51
|
Woo JS, Srikanth S, Kim KD, Elsaesser H, Lu J, Pellegrini M, Brooks DG, Sun Z, Gwack Y. CRACR2A-Mediated TCR Signaling Promotes Local Effector Th1 and Th17 Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1174-1185. [PMID: 29987160 PMCID: PMC6081249 DOI: 10.4049/jimmunol.1800659] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022]
Abstract
Ca2+ release-activated Ca2+ channel regulator 2A (CRACR2A) is expressed abundantly in T cells and acts as a signal transmitter between TCR stimulation and activation of the Ca2+/NFAT and JNK/AP1 pathways. CRACR2A has been linked to human diseases in numerous genome-wide association studies and was shown to be one of the most sensitive targets of the widely used statin drugs. However, the physiological role of CRACR2A in T cell functions remains unknown. In this study, using transgenic mice for tissue-specific deletion, we show that CRACR2A promotes Th1 responses and effector function of Th17 cells. CRACR2A was abundantly expressed in Th1 and Th17 cells. In vitro, deficiency of CRACR2A decreased Th1 differentiation under nonpolarizing conditions, whereas the presence of polarizing cytokines compensated this defect. Transcript analysis showed that weakened TCR signaling by deficiency of CRACR2A failed to promote Th1 transcriptional program. In vivo, conditional deletion of CRACR2A in T cells alleviated Th1 responses to acute lymphocytic choriomeningitis virus infection and imparted resistance to experimental autoimmune encephalomyelitis. Analysis of CNS from experimental autoimmune encephalomyelitis-induced mice showed impaired effector functions of both Th1 and Th17 cell types, which correlated with decreased pathogenicity. Collectively, our findings demonstrate the requirement of CRACR2A-mediated TCR signaling in Th1 responses as well as pathogenic conversion of Th17 cells, which occurs at the site of inflammation.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kyun-Do Kim
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Heidi Elsaesser
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Jing Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095; and
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095; and
| | - David G Brooks
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Zuoming Sun
- Division of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095;
| |
Collapse
|
52
|
Abstract
It had been a great honor for me to work with the late Dr. William E. Paul for 17 years in the Laboratory of Immunology (LI) from 1998 until his passing in 2015. He was such a master in the immunology field. Under his outstanding guidance, my research has been focusing on transcriptional regulation of T helper (Th) cell differentiation, especially, on the role of a master transcription factor GATA3 during Th2 cell differentiation. Just as enormous scientific contributions of Dr. Paul (we all call him Bill) to the immunology community are far beyond his serving as the Chief of the LI, GATA3 also plays important roles in different lymphocytes at various developmental stages besides its critical functions in Th2 cells. In this special review dedicated to the memory of Bill, I will summarize the research that I have carried out in Bill's lab working on GATA3 in the context of related studies by other groups in the field of T cell differentiation and innate lymphoid cell (ILC) development. These include the essential role of GATA3 in regulating Th2/ILC2 differentiation/development and their functions, the critical role of GATA3 during the development of T cells and innate lymphoid cells, and dynamic and quantitative expression of GATA3 in controlling lymphocyte homeostasis and functions.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
53
|
Transcription regulatory factor expression in T-helper cell differentiation pathway in eutopic endometrial tissue samples of women with endometriosis associated with infertility. Cent Eur J Immunol 2018; 43:90-96. [PMID: 29736151 PMCID: PMC5927178 DOI: 10.5114/ceji.2018.74878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022] Open
Abstract
Endometriosis is a disease of epidemiological gravity of unknown primary reason. A complex of constitutional factors including the immune system has been considered as its background. The aim of the study was to identify Th1 and Th2 cells as well as the T-regulatory subset in the endometrium of women with endometriosis associated with infertility upon transcription factors expression. Expression of T-bet, GATA3, and Foxp3 genes was examined using a method of polymerase chain reaction (PCR) in the eutopic endometrial samples of 20 women with endometriosis associated with infertility and 20 women with infertility of tubal origin. An increase in mRNA expression for T-bet and GATA3 with prevailing mRNA level for T-bet and a decrease in Foxp3 expression were observed. In conclusion, the revealed changes in expression of transcription factors may indicate the imbalance between T-helper cells of the Th1 and Th2 type and elimination of regulatory function of T-cells, which can be one of the causes of endometriosis predisposing to the development of infertility associated with this disease.
Collapse
|
54
|
Abstract
CD4+ T helper cells orchestrate the immune response and play a pivotal role during infection, chronic inflammatory, autoimmune diseases, and carcinogenesis. CD4+ T helper cells can be subdivided into different subsets, which are characterized by a specific network of transcriptional regulators and unique cytokine profiles: Th17 cells express RORγt that in turn promotes the transcription of Il17a, Il17f; Th1 cells, expresses T-bet and produces IFN-γ, IL-2, and TNF-α; Th2 cells express GATA-3 and secrete IL-4, IL-5, and IL-13. The two most studied regulatory T cell subtypes are Foxp3+ regulatory T cells, which can be generated either in the thymus (tTreg) or induced in peripheral lymphoid organs (pTregs) and type 1 regulatory T cells (Tr1), which are induced in the periphery. These T helper cell subsets can be differentiated from naïve T cells. In addition, recent findings indicate that some T helper cell subsets can emerge from other T helper cells, suggesting a certain degree of plastiticy. Here we report basic aspects of T helper cell differentiation and function while underlining some still open questions.
Collapse
|
55
|
|
56
|
The Secrets of T Cell Polarization. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
57
|
Weinstein JS, Laidlaw BJ, Lu Y, Wang JK, Schulz VP, Li N, Herman EI, Kaech SM, Gallagher PG, Craft J. STAT4 and T-bet control follicular helper T cell development in viral infections. J Exp Med 2017; 215:337-355. [PMID: 29212666 PMCID: PMC5748849 DOI: 10.1084/jem.20170457] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 09/10/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
Follicular helper T (Tfh) cells promote germinal center (GC) B cell survival and proliferation and guide their differentiation and immunoglobulin isotype switching by delivering contact-dependent and soluble factors, including IL-21, IL-4, IL-9, and IFN-γ. IL-21 and IFN-γ are coexpressed by Tfh cells during viral infections, but transcriptional regulation of these cytokines is not completely understood. In this study, we show that the T helper type 1 cell (Th1 cell) transcriptional regulators T-bet and STAT4 are coexpressed with Bcl6 in Tfh cells after acute viral infection, with a temporal decline in T-bet in the waning response. T-bet is important for Tfh cell production of IFN-γ, but not IL-21, and for a robust GC reaction. STAT4, phosphorylated in Tfh cells upon infection, is required for expression of T-bet and Bcl6 and for IFN-γ and IL-21. These data indicate that T-bet is expressed with Bcl6 in Tfh cells and is required alongside STAT4 to coordinate Tfh cell IL-21 and IFN-γ production and for promotion of the GC response after acute viral challenge.
Collapse
Affiliation(s)
- Jason S Weinstein
- Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT
| | - Brian J Laidlaw
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Yisi Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Jessica K Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Vincent P Schulz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Ningcheng Li
- Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT
| | - Edward I Herman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT.,Department of Pathology and Genetics, Yale University School of Medicine, New Haven, CT
| | - Joe Craft
- Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
58
|
Ma F, Zhang Y, Xing J, Song X, Huang L, Weng H, Wu X, Walker E, Wang Z. Fecal bacteria from treatment-naive Crohn's disease patients can skew helper T cell responses. Exp Cell Res 2017; 361:135-140. [DOI: 10.1016/j.yexcr.2017.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/26/2022]
|
59
|
Farwa A, He C, Xia L, Zhou H. Immune modulation of Th1, Th2, and T-reg transcriptional factors differing from cytokine levels in Schistosoma japonicum infection. Parasitol Res 2017; 117:115-126. [PMID: 29188369 DOI: 10.1007/s00436-017-5678-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022]
Abstract
In spite of long-term integrated control programs for Schistosoma japonicum infection in China, the infection is still persistent due to its zoonotic transmission and disease severity which further complicate its control. Th1, Th2, and T-reg cells are involved in S. japonicum immunity; however, their exact roles in immunopathology of this infection are still questionable. Therefore, the monitoring of these T cell subsets' immune responses during a primary infection of S. japonicum at both transcriptional (mRNA) and protein (cytokines) levels would be essential to point out. In experimentally infected white New Zealand rabbits, mRNA expression levels of TBX2, IRF8, GATA3, STAT6, FoxP3, and MAFF were evaluated using qPCR, whereas Th1 (IFN-γ and TNF-α), Th2 (IL4 and IL13), and T-reg (IL10 and TGF-β1) cytokines were measured by ELISA test. Those parameters were estimated at two phases: the first being 4 and 8 weeks post-infection and the second phase at 12 weeks post-infection. The infected rabbits were categorized into group1 which was treated with praziquantel after the 8th week of infection and group 2 which was left untreated. In the first stage of infection, Th1 was superior to the other types at both mRNA (TBX2 and IRF8) and protein (IFN-γ and TNF-α) levels, but at the late stage, Th2 cytokines (IL4 and IL13) were surprisingly dominated without comparable change in Th2 transcriptional level in group 1. Concisely, the evaluation of T cell transcriptional factors provided clearer evidence about T cellular roles which would be a valuable supplement to control this disease in terms of protective and therapeutic vaccinations.
Collapse
Affiliation(s)
- Amel Farwa
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, People's Republic of China
- Department of Parasitology & Medical Entomology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Chao He
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Longfei Xia
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Hong Zhou
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, People's Republic of China.
| |
Collapse
|
60
|
Zhu J. GATA3 Regulates the Development and Functions of Innate Lymphoid Cell Subsets at Multiple Stages. Front Immunol 2017; 8:1571. [PMID: 29184556 PMCID: PMC5694433 DOI: 10.3389/fimmu.2017.01571] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022] Open
Abstract
Innate lymphoid cells (ILCs) are regarded as the innate counterpart of effector CD4 T helper (Th) cells. Just as Th cells, ILCs are classified into distinct subsets based on their functions that are delivered mainly through effector cytokine production. Both ILCs and Th cells play critical roles in various protective immune responses and inflammatory diseases. Similar to Th cell differentiation, the development of ILC subsets depends on several master transcription factors, among which GATA3 is critical for the development and maintenance of type 2 ILCs (ILC2s). However, GATA3 is expressed by all ILC subsets and ILC progenitors, albeit at different levels. In a striking parallel with GATA3 function in T cell development and differentiation, GATA3 also has multiple functions in different ILCs at various stages. In this review, I will discuss how quantitative and dynamic expression of GATA3 regulates the development and functions of ILC subsets.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
61
|
Gonçalves-de-Albuquerque SDC, Pessoa-e-Silva R, Trajano-Silva LAM, de Goes TC, de Morais RCS, da C. Oliveira CN, de Lorena VMB, de Paiva-Cavalcanti M. The Equivocal Role of Th17 Cells and Neutrophils on Immunopathogenesis of Leishmaniasis. Front Immunol 2017; 8:1437. [PMID: 29163510 PMCID: PMC5670345 DOI: 10.3389/fimmu.2017.01437] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023] Open
Abstract
Advances in the understanding of leishmaniasis progression indicate that cellular interactions more complex than the Th1/Th2 paradigm define the course of infection. Th17 cells are a crucial modulator of adaptive immunity against Leishmania parasites acting mainly on neutrophil recruitment and playing a dual role at the site of infection. This review describes the roles of both these cell types in linking innate defense responses to the establishment of specific immunity. We focus on the Th17-neutrophil interaction as a crucial component of anti-Leishmania immunity, and the clinical evolution of cutaneous or visceral leishmaniasis. To date, information obtained through experimental models and patient evaluations suggests that the influence of the presence of interleukin (IL)-17 (the main cytokine produced by Th17 cells) and neutrophils during Leishmania infections is strictly dependent on the tissue (skin or liver/spleen) and parasite species. Also, the time at which neutrophils are recruited, and the persistence of IL-17 in the infection microenvironment, may also be significant. A clearer understanding of these interactions will enable better measurement of the influence of IL-17 and its regulators, and contribute to the identification of disease/resistance biomarkers.
Collapse
Affiliation(s)
| | - Rômulo Pessoa-e-Silva
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Lays A. M. Trajano-Silva
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Tayná Correia de Goes
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Rayana C. S. de Morais
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Cíntia N. da C. Oliveira
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Virgínia M. B. de Lorena
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Milena de Paiva-Cavalcanti
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| |
Collapse
|
62
|
Schwartz C, Khan AR, Floudas A, Saunders SP, Hams E, Rodewald HR, McKenzie ANJ, Fallon PG. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control. J Exp Med 2017; 214:2507-2521. [PMID: 28747424 PMCID: PMC5584124 DOI: 10.1084/jem.20170051] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/02/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are important effector cells driving the initiation of type 2 immune responses leading to adaptive T helper 2 (Th2) immunity. Here we show that ILC2s dynamically express the checkpoint inhibitor molecule PD-L1 during type 2 pulmonary responses. Surprisingly, PD-L1:PD-1 interaction between ILC2s and CD4+ T cells did not inhibit the T cell response, but PD-L1-expressing ILC2s stimulated increased expression of GATA3 and production of IL-13 by Th2 cells both in vitro and in vivo. Conditional deletion of PD-L1 on ILC2s impaired early Th2 polarization and cytokine production, leading to delayed worm expulsion during infection with the gastrointestinal helminth Nippostrongylus brasiliensis Our results identify a novel PD-L1-controlled mechanism for type 2 polarization, with ILC2s mediating an innate checkpoint to control adaptive T helper responses, which has important implications for the treatment of type 2 inflammation.
Collapse
Affiliation(s)
- Christian Schwartz
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Adnan R Khan
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Achilleas Floudas
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Sean P Saunders
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Emily Hams
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland .,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|
63
|
Bhaumik S, Basu R. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response. Front Immunol 2017; 8:254. [PMID: 28408906 PMCID: PMC5374155 DOI: 10.3389/fimmu.2017.00254] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/21/2017] [Indexed: 01/15/2023] Open
Abstract
After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared developmental axes with related cellular subsets such as Th22, Th1, and iTreg in the context of intestinal inflammation and also examine the molecular and epigenetic features of Th17 cells that mediate these overlapping developmental programs.
Collapse
Affiliation(s)
- Suniti Bhaumik
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Rajatava Basu
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| |
Collapse
|
64
|
GR-independent down-modulation on GM-CSF bone marrow-derived dendritic cells by the selective glucocorticoid receptor modulator Compound A. Sci Rep 2016; 6:36646. [PMID: 27857212 PMCID: PMC5114550 DOI: 10.1038/srep36646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/19/2016] [Indexed: 02/08/2023] Open
Abstract
Dendritic cells (DC) initiate the adaptive immune response. Glucocorticoids (GCs) down-modulate the function of DC. Compound A (CpdA, (2-(4-acetoxyphenyl)-2-chloro-N-methyl-ethylammonium chloride) is a plant-derived GR-ligand with marked dissociative properties. We investigated the effects of CpdA on in vitro generated GM-CSF-conditioned bone marrow-derived DC (BMDC). CpdA-exposed BMDC exhibited low expression of cell-surface molecules and diminution of the release of proinflammatory cytokines upon LPS stimulation; processes associated with BMDC maturation and activation. CpdA-treated BMDC were inefficient at Ag capture via mannose receptor-mediated endocytosis and displayed reduced T-cell priming. CpdA prevented the LPS-induced rise in pErk1/2 and pP38, kinases involved in TLR4 signaling. CpdA fully inhibited LPS-induced pAktSer473, a marker associated with the generation of tolerogenic DC. We used pharmacological blockade and selective genetic loss-of-function tools and demonstrated GR-independent inhibitory effects of CpdA in BMDC. Mechanistically, CpdA-mediated inactivation of the NF-κB intracellular signaling pathway was associated with a short-circuiting of pErk1/2 and pP38 upstream signaling. Assessment of the in vivo function of CpdA-treated BMDC pulsed with the hapten trinitrobenzenesulfonic acid showed impaired cell-mediated contact hypersensitivity. Collectively, we provide evidence that CpdA is an effective BMDC modulator that might have a benefit for immune disorders, even when GR is not directly targeted.
Collapse
|
65
|
Zimmermann J, Kühl AA, Weber M, Grün JR, Löffler J, Haftmann C, Riedel R, Maschmeyer P, Lehmann K, Westendorf K, Mashreghi MF, Löhning M, Mack M, Radbruch A, Chang HD. T-bet expression by Th cells promotes type 1 inflammation but is dispensable for colitis. Mucosal Immunol 2016; 9:1487-1499. [PMID: 26883725 DOI: 10.1038/mi.2016.5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/03/2016] [Indexed: 02/04/2023]
Abstract
The transcription factor T-bet is highly expressed by Th cells isolated from the inflamed intestine of Crohn's disease patients, and has been regarded a critical driver of murine T cell-induced colitis. However, we show here that T-bet expression by Th cells is not required for the manifestation of T-cell-induced colitis in the presence of segmented filamentous bacteria and Helicobacter hepaticus. T-bet expression by Th cells controls their survival and localization, their repertoire of chemokine and chemokine receptor expression, the accumulation of monocytes and macrophages in the inflamed colon, and their differentiation to the M1 type, i.e., type 1 inflammation. Nevertheless, T-bet-deficient Th cells efficiently induce colitis, as reflected by weight loss, diarrhea, and colon histopathology. T-bet-deficient Th cells differentiate into Th1/17 cells, able to express IFN-γ and IL-17A upon restimulation. While neutralization of IL-17A exacerbated colitis induced by wild-type or T-bet-deficient Th cells, neutralization of IFN-γ completely abolished colitis.
Collapse
Affiliation(s)
- J Zimmermann
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - A A Kühl
- Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - M Weber
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - J R Grün
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - J Löffler
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - C Haftmann
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - R Riedel
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - P Maschmeyer
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - K Lehmann
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - K Westendorf
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - M-F Mashreghi
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - M Löhning
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - M Mack
- Universitätsklinikum Regensburg, Regensburg, Germany
| | - A Radbruch
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - H D Chang
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
66
|
Glanville N, Peel TJ, Schröder A, Aniscenko J, Walton RP, Finotto S, Johnston SL. Tbet Deficiency Causes T Helper Cell Dependent Airways Eosinophilia and Mucus Hypersecretion in Response to Rhinovirus Infection. PLoS Pathog 2016; 12:e1005913. [PMID: 27683080 PMCID: PMC5040449 DOI: 10.1371/journal.ppat.1005913] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/04/2016] [Indexed: 11/18/2022] Open
Abstract
Current understanding of adaptive immune, particularly T cell, responses to human rhinoviruses (RV) is limited. Memory T cells are thought to be of a primarily T helper 1 type, but both T helper 1 and T helper 2 memory cells have been described, and heightened T helper 2/ lessened T helper 1 responses have been associated with increased RV-induced asthma exacerbation severity. We examined the contribution of T helper 1 cells to RV-induced airways inflammation using mice deficient in the transcription factor T-Box Expressed In T Cells (Tbet), a critical controller of T helper 1 cell differentiation. Using flow cytometry we showed that Tbet deficient mice lacked the T helper 1 response of wild type mice and instead developed mixed T helper 2/T helper 17 responses to RV infection, evidenced by increased numbers of GATA binding protein 3 (GATA-3) and RAR-related orphan receptor gamma t (RORγt), and interleukin-13 and interleukin-17A expressing CD4+ T cells in the lung. Forkhead box P3 (FOXP3) and interleukin-10 expressing T cell numbers were unaffected. Tbet deficient mice also displayed deficiencies in lung Natural Killer, Natural Killer T cell and γδT cell responses, and serum neutralising antibody responses. Tbet deficient mice exhibited pronounced airways eosinophilia and mucus production in response to RV infection that, by utilising a CD4+ cell depleting antibody, were found to be T helper cell dependent. RV induction of T helper 2 and T helper 17 responses may therefore have an important role in directly driving features of allergic airways disease such as eosinophilia and mucus hypersecretion during asthma exacerbations.
Collapse
Affiliation(s)
- Nicholas Glanville
- Airway Disease Infection Section, National Heart and Lung Institute, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Tamlyn J. Peel
- Airway Disease Infection Section, National Heart and Lung Institute, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Armin Schröder
- Laboratory of Cellular and Molecular Lung Immunology, Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Aniscenko
- Airway Disease Infection Section, National Heart and Lung Institute, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Ross P. Walton
- Airway Disease Infection Section, National Heart and Lung Institute, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Susetta Finotto
- Laboratory of Cellular and Molecular Lung Immunology, Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian L. Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
67
|
Meng M, Li C, Yang F, Chen H, Li X, Yang Y, Chen D. Novel immunostimulators with a thiazolidin-4-one ring promote the immunostimulatory effect of human iNKT cells on the stimulation of Th2-like immune responsiveness via GATA3 activation in vitro. Int Immunopharmacol 2016; 39:353-358. [PMID: 27543853 DOI: 10.1016/j.intimp.2016.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/24/2022]
Abstract
Invariant natural killer T cells (iNKTs) are important innate immune cells which get involved in various immune responses in both mice and humans. These immune reactions range from self-tolerance to development of autoimmunity and responses to pathogens and tumor development. In this study, we aimed to explore the effects of the novel immunostimulators (CH1b and CH2b) containing thiazolidin-4-one on the functions of human invariant natural killer T cells (iNKTs). First of all, iNKTs in peripheral blood mononuclear cells were expanded with α-Galactosylceramide (α-Galcer) in vitro. Then, the highly purified iNKTs were isolated from PBMCs using magnetic cells sorting (MACS). Next, we investigated the impacts of CH1b and CH2b on proliferation, cytokines production, cytotoxicity, and the associated signaling pathways in iNKT cells. Finally, we found that CH2b could significantly promote the activated iNKTs proliferation, increase the production of Th2 cytokines, and induce Th0 differentiation into Th2 subset via GATA 3 signaling pathway. Besides, CH2b could markedly enhance the cytotoxic ability of the activated iNKTs. Therefore, we concluded that CH2b, a promising candidate immunostimulator, might be used for the treatment of infections, tumors, autoimmune and allergic diseases, and for the correction of Th1/Th2 balance disorders in future.
Collapse
Affiliation(s)
- Ming Meng
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, China
| | - Chunxiao Li
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, China
| | - Fei Yang
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Xiaoliu Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yongbin Yang
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, China
| | - Dongzhi Chen
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, China.
| |
Collapse
|
68
|
Abstract
The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.
Collapse
Affiliation(s)
- Gérard Eberl
- Institut Pasteur, Microenvironment and Immunity Unit, 75724 Paris, France, and the Institut National de la Santé et de la Recherche Médicale (INSERM) U1224, 75724 Paris, France
| |
Collapse
|
69
|
Dysregulation of Th1, Th2, Th17, and T regulatory cell-related transcription factor signaling in children with autism. Mol Neurobiol 2016; 54:4390-4400. [PMID: 27344332 DOI: 10.1007/s12035-016-9977-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by stereotypic repetitive behaviors, impaired social interactions, and communication deficits. Numerous immune system abnormalities have been described in individuals with autism including abnormalities in the ratio of Th1/Th2/Th17 cells; however, the expression of the transcription factors responsible for the regulation and differentiation of Th1/Th2/Th17/Treg cells has not previously been evaluated. Peripheral blood mononuclear cells (PBMCs) from children with autism (AU) or typically developing (TD) control children were stimulated with phorbol-12-myristate 13-acetate (PMA) and ionomycin in the presence of brefeldin A. The expressions of Foxp3, RORγt, STAT-3, T-bet, and GATA-3 mRNAs and proteins were then assessed. Our study shows that children with AU displayed altered immune profiles and function, characterized by a systemic deficit of Foxp3+ T regulatory (Treg) cells and increased RORγt+, T-bet+, GATA-3+, and production by CD4+ T cells as compared to TD. This was confirmed by real-time PCR (RT-PCR) and western blot analyses. Our results suggest that autism impacts transcription factor signaling, which results in an immunological imbalance. Therefore, the restoration of transcription factor signaling may have a great therapeutic potential in the treatment of autistic disorders.
Collapse
|
70
|
Verma AK, Sharma A, Kumar S, Gupta RK, Kumar D, Gupta K, Giridhar B, Das M, Dwivedi PD. Purification, characterization and allergenicity assessment of 26 kDa protein, a major allergen from Cicer arietinum. Mol Immunol 2016; 74:113-24. [DOI: 10.1016/j.molimm.2016.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 04/21/2016] [Accepted: 05/04/2016] [Indexed: 12/24/2022]
|
71
|
Wang YY, Jiang H, Wang YC, Huang XR, Pan J, Yang C, Shou ZF, Xiang SL, Chen DJ, Lan HY, Chen JH. Deletion of Smad3 improves cardiac allograft rejection in mice. Oncotarget 2016. [PMID: 26219259 PMCID: PMC4627288 DOI: 10.18632/oncotarget.4849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
T cells play a critical role in acute allograft rejection. TGF-β/Smad3 signaling is a key pathway in regulating T cell development. We report here that Smad3 is a key transcriptional factor of TGF-β signaling that differentially regulates T cell immune responses in a mouse model of cardiac allograft rejection in which donor hearts from BALB/c mice were transplanted into Smad3 knockout (KO) and wild type (WT) mice. Results showed that the cardiac allograft survival was prolonged in Smad3 KO recipients. This allograft protection was associated with a significant inhibition of proinflammatory cytokines (IL-1β, TNF-α, and MCP-1) and infiltration of neutrophils, CD3+ T cells, and F4/80+ macrophages. Importantly, deletion of Smad3 markedly suppressed T-bet and IFN-γ while enhancing GATA3 and IL-4 expression, resulting in a shift from the Th1 to Th2 immune responses. Furthermore, mice lacking Smad3 were also protected from the Th17-mediated cardiac injury, although the regulatory T cell (Treg) response was also suppressed. In conclusion, Smad3 is an immune regulator in T cell-mediated cardiac allograft rejection. Loss of Smad3 results in a shift from Th1 to Th2 but suppressing Th17 immune responses. Thus, modulation of TGF-β/Smad3 signaling may be a novel therapy for acute allograft rejection.
Collapse
Affiliation(s)
- Ying-Ying Wang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu-Cheng Wang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jun Pan
- Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Yang
- Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhang-Fei Shou
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shi-Long Xiang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Da-Jin Chen
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jiang-Hua Chen
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
72
|
Vezza T, Rodríguez-Nogales A, Algieri F, Utrilla MP, Rodriguez-Cabezas ME, Galvez J. Flavonoids in Inflammatory Bowel Disease: A Review. Nutrients 2016; 8:211. [PMID: 27070642 PMCID: PMC4848680 DOI: 10.3390/nu8040211] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/19/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the intestine that compromises the patients’ life quality and requires sustained pharmacological and surgical treatments. Since their etiology is not completely understood, non-fully-efficient drugs have been developed and those that have shown effectiveness are not devoid of quite important adverse effects that impair their long-term use. In this regard, a growing body of evidence confirms the health benefits of flavonoids. Flavonoids are compounds with low molecular weight that are widely distributed throughout the vegetable kingdom, including in edible plants. They may be of great utility in conditions of acute or chronic intestinal inflammation through different mechanisms including protection against oxidative stress, and preservation of epithelial barrier function and immunomodulatory properties in the gut. In this review we have revised the main flavonoid classes that have been assessed in different experimental models of colitis as well as the proposed mechanisms that support their beneficial effects.
Collapse
Affiliation(s)
- Teresa Vezza
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Maria Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Maria Elena Rodriguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Julio Galvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| |
Collapse
|
73
|
Yang B, Zhai F, Jiang J, Wang X, Cao Z, Cheng X. Elevated expression of T-bet in mycobacterial antigen-specific CD4(+) T cells from patients with tuberculosis. Cell Immunol 2015; 298:1-8. [PMID: 26302932 DOI: 10.1016/j.cellimm.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 07/19/2015] [Accepted: 08/11/2015] [Indexed: 11/25/2022]
Abstract
T-bet is a T-box transcriptional factor that controls the differentiation and effector functions of CD4 T cells. In this study, we studied the role of T-bet in regulating CD4(+) T cell immunity against tuberculosis (TB). T-bet expression in Mycobacterium tuberculosis antigen-specific CD4(+) T cells was significantly higher in patients with active TB than in individuals with latent TB infection (p<0.0001). Comparison of T-bet expression in TCM and TEM subsets showed that CD4(+)T-bet(+)M. tuberculosis antigen-specific CD4(+) T cells had significantly lower frequency of TCM (p=0.003) and higher frequency of TEM (p=0.003) than CD4(+)T-bet(-) cells. The expression of PD-1 in antigen-specific CD4(+) T cells was significantly higher in patients with TB than in individuals with latent TB infection (p=0.006). CD4(+)CD154(+)T-bet(+) T cells had significantly higher expression of PD-1 than CD4(+)CD154(+)T-bet(-) T cells (p=0.0028). It is concluded that T-bet expression might be associated with differentiation into effector memory cells and PD-1 expression in mycobacterial antigen-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Bingfen Yang
- Key Laboratory of Tuberculosis Prevention and Treatment and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Fei Zhai
- Key Laboratory of Tuberculosis Prevention and Treatment and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Jing Jiang
- Key Laboratory of Tuberculosis Prevention and Treatment and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Xinjing Wang
- Key Laboratory of Tuberculosis Prevention and Treatment and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Zhihong Cao
- Key Laboratory of Tuberculosis Prevention and Treatment and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Xiaoxing Cheng
- Key Laboratory of Tuberculosis Prevention and Treatment and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China.
| |
Collapse
|
74
|
Botanical Drugs as an Emerging Strategy in Inflammatory Bowel Disease: A Review. Mediators Inflamm 2015; 2015:179616. [PMID: 26576073 PMCID: PMC4630406 DOI: 10.1155/2015/179616] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 01/08/2023] Open
Abstract
Crohn's disease and ulcerative colitis are the two most common categories of inflammatory bowel disease (IBD), which are characterized by chronic inflammation of the intestine that comprises the patients' life quality and requires sustained pharmacological and surgical treatments. Since their aetiology is not completely understood, nonfully efficient drugs have been developed and those that show effectiveness are not devoid of quite important adverse effects that impair their long-term use. Therefore, many patients try with some botanical drugs, which are safe and efficient after many years of use. However, it is necessary to properly evaluate these therapies to consider a new strategy for human IBD. In this report we have reviewed the main botanical drugs that have been assessed in clinical trials in human IBD and the mechanisms and the active compounds proposed for their beneficial effects.
Collapse
|
75
|
Lupar E, Brack M, Garnier L, Laffont S, Rauch KS, Schachtrup K, Arnold SJ, Guéry JC, Izcue A. Eomesodermin Expression in CD4+ T Cells Restricts Peripheral Foxp3 Induction. THE JOURNAL OF IMMUNOLOGY 2015; 195:4742-52. [PMID: 26453746 DOI: 10.4049/jimmunol.1501159] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/10/2015] [Indexed: 12/23/2022]
Abstract
CD4(+) T cells polarize into effector Th subsets characterized by signature transcription factors and cytokines. Although T-bet drives Th1 responses and represses the alternative Th2, Th17, and Foxp3(+) regulatory T cell fates, the role of the T-bet-related transcription factor eomesodermin (Eomes) in CD4(+) T cells is less well understood. In this study, we analyze the expression and effects of Eomes in mouse CD4(+) T lymphocytes. We find that Eomes is readily expressed in activated CD4(+) Th1 T cells in vivo. Eomes(+) CD4(+) T cells accumulated in old mice, under lymphopenic conditions in a T cell transfer model of colitis, and upon oral Ag administration. However, despite its expression, genetic deletion of Eomes in CD4(+) T cells did not impact on IFN-γ production nor increase Th2 or Th17 responses. In contrast, Eomes deficiency favored the accumulation of Foxp3(+) cells in old mice, after in vivo differentiation of Eomes-deficient naive CD4(+) T cells, and in response to oral Ag in a cell-intrinsic way. Enforced Eomes expression during in vitro regulatory T cell induction also reduced Foxp3 transcription. Likewise, bystander Eomes-deficient CD4(+) T cells were more efficient at protecting from experimental autoimmune encephalitis compared with wild-type CD4(+) T cells. This enhanced capacity of Eomes-deficient CD4(+) T cells to inhibit EAE in trans was associated with an enhanced frequency of Foxp3(+) cells. Our data identify a novel role for Eomes in CD4(+) T cells and indicate that Eomes expression may act by limiting Foxp3 induction, which may contribute to the association of EOMES to susceptibility to multiple sclerosis.
Collapse
Affiliation(s)
- Ekaterina Lupar
- Max-Planck-Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, D-79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Maria Brack
- Max-Planck-Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, D-79106 Freiburg, Germany
| | - Laure Garnier
- INSERM, U1043, Toulouse, F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse, F-31300, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France
| | - Sophie Laffont
- INSERM, U1043, Toulouse, F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse, F-31300, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France
| | - Katharina S Rauch
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, D-79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Kristina Schachtrup
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, D-79106 Freiburg, Germany
| | - Sebastian J Arnold
- University Medical Centre, Renal Department, Centre for Clinical Research, D-79106 Freiburg, Germany; BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, D-79104 Freiburg, Germany; and Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, D-79102 Freiburg, Germany
| | - Jean-Charles Guéry
- INSERM, U1043, Toulouse, F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse, F-31300, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France
| | - Ana Izcue
- Max-Planck-Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, D-79106 Freiburg, Germany;
| |
Collapse
|
76
|
Inghirami G, Chan WC, Pileri S. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications. Immunol Rev 2015; 263:124-59. [PMID: 25510275 DOI: 10.1111/imr.12248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell lymphoproliferative disorders are a heterogeneous group of neoplasms with distinct clinical-biological properties. The normal cellular counterpart of these processes has been postulated based on functional and immunophenotypic analyses. However, T lymphocytes have been proven to be remarkably capable of modulating their properties, adapting their function in relationship with multiple stimuli and to the microenvironment. This impressive plasticity is determined by the equilibrium among a pool of transcription factors and by DNA chromatin regulators. It is now proven that the acquisition of specific genomic defects leads to the enforcement/activation of distinct pathways, which ultimately alter the preferential activation of defined regulators, forcing the neoplastic cells to acquire features and phenotypes distant from their original fate. Thus, dissecting the landscape of the genetic defects and their functional consequences in T-cell neoplasms is critical not only to pinpoint the origin of these tumors but also to define innovative mechanisms to re-adjust an unbalanced state to which the tumor cells have become addicted and make them vulnerable to therapies and targetable by the immune system. In our review, we briefly describe the pathological and clinical aspects of the T-cell lymphoma subtypes as well as NK-cell lymphomas and then focus on the current understanding of their pathogenesis and the implications on diagnosis and treatment.
Collapse
Affiliation(s)
- Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy; Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | | |
Collapse
|
77
|
Coomes SM, Pelly VS, Kannan Y, Okoye IS, Czieso S, Entwistle LJ, Perez-Lloret J, Nikolov N, Potocnik AJ, Biró J, Langhorne J, Wilson MS. IFNγ and IL-12 Restrict Th2 Responses during Helminth/Plasmodium Co-Infection and Promote IFNγ from Th2 Cells. PLoS Pathog 2015; 11:e1004994. [PMID: 26147567 PMCID: PMC4493106 DOI: 10.1371/journal.ppat.1004994] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
Parasitic helminths establish chronic infections in mammalian hosts. Helminth/Plasmodium co-infections occur frequently in endemic areas. However, it is unclear whether Plasmodium infections compromise anti-helminth immunity, contributing to the chronicity of infection. Immunity to Plasmodium or helminths requires divergent CD4+ T cell-driven responses, dominated by IFNγ or IL-4, respectively. Recent literature has indicated that Th cells, including Th2 cells, have phenotypic plasticity with the ability to produce non-lineage associated cytokines. Whether such plasticity occurs during co-infection is unclear. In this study, we observed reduced anti-helminth Th2 cell responses and compromised anti-helminth immunity during Heligmosomoides polygyrus and Plasmodium chabaudi co-infection. Using newly established triple cytokine reporter mice (Il4gfpIfngyfpIl17aFP635), we demonstrated that Il4gfp+ Th2 cells purified from in vitro cultures or isolated ex vivo from helminth-infected mice up-regulated IFNγ following adoptive transfer into Rag1–/– mice infected with P. chabaudi. Functionally, Th2 cells that up-regulated IFNγ were transcriptionally re-wired and protected recipient mice from high parasitemia. Mechanistically, TCR stimulation and responsiveness to IL-12 and IFNγ, but not type I IFN, was required for optimal IFNγ production by Th2 cells. Finally, blockade of IL-12 and IFNγ during co-infection partially preserved anti-helminth Th2 responses. In summary, this study demonstrates that Th2 cells retain substantial plasticity with the ability to produce IFNγ during Plasmodium infection. Consequently, co-infection with Plasmodium spp. may contribute to the chronicity of helminth infection by reducing anti-helminth Th2 cells and converting them into IFNγ-secreting cells. Approximately a third of the world’s population is burdened with chronic intestinal parasitic helminth infections, causing significant morbidities. Identifying the factors that contribute to the chronicity of infection is therefore essential. Co-infection with other pathogens, which is extremely common in helminth endemic areas, may contribute to the chronicity of helminth infections. In this study, we used a mouse model to test whether the immune responses to an intestinal helminth were impaired following malaria co-infection. These two pathogens induce very different immune responses, which, until recently, were thought to be opposing and non-interchangeable. This study identified that the immune cells required for anti-helminth responses are capable of changing their phenotype and providing protection against malaria. By identifying and blocking the factors that drive this change in phenotype, we can preserve anti-helminth immune responses during co-infection. Our studies provide fresh insight into how immune responses are altered during helminth and malaria co-infection.
Collapse
Affiliation(s)
- Stephanie M. Coomes
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Victoria S. Pelly
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Yashaswini Kannan
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Isobel S. Okoye
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Stephanie Czieso
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Lewis J. Entwistle
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Jimena Perez-Lloret
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Nikolay Nikolov
- Division of Systems Biology, The Francis Crick Institute, London, United Kingdom
| | - Alexandre J. Potocnik
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Judit Biró
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Jean Langhorne
- Division of Parasitology, Mill Hill Laboratories, London, United Kingdom
| | - Mark S. Wilson
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
78
|
Jha SS, Chakraborty NG, Singh P, Mukherji B, Dorsky DI. Knockdown of T-bet expression in Mart-127-35 -specific T-cell-receptor-engineered human CD4(+) CD25(-) and CD8(+) T cells attenuates effector function. Immunology 2015; 145:124-35. [PMID: 25495780 DOI: 10.1111/imm.12431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 11/28/2022] Open
Abstract
Gene transfer to create tumour epitope-specific cytolytic T cells for adoptive immunotherapy of cancer remains an area of active inquiry. When the Mart-127-35 -specific DMF5 T-cell receptor (TCR) is transferred into peripheral human CD4(+) T cells, the reprogrammed cells exhibit a T helper type 1 (Th1) phenotype with significant multifactorial effector capabilities. The T-bet transcription factor plays an important role in determination of the Th1 differentiation pathway. To gain a deeper understanding of how T-bet controls the outcome of human T-cell reprogramming by gene transfer, we developed a system for examining the effects of short hairpin RNA-mediated T-bet gene knockdown in sorted cell populations uniformly expressing the knockdown construct. In this system, using activated peripheral human CD4(+) CD25(-) and CD8(+) T cells, T-bet knockdown led to attenuation of the interferon-γ response to both antigen-specific and non-specific TCR stimulation. The interleukin-2 (IL-2) antigen-specific response was not attenuated by T-bet knockdown. Also, in TCR-reprogrammed CD8(+) cells, the cytolytic effector response was attenuated by T-bet knockdown. T-bet knockdown did not cause redirection into a Th2 differentiation pathway, and no increased IL-4, IL-10, or IL-17 response was detected in this system. These results indicate that T-bet expression is required for maintenance of the CD4(+) CD25(-) and CD8(+) effector phenotypes in TCR-reprogrammed human T cells. They also suggest that the activation protocol necessary for transduction with retrovectors and lentivectors may commit the reprogrammed cells to the Th1 phenotype, which cannot be altered by T-bet knockdown but that there is, nevertheless, a continuous requirement of T-bet expression for interferon-γ gene activation.
Collapse
Affiliation(s)
- Sidharth S Jha
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | | | |
Collapse
|
79
|
Schaller M, Ito T, Allen RM, Kroetz D, Kittan N, Ptaschinski C, Cavassani K, Carson WF, Godessart N, Grembecka J, Cierpicki T, Dou Y, Kunkel SL. Epigenetic regulation of IL-12-dependent T cell proliferation. J Leukoc Biol 2015; 98:601-13. [PMID: 26059830 DOI: 10.1189/jlb.1a0814-375rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 05/18/2015] [Indexed: 12/17/2022] Open
Abstract
It is well established that the cytokine IL-12 and the transcription factor STAT4, an essential part of the IL-12 signaling pathway, are critical components of the Th1 differentiation process in T cells. In response to pathogenic stimuli, this process causes T cells to proliferate rapidly and secrete high amounts of the cytokine IFN-γ, leading to the Th1 proinflammatory phenotype. However, there are still unknown components of this differentiation pathway. We here demonstrated that the expression of the histone methyltransferase Mll1 is driven by IL-12 signaling through STAT4 in humans and mice and is critical for the proper differentiation of a naïve T cell to a Th1 cell. Once MLL1 is up-regulated by IL-12, it regulates the proliferation of Th1 cells. As evidence of this, we show that Th1 cells from Mll1(+/-) mice are unable to proliferate rapidly in a Th1 environment in vitro and in vivo. Additionally, upon restimulation with cognate antigen Mll1(+/-), T cells do not convert to a Th1 phenotype, as characterized by IFN-γ output. Furthermore, we observed a reduction in IFN-γ production and proliferation in human peripheral blood stimulated with tetanus toxoid by use of a specific inhibitor of the MLL1/menin complex. Together, our results demonstrate that the MLL1 gene plays a previously unrecognized but essential role in Th1 cell biology and furthermore, describes a novel pathway through which Mll1 expression is regulated.
Collapse
Affiliation(s)
- Matthew Schaller
- *Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Immunology, Nara Medical University, Nara, Japan; and Dermatology Research, Almirall, S.A., St Feliu de Llobregat, Spain
| | - Toshihiro Ito
- *Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Immunology, Nara Medical University, Nara, Japan; and Dermatology Research, Almirall, S.A., St Feliu de Llobregat, Spain
| | - Ronald M Allen
- *Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Immunology, Nara Medical University, Nara, Japan; and Dermatology Research, Almirall, S.A., St Feliu de Llobregat, Spain
| | - Danielle Kroetz
- *Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Immunology, Nara Medical University, Nara, Japan; and Dermatology Research, Almirall, S.A., St Feliu de Llobregat, Spain
| | - Nicolai Kittan
- *Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Immunology, Nara Medical University, Nara, Japan; and Dermatology Research, Almirall, S.A., St Feliu de Llobregat, Spain
| | - Catherine Ptaschinski
- *Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Immunology, Nara Medical University, Nara, Japan; and Dermatology Research, Almirall, S.A., St Feliu de Llobregat, Spain
| | - Karen Cavassani
- *Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Immunology, Nara Medical University, Nara, Japan; and Dermatology Research, Almirall, S.A., St Feliu de Llobregat, Spain
| | - William F Carson
- *Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Immunology, Nara Medical University, Nara, Japan; and Dermatology Research, Almirall, S.A., St Feliu de Llobregat, Spain
| | - Nuria Godessart
- *Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Immunology, Nara Medical University, Nara, Japan; and Dermatology Research, Almirall, S.A., St Feliu de Llobregat, Spain
| | - Jolanta Grembecka
- *Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Immunology, Nara Medical University, Nara, Japan; and Dermatology Research, Almirall, S.A., St Feliu de Llobregat, Spain
| | - Tomasz Cierpicki
- *Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Immunology, Nara Medical University, Nara, Japan; and Dermatology Research, Almirall, S.A., St Feliu de Llobregat, Spain
| | - Yali Dou
- *Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Immunology, Nara Medical University, Nara, Japan; and Dermatology Research, Almirall, S.A., St Feliu de Llobregat, Spain
| | - Steven L Kunkel
- *Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Immunology, Nara Medical University, Nara, Japan; and Dermatology Research, Almirall, S.A., St Feliu de Llobregat, Spain
| |
Collapse
|
80
|
Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 2015; 75:14-24. [PMID: 26044597 DOI: 10.1016/j.cyto.2015.05.010] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
Interleukin-4 (IL-4), IL-5 and IL-13, the signature cytokines that are produced during type 2 immune responses, are critical for protective immunity against infections of extracellular parasites and are responsible for asthma and many other allergic inflammatory diseases. Although many immune cell types within the myeloid lineage compartment including basophils, eosinophils and mast cells are capable of producing at least one of these cytokines, the production of these "type 2 immune response-related" cytokines by lymphoid lineages, CD4 T helper 2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) in particular, are the central events during type 2 immune responses. In this review, I will focus on the signaling pathways and key molecules that determine the differentiation of naïve CD4 T cells into Th2 cells, and how the expression of Th2 cytokines, especially IL-4 and IL-13, is regulated in Th2 cells. The similarities and differences in the differentiation of Th2 cells, IL-4-producing T follicular helper (Tfh) cells and ILC2s as well as their relationships will also be discussed.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
81
|
Li P, Spolski R, Liao W, Leonard WJ. Complex interactions of transcription factors in mediating cytokine biology in T cells. Immunol Rev 2015; 261:141-56. [PMID: 25123282 DOI: 10.1111/imr.12199] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
T-helper (Th) cells play critical roles within the mammalian immune system, and the differentiation of naive CD4(+) T cells into distinct T-helper subsets is critical for normal immunoregulation and host defense. These carefully regulated differentiation processes are controlled by networks of cytokines, transcription factors, and epigenetic modifications, resulting in the generation of multiple CD4(+) T-cell subsets, including Th1, Th2, Th9, Th17, Treg, and Tfh cells. In this review, we discuss the roles of transcription factors in determining the specific type of differentiation and in particular the role of interleukin-2 (IL-2) in promoting or inhibiting Th differentiation. In addition to discussing master regulators and subset-specific transcription factors for distinct T-helper cell populations, we focus on signal transducer and activator of transcription (STAT) proteins and on the cooperative action of interferon regulatory factor 4 (IRF4) with activator protein 1 (AP-1) family proteins and STAT3 in the assembly of complexes that broadly influence T-cell differentiation.
Collapse
Affiliation(s)
- Peng Li
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
82
|
Boivin N, Baillargeon J, Doss PMIA, Roy AP, Rangachari M. Interferon-β suppresses murine Th1 cell function in the absence of antigen-presenting cells. PLoS One 2015; 10:e0124802. [PMID: 25885435 PMCID: PMC4401451 DOI: 10.1371/journal.pone.0124802] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/19/2015] [Indexed: 01/08/2023] Open
Abstract
Interferon (IFN)-β is a front-line therapy for the treatment of the relapsing-remitting form of multiple sclerosis. However, its immunosuppressive mechanism of function remains incompletely understood. While it has been proposed that IFN-β suppresses the function of inflammatory myelin antigen-reactive T cells by promoting the release of immunomodulatory cytokines such as IL-27 from antigen-presenting cells (APCs), its direct effects on inflammatory CD4+ Th1 cells are less clear. Here, we establish that IFN-β inhibits mouse IFN-γ+ Th1 cell function in the absence of APCs. CD4+ T cells express the type I interferon receptor, and IFN-β can suppress Th1 cell proliferation under APC-free stimulation conditions. IFN-β-treated myelin antigen-specific Th1 cells are impaired in their ability to induce severe experimental autoimmune encephalomyelitis (EAE) upon transfer to lymphocyte-deficient Rag1-/- mice. Polarized Th1 cells downregulate IFN-γ and IL-2, and upregulate the negative regulatory receptor Tim-3, when treated with IFN-β in the absence of APCs. Further, IFN-β treatment of Th1 cells upregulates phosphorylation of Stat1, and downregulates phosphorylation of Stat4. Our data indicate that IFN-γ-producing Th1 cells are directly responsive to IFN-β and point to a novel mechanism of IFN-β-mediated T cell suppression that is independent of APC-derived signals.
Collapse
Affiliation(s)
- Nicolas Boivin
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
| | - Joanie Baillargeon
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
| | - Prenitha Mercy Ignatius Arokia Doss
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Graduate Programme in Microbiology and Immunology, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
| | - Andrée-Pascale Roy
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Graduate Programme in Microbiology and Immunology, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
| | - Manu Rangachari
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
- * E-mail:
| |
Collapse
|
83
|
A Mathematical Framework for Understanding Four-Dimensional Heterogeneous Differentiation of CD4+ T Cells. Bull Math Biol 2015; 77:1046-64. [PMID: 25779890 DOI: 10.1007/s11538-015-0076-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 03/02/2015] [Indexed: 12/24/2022]
Abstract
At least four distinct lineages of CD4+ T cells play diverse roles in the immune system. Both in vivo and in vitro, naïve CD4+ T cells often differentiate into a variety of cellular phenotypes. Previously, we developed a mathematical framework to study heterogeneous differentiation of two lineages governed by a mutual-inhibition motif. To understand heterogeneous differentiation of CD4+ T cells involving more than two lineages, we present here a mathematical framework for the analysis of multiple stable steady states in dynamical systems with multiple state variables interacting through multiple mutual-inhibition loops. A mathematical model for CD4+ T cells based on this framework can reproduce known properties of heterogeneous differentiation involving multiple lineages of this cell differentiation system, such as heterogeneous differentiation of TH1-TH2, TH1-TH17 and iTReg-TH17 under single or mixed types of differentiation stimuli. The model shows that high concentrations of differentiation stimuli favor the formation of phenotypes with co-expression of lineage-specific master regulators.
Collapse
|
84
|
Sakala IG, Chaudhri G, Eldi P, Buller RM, Karupiah G. Deficiency in Th2 cytokine responses exacerbate orthopoxvirus infection. PLoS One 2015; 10:e0118685. [PMID: 25751266 PMCID: PMC4353717 DOI: 10.1371/journal.pone.0118685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/22/2015] [Indexed: 12/24/2022] Open
Abstract
Ectromelia virus (ECTV) causes mousepox in mice, a disease very similar to smallpox in humans. ECTV and variola virus (VARV), the agent of smallpox, are closely related orthopoxviruses. Mousepox is an excellent small animal model to study the genetic and immunologic basis for resistance and susceptibility of humans to smallpox. Resistance to mousepox is dependent on a strong polarized type 1 immune response, associated with robust natural killer (NK) cell, cytotoxic T lymphocyte (CTL) and gamma interferon (IFN-γ) responses. In contrast, ECTV-susceptible mice generate a type 2 response, associated with weak NK cell, CTL and IFN-γ responses but robust IL-4 responses. Nonetheless, susceptible strains infected with mutant ECTV lacking virus-encoded IFN-γ binding protein (vIFN-γbp) (ECTV-IFN-γbpΔ) control virus replication through generation of type 1 response. Since the IL-4/IL-13/STAT-6 signaling pathways polarize type 2/T helper 2 (Th2) responses with a corresponding suppression of IFN-γ production, we investigated whether the combined absence of vIFN-γbp, and one or more host genes involved in Th2 response development, influence generation of protective immunity. Most mutant mouse strains infected with wild-type (WT) virus succumbed to disease more rapidly than WT animals. Conversely, the disease outcome was significantly improved in WT mice infected with ECTV-IFN-γbpΔ but absence of IL-4/IL-13/STAT-6 signaling pathways did not provide any added advantage. Deficiency in IL-13 or STAT-6 resulted in defective CTL responses, higher mortality rates and accelerated deaths. Deficiencies in IL-4/IL-13/STAT-6 signaling pathways significantly reduced the numbers of IFN-γ producing CD4 and CD8 T cells, indicating an absence of a switch to a Th1-like response. Factors contributing to susceptibility or resistance to mousepox are far more complex than a balance between Th1 and Th2 responses.
Collapse
Affiliation(s)
- Isaac G. Sakala
- Infection and Immunity Group, Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Geeta Chaudhri
- Infection and Immunity Group, Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Preethi Eldi
- Infection and Immunity Group, Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - R. Mark Buller
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St Louis, MO, United States of America
| | - Gunasegaran Karupiah
- Infection and Immunity Group, Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- * E-mail:
| |
Collapse
|
85
|
Molecular underpinnings of Th17 immune-regulation and their implications in autoimmune diabetes. Cytokine 2015; 71:366-76. [DOI: 10.1016/j.cyto.2014.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/30/2014] [Accepted: 10/28/2014] [Indexed: 12/17/2022]
|
86
|
Lin ZW, Wu LX, Xie Y, Ou X, Tian PK, Liu XP, Min J, Wang J, Chen RF, Chen YJ, Liu C, Ye H, Ou QJ. The expression levels of transcription factors T-bet, GATA-3, RORγt and FOXP3 in peripheral blood lymphocyte (PBL) of patients with liver cancer and their significance. Int J Med Sci 2015; 12:7-16. [PMID: 25552913 PMCID: PMC4278870 DOI: 10.7150/ijms.8352] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 10/24/2014] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To investigate the expression of transcriptional factors (TFs) T-bet, GATA-3, RORγt and FOXP in peripheral blood mononuclear cells (PBMC) of patients with hepatocellular carcinoma (HCC) and to evaluate the correlation between the imbalances of Th1/Th2, Th17/Treg at the expression levels and liver cancer Methods: The peripheral venous blood was drawn from 20 HCC-patients (HCC-group) and 20 health participants (C-group). The expression levels of Th1, Th2 and Th17 and the major Treg-specific TFs T-bet, GATA-3, RORγt and FOXP3 in the PBMC were measured with quantitative real-time PCR(RT-qPCR). RESULTS The mRNA level of Th1-specific TF T-bet in HCC-group was significantly lower than that of C-group (52.34±34.07 VS 104.01±56.00, P<0.01); the mRNA level of Th2-specifc TF, GATA-3, in HCC group was significantly higher than that in C-group (1.38±1.15 VS 0.58±0.65, P<0.05) and T-bet mRNA/GATA-3 mRNA ratio was significantly lower in HCC-group than in C-group (86.01±116.71 VS 461.88±708.81, P<0.05). The mRNA level of Th17-specific TF RORγt in HCC-group was significantly higher than that of C-group (72.32±32.82 VS 33.07±22.86, P<0.01). Treg-specific TF FOXP3 mRNA level was significant higher in HCC-group than in C-group (3.17±1.59 VS 1.39±1.13, P<0.01) CONCLUSION: T-bet mRNA level was reduced whereas GATA-3 mRNA level was increased and T-bet/GATA-3 ratio was significantly reduced in PBMC, indicating that Th1/Th2 ratio was of imbalance at TF levels in PBMC of HCC, displaying Th2 thrift phenomena. The mRNA levels of RORγt and FOXP3 in PBMC of HCC were significantly increased, indicating the existence of a predominant phenomenon of Th17- and Treg-expressing PBMC in HCC.
Collapse
Affiliation(s)
- Ze-Wei Lin
- 1. Department of HepatobiliaryLaparoscope-Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Li-Xuan Wu
- 2. Department of Hepatobiliary Surgery, The Central People Hospital of Huizhou City, Huizhou, Guangdong, China 516001
| | - Yong Xie
- 1. Department of HepatobiliaryLaparoscope-Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Xi Ou
- 1. Department of HepatobiliaryLaparoscope-Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Pei-Kai Tian
- 1. Department of HepatobiliaryLaparoscope-Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Xiao-Ping Liu
- 1. Department of HepatobiliaryLaparoscope-Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Jun Min
- 3. Department of Hepatobiliary Surgery of Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Jie Wang
- 3. Department of Hepatobiliary Surgery of Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Ru-Fu Chen
- 3. Department of Hepatobiliary Surgery of Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Ya-Jing Chen
- 3. Department of Hepatobiliary Surgery of Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Chao Liu
- 3. Department of Hepatobiliary Surgery of Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Hua Ye
- 3. Department of Hepatobiliary Surgery of Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Qing-Jia Ou
- 3. Department of Hepatobiliary Surgery of Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
87
|
Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GATA-3 function in innate and adaptive immunity. Immunity 2014; 41:191-206. [PMID: 25148023 DOI: 10.1016/j.immuni.2014.06.006] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor.
Collapse
Affiliation(s)
- Irma Tindemans
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U668, 75724 Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U668, 75724 Paris, France
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
88
|
Yu SF, Zhang YN, Yang BY, Wu CY. Human memory, but not naive, CD4+ T cells expressing transcription factor T-bet might drive rapid cytokine production. J Biol Chem 2014; 289:35561-9. [PMID: 25378399 DOI: 10.1074/jbc.m114.608745] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We found that after stimulation for a few hours, memory but not naive CD4(+) T cells produced a large amount of IFN-γ; however, the mechanism of rapid response of memory CD4(+) T cells remains undefined. We compared the expression of transcription factors in resting or activated naive and memory CD4(+) T cells and found that T-bet, but not pSTAT-1 or pSTAT-4, was highly expressed in resting memory CD4(+) T cells and that phenotypic characteristics of T-bet(+)CD4(+) T cells were CD45RA(low)CD62L(low) CCR7(low). After short-term stimulation, purified memory CD4(+) T cells rapidly produced effector cytokines that were closely associated with the pre-existence of T-bet. By contrast, resting naive CD4(+) T cells did not express T-bet, and they produced cytokines only after sustained stimulation. Our further studies indicated that T-bet was expressed in the nuclei of resting memory CD4(+) T cells, which might have important implications for rapid IFN-γ production. Our results indicate that the pre-existence and nuclear mobilization of T-bet in resting memory CD4(+) T cells might be a possible transcriptional mechanism for rapid production of cytokines by human memory CD4(+) T cells.
Collapse
Affiliation(s)
- Si-fei Yu
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yan-nan Zhang
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Bin-yan Yang
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chang-you Wu
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
89
|
Brucklacher-Waldert V, Carr EJ, Linterman MA, Veldhoen M. Cellular Plasticity of CD4+ T Cells in the Intestine. Front Immunol 2014; 5:488. [PMID: 25339956 PMCID: PMC4188036 DOI: 10.3389/fimmu.2014.00488] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/22/2014] [Indexed: 01/07/2023] Open
Abstract
Barrier sites such as the gastrointestinal tract are in constant contact with the environment, which contains both beneficial and harmful components. The immune system at the epithelia must make the distinction between these components to balance tolerance, protection, and immunopathology. This is achieved via multifaceted immune recognition, highly organized lymphoid structures, and the interaction of many types of immune cells. The adaptive immune response in the gut is orchestrated by CD4+ helper T (Th) cells, which are integral to gut immunity. In recent years, it has become apparent that the functional identity of these Th cells is not as fixed as initially thought. Plasticity in differentiated T cell subsets has now been firmly established, in both health and disease. The gut, in particular, utilizes CD4+ T cell plasticity to mold CD4+ T cell phenotypes to maintain its finely poised balance of tolerance and inflammation and to encourage biodiversity within the enteric microbiome. In this review, we will discuss intestinal helper T cell plasticity and our current understanding of its mechanisms, including our growing knowledge of an evolutionarily ancient symbiosis between microbiota and malleable CD4+ T cell effectors.
Collapse
Affiliation(s)
| | - Edward J Carr
- Laboratory for Lymphocyte Signalling and Development, The Babraham Institute , Cambridge , UK
| | - Michelle A Linterman
- Laboratory for Lymphocyte Signalling and Development, The Babraham Institute , Cambridge , UK
| | - Marc Veldhoen
- Laboratory for Lymphocyte Signalling and Development, The Babraham Institute , Cambridge , UK
| |
Collapse
|
90
|
Ebner F, Rausch S, Scharek-Tedin L, Pieper R, Burwinkel M, Zentek J, Hartmann S. A novel lineage transcription factor based analysis reveals differences in T helper cell subpopulation development in infected and intrauterine growth restricted (IUGR) piglets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:333-340. [PMID: 24858028 DOI: 10.1016/j.dci.2014.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Research in mouse and human clearly identified subsets of T helper (Th) cells based on nuclear expression of specific lineage transcription factors. In swine, however, transcription factor based detection of functional subpopulations of porcine Th cells by flow cytometry is so far limited to regulatory T cells via Foxp3. T-bet and GATA-3 are the transcription factors that regulate commitment to Th1 or Th2 cells, respectively. In this study we prove GATA-3 and T-bet expression in porcine CD4(+) cells polarized in vitro. Importantly, GATA-3 and T-bet expressing cells were detectable in pigs infected with pathogens associated with Th2 and Th1 immune responses. Increased frequencies of GATA-3 positive CD4(+) cells are found in vivo in pigs experimentally infected with the nematode Trichuris suis, whereas porcine reproductive and respiratory syndrome virus (PRRSV) infection elicited T-bet positive CD4(+) T cells. Analysing the immune status of pre-weaning piglets with intrauterine growth restriction (IUGR) we found an increased expression of Foxp3, T-bet and GATA-3 in CD4(+) and CD4(+)CD8(+) double-positive T cells in systemic and intestinal compartments of IUGR piglets. Hence, we established the detection of porcine Th1 and Th2 cells via T-bet and GATA-3 and show that the porcine lineage transcription factors are differentially regulated very early in life depending on the developmental status.
Collapse
Affiliation(s)
- F Ebner
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - S Rausch
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - L Scharek-Tedin
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - R Pieper
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - M Burwinkel
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - S Hartmann
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany.
| |
Collapse
|
91
|
Elucidation of immediate type I reactions in native and GM mustard ( Brassica spp.). Food Res Int 2014; 64:810-821. [DOI: 10.1016/j.foodres.2014.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/25/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022]
|
92
|
Leopold Wager CM, Hole CR, Wozniak KL, Olszewski MA, Wormley FL. STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:4060-71. [PMID: 25200956 DOI: 10.4049/jimmunol.1400318] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonprotective immune responses to highly virulent Cryptococcus neoformans strains, such as H99, are associated with Th2-type cytokine production, alternatively activated macrophages, and inability of the host to clear the fungus. In contrast, experimental studies show that protective immune responses against cryptococcosis are associated with Th1-type cytokine production and classical macrophage activation. The protective response induced during C. neoformans strain H99γ (C. neoformans strain H99 engineered to produce murine IFN-γ) infection correlates with enhanced phosphorylation of the transcription factor STAT1 in macrophages; however, the role of STAT1 in protective immunity to C. neoformans is unknown. The current studies examined the effect of STAT1 deletion in murine models of protective immunity to C. neoformans. Survival and fungal burden were evaluated in wild-type and STAT1 knockout (KO) mice infected with either strain H99γ or C. neoformans strain 52D (unmodified clinical isolate). Both strains H99γ and 52D were rapidly cleared from the lungs, did not disseminate to the CNS, or cause mortality in the wild-type mice. Conversely, STAT1 KO mice infected with H99γ or 52D had significantly increased pulmonary fungal burden, CNS dissemination, and 90-100% mortality. STAT1 deletion resulted in a shift from Th1 to Th2 cytokine bias, pronounced lung inflammation, and defective classical macrophage activation. Pulmonary macrophages from STAT1 KO mice exhibited defects in NO production correlating with inefficient inhibition of fungal proliferation. These studies demonstrate that STAT1 signaling is essential not only for regulation of immune polarization but also for the classical activation of macrophages that occurs during protective anticryptococcal immune responses.
Collapse
Affiliation(s)
- Chrissy M Leopold Wager
- Department of Biology, University of Texas, San Antonio, TX 78249; South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX 78249
| | - Camaron R Hole
- Department of Biology, University of Texas, San Antonio, TX 78249; South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX 78249
| | - Karen L Wozniak
- Department of Biology, University of Texas, San Antonio, TX 78249; South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX 78249
| | - Michal A Olszewski
- Veterans Affairs Ann Arbor Health System, University of Michigan Health System, Ann Arbor, MI 48109; and Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Floyd L Wormley
- Department of Biology, University of Texas, San Antonio, TX 78249; South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX 78249;
| |
Collapse
|
93
|
Abstract
Combined with TCR stimuli, extracellular cytokine signals initiate the differentiation of naive CD4(+) T cells into specialized effector T-helper (Th) and regulatory T (Treg) cell subsets. The lineage specification and commitment process occurs through the combinatorial action of multiple transcription factors (TFs) and epigenetic mechanisms that drive lineage-specific gene expression programs. In this article, we review recent studies on the transcriptional and epigenetic regulation of distinct Th cell lineages. Moreover, we review current study linking immune disease-associated single-nucleotide polymorphisms with distal regulatory elements and their potential role in the disease etiology.
Collapse
Affiliation(s)
- Subhash K Tripathi
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
- National Doctoral Programme in Informational and
Structural BiologyTurku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM),
University of TurkuTurku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
| |
Collapse
|
94
|
Kyläniemi MK, Kaukonen R, Myllyviita J, Rasool O, Lahesmaa R. The regulation and role of c-FLIP in human Th cell differentiation. PLoS One 2014; 9:e102022. [PMID: 25019384 PMCID: PMC4096760 DOI: 10.1371/journal.pone.0102022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/14/2014] [Indexed: 12/19/2022] Open
Abstract
The early differentiation of T helper (Th) cells is a tightly controlled and finely balanced process, which involves several factors including cytokines, transcription factors and co-stimulatory molecules. Recent studies have shown that in addition to the regulation of apoptosis, caspase activity is also needed for Th cell proliferation and activation and it might play a role in Th cell differentiation. The isoforms of the cellular FLICE inhibitory protein (c-FLIP) are regulators of CASPASE-8 activity and the short isoform, c-FLIPS, has been shown to be up-regulated by IL-4, the Th2 driving cytokine. In this work, we have studied the expression and functional role of three c-FLIP isoforms during the early Th cell differentiation. Only two of the isoforms, c-FLIPS and c-FLIPL, were detected at the protein level although c-FLIPR was expressed at the mRNA level. The knockdown of c-FLIPL led to enhanced Th1 differentiation and elevated IL-4 production by Th2 cells, whereas the knockdown of c-FLIPS diminished GATA3 expression and IL-4 production by Th2 cells. In summary, our results provide new insight into the role of c-FLIP proteins in the early differentiation of human Th cells.
Collapse
Affiliation(s)
- Minna K. Kyläniemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- National Doctoral Programme in Informational and Structural Biology, Åbo Akademi University, Turku, Finland
| | - Riina Kaukonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Myllyviita
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Omid Rasool
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- * E-mail:
| |
Collapse
|
95
|
Abstract
Differentiation of naïve CD4(+) T cells into effector (Th1, Th2, and Th17) and induced regulatory (iTreg) T cells requires lineage-specifying transcription factors and epigenetic modifications that allow appropriate repression or activation of gene transcription. The epigenetic silencing of cytokine genes is associated with the repressive H3K27 trimethylation mark, mediated by the Ezh2 or Ezh1 methyltransferase components of the polycomb repressive complex 2 (PRC2). Here we show that silencing of the Ifng, Gata3, and Il10 loci in naïve CD4(+) T cells is dependent on Ezh2. Naïve CD4(+) T cells lacking Ezh2 were epigenetically primed for overproduction of IFN-γ in Th2 and iTreg and IL-10 in Th2 cells. In addition, deficiency of Ezh2 accelerated effector Th cell death via death receptor-mediated extrinsic and intrinsic apoptotic pathways, confirmed in vivo for Ezh2-null IFN-γ-producing CD4(+) and CD8(+) T cells responding to Listeria monocytogenes infection. These findings demonstrate the key role of PRC2/Ezh2 in differentiation and survival of peripheral T cells and reveal potential immunotherapeutic targets.
Collapse
|
96
|
STAT4 deficiency fails to induce lung Th2 or Th17 immunity following primary or secondary respiratory syncytial virus (RSV) challenge but enhances the lung RSV-specific CD8+ T cell immune response to secondary challenge. J Virol 2014; 88:9655-72. [PMID: 24920804 DOI: 10.1128/jvi.03299-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Immune-mediated lung injury is a hallmark of lower respiratory tract illness caused by respiratory syncytial virus (RSV). STAT4 plays a critical role in CD4+ Th1 lineage differentiation and gamma interferon (IFN-γ) protein expression by CD4+ T cells. As CD4+ Th1 differentiation is associated with negative regulation of CD4+ Th2 and Th17 differentiation, we hypothesized that RSV infection of STAT4-/- mice would result in enhanced lung Th2 and Th17 inflammation and impaired lung Th1 inflammation compared to wild-type (WT) mice. We performed primary and secondary RSV challenges in WT and STAT4-/- mice and used STAT1-/- mice as a positive control for the development of RSV-specific lung Th2 and Th17 inflammation during primary challenge. Primary RSV challenge of STAT4-/- mice resulted in decreased T-bet and IFN-γ expression levels in CD4+ T cells compared to those of WT mice. Lung Th2 and Th17 inflammation did not develop in primary RSV-challenged STAT4-/- mice. Decreased IFN-γ expression by NK cells, CD4+ T cells, and CD8+ T cells was associated with attenuated weight loss and enhanced viral clearance with primary challenge in STAT4-/- mice compared to WT mice. Following secondary challenge, WT and STAT4-/- mice also did not develop lung Th2 or Th17 inflammation. In contrast to primary challenge, secondary RSV challenge of STAT4-/- mice resulted in enhanced weight loss, an increased lung IFN-γ expression level, and an increased lung RSV-specific CD8+ T cell response compared to those of WT mice. These data demonstrate that STAT4 regulates the RSV-specific CD8+ T cell response to secondary infection but does not independently regulate lung Th2 or Th17 immune responses to RSV challenge. IMPORTANCE STAT4 is a protein critical for both innate and adaptive immune responses to viral infection. Our results show that STAT4 regulates the immune response to primary and secondary challenge with RSV but does not restrain RSV-induced lung Th2 or Th17 immune responses. These findings suggest that STAT4 expression may influence lung immunity and severity of illness following primary and secondary RSV infections.
Collapse
|
97
|
Marriott CL, Mackley EC, Ferreira C, Veldhoen M, Yagita H, Withers DR. OX40 controls effector CD4+ T-cell expansion, not follicular T helper cell generation in acute Listeria infection. Eur J Immunol 2014; 44:2437-47. [PMID: 24771127 PMCID: PMC4285916 DOI: 10.1002/eji.201344211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/25/2014] [Accepted: 04/17/2014] [Indexed: 12/02/2022]
Abstract
To investigate the importance of OX40 signals for physiological CD4+ T-cell responses, an endogenous antigen-specific population of CD4+ T cells that recognise the 2W1S peptide was assessed and temporal control of OX40 signals was achieved using blocking or agonistic antibodies (Abs) in vivo. Following infection with Listeria monocytogenes expressing 2W1S peptide, OX40 was briefly expressed by the responding 2W1S-specific CD4+ T cells, but only on a subset that co-expressed effector cell markers. This population was specifically expanded by Ab-ligation of OX40 during priming, which also caused skewing of the memory response towards effector memory cells. Strikingly, this greatly enhanced effector response was accompanied by the loss of T follicular helper (TFH) cells and germinal centres. Mice deficient in OX40 and CD30 showed normal generation of TFH cells but impaired numbers of 2W1S-specific effector cells. OX40 was not expressed by 2W1S-specific memory cells, although it was rapidly up-regulated upon challenge whereupon Ab-ligation of OX40 specifically affected the effector subset. In summary, these data indicate that for CD4+ T cells, OX40 signals are important for generation of effector T cells rather than TFH cells in this response to acute bacterial infection.
Collapse
Affiliation(s)
- Clare L Marriott
- MRC Centre for Immune Regulation, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
98
|
Knox JJ, Cosma GL, Betts MR, McLane LM. Characterization of T-bet and eomes in peripheral human immune cells. Front Immunol 2014; 5:217. [PMID: 24860576 PMCID: PMC4030168 DOI: 10.3389/fimmu.2014.00217] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/29/2014] [Indexed: 12/17/2022] Open
Abstract
The T-box transcription factors T-bet and Eomesodermin (Eomes) have been well defined as key drivers of immune cell development and cytolytic function. While the majority of studies have defined the roles of these factors in the context of murine T-cells, recent results have revealed that T-bet, and possibly Eomes, are expressed in other immune cell subsets. To date, the expression patterns of these factors in subsets of human peripheral blood mononuclear cells beyond T-cells remain relatively uncharacterized. In this study, we used multiparametric flow cytometry to characterize T-bet and Eomes expression in major human blood cell subsets, including total CD4(+) and CD8(+) T-cells, γδ T-cells, invariant NKT cells, natural killer cells, B-cells, and dendritic cells. Our studies identified novel cell subsets that express T-bet and Eomes and raise implications for their possible functions in the context of other human immune cell subsets besides their well-known roles in T-cells.
Collapse
Affiliation(s)
- James J Knox
- Department of Microbiology, Perelman Institute for Immunology, University of Pennsylvania , Philadelphia, PA , USA
| | - Gabriela L Cosma
- Department of Immunology, Thomas Jefferson University , Philadelphia, PA , USA
| | - Michael R Betts
- Department of Microbiology, Perelman Institute for Immunology, University of Pennsylvania , Philadelphia, PA , USA
| | - Laura M McLane
- Department of Microbiology, Perelman Institute for Immunology, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
99
|
Role of Th17 Cells in the Pathogenesis of Human IBD. ISRN INFLAMMATION 2014; 2014:928461. [PMID: 25101191 PMCID: PMC4005031 DOI: 10.1155/2014/928461] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/24/2013] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract plays a central role in immune system, being able to mount efficient immune responses against pathogens, keeping the homeostasis of the human gut. However, conditions like Crohn's disease (CD) or ulcerative colitis (UC), the main forms of inflammatory bowel diseases (IBD), are related to an excessive and uncontrolled immune response against normal microbiota, through the activation of CD4(+) T helper (Th) cells. Classically, IBD was thought to be primarily mediated by Th1 cells in CD or Th2 cells in UC, but it is now known that Th17 cells and their related cytokines are crucial mediators in both conditions. Th17 cells massively infiltrate the inflamed intestine of IBD patients, where they produce interleukin- (IL-) 17A and other cytokines, triggering and amplifying the inflammatory process. However, these cells show functional plasticity, and they can be converted into either IFN- γ producing Th1 cells or regulatory T cells. This review will summarize the current knowledge regarding the regulation and functional role of Th17 cells in the gut. Deeper insights into their plasticity in inflammatory conditions will contribute to advancing our understanding of the mechanisms that regulate mucosal homeostasis and inflammation in the gut, promoting the design of novel therapeutic approaches for IBD.
Collapse
|
100
|
Abstract
In higher eukaryotic organisms epigenetic modifications are crucial for proper chromatin folding and thereby proper regulation of gene expression. In the last years the involvement of aberrant epigenetic modifications in inflammatory and autoimmune diseases has been recognized and attracted significant interest. However, the epigenetic mechanisms underlying the different disease phenotypes are still poorly understood. As autoimmune and inflammatory diseases are at least partly T cell mediated, we will provide in this chapter an introduction to the epigenetics of T cell differentiation followed by a summary of the current knowledge on aberrant epigenetic modifications that dysfunctional T cells display in various diseases such as type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel disease, and asthma.
Collapse
|