51
|
Benevides L, Saltarelli VM, Pioto F, Sacramento LA, Dias MS, Rodríguez GR, Viola JPB, Carregaro V, Silva JS. NFAT1 Regulates Ly6C hi Monocyte Recruitment to the CNS and Plays an Essential Role in Resistance to Toxoplasma gondii Infection. Front Immunol 2019; 10:2105. [PMID: 31555297 PMCID: PMC6742953 DOI: 10.3389/fimmu.2019.02105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Monocytes play key roles in the maintenance of homeostasis and in the control of the infection. Monocytes are recruited from the bone marrow to inflammatory sites and are essential for antimicrobial activity to limit tissue damage and promote adaptive T cell responses. Here, we investigated the role of Nuclear Factor of Activated T cells 1 (NFAT1) in the regulation of Ly6Chi inflammatory monocyte recruitment to the CNS upon T. gondii infection. We show that NFAT-1-deficient monocytes are unable to migrate to the CNS of T. gondii-infected mice. Moreover, NFAT1−/− mice are highly susceptible to chronic T. gondii infection due to a failure to control parasite replication in the CNS. The inhibition of Ly6Chi inflammatory monocyte recruitment to the CNS severely blocked CXCL10 production and consequently the migration of IFN-γ-producing CD4+ T cells. Moreover, the transfer of Ly6Chi monocytes to infected NFAT1−/− mice favored CD4+ T cell migration to the CNS and resulted in the inhibition of parasite replication and host defense. Together, these results demonstrated for the first time the contribution of NFAT1 to the regulation of Ly6Chi monocyte recruitment to the CNS and to resistance during chronic T. gondii infection.
Collapse
Affiliation(s)
- Luciana Benevides
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto, Brazil
| | - Verônica M Saltarelli
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Franciele Pioto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto, Brazil
| | - Laís A Sacramento
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Murilo S Dias
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gretel R Rodríguez
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João P B Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto, Brazil
| |
Collapse
|
52
|
Rommereim LM, Fox BA, Butler KL, Cantillana V, Taylor GA, Bzik DJ. Rhoptry and Dense Granule Secreted Effectors Regulate CD8 + T Cell Recognition of Toxoplasma gondii Infected Host Cells. Front Immunol 2019; 10:2104. [PMID: 31555296 PMCID: PMC6742963 DOI: 10.3389/fimmu.2019.02104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii secretes rhoptry (ROP) and dense granule (GRA) effector proteins to evade host immune clearance mediated by interferon gamma (IFN-γ), immunity-related GTPase (IRG) effectors, and CD8+ T cells. Here, we investigated the role of parasite-secreted effectors in regulating host access to parasitophorous vacuole (PV) localized parasite antigens and their presentation to CD8+ T cells by the major histocompatibility class I (MHC-I) pathway. Antigen presentation of PV localized parasite antigens by MHC-I was significantly increased in macrophages and/or dendritic cells infected with mutant parasites that lacked expression of secreted GRA (GRA2, GRA3, GRA4, GRA5, GRA7, GRA12) or ROP (ROP5, ROP18) effectors. The ability of various secreted GRA or ROP effectors to suppress antigen presentation by MHC-I was dependent on cell type, expression of IFN-γ, or host IRG effectors. The suppression of antigen presentation by ROP5, ROP18, and GRA7 correlated with a role for these molecules in preventing PV disruption by IFN-γ-activated host IRG effectors. However, GRA2 mediated suppression of antigen presentation was not correlated with PV disruption. In addition, the GRA2 antigen presentation phenotypes were strictly co-dependent on the expression of the GRA6 protein. These results show that MHC-I antigen presentation of PV localized parasite antigens was controlled by mechanisms that were dependent or independent of IRG effector mediated PV disruption. Our findings suggest that the GRA6 protein underpins an important mechanism that enhances CD8+ T cell recognition of parasite-infected cells with damaged or ruptured PV membranes. However, in intact PVs, parasite secreted effector proteins that associate with the PV membrane or the intravacuolar network membranes play important roles to actively suppress antigen presentation by MHC-I to reduce CD8+ T cell recognition and clearance of Toxoplasma gondii infected host cells.
Collapse
Affiliation(s)
- Leah M Rommereim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kiah L Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Viviana Cantillana
- Division of Geriatrics, Departments of Medicine, Molecular Genetics and Microbiology, and Immunology, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States
| | - Gregory A Taylor
- Division of Geriatrics, Departments of Medicine, Molecular Genetics and Microbiology, and Immunology, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States.,Geriatric Research, Education and Clinical Center, VA Medical Center, Durham, NC, United States
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
53
|
Panas MW, Ferrel A, Naor A, Tenborg E, Lorenzi HA, Boothroyd JC. Translocation of Dense Granule Effectors across the Parasitophorous Vacuole Membrane in Toxoplasma-Infected Cells Requires the Activity of ROP17, a Rhoptry Protein Kinase. mSphere 2019; 4:e00276-19. [PMID: 31366709 PMCID: PMC6669336 DOI: 10.1128/msphere.00276-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii tachyzoites co-opt host cell functions through introduction of a large set of rhoptry- and dense granule-derived effector proteins. These effectors reach the host cytosol through different means: direct injection for rhoptry effectors and translocation across the parasitophorous vacuolar membrane (PVM) for dense granule (GRA) effectors. The machinery that translocates these GRA effectors has recently been partially elucidated, revealing three components, MYR1, MYR2, and MYR3. To determine whether other proteins might be involved, we returned to a library of mutants defective in GRA translocation and selected one with a partial defect, suggesting it might be in a gene encoding a new component of the machinery. Surprisingly, whole-genome sequencing revealed a missense mutation in a gene encoding a known rhoptry protein, a serine/threonine protein kinase known as ROP17. ROP17 resides on the host cytosol side of the PVM in infected cells and has previously been known for its activity in phosphorylating and thereby inactivating host immunity-related GTPases. Here, we show that null or catalytically dead mutants of ROP17 are defective in GRA translocation across the PVM but that translocation can be rescued "in trans" by ROP17 delivered by other tachyzoites infecting the same host cell. This strongly argues that ROP17's role in regulating GRA translocation is carried out on the host cytosolic side of the PVM, not within the parasites or lumen of the parasitophorous vacuole. This represents an entirely new way in which the different secretory compartments of Toxoplasma tachyzoites collaborate to modulate the host-parasite interaction.IMPORTANCE When Toxoplasma infects a cell, it establishes a protective parasitophorous vacuole surrounding it. While this vacuole provides protection, it also serves as a barrier to the export of parasite effector proteins that impact and take control of the host cell. Our discovery here that the parasite rhoptry protein ROP17 is necessary for export of these effector proteins provides a distinct, novel function for ROP17 apart from its known role in protecting the vacuole. This will enable future research into ways in which we can prevent the export of effector proteins, thereby preventing Toxoplasma from productively infecting its animal and human hosts.
Collapse
Affiliation(s)
- Michael W Panas
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Abel Ferrel
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Adit Naor
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Elizabeth Tenborg
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
- University of California at Davis, School of Veterinary Medicine, Davis, California, USA
| | - Hernan A Lorenzi
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, Maryland, USA
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| |
Collapse
|
54
|
Toxoplasma GRA15 Activates the NF-κB Pathway through Interactions with TNF Receptor-Associated Factors. mBio 2019; 10:mBio.00808-19. [PMID: 31311877 PMCID: PMC6635525 DOI: 10.1128/mbio.00808-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The parasite Toxoplasma can cause birth defects and severe disease in immunosuppressed patients. Strain differences in pathogenicity exist, and these differences are due to polymorphic effector proteins that Toxoplasma secretes into the host cell to coopt host cell functions. The effector protein GRA15 of some Toxoplasma strains activates the nuclear factor kappa B (NF-κB) pathway, which plays an important role in cell death, innate immunity, and inflammation. We show that GRA15 interacts with TNF receptor-associated factors (TRAFs), which are adaptor proteins functioning upstream of the NF-κB transcription factor. Deletion of TRAF-binding sites in GRA15 greatly reduces its ability to activate the NF-κB pathway, and TRAF2 knockout cells have impaired GRA15-mediated NF-κB activation. Thus, we determined the mechanism for GRA15-dependent NF-κB activation. The protozoan parasite Toxoplasma gondii secretes proteins from specialized organelles, the rhoptries, and dense granules, which are involved in the modulation of host cell processes. Dense granule protein GRA15 activates the nuclear factor kappa B (NF-κB) pathway, which plays an important role in cell death, innate immunity, and inflammation. Exactly how GRA15 activates the NF-κB pathway is unknown. Here we show that GRA15 interacts with tumor necrosis factor receptor-associated factors (TRAFs), which are adaptor proteins functioning upstream of the NF-κB transcription factor. We identified several TRAF binding sites in the GRA15 amino acid sequence and showed that these are involved in NF-κB activation. Furthermore, a TRAF2 knockout cell line has impaired GRA15-mediated NF-κB activation. Thus, we determined the mechanism for GRA15-dependent NF-κB activation.
Collapse
|
55
|
Fox BA, Guevara RB, Rommereim LM, Falla A, Bellini V, Pètre G, Rak C, Cantillana V, Dubremetz JF, Cesbron-Delauw MF, Taylor GA, Mercier C, Bzik DJ. Toxoplasma gondii Parasitophorous Vacuole Membrane-Associated Dense Granule Proteins Orchestrate Chronic Infection and GRA12 Underpins Resistance to Host Gamma Interferon. mBio 2019; 10:e00589-19. [PMID: 31266861 PMCID: PMC6606796 DOI: 10.1128/mbio.00589-19] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Toxoplasma gondii evades host immunity to establish a chronic infection. Here, we assessed the role of parasitophorous vacuole (PV) membrane (PVM)- and intravacuolar network (IVN) membrane-localized dense granule (GRA) proteins in the development of acute and chronic Toxoplasma infection. Deletion of PVM-associated GRA3, GRA7, GRA8, and GRA14 or IVN membrane-associated GRA2, GRA9, and GRA12 in the low-virulence type II Prugniaud (Pru) strain induced severe defects in the development of chronic-stage cysts in vivo without affecting the parasite growth rate or the ability to differentiate into cysts in vitro Acute virulence of the PruΔgra2, PruΔgra3, and PruΔgra4 mutants was reduced but not abolished. In contrast, the PruΔgra12 mutant was avirulent in mice and PruΔgra12 parasites failed to establish a chronic infection. High-virulence type I strain RHΔgra12 parasites also exhibited a major defect in acute virulence. In gamma interferon (IFN-γ)-activated macrophages, type I RHΔgra12 and type II PruΔgra12 parasites resisted the coating of the PVM with host immunity-related GTPases as effectively as the parental type I RHΔku80 and type II PruΔku80 strains, respectively. Despite this resistance, Δgra12 PVs ultimately succumbed to IFN-γ-activated host cell innate immunity. Our findings uncover a key role for GRA12 in mediating resistance to host IFN-γ and reveal that many other IVN membrane-associated GRA proteins, as well as PVM-localized GRA proteins, play important roles in establishing chronic infection.IMPORTANCEToxoplasma gondii cysts reactivate during immune deficiency and cause fatal encephalitis. Parasite molecules that coordinate the development of acute and chronic infection are poorly characterized. Here, we show that many intravacuolar network membrane and parasitophorous vacuole membrane-associated dense granule (GRA) proteins orchestrate the development of chronic cysts in vivo A subset of these GRA proteins also modulate acute virulence, and one protein that associates with the intravacuolar network membranes, namely GRA12, was identified as a major virulence factor required for parasite resistance to host gamma interferon (IFN-γ). Our results revealed that many parasitophorous vacuole membrane and intravacuolar network membrane-associated GRA proteins are essential for successful chronic infection.
Collapse
Affiliation(s)
- Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Leah M Rommereim
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Alejandra Falla
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Valeria Bellini
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Graciane Pètre
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Camille Rak
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Viviana Cantillana
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Geriatrics, Duke University Medical Center, Durham, North Carolina, USA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Jean-François Dubremetz
- Université Montpellier 2, Montpellier, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5235, Montpellier, France
| | - Marie-France Cesbron-Delauw
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Gregory A Taylor
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Geriatrics, Duke University Medical Center, Durham, North Carolina, USA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
- Geriatric Research, Education and Clinical Center, VA Medical Center, Durham, North Carolina, USA
| | - Corinne Mercier
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
56
|
Liu Y, Zou X, Ou M, Ye X, Zhang B, Wu T, Dong S, Chen X, Liu H, Zheng Z, Zhao J, Wu J, Liu D, Wen Z, Wang Y, Zheng S, Zhu K, Huang X, Du X, Liang J, Luo X, Xie Y, Wu M, Lu C, Xie X, Liu K, Yuting Y, Qi G, Jing C, Yang G. Toxoplasma gondii Cathepsin C1 inhibits NF-κB signalling through the positive regulation of the HIF-1α/EPO axis. Acta Trop 2019; 195:35-43. [PMID: 31004564 DOI: 10.1016/j.actatropica.2019.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii has evolved many successful strategies for immune evasion. However, the parasite-derived effectors involved in modulating NF-κB signalling pathway are largely unknown. T. gondii Cathepsin C1 (CPC1) is widely conserved among T. gondii strains and is important for T. gondii intracellular growth and proliferation. Our study showed that CPC1 protein could abrogate NF-κB activation after screening dense granule proteins. CPC1 suppressed NF-κB activation at or downstream of p65 and decreased the production of IL-1, IL-8, IL-6, IL-12, and TNF-α. Western blot analysis revealed that CPC1 inhibited phospho-p65 and CPC1 proteins primarily settled in cytoplasm. RNA sequencing analysis revealed that overexpression of CPC1 significantly upregulated erythropoietin (EPO), which can be induced by the hypoxia-inducible factor -1α (HIF-1α) during hypoxia. Furthermore, dual-luciferase reporter assays confirmed that CPC1 upregulated HIF-1α. Finally, both the knockdown of EPO and restriction of HIF-1α partially eliminated the suppression impact of CPC1 on the NF-κB signalling pathway. Our study identified a previously unrecognized role of CPC1 in the negative regulation of NF-κB activation through positive regulation of the HIF-1α/EPO axis. For the first time, CPC1 was shown to play an important role in immune evasion during T. gondii infection.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China; Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaoqian Zou
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China; Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Meiling Ou
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China; Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaohong Ye
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China; Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Baohuan Zhang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China; Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Tianyuan Wu
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Shirui Dong
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaojing Chen
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China; Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Hongxuan Liu
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China; Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhong Zheng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China; Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jierong Zhao
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China; Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jing Wu
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China; Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Dandan Liu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Zihao Wen
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yao Wang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Shaoling Zheng
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Kehui Zhu
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China; Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuxia Huang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuben Du
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiayu Liang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaolu Luo
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yuefeng Xie
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Min Wu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Congying Lu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xin Xie
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Kailiang Liu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Ying Yuting
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Guolong Qi
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of environmental exposure and health in Guangzhou, Jinan University, Guangzhou, China; Guangzhou Key Laboratory of Environmental Exposure and Health in Guangzhou, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Guang Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of environmental exposure and health in Guangzhou, Jinan University, Guangzhou, China; Guangzhou Key Laboratory of Environmental Exposure and Health in Guangzhou, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China; The key laboratory for virology of Guangzhou, College of life science and technology, Jinan University, China.
| |
Collapse
|
57
|
The lectin-specific activity of Toxoplasma gondii microneme proteins 1 and 4 binds Toll-like receptor 2 and 4 N-glycans to regulate innate immune priming. PLoS Pathog 2019; 15:e1007871. [PMID: 31226171 PMCID: PMC6608980 DOI: 10.1371/journal.ppat.1007871] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/03/2019] [Accepted: 05/25/2019] [Indexed: 01/01/2023] Open
Abstract
Infection of host cells by Toxoplasma gondii is an active process, which is regulated by secretion of microneme (MICs) and rhoptry proteins (ROPs and RONs) from specialized organelles in the apical pole of the parasite. MIC1, MIC4 and MIC6 assemble into an adhesin complex secreted on the parasite surface that functions to promote infection competency. MIC1 and MIC4 are known to bind terminal sialic acid residues and galactose residues, respectively and to induce IL-12 production from splenocytes. Here we show that rMIC1- and rMIC4-stimulated dendritic cells and macrophages produce proinflammatory cytokines, and they do so by engaging TLR2 and TLR4. This process depends on sugar recognition, since point mutations in the carbohydrate-recognition domains (CRD) of rMIC1 and rMIC4 inhibit innate immune cells activation. HEK cells transfected with TLR2 glycomutants were selectively unresponsive to MICs. Following in vitro infection, parasites lacking MIC1 or MIC4, as well as expressing MIC proteins with point mutations in their CRD, failed to induce wild-type (WT) levels of IL-12 secretion by innate immune cells. However, only MIC1 was shown to impact systemic levels of IL-12 and IFN-γ in vivo. Together, our data show that MIC1 and MIC4 interact physically with TLR2 and TLR4 N-glycans to trigger IL-12 responses, and MIC1 is playing a significant role in vivo by altering T. gondii infection competency and murine pathogenesis. Toxoplasmosis is caused by the protozoan Toxoplasma gondii, belonging to the Apicomplexa phylum. This phylum comprises important parasites able to infect a broad diversity of animals, including humans. A particularity of T. gondii is its ability to invade virtually any nucleated cell of all warm-blooded animals through an active process, which depends on the secretion of adhesin proteins. These proteins are discharged by specialized organelles localized in the parasite apical region, and termed micronemes and rhoptries. We show in this study that two microneme proteins from T. gondii utilize their adhesion activity to stimulate innate immunity. These microneme proteins, denoted MIC1 and MIC4, recognize specific sugars on receptors expressed on the surface of mammalian immune cells. This binding activates these innate immune cells to secrete cytokines, which promotes efficient host defense mechanisms against the parasite and regulate their pathogenesis. This activity promotes a chronic infection by controlling parasite replication during acute infection.
Collapse
|
58
|
Bando H, Lee Y, Sakaguchi N, Pradipta A, Sakamoto R, Tanaka S, Ma JS, Sasai M, Yamamoto M. Toxoplasma Effector GRA15-Dependent Suppression of IFN-γ-Induced Antiparasitic Response in Human Neurons. Front Cell Infect Microbiol 2019; 9:140. [PMID: 31119110 PMCID: PMC6504700 DOI: 10.3389/fcimb.2019.00140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/16/2019] [Indexed: 01/06/2023] Open
Abstract
Toxoplasma gondii is an important human and animal pathogen that causes life-threatening toxoplasmosis. The host immune system produces interferon-γ (IFN-γ) to inhibit T. gondii proliferation. IFN-γ-inducible indole-2,3-dioxygenase 1 (IDO1), which mediates tryptophan degradation, has a major role in anti-T. gondii immune responses in various human cells. In response to the host's immune system, T. gondii secretes many virulence molecules into the host cells to suppress IFN-γ-dependent antiparasitic immune responses. The GRA15-induced proparasitic mechanism for suppressing IDO1-dependent immune responses has previously been tested only in human hepatocyte and monocyte co-cultures. Thus, whether human cells other than hepatocytes contain this virulence mechanism remains unclear. Here, we show that the GRA15-dependent virulence mechanism for suppressing the IDO1-dependent anti-T. gondii response operates in human neuronal cell lines and primary human neurons. Analysis of various human cell lines revealed that IL-1β-induced iNOS-dependent reduction of IDO1 mRNA expression occurred in brain cell lines (A172; glioblastoma, IMR-32; neuroblastoma, and T98G; glioblastoma) and liver cell lines (Huh7 and HepG2), but not in other cell lines. Moreover, co-culturing type II T. gondii-infected THP-1 human monocytes with the brain cell lines inhibited the IDO1-mediated anti-T. gondii response in a GRA15-dependent manner. These data suggest that a GRA15-dependent virulence mechanism antagonizes the IDO1-dependent host immune response in human brain cells.
Collapse
Affiliation(s)
- Hironori Bando
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Suita, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Youngae Lee
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Suita, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Naoya Sakaguchi
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Suita, Japan
| | - Ariel Pradipta
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Suita, Japan
| | - Ryoma Sakamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Suita, Japan
| | - Shun Tanaka
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Suita, Japan
| | - Ji Su Ma
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Suita, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Suita, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Suita, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
59
|
Zhu W, Li J, Pappoe F, Shen J, Yu L. Strategies Developed by Toxoplasma gondii to Survive in the Host. Front Microbiol 2019; 10:899. [PMID: 31080445 PMCID: PMC6497798 DOI: 10.3389/fmicb.2019.00899] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
One of the most successful intracellular parasites, Toxoplasma gondii has developed several strategies to avoid destruction by the host. These include approaches such as rapid and efficient cell invasion to avoid phagocytic engulfment, negative regulation of the canonical CD40-CD40L-mediated autophagy pathway, impairment of the noncanonical IFN-γ-dependent autophagy pathway, and modulation of host cell survival and death to obtain lifelong parasite survival. Different virulent strains have even evolved different ways to cope with and evade destruction by the host. This review aims to illustrate every aspect of the game between the host and Toxoplasma during the process of infection. A better understanding of all aspects of the battle between Toxoplasma and its hosts will be useful for the development of better strategies and drugs to control the parasite.
Collapse
Affiliation(s)
- Wanbo Zhu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China.,Graduate School of Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Jingyang Li
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China.,The Clinical Laboratory of the Third People's Hospital of Heifei, Hefei, China
| | - Faustina Pappoe
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
| |
Collapse
|
60
|
Sasai M, Pradipta A, Yamamoto M. Host immune responses to Toxoplasma gondii. Int Immunol 2019; 30:113-119. [PMID: 29408976 DOI: 10.1093/intimm/dxy004] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/19/2018] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii can infect homoeothermic animals including humans and cause lethal toxoplasmosis in immunocompromised individuals. When hosts are infected with T. gondii, the cells induce immune responses against T. gondii. The pathogen infection is recognized by immune sensors that directly detect T. gondii structural components, leading to production of pro-inflammatory cytokines and chemokines. Antigen-presenting cells such as macrophages and dendritic cells strongly activate T cells and induce development of Th1 cells and antigen-specific killer CD8 T cells. These T cells and Group 1 innate lymphoid cells are main producers of IFN-γ, which robustly stimulates cell-autonomous immunity in cells infected with T. gondii. IFN-γ-inducible effectors such as IFN-inducible GTPases, inducible nitric oxide synthase and indoleamine-2,3-dioxygenase differentially play important roles in suppression of T. gondii growth and its direct killing in anti-T. gondii cell-autonomous immune responses. In this review, we will describe our current knowledge of innate, adaptive and IFN-γ-mediated cell-autonomous immunity against T. gondii infection.
Collapse
Affiliation(s)
- Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Ariel Pradipta
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
61
|
De Niz M, Nacer A, Frischknecht F. Intravital microscopy: Imaging host-parasite interactions in the brain. Cell Microbiol 2019; 21:e13024. [PMID: 30830993 DOI: 10.1111/cmi.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/14/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022]
Abstract
Intravital fluorescence microscopy (IVM) is a powerful technique for imaging multiple organs, including the brain of living mice and rats. It enables the direct visualisation of cells in situ providing a real-life view of biological processes that in vitro systems cannot. In addition, to the technological advances in microscopy over the last decade, there have been supporting innovations in data storage and analytical packages that enable the visualisation and analysis of large data sets. Here, we review the advantages and limitations of techniques predominantly used for brain IVM, including thinned skull windows, open skull cortical windows, and a miniaturised optical system based on microendoscopic probes that can be inserted into deep tissues. Further, we explore the relevance of these techniques for the field of parasitology. Several protozoan infections are associated with neurological symptoms including Plasmodium spp., Toxoplasma spp., and Trypanosoma spp. IVM has led to crucial findings on these parasite species, which are discussed in detail in this review.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasglow, UK
| | - Adéla Nacer
- Division of Bacteriology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, EN63QG, Potters Bar, UK
| | - Friedrich Frischknecht
- Parasitology-Centre for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|
62
|
Characterization of strain-specific phenotypes associated with knockout of dense granule protein 9 in Toxoplasma gondii. Mol Biochem Parasitol 2019; 229:53-61. [PMID: 30849416 DOI: 10.1016/j.molbiopara.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/23/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can invade any nucleated cell of mammals and cause toxoplasmosis. Dense granule proteins play major structural functions within the parasitophorous vacuole (PV) and the cyst wall of T. gondii. Moreover, their particular location within the PV allows them to be involved in various interactions between parasites and the host cells. Dense granule protein 9 (GRA9) gene has been identified in T. gondii, although its role in the lytic cycle remains unclear. In the current study, the function of GRA9 in type I and type II Toxoplasma parasites was characterized. T. gondii GRA9 sequence and its expression were analyzed and derivatives of T. gondii RH and PLK strains with a null mutation in GRA9 were generated using CRISPR/Cas9 system. The phenotypes of GRA9 in wild types, knockout and complemented strains were analyzed in vitro and in vivo using Vero cells and BALB/c mice, respectively. Alignment of the amino acid sequence indicated that RH strain GRA9 contained one amino acid substitution when compared with PLK strain. Western blot analysis revealed that PLK strain had a higher expression level of GRA9 than RH strain. The phenotype analysis revealed that knockout of GRA9 in PLK parasites inhibited the plaque formation and egress from PV. Both the plaque formation and egress ability of PLKΔGRA9 strain were restored by complementation with a synonymous allele of PLK strain GRA9. Mouse experiments demonstrated that loss of GRA9 in PLK strain significantly reduced the pathogenicity of T. gondii. However, there was no phenotypic diferences between RH and RHΔGRA9 strains except the defect in host cell invasion. Overall, T. gondii GRA9 knockout only influenced the growth and virulence of PLK strain. These results indicate that GRA9 may be involved in parasite egress and virulence in mice in a strain-specific manner.
Collapse
|
63
|
Fereig RM, Shimoda N, Abdelbaky HH, Kuroda Y, Nishikawa Y. Neospora GRA6 possesses immune-stimulating activity and confers efficient protection against Neospora caninum infection in mice. Vet Parasitol 2019; 267:61-68. [PMID: 30878088 DOI: 10.1016/j.vetpar.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 10/27/2022]
Abstract
Vaccination has the potential to be the most cost-effective control measure for reducing the economic burden of neosporosis in cattle. In this study, the immune-stimulatory effect of recombinant Neospora caninum dense granule protein 6 (NcGRA6) was confirmed via its triggering of IL-12p40 production in murine macrophages. BALB/c mice were immunized with recombinant NcGRA6 fused with glutathione S-transferase (GST) protein with or without oligomannose-coated-liposomes (OMLs) as the potential adjuvant. Specific IgG1 antibody production was observed from 21 and 35 days after the first immunization in NcGRA6+GST- and NcGRA6+GST-OML-immunized mice, respectively. However, specific IgG2a was detected 1 week after the infection, and IgG2a levels of the NcGRA6+GST- group were higher than those of the NcGRA6+GST-OML-group. Moreover, spleen cell proliferation with concomitant interferon-gamma production was detected in mice immunized with NcGRA6+GST, indicating that a significant cellular immune response was induced. Mouse survival rates against N. caninum challenge infection were 91.7% for NcGRA6+GST and 83.3% for NcGRA6+GST-OML, which were significantly higher than those of control groups (GST-OML: 25%, phosphate-buffered saline: 16.7%). This indicates that naked NcGRA6+GST induced protective immunity. Thus, our findings highlight the immune-stimulating potential of NcGRA6 and the ability to induce protective immunity against N. caninum infection in mice.
Collapse
Affiliation(s)
- Ragab M Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Naomi Shimoda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hanan H Abdelbaky
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Yasuhiro Kuroda
- Department of Applied Biochemistry, Tokai University, Kita-kaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
64
|
Wang JL, Zhang NZ, Li TT, He JJ, Elsheikha HM, Zhu XQ. Advances in the Development of Anti-Toxoplasma gondii Vaccines: Challenges, Opportunities, and Perspectives. Trends Parasitol 2019; 35:239-253. [PMID: 30718083 DOI: 10.1016/j.pt.2019.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
Important progress has been made in understanding how immunity is elicited against Toxoplasma gondii - a complex pathogen with multiple mechanisms of immune evasion. Many vaccine candidates have been tested using various strategies in animal models. However, none of these strategies has delivered as yet, and important challenges remain in the development of vaccines that can eliminate the tissue cysts and/or fully block vertical transmission. In this review, we provide an overview of the current understanding of the host immune response to T. gondii infection and summarize the key limitations for the development of an effective, safe, and durable toxoplasmosis vaccine. We also discuss how the successes and failures in developing and testing vaccine candidates have provided a roadmap for future vaccine development.
Collapse
Affiliation(s)
- Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Ting-Ting Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| |
Collapse
|
65
|
Wang Y, Cirelli KM, Barros PDC, Sangaré LO, Butty V, Hassan MA, Pesavento P, Mete A, Saeij JPJ. Three Toxoplasma gondii Dense Granule Proteins Are Required for Induction of Lewis Rat Macrophage Pyroptosis. mBio 2019; 10:e02388-18. [PMID: 30622189 PMCID: PMC6325250 DOI: 10.1128/mbio.02388-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022] Open
Abstract
Upon invasion of Lewis rat macrophages, Toxoplasma rapidly induces programmed cell death (pyroptosis), which prevents Toxoplasma replication, possibly explaining the resistance of the Lewis rat to Toxoplasma Using a chemical mutagenesis screen, we identified Toxoplasma mutants that no longer induced pyroptosis. Whole-genome sequencing led to the identification of three Toxoplasma parasitophorous vacuole-localized dense granule proteins, GRA35, GRA42, and GRA43, that are individually required for induction of Lewis rat macrophage pyroptosis. Macrophage infection with Δgra35, Δgra42, and Δgra43 parasites led to greatly reduced cell death rates and enhanced parasite replication. Lewis rat macrophages infected with parasites containing a single, double, or triple deletion of these GRAs showed similar levels of cell viability, suggesting that the three GRAs function in the same pathway. Deletion of GRA42 or GRA43 resulted in GRA35 (and other GRAs) being retained inside the parasitophorous vacuole instead of being localized to the parasitophorous vacuole membrane. Despite having greatly enhanced replication in Lewis rat macrophages in vitro, Δgra35, Δgra42, and Δgra43 parasites did not establish a chronic infection in Lewis rats. Toxoplasma did not induce F344 rat macrophage pyroptosis, but F344 rats infected with Δgra35, Δgra42, and Δgra43 parasites had reduced cyst numbers. Thus, these GRAs determined parasite in vivo fitness in F344 rats. Overall, our data suggest that these three Toxoplasma dense granule proteins play a critical role in establishing a chronic infection in vivo, independently of their role in mediating macrophage pyroptosis, likely due to their importance in regulating protein localization to the parasitophorous vacuole membrane.IMPORTANCE Inflammasomes are major components of the innate immune system and are responsible for detecting various microbial and environmental danger signals. Upon invasion of Lewis rat macrophages, the parasite rapidly activates the NLRP1 inflammasome, resulting in pyroptosis and elimination of the parasite's replication niche. The work reported here revealed that Toxoplasma GRA35, GRA42, and GRA43 are required for induction of Lewis rat macrophage pyroptosis. GRA42 and GRA43 mediate the correct localization of other GRAs, including GRA35, to the parasitophorous vacuole membrane. These three GRAs were also found to be important for parasite in vivo fitness in a Toxoplasma-susceptible rat strain, independently of their role in NLRP1 inflammasome activation, suggesting that they perform other important functions. Thus, this study identified three GRAs that mediate the induction of Lewis rat macrophage pyroptosis and are required for pathogenesis of the parasite.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Kimberly M Cirelli
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Patricio D C Barros
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Lamba Omar Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Vincent Butty
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Musa A Hassan
- College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Center for Tropical Livestock Health and Genetics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Patricia Pesavento
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Asli Mete
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
66
|
Inducible Nitric Oxide Synthase Is a Key Host Factor for Toxoplasma GRA15-Dependent Disruption of the Gamma Interferon-Induced Antiparasitic Human Response. mBio 2018; 9:mBio.01738-18. [PMID: 30301855 PMCID: PMC6178625 DOI: 10.1128/mbio.01738-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although Toxoplasma virulence mechanisms targeting gamma interferon (IFN-γ)-induced cell-autonomous antiparasitic immunity have been extensively characterized in mice, the virulence mechanisms in humans remain uncertain, partly because cell-autonomous immune responses against Toxoplasma differ markedly between mice and humans. Despite the identification of inducible nitric oxide synthase (iNOS) as an anti-Toxoplasma host factor in mice, here we show that iNOS in humans is a pro-Toxoplasma host factor that promotes the growth of the parasite. The GRA15 Toxoplasma effector-dependent disarmament of IFN-γ-induced parasite growth inhibition was evident when parasite-infected monocytes were cocultured with hepatocytes. Interleukin-1β (IL-1β), produced from monocytes in a manner dependent on GRA15 and the host's NLRP3 inflammasome, combined with IFN-γ to strongly stimulate iNOS expression in hepatocytes; this dramatically reduced the levels of indole 2,3-dioxygenase 1 (IDO1), a critically important IFN-γ-inducible anti-Toxoplasma protein in humans, thus allowing parasite growth. Taking the data together, Toxoplasma utilizes human iNOS to antagonize IFN-γ-induced IDO1-mediated cell-autonomous immunity via its GRA15 virulence factor.IMPORTANCE Toxoplasma, an important intracellular parasite of humans and animals, causes life-threatening toxoplasmosis in immunocompromised individuals. Gamma interferon (IFN-γ) is produced in the host to inhibit the proliferation of this parasite and eventually cause its death. Unlike mouse disease models, which involve well-characterized virulence strategies that are used by Toxoplasma to suppress IFN-γ-dependent immunity, the strategies used by Toxoplasma in humans remain unclear. Here, we show that GRA15, a Toxoplasma effector protein, suppresses the IFN-γ-induced indole-2,3-dioxygenase 1-dependent antiparasite immune response in human cells. Because NLRP3-dependent production of IL-1β and nitric oxide (NO) in Toxoplasma-infected human cells is involved in the GRA15-dependent virulence mechanism, blocking NO or IL-1β production in the host could represent a novel therapeutic approach for treating human toxoplasmosis.
Collapse
|
67
|
Venugopal K, Marion S. Secretory organelle trafficking in Toxoplasma gondii: A long story for a short travel. Int J Med Microbiol 2018; 308:751-760. [DOI: 10.1016/j.ijmm.2018.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022] Open
|
68
|
Bando H, Sakaguchi N, Lee Y, Pradipta A, Ma JS, Tanaka S, Lai DH, Liu J, Lun ZR, Nishikawa Y, Sasai M, Yamamoto M. Toxoplasma Effector TgIST Targets Host IDO1 to Antagonize the IFN-γ-Induced Anti-parasitic Response in Human Cells. Front Immunol 2018; 9:2073. [PMID: 30283439 PMCID: PMC6156249 DOI: 10.3389/fimmu.2018.02073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii is an important human and animal pathogen that causes life-threatening toxoplasmosis. Interferon-γ (IFN-γ) is critical for anti-T. gondii cell-autonomous immunity in both humans and mice. To proliferate efficiently within the hosts, virulent strains of T. gondii can suppress IFN-γ-dependent immunity. During parasite infection, it is well-characterized that various virulence effectors are secreted to transcriptionally or post-translationally target IFN-γ-inducible GTPases, which are essential for anti-parasite responses in mice. However, the role of IFN-γ-inducible GTPases in anti-T. gondii responses in human cells is controversial since they are non-functional or absent in humans. Instead, IFN-γ-induced tryptophan degradation by indole-2,3-dioxygenase (IDO) is important for the anti-T. gondii human response. To date, the T. gondii virulent mechanism targeting IDO in human cells remains elusive. Here we show that although humans possess two IDO isozymes, IDO1 and IDO2, human cells of various origins require IDO1 but not IDO2 for IFN-γ-induced cell-autonomous immunity to T. gondii. T. gondii secretes an effector TgIST to inhibit IDO1 mRNA expression. Taken together, the data suggests that T. gondii possesses virulence programs operated by TgIST to antagonize IFN-γ-induced IDO1-mediated anti-parasite cell-autonomous immunity in human cells.
Collapse
Affiliation(s)
- Hironori Bando
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Naoya Sakaguchi
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Youngae Lee
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ariel Pradipta
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ji Su Ma
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shun Tanaka
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - De-Hua Lai
- State Key Laboratory of Biocontrol, Center for Parasitic Organisms, School of Life Sciences, Guangzhou, China
| | - Jianfa Liu
- Department of Pathology and Pathogenic Biology, Medical College of Ningbo University, Ningbo, China
| | - Zhao-Rong Lun
- State Key Laboratory of Biocontrol, Center for Parasitic Organisms, School of Life Sciences, Guangzhou, China
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
69
|
Neospora caninum Dense Granule Protein 7 Regulates the Pathogenesis of Neosporosis by Modulating Host Immune Response. Appl Environ Microbiol 2018; 84:AEM.01350-18. [PMID: 30006392 DOI: 10.1128/aem.01350-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Neospora caninum is a protozoan parasite closely related to Toxoplasma gondii Neosporosis caused by N. caninum is considered one of the main causes of abortion in cattle and nervous-system dysfunction in dogs, and identification of the virulence factors of this parasite is important for the development of control measures. Here, we used a luciferase reporter assay to screen the dense granule proteins genes of N. caninum, and we found that NcGRA6, NcGRA7, and NcGRA14 are involved in the activation of the NF-κB, calcium/calcineurin, and cAMP/PKA signals. To analyze the functions of these proteins and Neospora cyclophilin, we successfully knocked out their genes in the Nc1 strain using plasmids containing the CRISPR/Cas9 components. Among the deficient lines, the NcGRA7-deficient parasites showed reduced virulence in mice. An RNA sequencing analysis of infected macrophage cultures showed that NcGRA7 mainly regulates the host cytokine and chemokine production. The levels of gamma interferon in the ascites fluid, CXCL10 expression in the peritoneal cells, and CCL2 expression in the spleen were lower 5 days after infection with the NcGRA7-deficient parasite than after infection with the parental strain. The parasite burden and the degree of necrosis in the brains of mice infected with the NcGRA7-deficient parasite were also lower than in those of the parental strain. Collectively, our data suggest that both the NcGRA7-dependent activation of the inflammatory response and the parasite burden are important in Neospora virulence.IMPORTANCENeospora caninum invades and replicates in a broad range of host species and cells within those hosts. The effector proteins exported by Neospora induce its pathogenesis by modulating the host immunity. We show that most of the transcriptomic effects in N. caninum-infected cells depend upon the activity of NcGRA7. A deficiency in NcGRA7 reduced the virulence of the parasite in mice. This study demonstrates the importance of NcGRA7 in the pathogenesis of neosporosis.
Collapse
|
70
|
Bai MJ, Wang JL, Elsheikha HM, Liang QL, Chen K, Nie LB, Zhu XQ. Functional Characterization of Dense Granule Proteins in Toxoplasma gondii RH Strain Using CRISPR-Cas9 System. Front Cell Infect Microbiol 2018; 8:300. [PMID: 30211128 PMCID: PMC6121064 DOI: 10.3389/fcimb.2018.00300] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/07/2018] [Indexed: 11/13/2022] Open
Abstract
Infection with the apicomplexan protozoan parasite Toxoplasma gondii is an ongoing public health problem. The parasite's ability to invade and replicate within the host cell is dependent on many effectors, such as dense granule proteins (GRAs) released from the specialized organelle dense granules, into host cells. GRAs have emerged as important determinants of T. gondii pathogenesis. However, the functions of some GRAs remain undefined. In this study, we used CRISPR-Cas9 technique to disrupt 17 GRA genes (GRA11, GRA12 bis, GRA13, GRA14, GRA20, GRA21, GRA28-31, GRA33-38, and GRA40) in the virulent T. gondii RH strain. The CRISPR-Cas9 constructs abolished the expression of the 17 GRA genes. Functional characterization of single ΔGRA mutants was achieved in vitro using cell-based plaque assay and egress assay, and in vivo in BALB/c mice. Targeted deletion of these 17 GRA genes had no significant effect neither on the in vitro growth and egress of the mutant strains from the host cells nor on the parasite virulence in the mouse model of infection. Comparative analysis of the transcriptomics data of the 17 GRA genes suggest that GRAs may serve different functions in different genotypes and life cycle stages of the parasite. In sum, although these 17 GRAs might not be essential for RH strain growth in vitro or virulence in mice, they may have roles in other strains or parasite stages, which warrants further investigations.
Collapse
Affiliation(s)
- Meng-Jie Bai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Qin-Li Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Kai Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lan-Bi Nie
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
71
|
Liu Q, Gao WW, Elsheikha HM, He JJ, Li FC, Yang WB, Zhu XQ. Transcriptomic analysis reveals Toxoplasma gondii strain-specific differences in host cell response to dense granule protein GRA15. Parasitol Res 2018; 117:2785-2793. [PMID: 29916065 DOI: 10.1007/s00436-018-5966-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/08/2018] [Indexed: 11/27/2022]
Abstract
Growth and replication of the protozoan parasite Toxoplasma gondii within host cell entail the production of several effector proteins, which the parasite exploits for counteracting the host's immune response. Despite considerable research to define the host signaling pathways manipulated by T. gondii and their effectors, there has been limited progress into understanding how individual members of the dense granule proteins (GRAs) modulate gene expression within host cells. The aim of this study was to evaluate whether T. gondii GRA15 protein plays any role in regulating host gene expression. Baby hamster kidney cells (BHK-21) were transfected with plasmids encoding GRA15 genes of either type I GT1 strain (GRA15I) or type II PRU strain (GRA15II). Gene expression patterns of transfected and nontransfected BHK-21 cells were investigated using RNA-sequencing analysis. GRA15I and GRA15II induced both known and novel transcriptional changes in the transfected BHK-21 cells compared with nontransfected cells. Pathway analysis revealed that GRA15II was mainly involved in the regulation of tumor necrosis factor (TNF), NF-κB, HTLV-I infection, and NOD-like receptor signaling pathways. GRA15I preferentially influenced the synthesis of unsaturated fatty acids in host cells. Our findings support the hypothesis that certain functions of GRA15 protein are strain dependent and that GRA15 modulates the expression of signaling pathways and genes with important roles in T. gondii pathophysiology. A greater understanding of host signaling pathways influenced by T. gondii effectors would allow the development of more efficient anti-T. gondii therapeutic schemes, capitalizing on disrupting parasite virulence factors to advance the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China
| | - Wen-Wei Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| | - Fa-Cai Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Wen-Bin Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| |
Collapse
|
72
|
Marino ND, Panas MW, Franco M, Theisen TC, Naor A, Rastogi S, Buchholz KR, Lorenzi HA, Boothroyd JC. Identification of a novel protein complex essential for effector translocation across the parasitophorous vacuole membrane of Toxoplasma gondii. PLoS Pathog 2018; 14:e1006828. [PMID: 29357375 PMCID: PMC5794187 DOI: 10.1371/journal.ppat.1006828] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/01/2018] [Accepted: 12/18/2017] [Indexed: 01/08/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can infect virtually all nucleated cells in warm-blooded animals. The ability of Toxoplasma tachyzoites to infect and successfully manipulate its host is dependent on its ability to transport "GRA" proteins that originate in unique secretory organelles called dense granules into the host cell in which they reside. GRAs have diverse roles in Toxoplasma's intracellular lifecycle, including co-opting crucial host cell functions and proteins, such as the cell cycle, c-Myc and p38 MAP kinase. Some of these GRA proteins, such as GRA16 and GRA24, are secreted into the parasitophorous vacuole (PV) within which Toxoplasma replicates and are transported across the PV membrane (PVM) into the host cell, but the translocation process and its machinery are not well understood. We previously showed that TgMYR1, which is cleaved by TgASP5 into two fragments, localizes to the PVM and is essential for GRA transport into the host cell. To identify additional proteins necessary for effector transport, we screened Toxoplasma mutants defective in c-Myc up-regulation for their ability to export GRA16 and GRA24 to the host cell nucleus. Here we report that novel proteins MYR2 and MYR3 play a crucial role in translocation of a subset of GRAs into the host cell. MYR2 and MYR3 are secreted into the PV space and co-localize with PV membranes and MYR1. Consistent with their predicted transmembrane domains, all three proteins are membrane-associated, and MYR3, but not MYR2, stably associates with MYR1, whose N- and C-terminal fragments are disulfide-linked. We further show that fusing intrinsically disordered effectors to a structured DHFR domain blocks the transport of other effectors, consistent with a translocon-based model of effector transport. Overall, these results reveal a novel complex at the PVM that is essential for effector translocation into the host cell.
Collapse
Affiliation(s)
- Nicole D. Marino
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael W. Panas
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Magdalena Franco
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Terence C. Theisen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Adit Naor
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Suchita Rastogi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kerry R. Buchholz
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
73
|
Brasil TR, Freire-de-Lima CG, Morrot A, Vetö Arnholdt AC. Host- Toxoplasma gondii Coadaptation Leads to Fine Tuning of the Immune Response. Front Immunol 2017; 8:1080. [PMID: 28955329 PMCID: PMC5601305 DOI: 10.3389/fimmu.2017.01080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
Toxoplasma gondii has successfully developed strategies to evade host's immune response and reach immune privileged sites, which remains in a controlled environment inside quiescent tissue cysts. In this review, we will approach several known mechanisms used by the parasite to modulate mainly the murine immune system at its favor. In what follows, we review recent findings revealing interference of host's cell autonomous immunity and cell signaling, gene expression, apoptosis, and production of microbicide molecules such as nitric oxide and oxygen reactive species during parasite infection. Modulation of host's metalloproteinases of extracellular matrix is also discussed. These immune evasion strategies are determinant to parasite dissemination throughout the host taking advantage of cells from the immune system to reach brain and retina, crossing crucial hosts' barriers.
Collapse
Affiliation(s)
- Thaís Rigueti Brasil
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| | | | - Alexandre Morrot
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
74
|
Wang JL, Elsheikha HM, Zhu WN, Chen K, Li TT, Yue DM, Zhang XX, Huang SY, Zhu XQ. Immunization with Toxoplasma gondii GRA17 Deletion Mutant Induces Partial Protection and Survival in Challenged Mice. Front Immunol 2017; 8:730. [PMID: 28706518 PMCID: PMC5489627 DOI: 10.3389/fimmu.2017.00730] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/09/2017] [Indexed: 01/10/2023] Open
Abstract
Toxoplasmosis remains a world-threatening disease largely because of the lack of a fully effective vaccine. Here, we created a ΔGRA17 mutant by disrupting the virulence factor GRA17 using CRISPR-Cas9 method. Then, we tested whether ΔGRA17 tachyzoites can be used as a live-attenuated vaccine against acute, chronic, and congenital Toxoplasma gondii infection in mice. Immune response evoked by ΔGRA17 immunization suggested a sequential Th1 and Th2 T cell response, indicated by high levels of Th1 and a mixed Th1/Th2 cytokines at 28 and 70 days after immunization, respectively. ΔGRA17-mediated immunity fully protected mice against lethal infection with wild-type (wt) RH strain, heterologous challenge with PYS, and TgC7 strains of the Chinese ToxoDB#9 genotype, and T. gondii Pru strain. Although parasite cysts were detected in 8 out of 10 immunized mice, cyst burden in the brain was significantly reduced (P < 0.05) in immunized mice (53 ± 15 cysts/brain) compared to non-immunized mice (4,296 ± 687 cysts/brain). In respect to congenital infection, the litter size, survival rate, and body weight (BW) of pups born to ΔGRA17-immunized dams were not different compared to pups born to naïve control dams (P = 0.24). However, a marked reduction in the litter size (P < 0.001), survival rate, and BW (P < 0.01) of pups born to non-immunized and infected dams was detected. Also, immunized dams infected with type II Pru strain had significantly (P < 0.001) less cyst burden in the brain compared with non-immunized and infected dams. These findings show that immunization with ΔGRA17 strain evokes cell-mediated and neutralizing antibody responses and confers some degree of protection against challenge with homologous and heterologous virulent T. gondii strains.
Collapse
Affiliation(s)
- Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Wei-Ning Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Kai Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ting-Ting Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dong-Mei Yue
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Xuan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
75
|
Buaillon C, Guerrero NA, Cebrian I, Blanié S, Lopez J, Bassot E, Vasseur V, Santi-Rocca J, Blanchard N. MHC I presentation of Toxoplasma gondii immunodominant antigen does not require Sec22b and is regulated by antigen orientation at the vacuole membrane. Eur J Immunol 2017; 47:1160-1170. [PMID: 28508576 DOI: 10.1002/eji.201646859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022]
Abstract
The intracellular Toxoplasma gondii parasite replicates within a parasitophorous vacuole (PV). T. gondii secretes proteins that remain soluble in the PV space, are inserted into PV membranes or are exported beyond the PV boundary. In addition to supporting T. gondii growth, these proteins can be processed and presented by MHC I for CD8+ T-cell recognition. Yet it is unclear whether membrane binding influences the processing pathways employed and if topology of membrane antigens impacts their MHC I presentation. Here we report that the MHC I pathways of soluble and membrane-bound antigens differ in their requirement for host ER recruitment. In contrast to the soluble SAG1-OVA model antigen, we find that presentation of the membrane-bound GRA6 is independent from the SNARE Sec22b, a key molecule for transfer of host endoplasmic reticulum components onto the PV. Using parasites modified to secrete a transmembrane antigen with opposite orientations, we further show that MHC I presentation is highly favored when the C-terminal epitope is exposed to the host cell cytosol, which corresponds to GRA6 natural orientation. Our data suggest that the biochemical properties of antigens released by intracellular pathogens critically guide their processing pathway and are valuable parameters to consider for vaccination strategies.
Collapse
Affiliation(s)
- Célia Buaillon
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Nestor A Guerrero
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Ignacio Cebrian
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/UNCuyo, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Sophie Blanié
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Jodie Lopez
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Emilie Bassot
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Virginie Vasseur
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Julien Santi-Rocca
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Nicolas Blanchard
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
76
|
Abstract
Early electron microscopy studies revealed the elaborate cellular features that define the unique adaptations of apicomplexan parasites. Among these were bulbous rhoptry (ROP) organelles and small, dense granules (GRAs), both of which are secreted during invasion of host cells. These early morphological studies were followed by the exploration of the cellular contents of these secretory organelles, revealing them to be comprised of highly divergent protein families with few conserved domains or predicted functions. In parallel, studies on host-pathogen interactions identified many host signaling pathways that were mysteriously altered by infection. It was only with the advent of forward and reverse genetic strategies that the connections between individual parasite effectors and the specific host pathways that they targeted finally became clear. The current repertoire of parasite effectors includes ROP kinases and pseudokinases that are secreted during invasion and that block host immune pathways. Similarly, many secretory GRA proteins alter host gene expression by activating host transcription factors, through modification of chromatin, or by inducing small noncoding RNAs. These effectors highlight novel mechanisms by which T. gondii has learned to harness host signaling to favor intracellular survival and will guide future studies designed to uncover the additional complexity of this intricate host-pathogen interaction.
Collapse
|
77
|
Nunes-Hasler P, Demaurex N. The ER phagosome connection in the era of membrane contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1513-1524. [PMID: 28432021 DOI: 10.1016/j.bbamcr.2017.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
Abstract
Phagocytosis is an essential mechanism through which innate immune cells ingest foreign material that is either destroyed or used to generate and present antigens and initiate adaptive immune responses. While a role for the ER during phagosome biogenesis has been recognized, whether fusion with ER cisternae or vesicular derivatives occurs has been the source of much contention. Membrane contact sites (MCS) are tight appositions between ER membranes and various organelles that coordinate multiple functions including localized signalling, lipid transfer and trafficking. The discovery that MCS form between the ER and phagosomes now begs the question of whether MCS play a role in connecting the ER to phagosomes under different contexts. In this review, we consider the implications of MCS between the ER and phagosomes during cross-presentation and infection with intracellular pathogens. We also discuss the similarities between these contacts and those between the ER and plasma membrane and acidic organelles such as endosomes and lysosomes. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland.
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| |
Collapse
|
78
|
Phenotypes Associated with Knockouts of Eight Dense Granule Gene Loci (GRA2-9) in Virulent Toxoplasma gondii. PLoS One 2016; 11:e0159306. [PMID: 27458822 PMCID: PMC4961421 DOI: 10.1371/journal.pone.0159306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii actively invades host cells and establishes a parasitophorous vacuole (PV) that accumulates many proteins secreted by the dense granules (GRA proteins). To date, at least 23 GRA proteins have been reported, though the function(s) of most of these proteins still remains unknown. We targeted gene knockouts at ten GRA gene loci (GRA1-10) to investigate the cellular roles and essentiality of these classical GRA proteins during acute infection in the virulent type I RH strain. While eight of these genes (GRA2-9) were successfully knocked out, targeted knockouts at the GRA1 and GRA10 loci were not obtained, suggesting these GRA proteins may be essential. As expected, the Δgra2 and Δgra6 knockouts failed to form an intravacuolar network (IVN). Surprisingly, Δgra7 exhibited hyper-formation of the IVN in both normal and lipid-free growth conditions. No morphological alterations were identified in parasite or PV structures in the Δgra3, Δgra4, Δgra5, Δgra8, or Δgra9 knockouts. With the exception of the Δgra3 and Δgra8 knockouts, all of the GRA knockouts exhibited defects in their infection rate in vitro. While the single GRA knockouts did not exhibit reduced replication rates in vitro, replication rate defects were observed in three double GRA knockout strains (Δgra4Δgra6, Δgra3Δgra5 and Δgra3Δgra7). However, the virulence of single or double GRA knockout strains in CD1 mice was not affected. Collectively, our results suggest that while the eight individual GRA proteins investigated in this study (GRA2-9) are not essential, several GRA proteins may provide redundant and potentially important functions during acute infection.
Collapse
|
79
|
Fox BA, Sanders KL, Rommereim LM, Guevara RB, Bzik DJ. Secretion of Rhoptry and Dense Granule Effector Proteins by Nonreplicating Toxoplasma gondii Uracil Auxotrophs Controls the Development of Antitumor Immunity. PLoS Genet 2016; 12:e1006189. [PMID: 27447180 PMCID: PMC4957766 DOI: 10.1371/journal.pgen.1006189] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/22/2016] [Indexed: 12/19/2022] Open
Abstract
Nonreplicating type I uracil auxotrophic mutants of Toxoplasma gondii possess a potent ability to activate therapeutic immunity to established solid tumors by reversing immune suppression in the tumor microenvironment. Here we engineered targeted deletions of parasite secreted effector proteins using a genetically tractable Δku80 vaccine strain to show that the secretion of specific rhoptry (ROP) and dense granule (GRA) proteins by uracil auxotrophic mutants of T. gondii in conjunction with host cell invasion activates antitumor immunity through host responses involving CD8α+ dendritic cells, the IL-12/interferon-gamma (IFN-γ) TH1 axis, as well as CD4+ and CD8+ T cells. Deletion of parasitophorous vacuole membrane (PVM) associated proteins ROP5, ROP17, ROP18, ROP35 or ROP38, intravacuolar network associated dense granule proteins GRA2 or GRA12, and GRA24 which traffics past the PVM to the host cell nucleus severely abrogated the antitumor response. In contrast, deletion of other secreted effector molecules such as GRA15, GRA16, or ROP16 that manipulate host cell signaling and transcriptional pathways, or deletion of PVM associated ROP21 or GRA3 molecules did not affect the antitumor activity. Association of ROP18 with the PVM was found to be essential for the development of the antitumor responses. Surprisingly, the ROP18 kinase activity required for resistance to IFN-γ activated host innate immunity related GTPases and virulence was not essential for the antitumor response. These data show that PVM functions of parasite secreted effector molecules, including ROP18, manipulate host cell responses through ROP18 kinase virulence independent mechanisms to activate potent antitumor responses. Our results demonstrate that PVM associated rhoptry effector proteins secreted prior to host cell invasion and dense granule effector proteins localized to the intravacuolar network and host nucleus that are secreted after host cell invasion coordinately control the development of host immune responses that provide effective antitumor immunity against established ovarian cancer.
Collapse
Affiliation(s)
- Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Kiah L. Sanders
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Leah M. Rommereim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Rebekah B. Guevara
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
80
|
Ozaki T, Muramatsu R, Sasai M, Yamamoto M, Kubota Y, Fujinaka T, Yoshimine T, Yamashita T. The P2X4 receptor is required for neuroprotection via ischemic preconditioning. Sci Rep 2016; 6:25893. [PMID: 27173846 PMCID: PMC4865734 DOI: 10.1038/srep25893] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Ischemic preconditioning (IPC), a procedure consisting of transient ischemia and subsequent reperfusion, provides ischemic tolerance against prolonged ischemia in the brain. Although the blood flow changes mediated by IPC are primarily perceived by vascular endothelial cells, the role of these cells in ischemic tolerance has not been fully clarified. In this study, we found that the P2X4 receptor, which is abundantly expressed in vascular endothelial cells, is required for ischemic tolerance following middle artery occlusion (MCAO) in mice. Mechanistically, the P2X4 receptor was stimulated by fluid shear stress, which mimics reperfusion, thus promoting the increased expression of osteopontin, a neuroprotective molecule. Furthermore, we found that the intracerebroventricular administration of osteopontin was sufficient to exert a neuroprotective effect mediated by preconditioning-stimulated P2X4 receptor activation. These results demonstrate a novel mechanism whereby vascular endothelial cells are involved in ischemic tolerance.
Collapse
Affiliation(s)
- Tomohiko Ozaki
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.,Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Rieko Muramatsu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Kubota
- The Laboratory of Vascular Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiyuki Fujinaka
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshiki Yoshimine
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
81
|
Konradt C, Ueno N, Christian DA, Delong JH, Pritchard GH, Herz J, Bzik DJ, Koshy AA, McGavern DB, Lodoen MB, Hunter CA. Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system. Nat Microbiol 2016; 1:16001. [PMID: 27572166 PMCID: PMC4966557 DOI: 10.1038/nmicrobiol.2016.1] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
Abstract
An important function of the blood-brain barrier is to exclude pathogens from the central nervous system, but some microorganisms benefit from the ability to enter this site. It has been proposed that Toxoplasma gondii can cross biological barriers as a motile extracellular form that uses transcellular or paracellular migration, or by infecting a host cell that then crosses the blood-brain barrier. Unexpectedly, analysis of acutely infected mice revealed significant numbers of free parasites in the blood and the presence of infected endothelial cells in the brain vasculature. The use of diverse transgenic parasites combined with reporter mice and intravital imaging demonstrated that replication in and lysis of endothelial cells precedes invasion of the central nervous system, and highlight a novel mechanism for parasite entry to the central nervous system.
Collapse
Affiliation(s)
- Christoph Konradt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Norikiyo Ueno
- Department of Molecular Biology and Biochemistry and Institute for Immunology, University of California, Irvine, California, 92697, USA
| | - David A. Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Jonathan H. Delong
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Jasmin Herz
- National Institute of Neurological Disorders and Stroke, The National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, 03756, USA
| | - Anita A. Koshy
- Department of Neurology, University of Arizona, Tucson, Arizona, 85724, USA
| | - Dorian B. McGavern
- National Institute of Neurological Disorders and Stroke, The National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Melissa B. Lodoen
- Department of Molecular Biology and Biochemistry and Institute for Immunology, University of California, Irvine, California, 92697, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
82
|
Lopez J, Bittame A, Massera C, Vasseur V, Effantin G, Valat A, Buaillon C, Allart S, Fox BA, Rommereim LM, Bzik DJ, Schoehn G, Weissenhorn W, Dubremetz JF, Gagnon J, Mercier C, Cesbron-Delauw MF, Blanchard N. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen. Cell Rep 2015; 13:2273-86. [PMID: 26628378 DOI: 10.1016/j.celrep.2015.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/11/2015] [Accepted: 10/30/2015] [Indexed: 11/20/2022] Open
Abstract
Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.
Collapse
Affiliation(s)
- Jodie Lopez
- INSERM, U1043, Toulouse 31300, France; CNRS, UMR 5282, Toulouse 31300, France; Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UPS, Toulouse 31300, France
| | - Amina Bittame
- CNRS, UMR 5163, Grenoble 38000, France; Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), Université Grenoble Alpes, Grenoble 38000, France
| | - Céline Massera
- CNRS, UMR 5163, Grenoble 38000, France; Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), Université Grenoble Alpes, Grenoble 38000, France
| | - Virginie Vasseur
- INSERM, U1043, Toulouse 31300, France; CNRS, UMR 5282, Toulouse 31300, France; Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UPS, Toulouse 31300, France
| | - Grégory Effantin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, Grenoble 38044, France; CNRS, IBS, Grenoble 38044, France; CEA, IBS, Grenoble 38044, France; CNRS, Unit for Virus Host-Cell Interactions (UVHCI), Grenoble 38042, France
| | - Anne Valat
- CNRS, UMR 5163, Grenoble 38000, France; Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), Université Grenoble Alpes, Grenoble 38000, France
| | - Célia Buaillon
- INSERM, U1043, Toulouse 31300, France; CNRS, UMR 5282, Toulouse 31300, France; Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UPS, Toulouse 31300, France
| | - Sophie Allart
- INSERM, U1043, Toulouse 31300, France; CNRS, UMR 5282, Toulouse 31300, France; Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UPS, Toulouse 31300, France
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Leah M Rommereim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Guy Schoehn
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, Grenoble 38044, France; CNRS, IBS, Grenoble 38044, France; CEA, IBS, Grenoble 38044, France; CNRS, Unit for Virus Host-Cell Interactions (UVHCI), Grenoble 38042, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, Grenoble 38044, France; CNRS, IBS, Grenoble 38044, France; CEA, IBS, Grenoble 38044, France; CNRS, Unit for Virus Host-Cell Interactions (UVHCI), Grenoble 38042, France
| | | | - Jean Gagnon
- CNRS, UMR 5163, Grenoble 38000, France; Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), Université Grenoble Alpes, Grenoble 38000, France
| | - Corinne Mercier
- CNRS, UMR 5163, Grenoble 38000, France; Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), Université Grenoble Alpes, Grenoble 38000, France
| | - Marie-France Cesbron-Delauw
- CNRS, UMR 5163, Grenoble 38000, France; Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), Université Grenoble Alpes, Grenoble 38000, France
| | - Nicolas Blanchard
- INSERM, U1043, Toulouse 31300, France; CNRS, UMR 5282, Toulouse 31300, France; Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UPS, Toulouse 31300, France.
| |
Collapse
|
83
|
Hammoudi PM, Jacot D, Mueller C, Di Cristina M, Dogga SK, Marq JB, Romano J, Tosetti N, Dubrot J, Emre Y, Lunghi M, Coppens I, Yamamoto M, Sojka D, Pino P, Soldati-Favre D. Fundamental Roles of the Golgi-Associated Toxoplasma Aspartyl Protease, ASP5, at the Host-Parasite Interface. PLoS Pathog 2015; 11:e1005211. [PMID: 26473595 PMCID: PMC4608785 DOI: 10.1371/journal.ppat.1005211] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/16/2015] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii possesses sets of dense granule proteins (GRAs) that either assemble at, or cross the parasitophorous vacuole membrane (PVM) and exhibit motifs resembling the HT/PEXEL previously identified in a repertoire of exported Plasmodium proteins. Within Plasmodium spp., cleavage of the HT/PEXEL motif by the endoplasmic reticulum-resident protease Plasmepsin V precedes trafficking to and export across the PVM of proteins involved in pathogenicity and host cell remodelling. Here, we have functionally characterized the T. gondii aspartyl protease 5 (ASP5), a Golgi-resident protease that is phylogenetically related to Plasmepsin V. We show that deletion of ASP5 causes a significant loss in parasite fitness in vitro and an altered virulence in vivo. Furthermore, we reveal that ASP5 is necessary for the cleavage of GRA16, GRA19 and GRA20 at the PEXEL-like motif. In the absence of ASP5, the intravacuolar nanotubular network disappears and several GRAs fail to localize to the PVM, while GRA16 and GRA24, both known to be targeted to the host cell nucleus, are retained within the vacuolar space. Additionally, hypermigration of dendritic cells and bradyzoite cyst wall formation are impaired, critically impacting on parasite dissemination and persistence. Overall, the absence of ASP5 dramatically compromises the parasite’s ability to modulate host signalling pathways and immune responses. The opportunistic pathogen Toxoplasma gondii infects a large range of nucleated cells where it replicates intracellularly within a parasitophorous vacuole (PV) surrounded by a membrane (PVM). Parasites constitutively secrete dense-granule proteins (GRAs) both into and beyond the PV which participate in remodelling of the PVM, recruitment of host organelles, neutralization of the host cellular defences, and subversion of host cell functioning. In addition, the GRAs critically contribute to cyst wall formation, a process that critically ensures parasite persistence and transmission. To act as effector molecules, some of the GRAs must be translocated across the PVM. Within the related apicomplexan parasite P. falciparum, a repertoire of proteins exported beyond the PVM contain a motif cleaved by a specific protease, Plasmepsin V. Examination of the repertoire of GRAs in T. gondii revealed that some proteins exhibit such export-like motifs suggestive of protease involvement. In this study, we have functionally characterized the related aspartyl protease 5 (TgASP5) in both virulent and persistent T. gondii strains, and have investigated the phenotypic consequences of its deletion in the context of overall parasite biology, its intracellular niche, the infected host cells and the murine model. Our findings revealed fundamental roles of TgASP5 at the host-parasite interface.
Collapse
Affiliation(s)
- Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Damien Jacot
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Christina Mueller
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Julia Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Yalin Emre
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Matteo Lunghi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daniel Sojka
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Paco Pino
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
84
|
Abstract
Toxoplasmosis is the clinical and pathological consequence of acute infection with the obligate intracellular apicomplexan parasite Toxoplasma gondii. Symptoms result from tissue destruction that accompanies lytic parasite growth. This review updates current understanding of the host cell invasion, parasite replication, and eventual egress that constitute the lytic cycle, as well as the ways T. gondii manipulates host cells to ensure its survival. Since the publication of a previous iteration of this review 15 years ago, important advances have been made in our molecular understanding of parasite growth and mechanisms of host cell egress, and knowledge of the parasite's manipulation of the host has rapidly progressed. Here we cover molecular advances and current conceptual frameworks that include each of these topics, with an eye to what may be known 15 years from now.
Collapse
Affiliation(s)
- Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York 14127;
| | - Bradley I Coleman
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| |
Collapse
|
85
|
RabGDIα is a negative regulator of interferon-γ-inducible GTPase-dependent cell-autonomous immunity to Toxoplasma gondii. Proc Natl Acad Sci U S A 2015; 112:E4581-90. [PMID: 26240314 DOI: 10.1073/pnas.1510031112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
IFN-γ orchestrates cell-autonomous host defense against various intracellular vacuolar pathogens. IFN-γ-inducible GTPases, such as p47 immunity-related GTPases (IRGs) and p65 guanylate-binding proteins (GBPs), are recruited to pathogen-containing vacuoles, which is important for disruption of the vacuoles, culminating in the cell-autonomous clearance. Although the positive regulation for the proper recruitment of IRGs and GBPs to the vacuoles has been elucidated, the suppressive mechanism is unclear. Here, we show that Rab GDP dissociation inhibitor α (RabGDIα), originally identified as a Rab small GTPase inhibitor, is a negative regulator of IFN-γ-inducible GTPases in cell-autonomous immunity to the intracellular pathogen Toxoplasma gondii. Overexpression of RabGDIα, but not of RabGDIβ, impaired IFN-γ-dependent reduction of T. gondii numbers. Conversely, RabGDIα deletion in macrophages and fibroblasts enhanced the IFN-γ-induced clearance of T. gondii. Furthermore, upon a high dose of infection by T. gondii, RabGDIα-deficient mice exhibited a decreased parasite burden in the brain and increased resistance in the chronic phase than did control mice. Among members of IRGs and GBPs important for the parasite clearance, Irga6 and Gbp2 alone were more frequently recruited to T. gondii-forming parasitophorous vacuoles in RabGDIα-deficient cells. Notably, Gbp2 positively controlled Irga6 recruitment that was inhibited by direct and specific interactions of RabGDIα with Gbp2 through the lipid-binding pocket. Taken together, our results suggest that RabGDIα inhibits host defense against T. gondii by negatively regulating the Gbp2-Irga6 axis of IFN-γ-dependent cell-autonomous immunity.
Collapse
|
86
|
Hakimi MA, Bougdour A. Toxoplasma 's ways of manipulating the host transcriptome via secreted effectors. Curr Opin Microbiol 2015; 26:24-31. [DOI: 10.1016/j.mib.2015.04.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 12/12/2022]
|
87
|
Ning HR, Huang SY, Wang JL, Xu QM, Zhu XQ. Genetic Diversity of Toxoplasma gondii Strains from Different Hosts and Geographical Regions by Sequence Analysis of GRA20 Gene. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:345-8. [PMID: 26174830 PMCID: PMC4510676 DOI: 10.3347/kjp.2015.53.3.345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/05/2015] [Accepted: 04/12/2015] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii is a eukaryotic parasite of the phylum Apicomplexa, which infects all warm-blood animals, including humans. In the present study, we examined sequence variation in dense granule 20 (GRA20) genes among T. gondii isolates collected from different hosts and geographical regions worldwide. The complete GRA20 genes were amplified from 16 T. gondii isolates using PCR, sequence were analyzed, and phylogenetic reconstruction was analyzed by maximum parsimony (MP) and maximum likelihood (ML) methods. The results showed that the complete GRA20 gene sequence was 1,586 bp in length among all the isolates used in this study, and the sequence variations in nucleotides were 0-7.9% among all strains. However, removing the type III strains (CTG, VEG), the sequence variations became very low, only 0-0.7%. These results indicated that the GRA20 sequence in type III was more divergence. Phylogenetic analysis of GRA20 sequences using MP and ML methods can differentiate 2 major clonal lineage types (type I and type III) into their respective clusters, indicating the GRA20 gene may represent a novel genetic marker for intraspecific phylogenetic analyses of T. gondii.
Collapse
Affiliation(s)
- Hong-Rui Ning
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China ; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Qian-Ming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Xing-Quan Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China ; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| |
Collapse
|
88
|
English ED, Adomako-Ankomah Y, Boyle JP. Secreted effectors in Toxoplasma gondii and related species: determinants of host range and pathogenesis? Parasite Immunol 2015; 37:127-40. [PMID: 25655311 PMCID: PMC4359005 DOI: 10.1111/pim.12166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/26/2014] [Indexed: 12/20/2022]
Abstract
Recent years have witnessed the discovery of a number of secreted proteins in Toxoplasma gondii that play important roles in host-pathogen interactions and parasite virulence, particularly in the mouse model. However, the role that these proteins play in driving the unique features of T. gondii compared to some of its nearest apicomplexan relatives (Hammondia hammondi and Neospora caninum) is unknown. These unique features include distinct dissemination characteristics in vivo and a vast host range. In this review we comprehensively survey what is known about disease outcome, the host response and host range for T. gondii, H. hammondi, and N. caninum. We then review what is presently known about recently identified secreted virulence effectors in these three genetically related, but phenotypically distinct, species. Finally we exploit the existence of genome sequences for these three organisms and discuss what is known about the presence, and functionality, of key T. gondii effectors in these three species.
Collapse
Affiliation(s)
- E D English
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
89
|
Morlon‐Guyot J, Pastore S, Berry L, Lebrun M, Daher W. Toxoplasma gondii
Vps11, a subunit of
HOPS
and
CORVET
tethering complexes, is essential for the biogenesis of secretory organelles. Cell Microbiol 2015; 17:1157-78. [DOI: 10.1111/cmi.12426] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Juliette Morlon‐Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| | - Sandra Pastore
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| | - Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| |
Collapse
|
90
|
Leroux LP, Dasanayake D, Rommereim LM, Fox BA, Bzik DJ, Jardim A, Dzierszinski FS. Secreted Toxoplasma gondii molecules interfere with expression of MHC-II in interferon gamma-activated macrophages. Int J Parasitol 2015; 45:319-32. [PMID: 25720921 DOI: 10.1016/j.ijpara.2015.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 11/15/2022]
Abstract
The obligate intracellular protozoan parasite Toxoplasma gondii interferes with major histocompatibility complex class II antigen presentation to dampen host CD4(+) T cell responses. While it is known that T. gondii inhibits major histocompatibility complex class II gene transcription and expression in infected host cells, the mechanism of this host manipulation is unknown. Here, we show that soluble parasite proteins inhibit IFNγ-induced expression of major histocompatibility complex class II on the surface of the infected cell in a dose-dependent response that was abolished by protease treatment. Subcellular fractionation of T. gondii tachyzoites revealed that the major histocompatibility complex class II inhibitory activity co-partitioned with rhoptries and/or dense granules. However, parasite mutants deleted for single rhoptries or dense granules genes (ROP1, 4/7, 14, 16 and 18 or GRA 2-9 and 12 knock-out strains) retained the ability to inhibit expression of major histocompatibility complex class II. In addition, excreted/secreted antigens released by extracellular tachyzoites displayed immunomodulatory activity characterized by an inhibition of major histocompatibility complex class II expression, and reduced expression and release of TNFα by macrophages. Tandem MS analysis of parasite excreted/secreted antigens generated a list of T. gondii secreted proteins that may participate in major histocompatibility complex class II inhibition and the modulation of host immune functions.
Collapse
Affiliation(s)
- Louis-Philippe Leroux
- Institute of Parasitology, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Centre for Host-Parasite Interaction, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Dayal Dasanayake
- Institute of Parasitology, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Centre for Host-Parasite Interaction, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Leah M Rommereim
- Geisel School of Medicine at Dartmouth, Borwell Research Building, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Barbara A Fox
- Geisel School of Medicine at Dartmouth, Borwell Research Building, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - David J Bzik
- Geisel School of Medicine at Dartmouth, Borwell Research Building, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Armando Jardim
- Institute of Parasitology, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Centre for Host-Parasite Interaction, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Florence S Dzierszinski
- Institute of Parasitology, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Carleton University Research Office, Dunton Tower, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
91
|
Mercier C, Cesbron-Delauw MF. Toxoplasma secretory granules: one population or more? Trends Parasitol 2015; 31:60-71. [PMID: 25599584 DOI: 10.1016/j.pt.2014.12.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 01/20/2023]
Abstract
In Toxoplasma gondii, dense granules are known as the storage secretory organelles of the so-called GRA proteins (for dense granule proteins), which are destined to the parasitophorous vacuole (PV) and the PV-derived cyst wall. Recently, newly annotated GRA proteins targeted to the host cell nucleus have enlarged this view. Here we provide an update on the latest developments on the Toxoplasma secreted proteins, which to date have been mainly studied at both the tachyzoite and bradyzoite stages, and we point out that recent discoveries could open the issue of a possible, yet uncharacterized, distinct secretory pathway in Toxoplasma.
Collapse
Affiliation(s)
- Corinne Mercier
- Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), CNRS UMR 5163 - Université Joseph Fourier, Grenoble, France.
| | - Marie-France Cesbron-Delauw
- Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), CNRS UMR 5163 - Université Joseph Fourier, Grenoble, France.
| |
Collapse
|
92
|
Hunter C, Christian D. Parasite uses host NFAT to co-opt immune response. J Exp Med 2014; 211:1923. [PMID: 25246389 PMCID: PMC4172225 DOI: 10.1084/jem.21110insight2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|