-specific CD8 T cells are characterized by high expression of CD44, CD122, Ly6C, 1B11 and proliferation in response to either IL-2 or IL-15. The ThPOK transgene converted these self-specific CD8 T cells into CD4 T cells. The converted CD4(+) T cells are no longer self-reactive, lose the characteristics of self-specific CD8 T cells, acquire the properties of conventional CD4 T cells and survive poorly in peripheral lymphoid organs. By contrast, the ThPOK transgene promoted the development of CD4(+) FoxP3(+) regulatory T cells resulting in an increased recovery of CD4(+) FoxP3(+) regulatory T cells that expressed higher transforming growth factor-β-dependent suppressor activity. These studies indicate that the ThPOK transcription factor differentially affects the development and function of self-specific CD8 T cells and CD4(+) FoxP3(+) regulatory T cells.
Collapse
Affiliation(s)
- Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
98
|
Transforming growth factor beta (TGFβ) plays a crucial role in prolonging allograft survival in an allodepletion ("pruning") skin transplant model. Transpl Immunol 2014; 30:168-77. [PMID: 24746800 DOI: 10.1016/j.trim.2014.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 01/03/2023]
Abstract
Adoptive cell therapies involving cell manipulation to achieve tolerance are increasingly being studied in animal models and in human trials. We have demonstrated that the specific removal of allo-stimulated dividing cells (or "pruning") promotes long-term allograft survival across a major MHC mismatch in transplant models including skin, heart and islet transplants. In this study, we examine the role of transforming growth factor beta (TGFβ), an important regulatory cytokine, on allograft survival in our allodepletion or "pruning" skin transplant model. Increased proliferation of CD4(+) T cells was observed following allo-stimulation of BALB/c spleen cells (labeled with CFSE) in the presence of the regulatory cytokines TGFβ and (interleukin-2) IL-2 in a mixed lymphocyte culture (MLC). Expression of the regulatory gene forkhead box-3 (FoxP3) was increased in both the allo-stimulated non-dividing (ND) (CFSE(high)) and dividing (D) (CFSE(low)) CD4(+) T cell populations, with the highest expression found in the D CD4(+) T cell population. Mice reconstituted with allo-stimulated ND CD4(+) T cells following TGFβ/IL-2 stimulation showed prolonged allograft survival, similar to previous data. Significantly, TGFβ/IL-2 stimulation prevented acute rejection of allografts across a major MHC mismatch in the presence of highly activated allo-stimulated D CD4(+) T cells. Blockade of TGFβ promoted rejection of allografts even following depletion of allo-stimulated D CD4(+) T cells. These studies support a crucial role for TGFβ in the survival of allografts and shows that regulatory cytokines TGFβ/IL2 can delay the rejection of allografts, even in the presence of highly activated alloreactive T cells.
Collapse
|
99
|
Warren KJ, Iwami D, Harris DG, Bromberg JS, Burrell BE. Laminins affect T cell trafficking and allograft fate. J Clin Invest 2014; 124:2204-18. [PMID: 24691446 DOI: 10.1172/jci73683] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/23/2014] [Indexed: 01/01/2023] Open
Abstract
Lymph nodes (LNs) are integral sites for the generation of immune tolerance, migration of CD4⁺ T cells, and induction of Tregs. Despite the importance of LNs in regulation of inflammatory responses, the LN-specific factors that regulate T cell migration and the precise LN structural domains in which differentiation occurs remain undefined. Using intravital and fluorescent microscopy, we found that alloreactive T cells traffic distinctly into the tolerant LN and colocalize in exclusive regions with alloantigen-presenting cells, a process required for Treg induction. Extracellular matrix proteins, including those of the laminin family, formed regions within the LN that were permissive for colocalization of alloantigen-presenting cells, alloreactive T cells, and Tregs. We identified unique expression patterns of laminin proteins in high endothelial venule basement membranes and the cortical ridge that correlated with alloantigen-specific immunity or immune tolerance. The ratio of laminin α4 to laminin α5 was greater in domains within tolerant LNs, compared with immune LNs, and blocking laminin α4 function or inducing laminin α5 overexpression disrupted T cell and DC localization and transmigration through tolerant LNs. Furthermore, reducing α4 laminin circumvented tolerance induction and induced cardiac allograft inflammation and rejection in murine models. This work identifies laminins as potential targets for immune modulation.
Collapse
|
100
|
Singer BD, King LS, D'Alessio FR. Regulatory T cells as immunotherapy. Front Immunol 2014; 5:46. [PMID: 24575095 PMCID: PMC3920065 DOI: 10.3389/fimmu.2014.00046] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/27/2014] [Indexed: 12/23/2022] Open
Abstract
Regulatory T cells (Tregs) suppress exuberant immune system activation and promote immunologic tolerance. Because Tregs modulate both innate and adaptive immunity, the biomedical community has developed an intense interest in using Tregs for immunotherapy. Conditions that require clinical tolerance to improve outcomes – autoimmune disease, solid organ transplantation, and hematopoietic stem cell transplantation – may benefit from Treg immunotherapy. Investigators have designed ex vivo strategies to isolate, preserve, expand, and infuse Tregs. Protocols to manipulate Treg populations in vivo have also been considered. Barriers to clinically feasible Treg immunotherapy include Treg stability, off-cell effects, and demonstration of cell preparation purity and potency. Clinical trials involving Treg adoptive transfer to treat graft versus host disease preliminarily demonstrated the safety and efficacy of Treg immunotherapy in humans. Future work will need to confirm the safety of Treg immunotherapy and establish the efficacy of specific Treg subsets for the treatment of immune-mediated disease.
Collapse
Affiliation(s)
- Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University , Baltimore, MD , USA
| | - Landon S King
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University , Baltimore, MD , USA
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|