51
|
Dolton G, Zervoudi E, Rius C, Wall A, Thomas HL, Fuller A, Yeo L, Legut M, Wheeler S, Attaf M, Chudakov DM, Choy E, Peakman M, Sewell AK. Optimized Peptide-MHC Multimer Protocols for Detection and Isolation of Autoimmune T-Cells. Front Immunol 2018; 9:1378. [PMID: 30008714 PMCID: PMC6034003 DOI: 10.3389/fimmu.2018.01378] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Peptide–MHC (pMHC) multimers have become the “gold standard” for the detection and isolation of antigen-specific T-cells but recent evidence shows that normal use of these reagents can miss fully functional T-cells that bear T-cell receptors (TCRs) with low affinity for cognate antigen. This issue is particularly pronounced for anticancer and autoimmune T-cells as self-reactive T-cell populations are enriched for low-affinity TCRs due to the removal of cells with higher affinity receptors by immune tolerance mechanisms. Here, we stained a wide variety of self-reactive human T-cells using regular pMHC staining and an optimized technique that included: (i) protein kinase inhibitor (PKI), to prevent TCR triggering and internalization, and (ii) anti-fluorochrome antibody, to reduce reagent dissociation during washing steps. Lymphocytes derived from the peripheral blood of type 1 diabetes patients were stained with pMHC multimers made with epitopes from preproinsulin (PPI), insulin-β chain, glutamic acid decarboxylase 65 (GAD65), or glucose-6-phospate catalytic subunit-related protein (IGRP) presented by disease-risk allelles HLA A*02:01 or HLA*24:02. Samples from ankylosing spondylitis patients were stained with a multimerized epitope from vasoactive intestinal polypeptide receptor 1 (VIPR1) presented by HLA B*27:05. Optimized procedures stained an average of 40.5-fold (p = 0.01, range between 1.4 and 198) more cells than could be detected without the inclusion of PKI and cross-linking anti-fluorochrome antibody. Higher order pMHC dextramers recovered more cells than pMHC tetramers in parallel assays, and standard staining protocols with pMHC tetramers routinely recovered less cells than functional assays. HLA A*02:01-restricted PPI-specific and HLA B*27:05-restricted VIPR1-specific T-cell clones generated using the optimized procedure could not be stained by standard pMHC tetramer staining. However, these clones responded well to exogenously supplied peptide and endogenously processed and presented epitopes. We also showed that anti-fluorochrome antibody-conjugated magnetic beads enhanced staining of self-reactive T-cells that could not be stained using standard protocols, thus enabling rapid ex vivo isolation of autoimmune T-cells. We, therefore, conclude that regular pMHC tetramer staining is generally unsuitable for recovering self-reactive T-cells from clinical samples and recommend the use of the optimized protocols described herein.
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Efthalia Zervoudi
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Cristina Rius
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Aaron Wall
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Hannah L Thomas
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lorraine Yeo
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Mateusz Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sophie Wheeler
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Dmitriy M Chudakov
- Pirogov Russian National Research Medical University, Moscow, Russia.,Centre for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ernest Choy
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
52
|
Martínez-Usatorre A, Donda A, Zehn D, Romero P. PD-1 Blockade Unleashes Effector Potential of Both High- and Low-Affinity Tumor-Infiltrating T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:792-803. [PMID: 29875150 DOI: 10.4049/jimmunol.1701644] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Antitumor T cell responses involve CD8+ T cells with high affinity for mutated self-antigen and low affinity for nonmutated tumor-associated Ag. Because of the highly individual nature of nonsynonymous somatic mutations in tumors, however, immunotherapy relies often on an effective engagement of low-affinity T cells. In this study, we studied the role of T cell affinity during peripheral priming with single-peptide vaccines and during the effector phase in the tumor. To that end, we compared the antitumor responses after OVA257-264 (N4) peptide vaccination of CD8+ T cells carrying TCRs with high (OT-1) and low (OT-3) avidity for the N4 peptide in B16.N4 tumor-bearing C57BL/6 mice. Additionally, we assessed the response of OT-1 cells to either high-affinity (B16.N4) or low-affinity (B16.T4) Ag-expressing tumors after high-affinity (N4) or low-affinity (T4) peptide vaccination. We noticed that although low-affinity tumor-specific T cells expand less than high-affinity T cells, they express lower levels of inhibitory receptors and produce more cytokines. Interestingly, tumor-infiltrating CD8+ T cells show similar in vivo re-expansion capacity to their counterparts in secondary lymphoid organs when transferred to tumor-free hosts, suggesting that T cells in tumors may be rekindled upon relief of tumor immunosuppression. Moreover, our results show that αPD-1 treatment enhances tumor control of high- and low-affinity ligand-expressing tumors, suggesting that combination of high-affinity peripheral priming by altered peptide ligands and checkpoint blockade may enable tumor control upon low-affinity Ag recognition in the tumor.
Collapse
Affiliation(s)
- Amaia Martínez-Usatorre
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland; and
| | - Alena Donda
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland; and
| | - Dietmar Zehn
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Pedro Romero
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland; and
| |
Collapse
|
53
|
Hrdinová J, Verbij FC, Kaijen PHP, Hartholt RB, van Alphen F, Lardy N, Ten Brinke A, Vanhoorelbeke K, Hindocha PJ, De Groot AS, Meijer AB, Voorberg J, Peyron I. Mass spectrometry-assisted identification of ADAMTS13-derived peptides presented on HLA-DR and HLA-DQ. Haematologica 2018; 103:1083-1092. [PMID: 29567779 PMCID: PMC6058777 DOI: 10.3324/haematol.2017.179119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/14/2018] [Indexed: 12/21/2022] Open
Abstract
Formation of microthrombi is a hallmark of acquired thrombotic thrombocytopenic purpura. These microthrombi originate from insufficient processing of ultra large von Willebrand factor multimers by ADAMTS13 due to the development of anti-ADAMTS13 autoantibodies. Several studies have identified the major histocompatibility complex class II alleles HLA-DRB1*11, HLA-DQB1*03 and HLA-DQB1*02:02 as risk factors for acquired thrombotic thrombocytopenic purpura development. Previous research in our department indicated that ADAMTS13 CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR are presented on HLA-DRB1*11 and HLA-DRB1*03, respectively. Here, we describe the repertoire of ADAMTS13 peptides presented on HLA-DQ. In parallel, the repertoire of ADAMTS13-derived peptides presented on HLA-DR was monitored. Using HLA-DR- and HLA-DQ-specific antibodies, we purified HLA/peptide complexes from ADAMTS13-pulsed monocyte-derived dendritic cells. Using this approach, we identified ADAMTS13-derived peptides presented on HLA-DR for all 9 samples analyzed; ADAMTS13-derived peptides presented on HLA-DQ were identified in 4 out of 9 samples. We were able to confirm the presentation of the CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR on HLA-DR. In total, 12 different core-peptide sequences were identified on HLA-DR and 8 on HLA-DQ. For HLA-DR11, several potential new core-peptides were found; 4 novel core-peptides were exclusively identified on HLA-DQ. Furthermore, an in silico analysis was performed using the EpiMatrix and JanusMatrix tools to evaluate the eluted peptides, in the context of HLA-DR, for putative effector or regulatory T-cell responses at the population level. The results from this study provide a basis for the identification of immuno-dominant epitopes on ADAMTS13 involved in the onset of acquired thrombotic thrombocytopenic purpura.
Collapse
Affiliation(s)
- Johana Hrdinová
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Fabian C Verbij
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Paul H P Kaijen
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Robin B Hartholt
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Floris van Alphen
- Department of Research Facilities, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Neubury Lardy
- Department of Immunogenetics, Sanquin, Amsterdam, the Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Belgium
| | | | - Anne S De Groot
- EpiVax Inc., Providence, RI, USA.,Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Alexander B Meijer
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands.,Department of Research Facilities, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands.,Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands .,Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Ivan Peyron
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
54
|
Rius C, Attaf M, Tungatt K, Bianchi V, Legut M, Bovay A, Donia M, Thor Straten P, Peakman M, Svane IM, Ott S, Connor T, Szomolay B, Dolton G, Sewell AK. Peptide-MHC Class I Tetramers Can Fail To Detect Relevant Functional T Cell Clonotypes and Underestimate Antigen-Reactive T Cell Populations. THE JOURNAL OF IMMUNOLOGY 2018; 200:2263-2279. [PMID: 29483360 PMCID: PMC5857646 DOI: 10.4049/jimmunol.1700242] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 01/29/2018] [Indexed: 12/01/2022]
Abstract
Peptide-MHC (pMHC) multimers, usually used as streptavidin-based tetramers, have transformed the study of Ag-specific T cells by allowing direct detection, phenotyping, and enumeration within polyclonal T cell populations. These reagents are now a standard part of the immunology toolkit and have been used in many thousands of published studies. Unfortunately, the TCR-affinity threshold required for staining with standard pMHC multimer protocols is higher than that required for efficient T cell activation. This discrepancy makes it possible for pMHC multimer staining to miss fully functional T cells, especially where low-affinity TCRs predominate, such as in MHC class II–restricted responses or those directed against self-antigens. Several recent, somewhat alarming, reports indicate that pMHC staining might fail to detect the majority of functional T cells and have prompted suggestions that T cell immunology has become biased toward the type of cells amenable to detection with multimeric pMHC. We use several viral- and tumor-specific pMHC reagents to compare populations of human T cells stained by standard pMHC protocols and optimized protocols that we have developed. Our results confirm that optimized protocols recover greater populations of T cells that include fully functional T cell clonotypes that cannot be stained by regular pMHC-staining protocols. These results highlight the importance of using optimized procedures that include the use of protein kinase inhibitor and Ab cross-linking during staining to maximize the recovery of Ag-specific T cells and serve to further highlight that many previous quantifications of T cell responses with pMHC reagents are likely to have considerably underestimated the size of the relevant populations.
Collapse
Affiliation(s)
- Cristina Rius
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Katie Tungatt
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Valentina Bianchi
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Mateusz Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Amandine Bovay
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom.,Department of Oncology and Ludwig Cancer Research, Lausanne University Hospital, Epalinges VD 1066, Switzerland
| | - Marco Donia
- Centre for Cancer Immune Therapy, Herlev University Hospital, DK-2730 Herlev, Denmark
| | - Per Thor Straten
- Centre for Cancer Immune Therapy, Herlev University Hospital, DK-2730 Herlev, Denmark
| | - Mark Peakman
- Department of Immunobiology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Inge Marie Svane
- Centre for Cancer Immune Therapy, Herlev University Hospital, DK-2730 Herlev, Denmark
| | - Sascha Ott
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Tom Connor
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom; and.,Cardiff University School of Biosciences, Cardiff CF10 3AX, United Kingdom
| | - Barbara Szomolay
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom; .,Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom; and
| |
Collapse
|
55
|
Escape from thymic deletion and anti-leukemic effects of T cells specific for hematopoietic cell-restricted antigen. Nat Commun 2018; 9:225. [PMID: 29335408 PMCID: PMC5768767 DOI: 10.1038/s41467-017-02665-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Whether hematopoietic cell-restricted distribution of antigens affects the degree of thymic negative selection has not been investigated in detail. Here, we show that T cells specific for hematopoietic cell-restricted antigens (HRA) are not completely deleted in the thymus, using the mouse minor histocompatibility antigen H60, the expression of which is restricted to hematopoietic cells. As a result, low avidity T cells escape from thymic deletion. This incomplete thymic deletion occurs to the T cells developing de novo in the thymus of H60-positive recipients in H60-mismatched bone marrow transplantation (BMT). H60-specific thymic deletion escapee CD8+ T cells exhibit effector differentiation potentials in the periphery and contribute to graft-versus-leukemia effects in the recipients of H60-mismatched BMT, regressing H60+ hematological tumors. These results provide information essential for understanding thymic negative selection and developing a strategy to treat hematological tumors.
Collapse
|
56
|
Borroto A, Reyes-Garau D, Jiménez MA, Carrasco E, Moreno B, Martínez-Pasamar S, Cortés JR, Perona A, Abia D, Blanco S, Fuentes M, Arellano I, Lobo J, Heidarieh H, Rueda J, Esteve P, Cibrián D, Martinez-Riaño A, Mendoza P, Prieto C, Calleja E, Oeste CL, Orfao A, Fresno M, Sánchez-Madrid F, Alcamí A, Bovolenta P, Martín P, Villoslada P, Morreale A, Messeguer A, Alarcon B. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases. Sci Transl Med 2017; 8:370ra184. [PMID: 28003549 DOI: 10.1126/scitranslmed.aaf2140] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022]
Abstract
Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR's CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low-molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell-mediated autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Diana Reyes-Garau
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | | | - Esther Carrasco
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Beatriz Moreno
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain
| | - Sara Martínez-Pasamar
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain
| | - José R Cortés
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Almudena Perona
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - David Abia
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Soledad Blanco
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Manuel Fuentes
- Centro de Investigación del Cáncer, University of Salamanca-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Irene Arellano
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Juan Lobo
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Haleh Heidarieh
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Javier Rueda
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Esteve
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Danay Cibrián
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Martinez-Riaño
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Mendoza
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Cristina Prieto
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Enrique Calleja
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Clara L Oeste
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Alberto Orfao
- Centro de Investigación del Cáncer, University of Salamanca-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | | | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Martín
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Pablo Villoslada
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain
| | - Antonio Morreale
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Angel Messeguer
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
57
|
A Minimum Epitope Overlap between Infections Strongly Narrows the Emerging T Cell Repertoire. Cell Rep 2017; 17:627-635. [PMID: 27732840 PMCID: PMC5081394 DOI: 10.1016/j.celrep.2016.09.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/19/2016] [Accepted: 09/23/2016] [Indexed: 01/12/2023] Open
Abstract
Many infections are caused by pathogens that are similar, but not identical, to previously encountered viruses, bacteria, or vaccines. In such re-infections, pathogens introduce known antigens, which are recognized by memory T cells and new antigens that activate naive T cells. How preexisting memory T cells impact the repertoire of T cells responding to new antigens is still largely unknown. We demonstrate that even a minimum epitope overlap between infections strongly increases the activation threshold and narrows the diversity of T cells recruited in response to new antigens. Thus, minimal cross-reactivity between infections can significantly impact the outcome of a subsequent immune response. Interestingly, we found that non-transferrable memory T cells are most effective in raising the activation threshold. Our findings have implications for designing vaccines and suggest that vaccines meant to target low-affinity T cells are less effective when they contain a strong CD8 T cell epitope that has previously been encountered.
Collapse
|
58
|
Iberg CA, Jones A, Hawiger D. Dendritic Cells As Inducers of Peripheral Tolerance. Trends Immunol 2017; 38:793-804. [PMID: 28826942 DOI: 10.1016/j.it.2017.07.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
Mechanisms of tolerance initiated in the thymus are indispensable for establishing immune homeostasis, but they may not be sufficient to prevent tissue-specific autoimmune diseases. In the periphery, dendritic cells (DCs) play a crucial tolerogenic role, extending the maintenance of immune homeostasis and blocking autoimmune responses. We review here these essential roles of DCs in orchestrating mechanisms of peripheral T cell tolerance as determined by targeted delivery of defined antigens to DCs in vivo in combination with various genetic modifications of DCs. Further, we discuss how DC functions empowered by specific delivery of T cell antigens could be harnessed for tolerance induction in clinical settings.
Collapse
Affiliation(s)
- Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Equal contributions
| | - Andrew Jones
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Equal contributions
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
59
|
Deligne C, Milcent B, Josseaume N, Teillaud JL, Sibéril S. Impact of Depleting Therapeutic Monoclonal Antibodies on the Host Adaptive Immunity: A Bonus or a Malus? Front Immunol 2017; 8:950. [PMID: 28855903 PMCID: PMC5557783 DOI: 10.3389/fimmu.2017.00950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Clinical responses to anti-tumor monoclonal antibody (mAb) treatment have been regarded for many years only as a consequence of the ability of mAbs to destroy tumor cells by innate immune effector mechanisms. More recently, it has also been shown that anti-tumor antibodies can induce a long-lasting anti-tumor adaptive immunity, likely responsible for durable clinical responses, a phenomenon that has been termed the vaccinal effect of antibodies. However, some of these anti-tumor antibodies are directed against molecules expressed both by tumor cells and normal immune cells, in particular lymphocytes, and, hence, can also strongly affect the host adaptive immunity. In addition to a delayed recovery of target cells, lymphocyte depleting-mAb treatments can have dramatic consequences on the adaptive immune cell network, its rebound, and its functional capacities. Thus, in this review, we will not only discuss the mAb-induced vaccinal effect that has emerged from experimental preclinical studies and clinical trials but also the multifaceted impact of lymphocytes-depleting therapeutic antibodies on the host adaptive immunity. We will also discuss some of the molecular and cellular mechanisms of action whereby therapeutic mAbs induce a long-term protective anti-tumor effect and the relationship between the mAb-induced vaccinal effect and the immune response against self-antigens.
Collapse
Affiliation(s)
- Claire Deligne
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Benoît Milcent
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| | - Nathalie Josseaume
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| | - Jean-Luc Teillaud
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| | - Sophie Sibéril
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| |
Collapse
|
60
|
Villadangos JA. Antigen-specific impairment of adoptive T-cell therapy against cancer: players, mechanisms, solutions and a hypothesis. Immunol Rev 2017; 272:169-82. [PMID: 27319350 DOI: 10.1111/imr.12433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adoptive cell therapy (ACT) destroys tumors with infused cytotoxic T lymphocytes (CTLs). Although successful in some settings, ACT is compromised due to impaired survival or functional inactivation of the CTL. To better understand the mechanisms involved, we have exploited a mouse model of leukemia expressing ovalbumin as a tumor neoantigen to address these questions: (i) Is CTL impairment during ACT antigen specific? (ii) If yes, which are the antigen-presenting cells responsible? (iii) Can this information assist the development of complementary therapies to improve ACT? Our results indicate that the target (tumor) cells, not cross-presenting cells, are the main culprits of antigen-specific CTL inactivation. We find that the affinity/avidity of the CTL-tumor cell interaction has little influence on ACT outcomes, while tumor density is a major determinant. Reduction of tumor burden with mild non-lymphoablative and non-inflammatory chemotherapy can dramatically improve the efficacy of ACT and may minimize side-effects. We propose a general mechanism for the inactivation of anti-self CTL in the same tissues where the activity of anti-foreign CTL is preserved, based on the density of target cells. This mechanism, which we tentatively call stunning, may have evolved to protect infected sites from self-destruction and is exploited by tumors to inactivate CTL.
Collapse
Affiliation(s)
- Jose A Villadangos
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Vic., Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
61
|
Pozsgay J, Szekanecz Z, Sármay G. Antigen-specific immunotherapies in rheumatic diseases. Nat Rev Rheumatol 2017; 13:525-537. [DOI: 10.1038/nrrheum.2017.107] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
62
|
Bosch AJ, Bolinger B, Keck S, Stepanek O, Ozga AJ, Galati-Fournier V, Stein JV, Palmer E. A minimum number of autoimmune T cells to induce autoimmunity? Cell Immunol 2017; 316:21-31. [DOI: 10.1016/j.cellimm.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/22/2022]
|
63
|
Novel interferon-γ enzyme-linked immunoSpot assay using activated cells for identifying hypersensitivity-inducing drug culprits. J Dermatol Sci 2017; 86:222-229. [DOI: 10.1016/j.jdermsci.2017.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/27/2017] [Accepted: 03/08/2017] [Indexed: 11/24/2022]
|
64
|
Qamra A, Xing M, Padmanabhan N, Kwok JJT, Zhang S, Xu C, Leong YS, Lee Lim AP, Tang Q, Ooi WF, Suling Lin J, Nandi T, Yao X, Ong X, Lee M, Tay ST, Keng ATL, Gondo Santoso E, Ng CCY, Ng A, Jusakul A, Smoot D, Ashktorab H, Rha SY, Yeoh KG, Peng Yong W, Chow PK, Chan WH, Ong HS, Soo KC, Kim KM, Wong WK, Rozen SG, Teh BT, Kappei D, Lee J, Connolly J, Tan P. Epigenomic Promoter Alterations Amplify Gene Isoform and Immunogenic Diversity in Gastric Adenocarcinoma. Cancer Discov 2017; 7:630-651. [DOI: 10.1158/2159-8290.cd-16-1022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/27/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023]
|
65
|
Humbert M, Hugues S, Dubrot J. Shaping of Peripheral T Cell Responses by Lymphatic Endothelial Cells. Front Immunol 2017; 7:684. [PMID: 28127298 PMCID: PMC5226940 DOI: 10.3389/fimmu.2016.00684] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/22/2016] [Indexed: 12/03/2022] Open
Abstract
Lymph node stromal cells (LNSCs) have newly been promoted to the rank of new modulators of T cell responses. The different non-hematopoietic cell subsets in lymph node (LN) were considered for years as a simple scaffold, forming routes and proper environment for antigen (Ag)-lymphocyte encountering. Deeper characterization of those cells has recently clearly shown their impact on both dendritic cell and T cell functions. In particular, lymphatic endothelial cells (LECs) control lymphocyte trafficking and homeostasis in LNs and limit adaptive immune responses. Therefore, the new role of LECs in shaping immune responses has drawn the attention of immunologists. Striking is the discovery that LECs, among other LNSCs, ectopically express a large range of peripheral tissue-restricted Ags (PTAs), and further present PTA-derived peptides through major histocompatibility class I molecules to induce self-reactive CD8+ T cell deletional tolerance. In addition, both steady-state and tumor-associated LECs were described to be capable of exogenous Ag cross-presentation. Whether LECs can similarly impact CD4+ T cell responses through major histocompatibility class II restricted Ag presentation is still a matter of debate. Here, we review and discuss our current knowledge on the contribution of Ag-presenting LECs as regulators of peripheral T cell responses in different immunological contexts, including autoimmunity and cancer.
Collapse
Affiliation(s)
- Marion Humbert
- Department of Pathology and Immunology, University of Geneva Medical School , Geneva , Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, University of Geneva Medical School , Geneva , Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, University of Geneva Medical School , Geneva , Switzerland
| |
Collapse
|
66
|
Adler AJ, Mittal P, Ryan JM, Zhou B, Wasser JS, Vella AT. Cytokines and metabolic factors regulate tumoricidal T-cell function during cancer immunotherapy. Immunotherapy 2017; 9:71-82. [PMID: 28000531 PMCID: PMC5619014 DOI: 10.2217/imt-2016-0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Recent advances in cancer biology and genetics have fostered precision therapies targeting tumor-specific attributes. Immune-based therapies that elicit cytolytic T cells (CTL) specific for tumor antigens can provide therapeutic benefit to cancer patients, however, cure rates are typically low. This largely results from immunosuppressive mechanisms operating within the tumor microenvironment, many of which inflict metabolic stresses upon CTL. Conversely, immunotherapies can mitigate specific metabolic stressors. For instance, dual costimulation immunotherapy with CD134 (OX40) plus CD137 (4-1BB) agonists appears to mediate tumor control in part by engaging cytokine networks that enable infiltrating CTL to compete for limiting supplies of glucose. Future efforts combining modalities that endow CTL with complimentary metabolic advantages should improve therapeutic efficacies.
Collapse
Affiliation(s)
- Adam J Adler
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Payal Mittal
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Joseph M Ryan
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Beiyan Zhou
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Jeffrey S Wasser
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Anthony T Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
67
|
Dandekar S, Wijesuriya H, Geiger T, Hamm D, Mathern GW, Owens GC. Shared HLA Class I and II Alleles and Clonally Restricted Public and Private Brain-Infiltrating αβ T Cells in a Cohort of Rasmussen Encephalitis Surgery Patients. Front Immunol 2016; 7:608. [PMID: 28066418 PMCID: PMC5165278 DOI: 10.3389/fimmu.2016.00608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022] Open
Abstract
Rasmussen encephalitis (RE) is a rare pediatric neuroinflammatory disease characterized by intractable seizures and unilateral brain atrophy. T cell infiltrates in affected brain tissue and the presence of circulating autoantibodies in some RE patients have indicated that RE may be an autoimmune disease. The strongest genetic links to autoimmunity reside in the MHC locus, therefore, we determined the human leukocyte antigen (HLA) class I and class II alleles carried by a cohort of 24 RE surgery cases by targeted in-depth genomic sequencing. Compared with a reference population the allelic frequency of three alleles, DQA1*04:01:01, DQB1*04:02:01, and HLA-C*07:02:01:01 indicated that they might confer susceptibility to the disease. It has been reported that HLA-C*07:02 is a risk factor for Graves disease. Further, eight patients in the study cohort carried HLA-A*03:01:01:01, which has been linked to susceptibility to multiple sclerosis. Four patients carried a combination of three HLA class II alleles that has been linked to type 1 diabetes (DQA1*05:01:01:01~DQB1*02:01:01~DRB1*03:01:01:01), and five patients carried a combination of HLA class II alleles that has been linked to the risk of contracting multiple sclerosis (DQA1*01:02:01:01, DQB1*06:02:01, DRB1*15:01:01:01). We also analyzed the diversity of αβ T cells in brain and blood specimens from 14 of these RE surgery cases by sequencing the third complementarity regions (CDR3s) of rearranged T cell receptor β genes. A total of 31 unique CDR3 sequences accounted for the top 5% of all CDR3 sequences in the 14 brain specimens. Thirteen of these sequences were found in sequencing data from healthy blood donors; the remaining 18 sequences were patient specific. These observations provide evidence for the clonal expansion of public and private T cells in the brain, which might be influenced by the RE patient’s HLA haplotype.
Collapse
Affiliation(s)
- Sugandha Dandekar
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles , Los Angeles, CA , USA
| | - Hemani Wijesuriya
- Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California Los Angeles , Los Angeles, CA , USA
| | - Tim Geiger
- Adaptive Biotechnologies Inc. , Seattle, WA , USA
| | - David Hamm
- Adaptive Biotechnologies Inc. , Seattle, WA , USA
| | - Gary W Mathern
- Department of Neurosurgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Mattel Children's Hospital, Los Angeles, CA, USA
| | - Geoffrey C Owens
- Department of Neurosurgery, David Geffen School of Medicine at the University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
68
|
Askenasy N. Mechanisms of diabetic autoimmunity: I--the inductive interface between islets and the immune system at onset of inflammation. Immunol Res 2016; 64:360-8. [PMID: 26639356 DOI: 10.1007/s12026-015-8753-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms of autoimmune reactivity onset in type 1 diabetes (T1D) remain elusive despite extensive experimentation and discussion. We reconsider several key aspects of the early stages of autoimmunity at four levels: islets, pancreatic lymph nodes, thymic function and peripheral immune homeostasis. Antigen presentation is the islets and has the capacity to provoke immune sensitization, either in the process of physiological neonatal β cell apoptosis or as a consequence of cytolytic activity of self-reactive thymocytes that escaped negative regulation. Diabetogenic effectors are efficiently expanded in both the islets and the lymph nodes under conditions of empty lymphoid niches during a period of time coinciding with a synchronized wave of β cell apoptosis surrounding weaning. A major drive of effector cell activation and expansion is inherent peripheral lymphopenia characteristic of neonates, though it remains unclear when is autoimmunity triggered in subjects displaying hyperglycemia in late adolescence. Our analysis suggests that T1D evolves through coordinated activity of multiple physiological mechanisms of stimulation within specific characteristics of the neonate immune system.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, 49202, Petach Tikva, Israel.
| |
Collapse
|
69
|
Boldajipour B, Nelson A, Krummel MF. Tumor-infiltrating lymphocytes are dynamically desensitized to antigen but are maintained by homeostatic cytokine. JCI Insight 2016; 1:e89289. [PMID: 27942588 DOI: 10.1172/jci.insight.89289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
T cells that enter tumors are largely tolerized, but how that process is choreographed and how the ensuing "dysfunctional" tumor-infiltrating lymphocytes (TILs) are maintained are poorly understood and are difficult to assess in spontaneous disease. We exploited an autochthonous model of breast cancer for high-resolution imaging of the early and later stages of tumor residence to understand the relationships between cellular behaviors and cellular phenotypes. "Dysfunctional" differentiation began within the first days of tumor residence with an initial phase in which T cells arrest, largely on tumor-associated macrophages. Within 10 days, cellular motility increased and resembled a random walk, suggesting a relative absence of TCR signaling. We then studied the concurrent and apparently contradictory phenomenon that many of these cells express molecular markers of activation and were visualized undergoing active cell division. We found that whereas proliferation did not require ongoing TCR/ZAP70 signaling, instead this is driven in part by intratumoral IL-15 cytokine. Thus, TILs undergo sequential reprogramming by the tumor microenvironment and are actively retained, even while being antigen insensitive. We conclude that this program effectively fills the niche with ineffective yet cytokine-dependent TILs, and we propose that these might compete with new clones, when they arise.
Collapse
Affiliation(s)
| | | | - Matthew F Krummel
- Department of Pathology and.,Biological Imaging Development Center, UCSF, San Francisco, California, USA
| |
Collapse
|
70
|
Singh D, Torbey MT, Schwab JM. Modifiable denominators of evolving post-stroke-autoimmunity. J Neuroimmunol 2016; 300:57-58. [PMID: 27222210 DOI: 10.1016/j.jneuroim.2016.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Dilip Singh
- Department of Neurology, The Neurological Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michel T Torbey
- Department of Neurology, The Neurological Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurosurgery, The Neurological Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jan M Schwab
- Department of Neurology, The Neurological Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
71
|
Askenasy N. Mechanisms of diabetic autoimmunity: II--Is diabetes a central or peripheral disorder of effector and regulatory cells? Immunol Res 2016; 64:36-43. [PMID: 26482052 DOI: 10.1007/s12026-015-8725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two competing hypotheses aiming to explain the onset of autoimmune reactions are discussed in the context of genetic and environmental predisposition to type 1 diabetes (T1D). The first hypothesis has evolved along characterization of the mechanisms of self-discrimination and attributes diabetic autoimmunity to escape of reactive T cells from central regulation in the thymus. The second considers frequent occurrence of autoimmune reactions within the immune homunculus, which are adequately suppressed by regulatory T cells originating from the thymus, and occasionally, insufficient suppression results in autoimmunity. Besides thymic dysfunction, deregulation of both effector and suppressor cells can in fact result from homeostatic aberrations at the peripheral level during initial stages of evolution of adaptive immunity. Pathogenic cells sensitized in the islets are efficiently expanded in the target tissue and pancreatic lymph nodes of lymphopenic neonates. In parallel, the same mechanisms of peripheral sensitization contribute to tolerization through education of naïve/effector T cells and expansion of regulatory T cells. Experimental evidence presented for each individual mechanism implies that T1D may result from a primary effector or suppressor immune abnormality. Disturbed self-tolerance leading to T1D may well result from peripheral deregulation of innate and adaptive immunity, with variable contribution of central thymic dysfunction.
Collapse
|
72
|
Ozga AJ, Moalli F, Abe J, Swoger J, Sharpe J, Zehn D, Kreutzfeldt M, Merkler D, Ripoll J, Stein JV. pMHC affinity controls duration of CD8+ T cell-DC interactions and imprints timing of effector differentiation versus expansion. J Exp Med 2016; 213:2811-2829. [PMID: 27799622 PMCID: PMC5110015 DOI: 10.1084/jem.20160206] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/01/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022] Open
Abstract
Ozga and colleagues use intravital two-photon microscopy and quantitative whole-organ imaging to reveal the dynamics of early affinity-driven CD8+ T cell activation. During adaptive immune responses, CD8+ T cells with low TCR affinities are released early into the circulation before high-affinity clones become dominant at later time points. How functional avidity maturation is orchestrated in lymphoid tissue and how low-affinity cells contribute to host protection remains unclear. In this study, we used intravital imaging of reactive lymph nodes (LNs) to show that T cells rapidly attached to dendritic cells irrespective of TCR affinity, whereas one day later, the duration of these stable interactions ceased progressively with lowering peptide major histocompatibility complex (pMHC) affinity. This correlated inversely BATF (basic leucine zipper transcription factor, ATF-like) and IRF4 (interferon-regulated factor 4) induction and timing of effector differentiation, as low affinity–primed T cells acquired cytotoxic activity earlier than high affinity–primed ones. After activation, low-affinity effector CD8+ T cells accumulated at efferent lymphatic vessels for egress, whereas high affinity–stimulated CD8+ T cells moved to interfollicular regions in a CXCR3-dependent manner for sustained pMHC stimulation and prolonged expansion. The early release of low-affinity effector T cells led to rapid target cell elimination outside reactive LNs. Our data provide a model for affinity-dependent spatiotemporal orchestration of CD8+ T cell activation inside LNs leading to functional avidity maturation and uncover a role for low-affinity effector T cells during early microbial containment.
Collapse
Affiliation(s)
- Aleksandra J Ozga
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Federica Moalli
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Jun Abe
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Jim Swoger
- Systems Biology Research Unit, European Molecular Biology Laboratory/Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - James Sharpe
- Systems Biology Research Unit, European Molecular Biology Laboratory/Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, 08002 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, Centre des laboratoires d'Epalinges, 1066 Epalinges, Switzerland.,Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Jorge Ripoll
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III of Madrid, 28911 Madrid, Spain.,Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, 28007 Madrid, Spain
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
73
|
Utzschneider DT, Alfei F, Roelli P, Barras D, Chennupati V, Darbre S, Delorenzi M, Pinschewer DD, Zehn D. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival. J Exp Med 2016; 213:1819-34. [PMID: 27455951 PMCID: PMC4995073 DOI: 10.1084/jem.20150598] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/13/2016] [Indexed: 02/01/2023] Open
Abstract
Using recombinant antigen variant-expressing chronic LCMV strains, Zehn and colleagues showed that amount rather than antigen strength is a key determinant of inducing a chronic infection phenotype in T cells. Chronic infections induce T cells showing impaired cytokine secretion and up-regulated expression of inhibitory receptors such as PD-1. What determines the acquisition of this chronic phenotype and how it impacts T cell function remain vaguely understood. Using newly generated recombinant antigen variant-expressing chronic lymphocytic choriomeningitis virus (LCMV) strains, we uncovered that T cell differentiation and acquisition of a chronic or exhausted phenotype depend critically on the frequency of T cell receptor (TCR) engagement and less significantly on the strength of TCR stimulation. In fact, we noted that low-level antigen exposure promotes the formation of T cells with an acute phenotype in chronic infections. Unexpectedly, we found that T cell populations with an acute or chronic phenotype are maintained equally well in chronic infections and undergo comparable primary and secondary expansion. Thus, our observations contrast with the view that T cells with a typical chronic infection phenotype are severely functionally impaired and rapidly transition into a terminal stage of differentiation. Instead, our data unravel that T cells primarily undergo a form of phenotypic and functional differentiation in the early phase of a chronic LCMV infection without inheriting a net survival or expansion deficit, and we demonstrate that the acquired chronic phenotype transitions into the memory T cell compartment.
Collapse
Affiliation(s)
- Daniel T Utzschneider
- Swiss Vaccine Research Institute, 1066 Epalinges, Switzerland Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Francesca Alfei
- Swiss Vaccine Research Institute, 1066 Epalinges, Switzerland Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Patrick Roelli
- Swiss Vaccine Research Institute, 1066 Epalinges, Switzerland Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - David Barras
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Vijaykumar Chennupati
- Swiss Vaccine Research Institute, 1066 Epalinges, Switzerland Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland Ludwig Center for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Stephanie Darbre
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Mauro Delorenzi
- Ludwig Center for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland Faculty of Biology and Medicine, Department of Oncology, University of Lausanne, 1015 Lausanne, Switzerland Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, 4003 Basel, Switzerland
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, 1066 Epalinges, Switzerland Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| |
Collapse
|
74
|
Mayya V, Dustin ML. What Scales the T Cell Response? Trends Immunol 2016; 37:513-522. [PMID: 27364960 DOI: 10.1016/j.it.2016.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 01/14/2023]
Abstract
T cells are known to scale their clonal expansion and effector cytokine response according to the dose and strength of antigenic signal so as to balance their role of affecting protection with the intertwined and immunologically driven tissue damage. How T cells achieve this is now beginning to be understood. We underscore temporal integration of digital T cell receptor (TCR) signaling as the basis for achieving scaled response by means of accumulating crucial mediators over time. We also discuss the role of temporally integrated crosstalk between TCR and IL2 signaling in mediating a scaled, coherent, collective response by T cells. Finally, we highlight numerous known and putative regulatory interactions in the transcriptional program that are expected to quantitatively scale the T cell response, and also offer new mechanisms to hitherto unexplained observations.
Collapse
Affiliation(s)
- Viveka Mayya
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK; Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, NY 10016, USA.
| |
Collapse
|
75
|
Rodríguez-Rodríguez N, Apostolidis SA, Fitzgerald L, Meehan BS, Corbett AJ, Manuel Martín-Villa J, McCluskey J, Tsokos GC, Crispín JC. Pro-inflammatory self-reactive T cells are found within murine TCR-αβ(+) CD4(-) CD8(-) PD-1(+) cells. Eur J Immunol 2016; 46:1383-1391. [PMID: 27060346 PMCID: PMC4913481 DOI: 10.1002/eji.201546056] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/23/2016] [Accepted: 03/30/2016] [Indexed: 11/07/2022]
Abstract
TCR-αβ(+) double negative (DN) T cells (CD3(+) TCR-αβ(+) CD4(-) CD8(-) NK1.1(-) CD49b(-) ) represent a minor heterogeneous population in healthy humans and mice. These cells have been ascribed pro-inflammatory and regulatory capacities and are known to expand during the course of several autoimmune diseases. Importantly, previous studies have shown that self-reactive CD8(+) T cells become DN after activation by self-antigens, suggesting that self-reactive T cells may exist within the DN T-cell population. Here, we demonstrate that programmed cell death 1 (PD-1) expression in unmanipulated mice identifies a subset of DN T cells with expression of activation-associated markers and a phenotype that strongly suggests they are derived from self-reactive CD8(+) cells. We also found that, within DN T cells, the PD-1(+) subset generates the majority of pro-inflammatory cytokines. Finally, using a TCR-activation reporter mouse (Nur77-GFP), we confirmed that in the steady-state PD-1(+) DN T cells engage endogenous antigens in healthy mice. In conclusion, we provide evidence that indicates that the PD-1(+) fraction of DN T cells represents self-reactive cells.
Collapse
Affiliation(s)
- Noé Rodríguez-Rodríguez
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sokratis A. Apostolidis
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Lauren Fitzgerald
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Bronwyn S. Meehan
- The Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J. Corbett
- The Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - José Manuel Martín-Villa
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - James McCluskey
- The Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - José C. Crispín
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
76
|
Pearson JA, Thayer TC, McLaren JE, Ladell K, De Leenheer E, Phillips A, Davies J, Kakabadse D, Miners K, Morgan P, Wen L, Price DA, Wong FS. Proinsulin Expression Shapes the TCR Repertoire but Fails to Control the Development of Low-Avidity Insulin-Reactive CD8+ T Cells. Diabetes 2016; 65:1679-89. [PMID: 26953160 PMCID: PMC5310213 DOI: 10.2337/db15-1498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/29/2016] [Indexed: 12/03/2022]
Abstract
NOD mice, a model strain for human type 1 diabetes, express proinsulin (PI) in the thymus. However, insulin-reactive T cells escape negative selection, and subsequent activation of the CD8(+) T-cell clonotype G9C8, which recognizes insulin B15-23 via an αβ T-cell receptor (TCR) incorporating TRAV8-1/TRAJ9 and TRBV19/TRBJ2-3 gene rearrangements, contributes to the development of diabetes. In this study, we used fixed TRAV8-1/TRAJ9 TCRα-chain transgenic mice to assess the impact of PI isoform expression on the insulin-reactive CD8(+) T-cell repertoire. The key findings were: 1) PI2 deficiency increases the frequency of insulin B15-23-reactive TRBV19(+)CD8(+) T cells and causes diabetes; 2) insulin B15-23-reactive TRBV19(+)CD8(+) T cells are more abundant in the pancreatic lymph nodes of mice lacking PI1 and/or PI2; 3) overexpression of PI2 decreases TRBV19 usage in the global CD8(+) T-cell compartment; 4) a biased repertoire of insulin-reactive CD8(+) T cells emerges in the periphery regardless of antigen exposure; and 5) low-avidity insulin-reactive CD8(+) T cells are less affected by antigen exposure in the thymus than in the periphery. These findings inform our understanding of the diabetogenic process and reveal new avenues for therapeutic exploitation in type 1 diabetes.
Collapse
MESH Headings
- Animals
- Antibody Affinity
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/metabolism
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Insulin/metabolism
- Mice
- Mice, Inbred NOD
- Mice, Transgenic
- Proinsulin/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- James A Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Terri C Thayer
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - James E McLaren
- Cellular Immunology Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Kristin Ladell
- Cellular Immunology Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Evy De Leenheer
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Amy Phillips
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Joanne Davies
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Dimitri Kakabadse
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Kelly Miners
- Cellular Immunology Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Peter Morgan
- Cardiff Business School, Cardiff University, Wales, U.K
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - David A Price
- Cellular Immunology Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - F Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K.
| |
Collapse
|
77
|
Segal G, Prato S, Zehn D, Mintern JD, Villadangos JA. Target Density, Not Affinity or Avidity of Antigen Recognition, Determines Adoptive T Cell Therapy Outcomes in a Mouse Lymphoma Model. THE JOURNAL OF IMMUNOLOGY 2016; 196:3935-42. [PMID: 27036915 DOI: 10.4049/jimmunol.1502187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/17/2016] [Indexed: 01/03/2023]
Abstract
Adoptive T cell therapy (ACT) with antitumor CTL is a promising and tailored treatment against cancer. We investigated the role played by the affinity and avidity of the interaction between the tumor and the CTL on the outcome of ACT against a mouse non-Hodgkin B cell lymphoma that expresses OVA as a model neoantigen. ACT was assessed under conditions where antitumor CTL expressed TCR of varying affinity for OVA. We also assessed conditions where the avidity of Ag recognition varied because the lymphoma cells expressed high or low levels of OVA. Efficient eradication of small tumor burdens was achieved by high- or low-affinity CTL. Tumors expressing low levels of OVA could also be eliminated. However, ACT against large tumor burdens was unsuccessful, accompanied by CTL deletion and functional impairment. This negative outcome was not prevented by lowering the affinity of the CTL or the expression of OVA in the lymphoma. Thus, tumor burden, rather than CTL affinity or avidity, appears to be the main determinant of ACT outcomes in our lymphoma model. Insofar as our results can be extrapolated to the clinical setting, they imply that the range of CTL and tumor-associated Ag combinations that may be effectively harnessed in ACT against lymphoma may be wider than generally assumed. CTL expressing low-affinity TCR may be effective against lymphoma, and lowly expressed tumor-associated Ag should be considered as potential targets, but tumor reduction should always be implemented before infusion of the CTL.
Collapse
Affiliation(s)
- Gabriela Segal
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sandro Prato
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, 1066 Epalinges, Switzerland; Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland; and
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| |
Collapse
|
78
|
Roesner LM, Heratizadeh A, Wieschowski S, Mittermann I, Valenta R, Eiz-Vesper B, Hennig C, Hansen G, Falk CS, Werfel T. α-NAC-Specific Autoreactive CD8+ T Cells in Atopic Dermatitis Are of an Effector Memory Type and Secrete IL-4 and IFN-γ. THE JOURNAL OF IMMUNOLOGY 2016; 196:3245-52. [PMID: 26962231 DOI: 10.4049/jimmunol.1500351] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/16/2016] [Indexed: 12/20/2022]
Abstract
Autoreactivity may play a critical role in the chronification of atopic dermatitis (AD). Several studies showed that AD patients produce IgE Abs specific for autoantigens, and we described Th as well as CD8(+) T cells specific for the autoallergen Hom s 2, the α-chain of the nascent polypeptide-associated complex (α-NAC). This study aimed to investigate the frequency and inflammatory phenotype of autoallergen-specific CD8(+) T cells. CD8(+) T cell immunodominant epitopes of α-NAC were mapped by applying prediction softwares, and binding affinity was confirmed by stabilization of empty MHC complexes. MHC class I tetramers were assembled and binding cells were analyzed directly ex vivo by flow cytometry and in terms of single-cell assessment by ChipCytometry. We report significantly elevated numbers of α-NAC-specific peripheral T cells in sensitized patients compared with nonatopic controls. These cells secrete IL-4 and IFN-γ, and surface markers revealed significantly elevated frequencies of circulating terminally differentiated α-NAC-specific CD8(+) T cells in patients with AD compared with nonatopic donors. The observed phenotype of α-NAC-specific CD8(+) T cells indicates a role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lennart M Roesner
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, 30625 Hannover, Germany;
| | - Annice Heratizadeh
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, 30625 Hannover, Germany
| | - Susanne Wieschowski
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, 30625 Hannover, Germany
| | - Irene Mittermann
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Hennig
- Department of Pediatric Immunology, Allergology and Pneumology, Hannover Medical School, 30625 Hannover, Germany; and
| | - Gesine Hansen
- Department of Pediatric Immunology, Allergology and Pneumology, Hannover Medical School, 30625 Hannover, Germany; and
| | - Christine S Falk
- Institute for Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
79
|
Conley JM, Gallagher MP, Berg LJ. T Cells and Gene Regulation: The Switching On and Turning Up of Genes after T Cell Receptor Stimulation in CD8 T Cells. Front Immunol 2016; 7:76. [PMID: 26973653 PMCID: PMC4770016 DOI: 10.3389/fimmu.2016.00076] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/15/2016] [Indexed: 11/25/2022] Open
Abstract
Signaling downstream of the T cell receptor (TCR) is directly regulated by the dose and affinity of peptide antigen. The strength of TCR signaling drives a multitude of T cell functions from development to differentiation. CD8 T cells differentiate into a diverse pool of effector and memory cells after activation, a process that is critical for pathogen clearance and is highly regulated by TCR signal strength. T cells rapidly alter their gene expression upon activation. Multiple signaling pathways downstream of the TCR activate transcription factors, which are critical for this process. The dynamics between proximal TCR signaling, transcription factor activation and CD8 T cell function are discussed here. We propose that inducible T cell kinase (ITK) acts as a rheostat for gene expression. This unique regulation of TCR signaling by ITK provides a possible signaling mechanism for the promotion of a diverse T cell repertoire in response to pathogen.
Collapse
Affiliation(s)
- James M Conley
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| | - Michael P Gallagher
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| |
Collapse
|
80
|
Richards DM, Kyewski B, Feuerer M. Re-examining the Nature and Function of Self-Reactive T cells. Trends Immunol 2016; 37:114-125. [PMID: 26795134 PMCID: PMC7611850 DOI: 10.1016/j.it.2015.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 01/08/2023]
Abstract
Recent studies have leveraged MHC tetramer and TCR sequencing approaches towards a more precise characterization of the peripheral T cell repertoire, providing important insight into both the contribution of self-reactive T cells to the overall repertoire and their function. The peripheral T cell repertoire of healthy individuals contains a high frequency of diverse, self-reactive T cells. Furthermore, self-reactive T cells can perform essential beneficial physiological functions. We review these recent findings here, and discuss their implications to the current understanding of peripheral tolerance and the role of self-reactive T cells in autoimmune disease. We outline gaps in understanding, and argue that an important step forward is to revise the definition of self-reactive T cells to incorporate new concepts regarding the nature and physiological functions of different populations of T cells capable of recognizing self-antigens.
Collapse
Affiliation(s)
- David M Richards
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Current address: Immunology Department, Apogenix GmbH, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | - Bruno Kyewski
- Developmental Immunology, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Markus Feuerer
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
81
|
Schuldt NJ, Auger JL, Hogquist KA, Binstadt BA. Bi-Allelic TCRα or β Recombination Enhances T Cell Development but Is Dispensable for Antigen Responses and Experimental Autoimmune Encephalomyelitis. PLoS One 2015; 10:e0145762. [PMID: 26693713 PMCID: PMC4687847 DOI: 10.1371/journal.pone.0145762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/08/2015] [Indexed: 01/13/2023] Open
Abstract
Dual TCRα-expressing T cells outnumber dual TCRβ-expressing cells by ~10:1. As a result, efforts to understand how dual TCR T cells impact immunity have focused on dual TCRα expression; dual TCRβ expression remains understudied. We recently demonstrated, however, that dual TCRβ expression accelerated disease in a TCR transgenic model of autoimmune arthritis through enhanced positive selection efficiency, indicating that dual TCRβ expression, though rare, can impact thymic selection. Here we generated mice hemizygous for TCRα, TCRβ, or both on the C57BL/6 background to investigate the impact bi-allelic TCR chain recombination has on T cell development, repertoire diversity, and autoimmunity. Lack of bi-allelic TCRα or TCRβ recombination reduced αβ thymocyte development efficiency, and the absence of bi-allelic TCRβ recombination promoted γδ T cell development. However, we observed no differences in the numbers of naïve and expanded antigen-specific T cells between TCRα+/-β+/- and wildtype mice, and TCR repertoire analysis revealed only subtle differences in Vβ gene usage. Finally, the absence of dual TCR T cells did not impact induced experimental autoimmune encephalomyelitis pathogenesis. Thus, despite more stringent allelic exclusion of TCRβ relative to TCRα, bi-allelic TCRβ expression can measurably impact thymocyte development and is necessary for maintaining normal αβ/γδ T cell proportions.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Gene Expression Regulation/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/immunology
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/microbiology
Collapse
Affiliation(s)
- Nathaniel J. Schuldt
- Departments of Pediatrics, University of Minnesota, Minneapolis, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, United States of America
| | - Jennifer L. Auger
- Departments of Pediatrics, University of Minnesota, Minneapolis, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, United States of America
| | - Kristin A. Hogquist
- Departments of Pediatrics, University of Minnesota, Minneapolis, United States of America
- Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, United States of America
| | - Bryce A. Binstadt
- Departments of Pediatrics, University of Minnesota, Minneapolis, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, United States of America
- * E-mail:
| |
Collapse
|
82
|
Thaxton JE, Li Z. To affinity and beyond: harnessing the T cell receptor for cancer immunotherapy. Hum Vaccin Immunother 2015; 10:3313-21. [PMID: 25483644 DOI: 10.4161/21645515.2014.973314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
T cell adoptive therapies for immune-mediated regression of cancers have attracted a great deal of recent attention. Clinical results are glamorous, yet much remains to be uncovered behind the basic science that allows us to engineer T cells and T cell receptors (TCRs) for clinical use. We discuss the development of TCRs for therapeutic use in the context of thymic selection toward central tolerance and we review therapies based on tumor infiltrating lymphocytes (TILs), endogenous antigen specific TCRs, and engineered TCRs. Further we discuss the development of low and high affinity TCRs and the extent to which each challenges central tolerance. Current results suggest that adaptation of TCR engineering of moderate affinity TCRs coupled with co-regulatory and stimulatory molecules may be the safest and most efficacious road for TCR development aimed at tumor abolition.
Collapse
Key Words
- AIRE, autoimmune regulator
- CDR, complementarity determining region
- CTA, cancer testis antigen
- MHC, major histocompatibility complex
- SLEC, short-lived effector cell
- T cell receptor
- TAA, tumor-associated antigen
- TCR, T cell receptor
- TIL, tumor infiltrating lymphocyte
- TSA, tissue-specific self-antigen
- adoptive cell therapy
- affinity
- cancer
- co-receptor
- mTEC, medullary thymic epithelial cell
- tumor
Collapse
Affiliation(s)
- Jessica E Thaxton
- a Department of Microbiology and Immunology; Hollings Cancer Center ; Medical University of South Carolina ; Charleston , SC USA
| | | |
Collapse
|
83
|
Hirosue S, Dubrot J. Modes of Antigen Presentation by Lymph Node Stromal Cells and Their Immunological Implications. Front Immunol 2015; 6:446. [PMID: 26441957 PMCID: PMC4561840 DOI: 10.3389/fimmu.2015.00446] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022] Open
Abstract
Antigen presentation is no longer the exclusive domain of cells of hematopoietic origin. Recent works have demonstrated that lymph node stromal cell (LNSC) populations, such as fibroblastic reticular cells, lymphatic and blood endothelial cells, not only provide a scaffold for lymphocyte interactions but also exhibit active immunomodulatory roles that are critical to mounting and resolving effective immune responses. Importantly, LNSCs possess the ability to present antigens and establish antigen-specific interactions with T cells. One example is the expression of peripheral tissue antigens, which are presented on major histocompatibility complex (MHC)-I molecules with tolerogenic consequences on T cells. Additionally, exogenous antigens, including self and tumor antigens, can be processed and presented on MHC-I complexes, which result in dysfunctional activation of antigen-specific CD8+ T cells. While MHC-I is widely expressed on cells of both hematopoietic and non-hematopoietic origins, antigen presentation via MHC-II is more precisely regulated. Nevertheless, LNSCs are capable of endogenously expressing, or alternatively, acquiring MHC-II molecules. Transfer of antigen between LNSC and dendritic cells in both directions has been recently suggested to promote tolerogenic roles of LNSCs on the CD4+ T cell compartment. Thus, antigen presentation by LNSCs is thought to be a mechanism that promotes the maintenance of peripheral tolerance as well as generates a pool of diverse antigen-experienced T cells for protective immunity. This review aims to integrate the current and emerging literature to highlight the importance of LNSCs in immune responses, and emphasize their role in antigen trafficking, retention, and presentation.
Collapse
Affiliation(s)
- Sachiko Hirosue
- Institute of Bioengineering, École Polytechnique Fédéral de Lausanne , Lausanne , Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, Université de Genève , Geneva , Switzerland
| |
Collapse
|
84
|
Yu W, Jiang N, Ebert PJR, Kidd BA, Müller S, Lund PJ, Juang J, Adachi K, Tse T, Birnbaum ME, Newell EW, Wilson DM, Grotenbreg GM, Valitutti S, Quake SR, Davis MM. Clonal Deletion Prunes but Does Not Eliminate Self-Specific αβ CD8(+) T Lymphocytes. Immunity 2015; 42:929-41. [PMID: 25992863 DOI: 10.1016/j.immuni.2015.05.001] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/27/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
It has long been thought that clonal deletion efficiently removes almost all self-specific T cells from the peripheral repertoire. We found that self-peptide MHC-specific CD8(+) T cells in the blood of healthy humans were present in frequencies similar to those specific for non-self antigens. For the Y chromosome-encoded SMCY antigen, self-specific T cells exhibited only a 3-fold lower average frequency in males versus females and were anergic with respect to peptide activation, although this inhibition could be overcome by a stronger stimulus. We conclude that clonal deletion prunes but does not eliminate self-specific T cells and suggest that to do so would create holes in the repertoire that pathogens could readily exploit. In support of this hypothesis, we detected T cells specific for all 20 amino acid variants at the p5 position of a hepatitis C virus epitope in a random group of blood donors.
Collapse
Affiliation(s)
- Wong Yu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ning Jiang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter J R Ebert
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian A Kidd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sabina Müller
- INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France and Université Toulouse III Paul-Sabatier, 31024 Toulouse, France
| | - Peder J Lund
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeremy Juang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Keishi Adachi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tiffany Tse
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael E Birnbaum
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Evan W Newell
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Darrell M Wilson
- Department of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Salvatore Valitutti
- INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France and Université Toulouse III Paul-Sabatier, 31024 Toulouse, France
| | - Stephen R Quake
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
85
|
Richards DM, Ruggiero E, Hofer AC, Sefrin JP, Schmidt M, von Kalle C, Feuerer M. The Contained Self-Reactive Peripheral T Cell Repertoire: Size, Diversity, and Cellular Composition. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26195815 DOI: 10.4049/jimmunol.1500880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Individual self-reactive T cells have been discovered in both humans and mice. It is difficult to assess the entire contained self-reactive peripheral T cell repertoire in healthy individuals because regulatory T cells (Tregs) can render these cells anergic and, therefore, functionally indistinguishable. We addressed this issue by removing regulatory T cells, thereby allowing us to characterize the exposed self-reactive T cells. This resulted in activation of approximately 4% of both CD4(+) and CD8(+) T cells. Activation and division of these cells was not a bystander product of Ag-independent signals but required TCR stimulation. Analysis of TCR sequences showed that these responding cells were polyclonal and encompassed a broad range of structural TCR diversity. Adoptive transfer of naive and effector/memory T cell populations showed that even the naive T cell pool contained self-reactive T cell precursors. In addition, transfer of mature thymocytes showed that this response was an intrinsic T cell property rather than a peripheral adaptation. Finally, we found that the unexpectedly strong contribution of the naive CD5(low) T cell pool showed that the overall self-reactive response has not only a diverse polyclonal TCR repertoire, but also comprises a broad range of affinities for self.
Collapse
Affiliation(s)
- David M Richards
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Eliana Ruggiero
- Division of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases, 69120 Heidelberg, Germany
| | - Ann-Cathrin Hofer
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Julian P Sefrin
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Manfred Schmidt
- Division of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Division of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases, 69120 Heidelberg, Germany
| | - Markus Feuerer
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| |
Collapse
|
86
|
Arias CF, Herrero MA, Cuesta JA, Acosta FJ, Fernández-Arias C. The growth threshold conjecture: a theoretical framework for understanding T-cell tolerance. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150016. [PMID: 26587263 PMCID: PMC4632576 DOI: 10.1098/rsos.150016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 06/09/2015] [Indexed: 05/15/2023]
Abstract
Adaptive immune responses depend on the capacity of T cells to target specific antigens. As similar antigens can be expressed by pathogens and host cells, the question naturally arises of how can T cells discriminate friends from foes. In this work, we suggest that T cells tolerate cells whose proliferation rates remain below a permitted threshold. Our proposal relies on well-established facts about T-cell dynamics during acute infections: T-cell populations are elastic (they expand and contract) and they display inertia (contraction is delayed relative to antigen removal). By modelling inertia and elasticity, we show that tolerance to slow-growing populations can emerge as a population-scale feature of T cells. This result suggests a theoretical framework to understand immune tolerance that goes beyond the self versus non-self dichotomy. It also accounts for currently unexplained observations, such as the paradoxical tolerance to slow-growing pathogens or the presence of self-reactive T cells in the organism.
Collapse
Affiliation(s)
- Clemente F. Arias
- Departamento de Matemática Aplicada, and, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Ecología, Universidad Complutense de Madrid, Madrid, Spain
- Author for correspondence: Clemente F. Arias e-mail:
| | - Miguel A. Herrero
- Departamento de Matemática Aplicada, and, Universidad Complutense de Madrid, Madrid, Spain
| | - José A. Cuesta
- Grupo Interdisciplinar de Sistemas Complejos, Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | | | - Cristina Fernández-Arias
- Department of Microbiology, Division of Parasitology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
87
|
van Heemst J, Jansen DTSL, Polydorides S, Moustakas AK, Bax M, Feitsma AL, Bontrop-Elferink DG, Baarse M, van der Woude D, Wolbink GJ, Rispens T, Koning F, de Vries RRP, Papadopoulos GK, Archontis G, Huizinga TW, Toes RE. Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nat Commun 2015; 6:6681. [PMID: 25942574 DOI: 10.1038/ncomms7681] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/18/2015] [Indexed: 01/09/2023] Open
Abstract
The HLA locus is the strongest risk factor for anti-citrullinated protein antibody (ACPA)(+) rheumatoid arthritis (RA). Despite considerable efforts in the last 35 years, this association is poorly understood. Here we identify (citrullinated) vinculin, present in the joints of ACPA(+) RA patients, as an autoantigen targeted by ACPA and CD4(+) T cells. These T cells recognize an epitope with the core sequence DERAA, which is also found in many microbes and in protective HLA-DRB1*13 molecules, presented by predisposing HLA-DQ molecules. Moreover, these T cells crossreact with vinculin-derived and microbial-derived DERAA epitopes. Intriguingly, DERAA-directed T cells are not detected in HLA-DRB1*13(+) donors, indicating that the DERAA epitope from HLA-DRB1*13 mediates (thymic) tolerance in these donors and explaining the protective effects associated with HLA-DRB1*13. Together our data indicate the involvement of pathogen-induced DERAA-directed T cells in the HLA-RA association and provide a molecular basis for the contribution of protective/predisposing HLA alleles.
Collapse
Affiliation(s)
- Jurgen van Heemst
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Diahann T S L Jansen
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Antonis K Moustakas
- Faculty of Agricultural Technology, Technological Educational Institute of Ioanian Islands, Argostoli, Cephallonia 28100, Greece
| | - Marieke Bax
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Anouk L Feitsma
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Diënne G Bontrop-Elferink
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Martine Baarse
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Diane van der Woude
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Gert-Jan Wolbink
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, 1066 CX Amsterdam, The Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, 1066 CX Amsterdam, The Netherlands
| | - Frits Koning
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - René R P de Vries
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - George K Papadopoulos
- Laboratory of Biochemistry and Biophysics, Faculty of Agricultural Technology, Epirus Institute of Technology, Arta 47100, Greece
| | | | - Tom W Huizinga
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - René E Toes
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
88
|
Maximova N, Pizzol A, Ferrara G, Maestro A, Tamaro P. Does Teno Torque Virus Induce Autoimmunity After Hematopoietic Stem Cell Transplantation? A Case Report. J Pediatr Hematol Oncol 2015; 37:e194-7. [PMID: 24942030 DOI: 10.1097/mph.0000000000000194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Teno Torque virus, member of the family of Anelloviridae, has been associated with many autoimmune diseases such as idiopathic hepatitis, systemic lupus erythematosus, and multiple sclerosis. Its viral load tends to be higher in the bone marrow and in tissues with high turnover rate. We report here a case of an 11-month-old infant affected by acute myeloid leukemia who underwent hematopoietic stem cell transplantation, and after 6 months had autoimmune hepatitis and atopic dermatitis. Extremely high-cytokine IP-10 and eotaxin levels were found in her sera, and serological tests and RT-PCR for viruses showed positive results exclusively for Teno Torque virus.
Collapse
Affiliation(s)
- Natalia Maximova
- *Department of Pediatric Hemato Oncology ‡Pharmacy and Clinical Pharmacology, Institute for Maternal and Child Health IRCCS "Burlo Garofolo" †Institute for Maternal and Child Health IRCCS Burlo Garofolo, University of Trieste, Trieste, Italy
| | | | | | | | | |
Collapse
|
89
|
Hradetzky S, Werfel T, Rösner LM. Autoallergy in atopic dermatitis. ACTA ACUST UNITED AC 2015; 24:16-22. [PMID: 26120543 PMCID: PMC4479480 DOI: 10.1007/s40629-015-0037-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023]
Abstract
The term autoallergy denotes autoimmunity accompanying an atopic disease, with antigen-specific IgE as a hallmark. This phenomenon is discussed to contribute to a chronification of the disease and to shape the immune response in chronic atopic dermatitis (AD). In this review, we highlight recent insights into the autoallergic inflammation in AD. Different mechanisms underlying the allergenicity of autoallergens are discussed at the moment: intrinsic functions modulating the immune system as well as molecular mimicry may influence the allergenic potential of these proteins. Finally, the role of specific T cells is discussed. Cite this as: Hradetzky S, Werfel T, Roesner LM. Autoallergy in atopic dermatitis. Allergo J Int 2015; 24:16–22 DOI: 10.1007/s40629-015-0037-5
Collapse
Affiliation(s)
- Susanne Hradetzky
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Lennart M Rösner
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany ; Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
90
|
Autoallergie bei atopischer Dermatitis. ALLERGO JOURNAL 2015. [DOI: 10.1007/s15007-015-0737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
91
|
HLA-DRB1*03:01 and HLA-DRB1*04:01 modify the presentation and outcome in autoimmune hepatitis type-1. Genes Immun 2015; 16:247-52. [PMID: 25611558 DOI: 10.1038/gene.2014.82] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022]
Abstract
The classical human leukocyte antigen (HLA)-DRB1*03:01 and HLA-DRB1*04:01 alleles are established autoimmune hepatitis (AIH) risk alleles. To study the immune-modifying effect of these alleles, we imputed the genotypes from genome-wide association data in 649 Dutch AIH type-1 patients. We therefore compared the international AIH group (IAIHG) diagnostic scores as well as the underlying clinical characteristics between patients positive and negative for these HLA alleles. Seventy-five percent of the AIH patients were HLA-DRB1*03:01/HLA-DRB1*04:01 positive. HLA-DRB1*03:01/HLA-DRB1*04:01-positive patients had a higher median IAIHG score than HLA-DRB1*03:01/HLA-DRB1*04:01-negative patients (P<0.001). We did not observe associations between HLA alleles and alanine transaminase levels (HLA-DRB1*03:01: P=0.2; HLA-DRB1*04:01; P=0.5); however, HLA-DRB1*03:01 was independently associated with higher immunoglobulin G levels (P=0.04). The HLA-DRB1*04:01 allele was independently associated with presentation at older age (P=0.03) and a female predominance (P=0.04). HLA-DRB1*03:01-positive patients received immunosuppressive medication and liver transplantation. In conclusion, the HLA-DRB1*03:01 and HLA-DRB1*04:01 alleles are both independently associated with the aggregate diagnostic IAIHG score in type-1 AIH patients, but are not essential for AIH development. HLA-DRB1*03:01 is the strongest genetic modifier of disease severity in AIH.
Collapse
|
92
|
Zehn D, Wherry EJ. Immune Memory and Exhaustion: Clinically Relevant Lessons from the LCMV Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:137-52. [PMID: 26324351 DOI: 10.1007/978-3-319-15774-0_10] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of dysfunctional or exhausted T cells is characteristic of immune responses to chronic viral infections and cancer. Exhausted T cells are defined by reduced effector function, sustained upregulation of multiple inhibitory receptors, an altered transcriptional program and perturbations of normal memory development and homeostasis. This review focuses on (a) illustrating milestone discoveries that led to our present understanding of T cell exhaustion, (b) summarizing recent developments in the field, and (c) identifying new challenges for translational research. Exhausted T cells are now recognized as key therapeutic targets in human infections and cancer. Much of our knowledge of the clinically relevant process of exhaustion derives from studies in the mouse model of Lymphocytic choriomeningitis virus (LCMV) infection. Studies using this model have formed the foundation for our understanding of human T cell memory and exhaustion. We will use this example to discuss recent advances in our understanding of T cell exhaustion and illustrate the value of integrated mouse and human studies and will emphasize the benefits of bi-directional mouse-to-human and human-to-mouse research approaches.
Collapse
Affiliation(s)
- D Zehn
- Division of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland,
| | | |
Collapse
|
93
|
Vanheusden M, Stinissen P, ’t Hart BA, Hellings N. Cytomegalovirus: a culprit or protector in multiple sclerosis? Trends Mol Med 2015; 21:16-23. [DOI: 10.1016/j.molmed.2014.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/07/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
|
94
|
Abstract
T-cell receptor affinity for self-antigen has an important role in establishing self-tolerance. Three transgenic mouse strains expressing antigens of variable affinity for the OVA transgenic-I T-cell receptor were generated to address how TCR affinity affects the efficiency of negative selection, the ability to prime an autoimmune response, and the elimination of the relevant target cell. Mice expressing antigens with an affinity just above the negative selection threshold exhibited the highest risk of developing experimental autoimmune diabetes. The data demonstrate that close to the affinity threshold for negative selection, sufficient numbers of self-reactive T cells escape deletion and create an increased risk for the development of autoimmunity.
Collapse
|
95
|
Antigen affinity and antigen dose exert distinct influences on CD4 T-cell differentiation. Proc Natl Acad Sci U S A 2014; 111:14852-7. [PMID: 25267612 DOI: 10.1073/pnas.1403271111] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cumulative T-cell receptor signal strength and ensuing T-cell responses are affected by both antigen affinity and antigen dose. Here we examined the distinct contributions of these parameters to CD4 T-cell differentiation during infection. We found that high antigen affinity positively correlates with T helper (Th)1 differentiation at both high and low doses of antigen. In contrast, follicular helper T cell (TFH) effectors are generated after priming with high, intermediate, and low affinity ligand. Unexpectedly, memory T cells generated after priming with very low affinity antigen remain impaired in their ability to generate secondary Th1 effectors, despite being recalled with high affinity antigen. These data challenge the view that only strongly stimulated CD4 T cells are capable of differentiating into the TFH and memory T-cell compartments and reveal that differential strength of stimulation during primary T-cell activation imprints unique and long lasting T-cell differentiation programs.
Collapse
|
96
|
Salmond RJ, Brownlie RJ, Morrison VL, Zamoyska R. The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals. Nat Immunol 2014; 15:875-883. [PMID: 25108421 PMCID: PMC4148831 DOI: 10.1038/ni.2958] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022]
Abstract
T cells must be tolerant of self antigens to avoid autoimmunity but responsive to foreign antigens to provide protection against infection. We found that in both naive T cells and effector T cells, the tyrosine phosphatase PTPN22 limited signaling via the T cell antigen receptor (TCR) by weak agonists and self antigens while not impeding responses to strong agonist antigens. T cells lacking PTPN22 showed enhanced formation of conjugates with antigen-presenting cells pulsed with weak peptides, which led to activation of the T cells and their production of inflammatory cytokines. This effect was exacerbated under conditions of lymphopenia, with the formation of potent memory T cells in the absence of PTPN22. Our data address how loss-of-function PTPN22 alleles can lead to the population expansion of effector and/or memory T cells and a predisposition to human autoimmunity.
Collapse
Affiliation(s)
- Robert J. Salmond
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, Ashworth Laboratories, The King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| | - Rebecca J. Brownlie
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, Ashworth Laboratories, The King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| | - Vicky L. Morrison
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, Ashworth Laboratories, The King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| |
Collapse
|
97
|
Molecular mimicry and clonal deletion: A fresh look. J Theor Biol 2014; 375:71-76. [PMID: 25172771 DOI: 10.1016/j.jtbi.2014.08.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/12/2014] [Accepted: 08/19/2014] [Indexed: 01/03/2023]
Abstract
In this article, I trace the historic background of clonal deletion and molecular mimicry, two major pillars underlying our present understanding of autoimmunity and autoimmune disease. Clonal deletion originated as a critical element of the clonal selection theory of antibody formation in order to explain tolerance of self. If we did have complete clonal deletion, there would be major voids, the infamous "black holes", in our immune repertoire. For comprehensive, protective adaptive immunity, full deletion is necessarily a rare event. Molecular mimicry, the sharing of epitopes among self and non-self antigens, is extraordinary common and provides the evidence that complete deletion of self-reactive clones is rare. If molecular mimicry were not common, protective adaptive immunity could not be all-encompassing. By taking a fresh look at these two processes together we can envision their evolutionary basis and understand the need for regulatory devices to prevent molecular mimicry from progressing to autoimmune disease.
Collapse
|
98
|
Schwab JM, Zhang Y, Kopp MA, Brommer B, Popovich PG. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp Neurol 2014; 258:121-129. [PMID: 25017893 PMCID: PMC4099970 DOI: 10.1016/j.expneurol.2014.04.023] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023]
Abstract
During the transition from acute to chronic stages of recovery after spinal cord injury (SCI), there is an evolving state of immunologic dysfunction that exacerbates the problems associated with the more clinically obvious neurologic deficits. Since injury directly affects cells embedded within the "immune privileged/specialized" milieu of the spinal cord, maladaptive or inefficient responses are likely to occur. Collectively, these responses qualify as part of the continuum of "SCI disease" and are important therapeutic targets to improve neural repair and neurological outcome. Generic immune suppressive therapies have been largely unsuccessful, mostly because inflammation and immunity exert both beneficial (plasticity enhancing) and detrimental (e.g. glia- and neurodegenerative; secondary damage) effects and these functions change over time. Moreover, "compartimentalized" investigations, limited to only intraspinal inflammation and associated cellular or molecular changes in the spinal cord, neglect the reality that the structure and function of the CNS are influenced by systemic immune challenges and that the immune system is 'hardwired' into the nervous system. Here, we consider this interplay during the progression from acute to chronic SCI. Specifically, we survey impaired/non-resolving intraspinal inflammation and the paradox of systemic inflammatory responses in the context of ongoing chronic immune suppression and autoimmunity. The concepts of systemic inflammatory response syndrome (SIRS), compensatory anti-inflammatory response syndrome (CARS) and "neurogenic" spinal cord injury-induced immune depression syndrome (SCI-IDS) are discussed as determinants of impaired "host-defense" and trauma-induced autoimmunity.
Collapse
Affiliation(s)
- Jan M. Schwab
- Department of Neurology and Experimental Neurology, Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charite - Universitatsmedizin Berlin, D-10117 Berlin, Germany
- Spinal Cord Injury Center, Trauma Hospital Berlin, D-12683 Berlin, Germany
| | - Yi Zhang
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Marcel A. Kopp
- Department of Neurology and Experimental Neurology, Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charite - Universitatsmedizin Berlin, D-10117 Berlin, Germany
| | - Benedikt Brommer
- Department of Neurology and Experimental Neurology, Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charite - Universitatsmedizin Berlin, D-10117 Berlin, Germany
| | - Phillip G. Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
99
|
Abstract
Rheumatoid arthritis (RA) is a destructive autoimmune disease that mainly affects synovial joints. RA patients can be subdivided in two distinct disease subsets based on the presence of anti-citrullinated protein antibodies (ACPA). These two disease phenotypes are associated with different environmental and genetic risk factors and clinical parameters. The HLA class II locus is the most important risk factor for ACPA-positive RA (ACPA+ RA). ACPA can be found up to 10 years before diagnosis and can be used as a predictive biomarker. During progression from breaking tolerance to a citrullinated protein to ACPA+ RA, the ACPA response matures. Recent work implicates the HLA class II locus as a risk factor in the progression from ACPA positivity to ACPA+ RA. We now propose that this locus directly influences the maturation of the ACPA response, most likely via antigen-specific T-cells providing help to ACPA-producing B-cells allowing for maturation of the citrullinated protein-specific autoantibody response. We present and discuss several models and underlying data, including antibody cross-reactivity, molecular mimicry, and neo-antigen formation, that could explain the HLA-RA connection.
Collapse
Affiliation(s)
- Jurgen van Heemst
- Department of Rheumatology, Leiden University Medical Center , Leiden , The Netherlands
| | | | | | | |
Collapse
|
100
|
Wiede F, Ziegler A, Zehn D, Tiganis T. PTPN2 restrains CD8⁺ T cell responses after antigen cross-presentation for the maintenance of peripheral tolerance in mice. J Autoimmun 2014; 53:105-14. [PMID: 24997008 DOI: 10.1016/j.jaut.2014.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/12/2014] [Accepted: 05/23/2014] [Indexed: 02/07/2023]
Abstract
Antigen cross-presentation by dendritic cells is crucial for priming cytotoxic CD8(+) T cells to invading pathogens and tumour antigens, as well as mediating peripheral tolerance to self-antigens. The protein tyrosine phosphatase N2 (PTPN2) attenuates T cell receptor (TCR) signalling and tunes CD8(+) T cell responses in vivo. In this study we have examined the role of PTPN2 in the maintenance of peripheral tolerance after the cross-presentation of pancreatic β-cell antigens. The transfer of OVA-specific OT-I CD8(+) T cells (C57BL/6) into RIP-mOVA recipients expressing OVA in pancreatic β-cells only results in islet destruction when OVA-specific CD4(+) T cells are co-transferred. Herein we report that PTPN2-deficient OT-I CD8(+) T cells transferred into RIP-mOVA recipients acquire CTL activity and result in β cell destruction and the development of diabetes in the absence of CD4(+) help. These studies identify PTPN2 as a critical mediator of peripheral T cell tolerance limiting CD8(+) T cell responses after the cross-presentation of self-antigens. Our findings reveal a mechanism by which PTPN2 SNPs might convert a tolerogenic CD8(+) T cell response into one capable of causing the destruction of pancreatic β-cells. Moreover, our results provide insight into potential approaches for enhancing T cell-mediated immunity and/or T cell adoptive tumour immunotherapy.
Collapse
Affiliation(s)
- Florian Wiede
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Alexandra Ziegler
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, Epalinges, Switzerland
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|