51
|
Zhang K, Chen Y, Wen G, Mahata M, Rao F, Fung MM, Vaingankar S, Biswas N, Gayen JR, Friese RS, Mahata SK, Hamilton BA, O’Connor DT. Catecholamine storage vesicles: role of core protein genetic polymorphisms in hypertension. Curr Hypertens Rep 2011; 13:36-45. [PMID: 21104344 PMCID: PMC3016145 DOI: 10.1007/s11906-010-0170-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hypertension is a complex trait with deranged autonomic control of the circulation. The sympathoadrenal system exerts minute-to-minute control over cardiac output and vascular tone. Catecholamine storage vesicles (or chromaffin granules) of the adrenal medulla contain remarkably high concentrations of chromogranins/secretogranins (or "granins"), catecholamines, neuropeptide Y, adenosine triphosphate (ATP), and Ca(2+). Within secretory granules, granins are co-stored with catecholamine neurotransmitters and co-released upon stimulation of the regulated secretory pathway. The principal granin family members, chromogranin A (CHGA), chromogranin B (CHGB), and secretogranin II (SCG2), may have evolved from shared ancestral exons by gene duplication. This article reviews human genetic variation at loci encoding the major granins and probes the effects of such polymorphisms on blood pressure, using twin pairs to probe heritability and individuals with the most extreme blood pressure values in the population to study hypertension.
Collapse
Affiliation(s)
- Kuixing Zhang
- Department of Medicine and Institute for Genomic Medicine (IGM), University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838 USA
| | - Yuqing Chen
- Department of Medicine and Institute for Genomic Medicine (IGM), University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838 USA
| | - Gen Wen
- Department of Medicine and Institute for Genomic Medicine (IGM), University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838 USA
| | - Manjula Mahata
- Department of Medicine and Institute for Genomic Medicine (IGM), University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838 USA
| | - Fangwen Rao
- Department of Medicine and Institute for Genomic Medicine (IGM), University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838 USA
| | - Maple M. Fung
- Department of Medicine and Institute for Genomic Medicine (IGM), University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838 USA
- VA San Diego Healthcare System, San Diego, CA USA
| | - Sucheta Vaingankar
- Department of Medicine and Institute for Genomic Medicine (IGM), University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838 USA
| | - Nilima Biswas
- Department of Medicine and Institute for Genomic Medicine (IGM), University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838 USA
| | - Jiaur R. Gayen
- Department of Medicine and Institute for Genomic Medicine (IGM), University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838 USA
| | - Ryan S. Friese
- Department of Medicine and Institute for Genomic Medicine (IGM), University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838 USA
| | - Sushil K. Mahata
- Department of Medicine and Institute for Genomic Medicine (IGM), University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838 USA
- VA San Diego Healthcare System, San Diego, CA USA
| | - Bruce A. Hamilton
- Department of Medicine and Institute for Genomic Medicine (IGM), University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838 USA
| | - Daniel T. O’Connor
- Department of Medicine and Institute for Genomic Medicine (IGM), University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838 USA
- Department of Pharmacology, University of California at San Diego, San Diego, CA USA
- VA San Diego Healthcare System, San Diego, CA USA
| |
Collapse
|
52
|
Aung G, Niyonsaba F, Ushio H, Kajiwara N, Saito H, Ikeda S, Ogawa H, Okumura K. Catestatin, a neuroendocrine antimicrobial peptide, induces human mast cell migration, degranulation and production of cytokines and chemokines. Immunology 2011; 132:527-39. [PMID: 21214543 DOI: 10.1111/j.1365-2567.2010.03395.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Catestatin, a neuroendocrine peptide with effects on human autonomic function, has recently been found to be a cutaneous antimicrobial peptide. Human catestatin exhibits three single nucleotide polymorphisms: Gly364Ser, Pro370Leu and Arg374Gln. Given reports indicating that antimicrobial peptides and neuropeptides induce mast cell activation, we postulated that catestatin might stimulate numerous functions of human mast cells, thereby participating in the regulation of skin inflammatory responses. Catestatin and its naturally occurring variants caused the human mast cell line LAD2 and peripheral blood-derived mast cells to migrate, degranulate and release leukotriene C(4) and prostaglandins D(2) and E(2). Moreover, catestatins increased intracellular Ca(2+) mobilization in mast cells, and induced the production of pro-inflammatory cytokines/chemokines such as granulocyte-macrophage colony-stimulating factor, monocyte chemotactic protein-1/CCL2, macrophage inflammatory protein-1α/CCL3 and macrophage inflammatory protein-1β/CCL4. Our evaluation of possible cellular mechanisms suggested that G-proteins, phospholipase C and the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) are involved in catestatin-induced mast cell activation as evidenced by the inhibitory effects of pertussis toxin (G-protein inhibitor), U-73122 (phospholipase C inhibitor) and U0126 (ERK inhibitor), respectively. We also found that human mast cells express the α7 subunit of the nicotinic acetylcholine receptor at both the mRNA and protein levels. Given that silencing the α7 receptor mRNA and an α7-specific inhibitor did not affect catestatin-mediated activation of mast cells, however, we concluded that this receptor is not likely to be functional in human mast cell stimulation by catestatins. Our finding that the neuroendocrine antimicrobial peptide catestatin activates human mast cells suggests that this peptide might have immunomodulatory functions, and provides a new link between neuroendocrine and cutaneous immune systems.
Collapse
Affiliation(s)
- Gyi Aung
- Atopy (Allergy) Research Centre, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Human dopamine β-hydroxylase promoter variant alters transcription in chromaffin cells, enzyme secretion, and blood pressure. Am J Hypertens 2011; 24:24-32. [PMID: 20814407 DOI: 10.1038/ajh.2010.186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Dopamine β-hydroxylase (DBH) plays an indispensable role in catecholamine synthesis by converting dopamine into norepinephrine. Here, we characterized a DBH promoter polymorphism (C-2073T; rs1989787; minor allele frequency ~16%) that influences not only gene transcription but also enzyme secretion and blood pressure (BP) in vivo. METHODS Plasma DBH activity was measured spectrophotometrically. DBH genetic effects on BP were tested in subjects with the most extreme BP values in a large primary care population. Functional effects of promoter variants were studied by site-directed mutagenesis in DBH promoter haplotype/luciferase reporter plasmids transfected into chromaffin cells. Sequence motifs were predicted from position weight matrices, and endogenous transcription factor binding was probed by Chromatin ImmunoPrecipitation (ChIP). RESULTS The T-allele of common promoter variant C-2073T was contained in a promoter haplotype that associated with plasma DBH activity, a trait also predicted by that variant itself. Promoter haplotypes including C-2073T predicted BP in the population, and the effect was also referable to C-2073T itself. Computationally, C-2073 disrupted a predicted match for transcription factor c-FOS. Site-directed mutagenesis at C-2073T altered not only basal promoter activity, but also transactivation by c-FOS, as well as the chromaffin cell secretory stimuli nicotine or pituitary adenylate cyclase-activating polypeptide (PACAP). Endogenous c-FOS bound to the motif in chromatin. CONCLUSIONS These results suggest that DBH promoter variant C-2073T is functional in vivo: this promoter variant seems to initiate a cascade of transcriptional and biochemical changes including augmented DBH secretion, eventuating in elevation of basal BP, and hence cardiovascular risk. The observations suggest new strategies for probing the pathophysiology, risk, and treatment of hypertension.
Collapse
|
54
|
Mahata SK, Mahata M, Fung MM, O'Connor DT. Reprint of: Catestatin: a multifunctional peptide from chromogranin A. REGULATORY PEPTIDES 2010; 165:52-62. [PMID: 20965217 PMCID: PMC10838673 DOI: 10.1016/j.regpep.2010.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In 1997, we identified a novel peptide, catestatin (CST: bovine chromogranin A [CHGA]₃₄₄₋₃₆₄: RSMRLSFRARGYGFRGPGLQL; human CHGA₃₅₂₋₃₇₂: SSMKLSFRARGYGFRGPGPQL), which is a potent inhibitor of nicotinic-cholinergic-stimulated catecholamine secretion. CST shows characteristic inhibitory effects on nicotinic cationic (Na+, Ca²+) signal transduction, which are specific to the neuronal nicotinic receptor. Utilizing systematic polymorphism discovery at the human CHGA locus we discovered three human variants of CST: G³⁶⁴S, P³⁷⁰L, and R³⁷⁴Q that showed differential potencies towards the inhibition of catecholamine secretion. In humans, CHGA is elevated and its processing to CST is diminished in hypertension. Diminished CST is observed not only in hypertensive individuals but also in the early-normotensive offspring of patients with hypertension, suggesting that an early deficiency of CST might play a pathogenic role in the subsequent development of the disease. Consistent with human findings, prevention of endogenous CST expression by targeted ablation (knockout) of the mouse Chga locus (Chga-KO) resulted in severe hypertension that can be "rescued" specifically by replacement of the CST peptide. CST acts directly on the heart to inhibit the inotropic and lusitropic properties of the rodent heart and also acts as a potent vasodilator in rats and humans. While the G³⁶⁴S CST variant caused profound changes in human autonomic activity and seemed to reduce the risk of developing hypertension, CST replacement rescued Chga-KO mice from dampened baroreflex sensitivity. In addition, CST has been shown to induce chemotaxis and acts as an antimicrobial as well as an antimalarial peptide. The present review summarizes these multiple actions of CST.
Collapse
Affiliation(s)
- Sushil K Mahata
- Department of Medicine (0838), University of California at San Diego, and Veterans Affairs San Diego Healthcare System, 9500 Gilman Drive, La Jolla, CA 92093-0838, USA.
| | | | | | | |
Collapse
|
55
|
Brar BK, Helgeland E, Mahata SK, Zhang K, O'Connor DT, Helle KB, Jonassen AK. Human catestatin peptides differentially regulate infarct size in the ischemic-reperfused rat heart. ACTA ACUST UNITED AC 2010; 165:63-70. [PMID: 20655339 DOI: 10.1016/j.regpep.2010.07.153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 06/29/2010] [Accepted: 07/08/2010] [Indexed: 01/06/2023]
Abstract
In acute myocardial infarction increased plasma levels of chromogranin A are correlated with decreased survival. At the human chromogranin A gene locus there are two naturally occurring amino acid substitution variants within the catestatin region, i.e. Gly³⁶⁴Ser and Pro³⁷⁰Leu, displaying differential potencies towards inhibition of nicotinic cholinergic agonist-evoked catecholamine secretion from sympathochromaffin cells and different degrees of processing from the prohormone. Here, we examine whether two of the variants and the wild type catestatin may affect the development of infarct size during ischemic reperfusion in the Langendorff rat heart model. The hearts were subjected to regional ischemia followed by reperfusion in the presence or absence of synthetic variants of human catestatin. Compared to the Gly³⁶⁴Ser variant both the wild type and Pro³⁷⁰Leu variants increased infarct size while decreasing the cardiac levels of phosphorylated Akt and two of its downstream targets, FoxO1 and BAD. In conclusion, these findings suggest that, in contrast to the Gly³⁶⁴Ser variant, wild type catestatin and the Pro³⁷⁰Leu variant (allele frequency ~0.3%) increased myocardial infarct size via a mechanism involving dephosphorylation of Akt and the two downstream targets during ischemic reperfusion in the isolated rat heart.
Collapse
|
56
|
Dev NB, Gayen JR, O'Connor DT, Mahata SK. Chromogranin a and the autonomic system: decomposition of heart rate variability and rescue by its catestatin fragment. Endocrinology 2010; 151:2760-8. [PMID: 20410203 PMCID: PMC2875835 DOI: 10.1210/en.2009-1110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromogranin A (CHGA/Chga) has been implicated in the genesis of systemic hypertension and consequent cardiac abnormalities. Catestatin (CST) (human CHGA(352-372)) replacement reduces blood pressure elevation and increases baroreflex sensitivity in Chga knockout (KO) mice. Because of the dampened baroreflex sensitivity, we reasoned that KO mice would display altered heart rate variability (HRV). Thus, we evaluated beat-to-beat measurements in HRV in wild-type (WT) and KO mice, before and after CST replacement. HR dynamics were evaluated by bipolar Einthoven electrocardiogram, with deconvolution into time and frequency domains, as well as Lorenz nonlinear return analyses. At baseline, HR was higher [444 +/- 24 beats per minute (bpm)] in KO compared with WT (330 +/- 18 bpm) mice. The total power in the HRV spectra was substantially diminished in KO animals. CST increased total power but only in KO mice. Each time-domain parameter was substantially lower in KO compared with WT mice, and the CST in the KO group could reverse the differences. Lorenz analysis revealed reductions in S1 (short axis perpendicular to the line of identity in the ellipse) and S2 (long axis along the line of identity in the ellipse) in KO animals, indicating that regulation of HRV is diminished in the parasympathetic and sympathetic domains. CST replacement caused restoration of both S1 and S2, in the KO group. These data suggest that Chga has a profound effect on autonomic tone to the heart and that its CST fragment is responsible for such actions. The results suggest future strategies for intervention in cardiovascular disorders accompanied by adverse HRV profiles.
Collapse
Affiliation(s)
- Nagendu B Dev
- Department of Medicine (0838), University of California, San Diego, and Veterans Affairs San Diego Healthcare System, 9500 Gilman Drive, La Jolla, California 92093-0838, USA
| | | | | | | |
Collapse
|
57
|
Han F, Pan W. A data-adaptive sum test for disease association with multiple common or rare variants. Hum Hered 2010; 70:42-54. [PMID: 20413981 PMCID: PMC2912645 DOI: 10.1159/000288704] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 02/05/2010] [Indexed: 12/14/2022] Open
Abstract
Since associations between complex diseases and common variants are typically weak, and approaches to genotyping rare variants (e.g. by next-generation resequencing) multiply, there is an urgent demand to develop powerful association tests that are able to detect disease associations with both common and rare variants. In this article we present such a test. It is based on data-adaptive modifications to a so-called Sum test originally proposed for common variants, which aims to strike a balance between utilizing information on multiple markers in linkage disequilibrium and reducing the cost of large degrees of freedom or of multiple testing adjustment. When applied to multiple common or rare variants in a candidate region, the proposed test is easy to use with 1 degree of freedom and without the need for multiple testing adjustment. We show that the proposed test has high power across a wide range of scenarios with either common or rare variants, or both. In particular, in some situations the proposed test performs better than several commonly used methods.
Collapse
Affiliation(s)
| | - Wei Pan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minn., USA
| |
Collapse
|
58
|
Sahu BS, Sonawane PJ, Mahapatra NR. Chromogranin A: a novel susceptibility gene for essential hypertension. Cell Mol Life Sci 2010; 67:861-74. [PMID: 19943077 PMCID: PMC11115493 DOI: 10.1007/s00018-009-0208-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 12/25/2022]
Abstract
Chromogranin A (CHGA) is ubiquitously expressed in secretory cells of the endocrine, neuroendocrine, and neuronal tissues. Although this protein has long been known as a marker for neuroendocrine tumors, its role in cardiovascular disease states including essential hypertension (EH) has only recently been recognized. It acts as a prohormone giving rise to bioactive peptides such as vasostatin-I (human CHGA(1-76)) and catestatin (human CHGA(352-372)) that exhibit several cardiovascular regulatory functions. CHGA is over-expressed but catestatin is diminished in EH. Moreover, genetic variants in the promoter, catestatin, and 3'-untranslated regions of the human CHGA gene alter autonomic activity and blood pressure. Consistent with these findings, targeted ablation of this gene causes severe arterial hypertension and ventricular hypertrophy in mice. Transgenic expression of the human CHGA gene or exogenous administration of catestatin restores blood pressure in these mice. Thus, the accumulated evidence establishes CHGA as a novel susceptibility gene for EH.
Collapse
Affiliation(s)
- Bhavani S. Sahu
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 India
| | - Parshuram J. Sonawane
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 India
| | - Nitish R. Mahapatra
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 India
| |
Collapse
|
59
|
Mahata SK, Mahata M, Fung MM, O'Connor DT. Catestatin: a multifunctional peptide from chromogranin A. ACTA ACUST UNITED AC 2010; 162:33-43. [PMID: 20116404 DOI: 10.1016/j.regpep.2010.01.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 01/11/2010] [Accepted: 01/21/2010] [Indexed: 12/16/2022]
Abstract
In 1997, we identified a novel peptide, catestatin (CST: bovine chromogranin A [CHGA](344-364): RSMRLSFRARGYGFRGPGLQL; human CHGA(352-372): SSMKLSFRARGYGFRGPGPQL), which is a potent inhibitor of nicotinic-cholinergic-stimulated catecholamine secretion. CST shows characteristic inhibitory effects on nicotinic cationic (Na(+), Ca(2+)) signal transduction, which are specific to the neuronal nicotinic receptor. Utilizing systematic polymorphism discovery at the human CHGA locus we discovered three human variants of CST: G(364)S, P(370)L, and R(374)Q that showed differential potencies towards the inhibition of catecholamine secretion. In humans, CHGA is elevated and its processing to CST is diminished in hypertension. Diminished CST is observed not only in hypertensive individuals but also in the early-normotensive offspring of patients with hypertension, suggesting that an early deficiency of CST might play a pathogenic role in the subsequent development of the disease. Consistent with human findings, prevention of endogenous CST expression by targeted ablation (knockout) of the mouse Chga locus (Chga-KO) resulted in severe hypertension that can be "rescued" specifically by replacement of the CST peptide. CST acts directly on the heart to inhibit the inotropic and lusitropic properties of the rodent heart and also acts as a potent vasodilator in rats and humans. While the G(364)S CST variant caused profound changes in human autonomic activity and seemed to reduce the risk of developing hypertension, CST replacement rescued Chga-KO mice from dampened baroreflex sensitivity. In addition, CST has been shown to induce chemotaxis and acts as an antimicrobial as well as an antimalarial peptide. The present review summarizes these multiple actions of CST.
Collapse
Affiliation(s)
- Sushil K Mahata
- Department of Medicine (0838), University of California at San Diego, and Veterans Affairs San Diego Healthcare System, 9500 Gilman Drive, La Jolla, CA 92093-0838, USA.
| | | | | | | |
Collapse
|
60
|
Chen Y, Wen G, Rao F, Zhang K, Wang L, Rodriguez-Flores JL, Sanchez AP, Mahata M, Taupenot L, Sun P, Mahata SK, Tayo B, Schork NJ, Ziegler MG, Hamilton BA, O'Connor DT. Human dopamine beta-hydroxylase (DBH) regulatory polymorphism that influences enzymatic activity, autonomic function, and blood pressure. J Hypertens 2010; 28:76-86. [PMID: 20009769 PMCID: PMC2860271 DOI: 10.1097/hjh.0b013e328332bc87] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RATIONALE Dopamine beta-hydroxylase (DBH) plays an essential role in catecholamine synthesis by converting dopamine into norepinephrine. Here we systematically investigated DBH polymorphisms associated with enzymatic activity as well as autonomic and blood pressure (BP)/disease phenotypes in vivo. METHODS AND RESULTS Seventy genetic variants were discovered at the locus; across ethnicities, much of the promoter was spanned by a 5' haplotype block, with a larger block spanning the promoter in whites than blacks. DBH secretion was predicted by genetic variants in the DBH promoter, rather than the amino acid coding region. The C allele of common promoter variant C-970T increased plasma DBH activity, epinephrine excretion, the heritable change in BP during environmental stress in twin pairs, and also predicted higher basal BP in three independent populations. Mutagenesis and expression studies with isolated/transfected DBH promoter/luciferase reporters in chromaffin cells indicated that variant C-970T was functional. C-970T partially disrupted consensus transcriptional motifs for n-MYC and MEF-2, and this variant affected not only basal expression, but also the response to exogenous/co-transfected n-MYC or MEF-2; during chromatin immunoprecipitation, these two endogenous factors interacted with the motif. CONCLUSIONS These results suggest that common DBH promoter variant C-970T plays a role in the pathogenesis of human essential hypertension: common genetic variation in the DBH promoter region seems to initiate a cascade of biochemical and physiological changes eventuating in alterations of basal BP. These observations suggest new molecular strategies for probing the pathophysiology, risk, and rational treatment of systemic hypertension.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Medicine, University of California at San Diego, La Jolla, California 92093-0838, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Gayen JR, Gu Y, O'Connor DT, Mahata SK. Global disturbances in autonomic function yield cardiovascular instability and hypertension in the chromogranin a null mouse. Endocrinology 2009; 150:5027-35. [PMID: 19819970 PMCID: PMC2775982 DOI: 10.1210/en.2009-0429] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We reported previously that chromogranin A (Chga) knockout (KO) mice are hypertensive and hyperadrenergic. Here we sought to determine the basis of such alterations by probing physiological, biochemical, and pharmacological responses to perturbations of the autonomic nervous system. In the conscious state, KO mice had substantially elevated basal high blood pressure (BP) and heart rate (HR); immobilization stress caused increments in systolic BP and HR in both wild-type (WT) and KO mice, with higher maxima but blunted increments in the KO state. Catestatin (CST; CHGA(352-372)) selectively diminished stress-induced increments in BP and HR in KO mice, implicating CST as an antihypertensive peptide, even in stressful conditions. Heightened plasma catecholamines in KO mice returned to WT level after CST. Stress caused further increments in catecholamines in WT mice but no change in KO mice. KO mice displayed diminished baroreflex sensitivity in response to either phenylephrine or sodium nitroprusside, accounting for exaggerated pressor and depressor responses to these compounds; baroreceptor function was normalized by CST. To probe the relative roles of endogenous/basal sympathetic vs. parasympathetic tone in control of BP and HR, we used the muscarinic-cholinergic antagonist atropine or the beta-adrenergic antagonist propranolol; HR and BP responses to each antagonist were exaggerated in KO animals. We conclude that ablation of Chga expression results in global disturbances in autonomic function, both sympathetic and parasympathetic, that can be abrogated (or rescued), at least in part, by replacement of CST. The results point to mechanisms whereby CHGA and its CST fragment act to control cardiovascular homeostasis.
Collapse
Affiliation(s)
- Jiaur R Gayen
- Department of Medicine (0838), University of California, San Diego, San Diego, School of Medicine and Veterans Affairs San Diego Healthcare System, 9500 Gilman Drive, La Jolla, California 92093-0838, USA
| | | | | | | |
Collapse
|
62
|
Chen Y, Mahata M, Rao F, Khandrika S, Courel M, Fung MM, Zhang K, Stridsberg M, Ziegler MG, Hamilton BA, Lipkowitz MS, Taupenot L, Nievergelt C, Mahata SK, O'Connor DT. Chromogranin A regulates renal function by triggering Weibel-Palade body exocytosis. J Am Soc Nephrol 2009; 20:1623-32. [PMID: 19520754 DOI: 10.1681/asn.2008111148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chromogranin A (CHGA), a protein released from secretory granules of chromaffin cells and sympathetic nerves, triggers endothelin-1 release from endothelial cells. CHGA polymorphisms associate with an increased risk for ESRD, but whether altered CHGA-endothelium interactions may explain this association is unknown. Here, CHGA led to the release of endothelin-1 and Weibel-Palade body exocytosis in cultured human umbilical vein endothelial cells. In addition, CHGA triggered secretion of endothelin-1 from glomerular endothelial cells and TGF-beta1 from mesangial cells cocultured with glomerular endothelial cells. In humans, plasma CHGA correlated positively with endothelin-1 and negatively with GFR. GFR was highly heritable in twin pairs, and common promoter haplotypes of CHGA predicted GFR. In patients with progressive hypertensive renal disease, a CHGA haplotype predicted rate of GFR decline. In conclusion, these data suggest that CHGA acts through the glomerular endothelium to regulate renal function.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0838, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Chen Y, Rao F, Rodriguez-Flores JL, Mahata M, Fung MM, Stridsberg M, Vaingankar SM, Wen G, Salem RM, Das M, Cockburn MG, Schork NJ, Ziegler MG, Hamilton BA, Mahata SK, Taupenot L, O'Connor DT. Naturally occurring human genetic variation in the 3'-untranslated region of the secretory protein chromogranin A is associated with autonomic blood pressure regulation and hypertension in a sex-dependent fashion. J Am Coll Cardiol 2008; 52:1468-81. [PMID: 19017515 DOI: 10.1016/j.jacc.2008.07.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/14/2008] [Accepted: 07/17/2008] [Indexed: 02/07/2023]
Abstract
OBJECTIVES We aimed to determine whether the common variation at the chromogranin A (CHGA) locus increases susceptibility to hypertension. BACKGROUND CHGA regulates catecholamine storage and release. Previously we systematically identified genetic variants across CHGA. METHODS We carried out dense genotyping across the CHGA locus in >1,000 individuals with the most extreme blood pressures (BPs) in the population, as well as twin pairs with autonomic phenotypes. We also characterized the function of a trait-associated 3'-untranslated region (3'-UTR) variant with transfected CHGA 3'-UTR/luciferase reporter plasmids. RESULTS CHGA was overexpressed in patients with hypertension, especially hypertensive men, and CHGA predicted catecholamines. In individuals with extreme BPs, CHGA genetic variants predicted BP, especially in men, with a peak association occurring in the 3'-UTR at C+87T, accounting for up to approximately 12/ approximately 9 mm Hg. The C+87T genotype predicted CHGA secretion in vivo, with the +87T allele (associated with lower BP) also diminishing plasma CHGA by approximately 10%. The C+87T 3'-UTR variant also predicted the BP response to environmental (cold) stress; the same allele (+87T) that diminished basal BP in the population also decreased the systolic BP response to stress by approximately 12 mm Hg, and the response was smaller in women (by approximately 6 mm Hg). In a chromaffin cell-transfected CHGA 3'-UTR/luciferase reporter plasmid, the +87T allele associated with lower BP also decreased reporter expression by approximately 30%. In cultured chromaffin cells, reducing endogenous CHGA expression by small interfering ribonucleic acid caused approximately two-thirds depletion of catecholamine storage vesicles. CONCLUSIONS Common variant C+87T in the CHGA 3'-UTR is a functional polymorphism causally associated with hypertension especially in men of the population, and we propose steps ("intermediate phenotypes") whereby in a sex-dependent fashion this genetic variant influences the ultimate disease trait. These observations suggest new molecular strategies to probe the pathophysiology, risk, and rational treatment of hypertension.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Shih PA, O’Connor D, Mahata S. Human Genomics in Hypertension. Genomics 2008. [DOI: 10.3109/9781420067064-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
65
|
Kabadi SV, Ally A. Negative cardiotropism by catestatin and its variants. Endocrinology 2008; 149:4778-9. [PMID: 18809948 DOI: 10.1210/en.2008-0870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Shruti V Kabadi
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
66
|
Angelone T, Quintieri AM, Brar BK, Limchaiyawat PT, Tota B, Mahata SK, Cerra MC. The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinology 2008; 149:4780-93. [PMID: 18535098 PMCID: PMC2582908 DOI: 10.1210/en.2008-0318] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Circulating levels of catestatin (Cts; human chromogranin A352-372) decrease in the plasma of patients with essential hypertension. Genetic ablation of the chromogranin A (Chga) gene in mice increases blood pressure and pretreatment of Chga-null mice with Cts prevents blood pressure elevation, indicating a direct role of Cts in preventing hypertension. This notable vasoreactivity prompted us to test the direct cardiovascular effects and mechanisms of action of wild-type (WT) Cts and naturally occurring human variants (G364S-Cts and P370L-Cts) on myocardial and coronary functions. The direct cardiovascular actions of WT-Cts and human variants were determined using the Langendorff-perfused rat heart. WT-Cts dose-dependently increased heart rate and coronary pressure and decreased left ventricular pressure, rate pressure product and both positive and negative LVdP/dt. WT-Cts not only inhibited phospholamban phosphorylation, but also the inotropic and lusitropic effects of WT-Cts were abolished by chemical inhibition of beta2-adrenergic receptors, Gi/o protein, nitric oxide or cGMP, indicating involvement of beta2-adrenergic receptors-Gi/o protein-nitric oxide-cGMP signaling mechanisms. In contrast, G364S-Cts did not affect basal cardiac performance but abolished isoproterenol-induced positive inotropism and lusitropism. P370L-Cts decreased rate pressure product and inhibited only isoproterenol-induced positive inotropism and lusitropism by 70%. Cts also inhibited endothelin-1-induced positive inotropism and coronary constriction. Taken together, the cardioinhibitory influence exerted on basal mechanical performance and the counterregulatory action against beta-adrenergic and endothelin-1 stimulations point to Cts as a novel cardiac modulator, able to protect the heart against excessive sympathochromaffin overactivation, e.g. hypertensive cardiomyopathy.
Collapse
Affiliation(s)
- Tommaso Angelone
- Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende, Italy
| | | | | | | | | | | | | |
Collapse
|
67
|
Mahapatra NR. Catestatin is a novel endogenous peptide that regulates cardiac function and blood pressure. Cardiovasc Res 2008; 80:330-8. [DOI: 10.1093/cvr/cvn155] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
68
|
Radek KA, Lopez-Garcia B, Hupe M, Niesman IR, Elias PM, Taupenot L, Mahata SK, O’Connor DT, Gallo RL. The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. J Invest Dermatol 2008; 128:1525-34. [PMID: 18185531 PMCID: PMC2757066 DOI: 10.1038/sj.jid.5701225] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Epithelia establish a microbial barrier against infection through the production of antimicrobial peptides (AMPs). In this study, we investigated whether catestatin (Cst), a peptide derived from the neuroendocrine protein chromogranin A (CHGA), is a functional AMP and is present in the epidermis. We show that Cst is antimicrobial against relevant skin microbes, including gram-positive and gram-negative bacteria, yeast, and fungi. The antimicrobial mechanism of Cst was found to be similar to other AMPs, as it was dependent on bacterial charge and growth conditions, and induced membrane disruption. The potential relevance of Cst against skin pathogens was supported by the observation that CHGA was expressed in keratinocytes. In human skin, CHGA was found to be proteolytically processed into the antimicrobial fragment Cst, thus enabling its AMP function. Furthermore, Cst expression in murine skin increased in response to injury and infection, providing potential for increased protection against infection. These data demonstrate that a neuroendocrine peptide has antimicrobial function against a wide assortment of skin pathogens and is upregulated upon injury, thus demonstrating a direct link between the neuroendocrine and cutaneous immune systems. JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article please go to http://network.nature.com/group/jidclub.
Collapse
Affiliation(s)
- Katherine A. Radek
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | - Belen Lopez-Garcia
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | - Melanie Hupe
- Department of Dermatology, School of Medicine, University of California, San Francisco, California, USA
- Department of Dermatology, Veterans Administration Center, San Francisco, California, USA
| | - Ingrid R. Niesman
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Peter M. Elias
- Department of Dermatology, School of Medicine, University of California, San Francisco, California, USA
- Department of Dermatology, Veterans Administration Center, San Francisco, California, USA
| | - Laurent Taupenot
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | - Sushil K. Mahata
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | - Daniel T. O’Connor
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
- Department of Medicine and Pharmacology, Center for Molecular Genetics, University of California at San Diego, La Jolla, California, USA
| | - Richard L. Gallo
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
69
|
The crucial role of chromogranins in storage and exocytosis revealed using chromaffin cells from chromogranin A null mouse. J Neurosci 2008; 28:3350-8. [PMID: 18367602 DOI: 10.1523/jneurosci.5292-07.2008] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chromogranins (Cgs) are the major soluble proteins of dense-core secretory vesicles. Chromaffin cells from Chga null mice [chromogranin A knock-out (CgA-KO)] exhibited approximately 30% reduction in the content and in the release of catecholamines compared with wild type. This was because of a lower secretion per single exocytotic event, rather than to a lower frequency of exocytotic events. Cell incubation with L-DOPA produced an increase in the vesicular amine content of wild-type, but not CgA-KO vesicles. In contrast, intracellular electrochemistry showed that L-DOPA produced a significantly larger increase in cytosolic amines in CgA-KO cells than in the wild type. These data indicate that the mechanisms for vesicular accumulation in CgA-KO cells were fully saturated. Patch-amperometry recordings showed a delayed initiation of the amperometric signal after vesicle fusion, whereas no changes were observed in vesicle size or fusion pore kinetics despite the smaller amine content. We conclude that intravesicular proteins are highly efficient systems directly implicated in transmitter accumulation and in the control of neurosecretion.
Collapse
|
70
|
Common genetic variants in the chromogranin A promoter alter autonomic activity and blood pressure. Kidney Int 2008; 74:115-25. [PMID: 18432188 DOI: 10.1038/ki.2008.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromogranin A (CHGA) is stored and released from the same secretory vesicles that contain catecholamines in chromaffin cells and noradrenergic neurons. We had previously identified common genetic variants at the CHGA locus in several human populations. Here we focus on whether inter-individual variants in the promoter region are of physiological significance. A common haplotype, CGATA (Hap-B), blunted the blood pressure response to cold stress and the effect exhibited molecular heterosis with the greatest blood pressure change found in Hap-A/Hap-B heterozygotes. Homozygosity for three minor alleles with peak effects within the haplotype predicted lower stress-induced blood pressure changes. The G-462A variant predicted resting blood pressure in the population with higher pressures occurring in heterozygotes (heterosis). Using cells transfected with CHGA promoter-luciferase reporter constructs, the Hap-B haplotype had decreased luciferase expression compared to the TTGTC (Hap-A) haplotype under both basal conditions and after activation by pre-ganglionic stimuli. The G-462A variant altered a COUP-TF transcriptional control motif. The two alleles in transfected promoters differed in basal activity and in the responses to COUP-II-TF transactivation and to retinoic acid. In vitro findings of molecular heterosis were also noted with the transfected CHGA promoter wherein the diploid combination of the two G-462A alleles gave rise to higher luciferase expression than either allele in isolation. Our results suggest that common genetic variants in the CHGA promoter may regulate heritable changes in blood pressure.
Collapse
|
71
|
Brown RW. Naturally Too Sympathetic to a Bad Diet? J Am Soc Nephrol 2008; 19:420-2. [DOI: 10.1681/asn.2008010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
72
|
Biswas N, Vaingankar SM, Mahata M, Das M, Gayen JR, Taupenot L, Torpey JW, O'Connor DT, Mahata SK. Proteolytic cleavage of human chromogranin a containing naturally occurring catestatin variants: differential processing at catestatin region by plasmin. Endocrinology 2008; 149:749-57. [PMID: 17991725 PMCID: PMC2219303 DOI: 10.1210/en.2007-0838] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The plasma level of chromogranin A (CgA) is elevated in genetic hypertension. Conversely, the plasma level of the CgA peptide catestatin is diminished in individuals with established hypertension and those with a genetic risk of this disease. Resequencing of the human CHGA gene identified three naturally occurring variants of catestatin (Gly364Ser, Pro370Leu, and Arg374Gln) that exhibit different potencies in inhibiting catecholamine secretion. Here, we have examined whether there is any differential processing of the three CHGA variants to catestatin by the endoproteolytic enzyme plasmin. Plasmin digestion of the purified CgA proteins generated a stable biologically active 14-amino acid peptide (human CgA(360-373)) from the wild-type, Gly364Ser, and Arg374Gln proteins despite the disruption of the dibasic site (Arg(373)Arg(374)) in the Arg374Gln variant. Unexpectedly, the action of plasmin in generating the catestatin peptide from the Pro370Leu protein was less efficient. The efficiency of cleavage at the dibasic Arg(373) downward arrowArg(374) site in synthetic human CgA(360-380) was 3- to 4-fold less in Pro370Leu CgA, compared with the wild type. Circular dichroism of the synthetic CgA(352-372) suggested a difference in the amount of alpha-helix and beta-sheet between the wild-type and Pro370Leu CgA peptides. Because the Pro(370) residue is in the P4 position, the local secondary structure in the vicinity of the cleavage site may enforce the specificity or accessibility to plasmin. The less efficient proteolytic processing of the Pro370Leu protein by plasmin, coupled with the strong association of this variant with ethnicity, suggests that the Pro370Leu CHGA gene variant may contribute to the differential prevalence of cardiovascular disease across ethnic groups.
Collapse
Affiliation(s)
- Nilima Biswas
- Department of Medicine, University of California San Diego School of Medicine and Veteran's Affairs San Diego Healthcare System, La Jolla, CA 92093-0838, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Salem RM, Cadman PE, Chen Y, Rao F, Wen G, Hamilton BA, Rana BK, Smith DW, Stridsberg M, Ward HJ, Mahata M, Mahata SK, Bowden DW, Hicks PJ, Freedman BI, Schork NJ, O'Connor DT. Chromogranin A polymorphisms are associated with hypertensive renal disease. J Am Soc Nephrol 2008; 19:600-14. [PMID: 18235090 DOI: 10.1681/asn.2007070754] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chromogranin A is released together with epinephrine and norepinephrine from catecholaminergic cells. Specific endopeptidases cleave chromogranin A into biologically active peptide fragments, including catestatin, which inhibits catecholamine release. Previous studies have suggested that a deficit in this sympathetic "braking" system might be an early event in the pathogenesis of human hypertension. Whether chromogranin A (CHGA) polymorphisms predict end-organ complications of hypertension, such as end-stage renal disease, is unknown. Among blacks, we studied common genetic variants spanning the CHGA locus in 2 independent case-control studies of hypertensive ESRD. Two haplotypes were significantly more frequent among subjects with hypertensive ESRD: 1) in the promoter (5') region, G-462A-->T-415C-->C-89A, haplotype ATC (adjusted odds ratio = 2.65; P = 0.037), and 2) at the 3'-end, C11825T (3'-UTR, C+87T)-->G12602C, haplotype TC (adjusted odds ratio = 2.73, P = 0.0196). Circulating levels of catestatin were lower among those with hypertensive ESRD than controls, an unexpected finding given that peptide levels are usually elevated in ESRD because of reduced renal elimination. We found that the 3'-UTR + 87T variant decreased reporter gene expression, providing a possible mechanistic explanation for diminished catestatin. In summary, common variants in chromogranin A associate with the risk of hypertensive ESRD in blacks.
Collapse
Affiliation(s)
- Rany M Salem
- Department of Medicine and Center for Molecular Genetics, University of California at San Diego and Veterans Administration San Diego Healthcare System (0838), 9500 Gilman Drive, La Jolla, CA 92093-0838, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
|
75
|
Wen G, Wessel J, Zhou W, Ehret GB, Rao F, Stridsberg M, Mahata SK, Gent PM, Das M, Cooper RS, Chakravarti A, Zhou H, Schork NJ, O’Connor DT, Hamilton BA. An ancestral variant of Secretogranin II confers regulation by PHOX2 transcription factors and association with hypertension. Hum Mol Genet 2007; 16:1752-64. [PMID: 17584765 PMCID: PMC2695823 DOI: 10.1093/hmg/ddm123] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Granins regulate secretory vesicle formation in neuroendocrine cells and granin-derived peptides are co-released with neurotransmitters as modulatory signals at sympathetic sites. We report evidence for association between a regulatory polymorphism in Secretogranin II (SCG2) and hypertension in African-American subjects. The minor allele is ancestral in the human lineage and is associated with disease risk in two case-control studies and with elevated blood pressure in a separate familial study. Mechanistically, the ancestral allele acts as a transcriptional enhancer in cells that express endogenous Scg2, whereas the derived allele does not. ARIX (PHOX2A) and PHOX2B are identified as potential transactivating factors by oligonucleotide affinity chromatography and mass spectrometry and confirmed by chromatin immunoprecipitation. Each of these transcription factors preferentially binds the risk allele, both in vitro and in vivo. Population genetic considerations suggest positive selection of the protective allele within the human lineage. These results identify a common regulatory variation in SCG2 and implicate granin gene expression in the control of human blood pressure and susceptibility to hypertension.
Collapse
Affiliation(s)
- Gen Wen
- Department of Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Jennifer Wessel
- Department of Psychiatry, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Department of Family and Preventive Medicine, UCSD and Graduate School of Public Health, San Diego State University Joint Doctoral Program in Public Health Epidemiology
- Scripps Genomic Medicine and The Scripps Research Institute, La Jolla, CA
| | - Weidong Zhou
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Georg B. Ehret
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Fangwen Rao
- Department of Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Mats Stridsberg
- Department of Medical Sciences, University Hospital, Uppsala, Sweden
| | - Sushil K. Mahata
- Department of Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- VA San Diego Healthcare System
| | - Peter M. Gent
- Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Madhusudan Das
- Department of Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Richard S. Cooper
- Department of Preventive Medicine and Epidemiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Moores UCSD Cancer Center, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Nicholas J. Schork
- Department of Psychiatry, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Center for Human Genetics and Genomics, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Scripps Genomic Medicine and The Scripps Research Institute, La Jolla, CA
| | - Daniel T. O’Connor
- Department of Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Center for Human Genetics and Genomics, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Moores UCSD Cancer Center, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
| | - Bruce A. Hamilton
- Department of Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- Moores UCSD Cancer Center, University of California, San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093
- author for correspondence Telephone: (858) 822-1055
| |
Collapse
|
76
|
Gong Y, Beitelshees AL, Wessel J, Langaee TY, Schork NJ, Johnson JA. Single nucleotide polymorphism discovery and haplotype analysis of Ca2+-dependent K+ channel beta-1 subunit. Pharmacogenet Genomics 2007; 17:267-75. [PMID: 17496725 PMCID: PMC2713575 DOI: 10.1097/fpc.0b013e3280105235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The large-conductance, Ca-dependent K channel plays a key role in the control of vascular tone. Variation in the gene encoding the beta-1 subunit of the Ca-dependent K channel (KCNMB1) has been reported to be associated with hypertension, however, variants in KCNMB1 have not been systematically characterized to date. In this study, we have performed the most comprehensive evaluation to date of single nucleotide polymorphisms in KCNMB1 using genomic DNA from 60 individuals of European, African and native American ancestry. We identified and characterized single nucleotide polymorphisms in the exons, intron/exon junctions, upstream region and 3' untranslated regions of KCNMB1 using denaturing high-performance liquid chromatography combined with direct DNA sequencing. A total of 25 single nucleotide polymorphisms in KCNMB1 were identified. Seven of the polymorphisms (28%) are novel single nucleotide polymorphisms not reported previously. Allele frequencies range from less than 1.7 to 50% and 19 single nucleotide polymorphisms had a minor allele frequency greater than 5%. A lack of strong linkage disequilibrium among the 25 single nucleotide polymorphisms was observed in all three race/ethnicity groups; therefore the identification of haplotype 'tag' single nucleotide polymorphisms for genetic association studies is not likely to be appropriate for KCNMB1. Multiple species comparative analysis and in-silico functional analysis were performed to identify potential functionally important single nucleotide polymorphisms within the gene. These data highlight that a tag single nucleotide polymorphism approach will not be appropriate for the study of genes such as KCNMB1, although potentially important functionally significant single nucleotide polymorphisms are suggested for future studies investigating the influence of this gene's variability on disease and drug response.
Collapse
Affiliation(s)
- Yan Gong
- Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida
- Department of Pharmacy Practice, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Amber L. Beitelshees
- Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida
- Department of Pharmacy Practice, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Jennifer Wessel
- Department of Psychiatry, University of California at San Diego, La Jolla, California, USA
| | - Taimour Y. Langaee
- Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida
- Department of Pharmacy Practice, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Nicholas J. Schork
- Department of Psychiatry, University of California at San Diego, La Jolla, California, USA
| | - Julie A. Johnson
- Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida
- Department of Pharmacy Practice, College of Pharmacy, University of Florida, Gainesville, Florida
- Department of Medicine, Division of Cardiology, University of Florida, Gainesville, Florida
| |
Collapse
|
77
|
Lillie EO, Mahata M, Khandrika S, Rao F, Bundey RA, Wen G, Chen Y, Taupenot L, Smith DW, Mahata SK, Ziegler MG, Cockburn M, Schork NJ, O'Connor DT. Heredity of Endothelin Secretion. Circulation 2007; 115:2282-91. [PMID: 17438153 DOI: 10.1161/circulationaha.106.648345] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Endothelial dysfunction predisposes to vascular injury in association with hypertension. Endothelin (ET-1) is a potent vasoactive peptide that is synthesized and released by the vascular endothelium and is a marker of endothelial function. Chromogranin A (CHGA) regulates the storage and release of catecholamines and may have direct actions on the microvasculature.
CHGA
, a candidate gene for intermediate phenotypes that contribute to hypertension, shows a pattern of single nucleotide polymorphism variations that alter the expression and function of this gene both in vivo and in vitro.
Methods and Results—
In a study of twins (n=238 pairs), plasma ET-1 was 58±5% (
P
<0.0001) heritable. Plasma ET-1 was both correlated and associated with chromogranin fragment levels, and the 2 were influenced by shared genetic determination (pleiotropy [ρ
G
]; for the CHGA precursor, ρ
G
=0.318±0.105;
P
=0.0032). We therefore hypothesized that variation in the
CHGA
gene may influence ET-1 secretion. Carriers of the
CHGA
promoter −988G, −462A, and −89A minor alleles showed significantly higher mean plasma ET-1 than their major allele homozygote counterparts (
P
=0.02,
P
=0.006,
P
=0.03, respectively). Analysis of a linkage disequilibrium block that spans these 3 single nucleotide polymorphisms showed a significant association between the GATACA haplotype and plasma ET-1 (
P
=0.0075). In cultured human umbilical vein endothelial cells, CHGA caused dose-dependent secretion of ET-1 over a brief (<1 hour) time course at relatively low concentrations of CHGA (10 to 100 nmol/L) with a threshold concentration (10 nmol/L) in the range found circulating in humans in vivo.
Conclusions—
These results suggest that common, heritable variation in expression of the human
CHGA
gene influences endothelial ET-1 secretion in vivo, explained by a CHGA stimulus/ET-1 secretion coupling in endothelial cells in vitro. The findings document a previously unsuspected interaction between the sympathochromaffin system and the endothelium and suggest novel genetic and cell biological approaches to the prediction, diagnosis, and mechanism of endothelial dysfunction in human disease.
Collapse
|
78
|
Rao F, Wen G, Gayen JR, Das M, Vaingankar SM, Rana BK, Mahata M, Kennedy BP, Salem RM, Stridsberg M, Abel K, Smith DW, Eskin E, Schork NJ, Hamilton BA, Ziegler MG, Mahata SK, O'Connor DT. Catecholamine release-inhibitory peptide catestatin (chromogranin A(352-372)): naturally occurring amino acid variant Gly364Ser causes profound changes in human autonomic activity and alters risk for hypertension. Circulation 2007; 115:2271-81. [PMID: 17438154 DOI: 10.1161/circulationaha.106.628859] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chromogranin A, coreleased with catecholamines by exocytosis, is cleaved to the catecholamine release-inhibitory fragment catestatin. We identified a natural nonsynonymous variant of catestatin, Gly364Ser, that alters human autonomic function and blood pressure. METHODS AND RESULTS Gly364Ser heterozygotes and controls underwent physiological and biochemical phenotyping, including catecholamine production, chromogranin A precursor, and its catestatin product. Case-control studies replicated effects of the gene on blood pressure in the population. Gly364Ser displayed diminished inhibition of catecholamine secretion from cultured neurons. Gly/Ser heterozygotes displayed increased baroreceptor slope during upward deflections (by approximately 47%) and downward deflections (by approximately 44%), increased cardiac parasympathetic index (by approximately 2.4-fold), and decreased cardiac sympathetic index (by approximately 26%). Renal norepinephrine excretion was diminished by approximately 26% and epinephrine excretion by approximately 34% in Gly/Ser heterozygotes. The coalescent dated emergence of the variant to approximately 70,000 years ago. Gly364Ser was in linkage disequilibrium with 1 major Chromogranin A promoter haplotype, although promoter haplotypes did not predict autonomic phenotypes. The 364Ser variant was associated with lower diastolic blood pressure in 2 independent/confirmatory groups of patients with hypertension; genotype groups differed by approximately 5 to 6 mm Hg, and the polymorphism accounted for approximately 1.8% of population diastolic blood pressure variance, although a significant gene-by-sex interaction existed, with an enhanced effect in men. CONCLUSIONS The catestatin Gly364Ser variant causes profound changes in human autonomic activity, both parasympathetic and sympathetic, and seems to reduce risk of developing hypertension, especially in men. A model for catestatin action in the baroreceptor center of the nucleus of the tractus solitarius accounts for these actions.
Collapse
Affiliation(s)
- Fangwen Rao
- Department of Medicine, University of California at San Diego, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Rao F, Wessel J, Wen G, Zhang L, Rana BK, Kennedy BP, Greenwood TA, Salem RM, Chen Y, Khandrika S, Hamilton BA, Smith DW, Holstein-Rathlou NH, Ziegler MG, Schork NJ, O'Connor DT. Renal albumin excretion: twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism. Hypertension 2007; 49:1015-31. [PMID: 17353515 DOI: 10.1161/hypertensionaha.106.081679] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Albumin excretion marks early glomerular injury in hypertension. This study investigated heritability of albumin excretion in twin pairs and its genetic determination by adrenergic pathway polymorphism. Genetic associations used single nucleotide polymorphisms at adrenergic pathway loci spanning catecholamine biosynthesis, storage, catabolism, receptor action, and postreceptor signal transduction. We studied 134 single nucleotide polymorphisms at 46 loci for a total of >51,000 genotypes. Albumin excretion heritability was 45.2+/-7.4% (P=2x10(-7)), and the phenotype aggregated significantly with adrenergic, renal, metabolic, and hemodynamic traits. In the adrenergic system, excretions of both norepinephrine and epinephrine correlated with albumin. In the kidney, albumin excretion correlated with glomerular and tubular traits (Na(+) and K(+) excretion; fractional excretion of Na(+) and Li(+)). Albumin excretion shared genetic determination (genetic covariance) with epinephrine excretion, and environmental determination with glomerular filtration rate and electrolyte intake/excretion. Albumin excretion associated with polymorphisms at multiple points in the adrenergic pathway: catecholamine biosynthesis (tyrosine hydroxylase), catabolism (monoamine oxidase A), storage/release (chromogranin A), receptor target (dopamine D1 receptor), and postreceptor signal transduction (sorting nexin 13 and rho kinase). Epistasis (gene-by-gene interaction) occurred between alleles at rho kinase, tyrosine hydroxylase, chromogranin A, and sorting nexin 13. Dopamine D1 receptor polymorphism showed pleiotropic effects on both albumin and dopamine excretion. These studies establish new roles for heredity and environment in albumin excretion. Urinary excretions of albumin and catecholamines are highly heritable, and their parallel suggests adrenergic mediation of early glomerular permeability alterations. Albumin excretion is influenced by multiple adrenergic pathway genes and is, thus, polygenic. Such functional links between adrenergic activity and glomerular injury suggest novel approaches to its prediction, prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Fangwen Rao
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, La Jolla, CA 92093-0838, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Mahapatra NR, Mahata M, Mahata SK, O'Connor DT. The chromogranin A fragment catestatin: specificity, potency and mechanism to inhibit exocytotic secretion of multiple catecholamine storage vesicle co-transmitters. J Hypertens 2006; 24:895-904. [PMID: 16612252 DOI: 10.1097/01.hjh.0000222760.99852.e0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Secretory granules of chromaffin cells and neurons co-store and release, by exocytosis, the acidic soluble protein chromogranin A (human, CHGA; rodent, Chga) along with catecholamines, neuropeptides and adenosine triphosphate (ATP). CHGA serves as a pro-protein and upon proteolytic cleavage it generates active peptides, including catestatin (human CHGA352-372), first discovered in adrenal medullary chromaffin granules. Studies in our laboratory demonstrated that catestatin acts at the nicotinic acetylcholine receptor to inhibit catecholamine secretion. However, the specificity of catestatin to exert nicotinic-cholinergic antagonism among its co-transmitters is not clearly known, nor is the potential effect of catestatin on multiple vesicle co-transmitters understood. AIM Here we probed the specificity of catestatin's actions among its co-transmitters: catecholamines, ATP, and neuropeptide Y (NPY). METHODS We studied the effects of each transmitter on exocytotic secretion of its co-transmitters from PC12 chromaffin cells, stimulating secretion by triggering physiological pathways at multiple sites. RESULTS We observed that, among chromaffin granule co-transmitters, only catestatin and NPY inhibited catecholamine release induced by nicotinic-cholinergic stimulation; catestatin was more than tenfold more potent than NPY in this setting. We also stimulated norepinephrine secretion by other chromaffin cell agonists: catestatin blocked norepinephrine release induced by nicotine, but not by other agents (such as membrane depolarization) acting at later stages in the secretory pathway, nor by agents acting on other receptor classes. By contrast, NPY acted less specifically, blocking norepinephrine release triggered by either nicotine or membrane depolarization. Catestatin inhibited nicotinic-cholinergic co-release of all classes of chromaffin granule co-transmitters: catecholamines, chromogranins, neuropeptides, and ATP. Naturally occurring variants of human catestatin (Gly364Ser and Pro370Leu) exhibited parallel changes in potency to inhibit secretion of catecholamines and ATP. CONCLUSION We conclude that, among the chromaffin granule co-transmitters, catestatin acts as the most specific and potent inhibitor of physiological pathway (nicotinic-cholinergic) stimulated secretion. Furthermore, catestatin generally inhibits nicotinically triggered exocytotic release of multiple co-transmitters from chromaffin granules. The results have physiological and pharmacological implications for co-transmission in the sympathochromaffin system.
Collapse
Affiliation(s)
- Nitish R Mahapatra
- Department of Medicine, University of California at San Diego, CA 92093-0838, USA
| | | | | | | |
Collapse
|
81
|
Zhang K, Rao F, Wen G, Salem RM, Vaingankar S, Mahata M, Mahapatra NR, Lillie EO, Cadman PE, Friese RS, Hamilton BA, Hook VY, Mahata SK, Taupenot L, O'Connor DT. Catecholamine storage vesicles and the metabolic syndrome: The role of the chromogranin A fragment pancreastatin. Diabetes Obes Metab 2006; 8:621-33. [PMID: 17026486 PMCID: PMC10843892 DOI: 10.1111/j.1463-1326.2006.00575.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromogranins or secretogranins (granins), present in secretory granules of virtually all neuroendocrine cells and neurones, are structurally related proteins encoded by different genetic loci: chromogranins A and B, and secretogranins II through VI. Compelling evidence supports both intracellular and extracellular functions for this protein family. Within the cells of origin, a granulogenic or sorting role in the regulated pathway of hormone or neurotransmitter secretion has been documented, especially for chromogranin A (CHGA). Granins also function as pro-hormones, giving rise by proteolytic processing to an array of peptide fragments for which diverse autocrine, paracrine, and endocrine activities have been demonstrated. CHGA measurements yield insight into the pathogenesis of such human diseases as essential hypertension, in which deficiency of the catecholamine release-inhibitory CHGA fragment catestatin may trigger sympathoadrenal overactivity as an aetiologic culprit in the syndrome. The CHGA dysglycaemic fragment pancreastatin is functional in humans in vivo, affecting both carbohydrate (glucose) and lipid (fatty acid) metabolism. Pancreastatin is cleaved from CHGA in hormone storage granules in vivo, and its plasma concentration varies in human disease. The pancreastatin region of CHGA gives rise to three naturally occurring human variants, one of which (Gly297Ser) occurs in the functionally important carboxy-terminus of the peptide, and substantially increases the peptide's potency to inhibit cellular glucose uptake. These observations establish a role for pancreastatin in human intermediary metabolism and disease, and suggest that qualitative hereditary alterations in pancreastatin's primary structure may give rise to interindividual differences in glucose disposition.
Collapse
Affiliation(s)
- Kuixing Zhang
- Department of Medicine, University of California at San Diego, San Diego, California 92093-0838, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Thompson EE, Kuttab-Boulos H, Krasowski MD, Di Rienzo A. Functional constraints on the constitutive androstane receptor inferred from human sequence variation and cross-species comparisons. Hum Genomics 2006; 2:168-78. [PMID: 16197734 PMCID: PMC3525124 DOI: 10.1186/1479-7364-2-3-168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Members of the NR1I subfamily of nuclear receptors play a role in the transcriptional activation of genes involved in drug metabolism and transport. NR1I3, the constitutive androstane receptor (CAR), mediates the induction of several genes involved in drug response, including members of the CYP3A, CYP2B and UGT1A subfamilies. Large inter-individual variation in drug clearance has been reported for many drug metabolising enzyme genes. Sequence variation at the CAR locus could potentially contribute to variation in downstream targets, as well as to the substantial variation in expression level reported. We used a comparative genomics-based approach to select resequencing segments in 70 subjects from three populations. We identified 21 polymorphic sites, one of which results in an amino acid substitution. Our study reveals a common haplotype shared by all three populations which is remarkably similar to the ancestral sequence, confirming that CAR is under strong functional constraints. The level and pattern of sequence variation is approximately similar across populations, suggesting that interethnic differences in drug metabolism are not likely to be due to genetic variation at the CAR locus. We also identify several common non-coding variants that occur at highly conserved sites across four major branches of the mammalian phylogeny, suggesting that they may affect CAR expression and, ultimately, the activity of its downstream targets.
Collapse
Affiliation(s)
- Emma E Thompson
- Committee on Genetics, University of Chicago, 920 E 58th Street, Chicago, IL 60637, USA
- Department of Human Genetics, University of Chicago, 920 E 58th Street, Chicago, IL 60637, USA
| | - Hala Kuttab-Boulos
- Department of Human Genetics, University of Chicago, 920 E 58th Street, Chicago, IL 60637, USA
| | - Matthew D Krasowski
- Department of Human Genetics, University of Chicago, 920 E 58th Street, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, 920 E 58th Street, Chicago, IL 60637, USA
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, 920 E 58th Street, Chicago, IL 60637, USA
| | - Anna Di Rienzo
- Committee on Genetics, University of Chicago, 920 E 58th Street, Chicago, IL 60637, USA
- Department of Human Genetics, University of Chicago, 920 E 58th Street, Chicago, IL 60637, USA
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, 920 E 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
83
|
Abstract
A range of neurotransmitter systems have been implicated in the pathogenesis of schizophrenia based on the antidopaminergic activities of antipsychotic medications, and chemicals that can induce psychotic-like symptoms, such as ketamine or PCP. Such neurotransmitter systems often mediate their cellular response via G-protein-coupled release of arachidonic acid (AA) via the activation of phospholipases A2 (PLA2s). The interaction of three PLA2s are important for the regulation of the release of AA--phospholipase A2 Group 2 A, phospholipase A2 Group 4A and phospholipase A2 Group 6A. Gene variations of these three key enzymes have been associated with schizophrenia with conflicting results. Preclinical data suggest that the activity of these three enzymes are associated with monoaminergic neurotransmission, and may contribute to the differential efficacy of antipsychotic medications, as well as other biological changes thought to underlie schizophrenia, such as altered neurodevelopment and synaptic remodelling. We review the evidence and discuss the potential roles of these three key enzymes for schizophrenia with particular emphasis on published association studies.
Collapse
Affiliation(s)
- M H Law
- Genomic Disorders Research Centre, Melbourne, VI, Australia
| | | | | |
Collapse
|
84
|
Takahashi N, Ishihara R, Saito S, Maemo N, Aoyama N, Ji X, Miura H, Ikeda M, Iwata N, Suzuki T, Kitajima T, Yamanouchi Y, Kinoshita Y, Ozaki N, Inada T. Association between chromogranin A gene polymorphism and schizophrenia in the Japanese population. Schizophr Res 2006; 83:179-83. [PMID: 16504480 DOI: 10.1016/j.schres.2005.12.854] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 12/21/2005] [Accepted: 12/29/2005] [Indexed: 11/19/2022]
Abstract
It has been reported that expression of the chromogranin A (CHGA) gene is reduced in the prefrontal cortex and cerebrospinal fluid of patients with schizophrenia. Single-marker and haplotype analyses of SNPs within the CHGA gene were performed in 633 subjects with schizophrenia and 589 healthy controls. A significant association with schizophrenia was observed to one SNP marker, rs9658635 (p=0.0269), and with a 2 marker haplotype (p=0.0016). Significant association of rs9658635 was then replicated in a second independent cohort (377 schizophrenia and 338 control samples) (p=0.007). These results suggest that the CHGA gene is associated with the risk of developing schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Nagahide Takahashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Greenwood TA, Rao F, Stridsberg M, Mahapatra NR, Mahata M, Lillie EO, Mahata SK, Taupenot L, Schork NJ, O'Connor DT. Pleiotropic effects of novel trans-acting loci influencing human sympathochromaffin secretion. Physiol Genomics 2006; 25:470-9. [PMID: 16554546 DOI: 10.1152/physiolgenomics.00295.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Family studies have suggested a genetic contribution to variation in blood pressure, but the genes responsible have thus far eluded identification. The use of intermediate phenotypes associated with hypertension, such as chromogranin plasma concentrations, may assist the discovery of hypertension-predisposing loci. We measured the concentrations of four chromogranin A (CHGA) and B (CHGB) peptides in 742 individuals from 235 nuclear families. The CHGA- and CHGB-derived peptides displayed significant heritability and revealed significant genetic correlations, most strikingly observed between CHGA(361-372) (catestatin) and CHGB(439-451). A 5-cM microsatellite genome scan revealed significant and suggestive evidence for linkage on several chromosomes for three of the peptides. Subsequent bivariate linkage analysis for peptides CHGA(361-372) and CHGB(439-451), which showed evidence for convergent linkage peaks on chromosomes 2, 7, and 13, resulted in increased evidence for linkage to these regions, suggesting pleiotropic effects of these three loci on multiple chromogranin traits. Because CHGA itself is on chromosome 14q32, and CHGB itself is on chromosome 20pter-p12, the pleiotropic regions on chromosomes 2, 7, and 13 must represent trans-acting quantitative trait loci coordinately affecting CHGA/CHGB biosynthesis and/or exocytotic secretion, likely by regulating efferent sympathetic outflow, a conclusion consistent with the in vitro studies presented here of the dual control of both exocytosis and transcription of these peptides by secretory stimuli in chromaffin cells. The results suggest a new approach to heritable autonomic control of circulation and the genetic basis of cardiovascular diseases such as systemic hypertension.
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW Essential hypertension is a complex polygenetic disease with a major impact on health worldwide. Despite earlier detection of promising candidate genes, only recent advances in genotyping technology and new approaches to examining gene and protein function have provided the tools to unravel the genetic basis of hypertension. RECENT FINDINGS In humans, genome-wide scans resulted in the identification of several chromosomal loci that are linked to hypertension. These regions still contain a large number of potential candidate genes, but high-throughput genotyping methods will facilitate the detection and analysis of single-nucleotide polymorphisms within these genes. The focus will be on animal models of hypertension, specifically rats. Congenic strains facilitate the identification of genetic determinants of hypertension, and new technologies such as RNA interference (which silences the expression of target genes) and transgenic rescue models will help us to analyse the relationship between genes and function. Analysis of conserved synteny (preserved order of genes) between species allows translation of findings from rodent models to essential hypertension in humans. Recent discoveries and approaches beyond genomics will also be discussed, including the regulatory role of microRNA and the concept of proteomics. SUMMARY The genetic basis of hypertension is complex, and the examination of the functional consequences of genetic variants in particular is still challenging. A number of tools are now available with which to examine gene-function relationships, and these will provide an improved understanding of cardiovascular genomics. This will eventually lead to targeted prevention and treatment strategies in patients with hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Martin W McBride
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
87
|
Maitland ML, Grimsley C, Kuttab-Boulos H, Witonsky D, Kasza KE, Yang L, Roe BA, Di Rienzo A. Comparative genomics analysis of human sequence variation in the UGT1A gene cluster. THE PHARMACOGENOMICS JOURNAL 2006; 6:52-62. [PMID: 16314881 DOI: 10.1038/sj.tpj.6500351] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 10/04/2005] [Accepted: 10/11/2005] [Indexed: 01/17/2023]
Abstract
Common polymorphisms within the human UGT1A gene locus are associated with irinotecan and tranilast toxicity. To uncover additional functional variation across this gene cluster, cross-species sequence comparisons were performed. Evolutionarily conserved segments (a total of 47.1 kb) were re-sequenced in 24 African-American, 24 European-American, and 24 Asian individuals, and 381 segregating sites (including 123 singletons) were identified. Highly conserved coding sites were less likely to be polymorphic than diverged sites (P<0.0001) but this pattern was not observed at non-coding sites (P=0.1025). Among coding variants, the distribution of those computationally predicted to affect function was skewed toward low frequencies. Some alleles occurred at similar frequencies in each population; others had wide disparities. Although strong linkage disequilibrium was detected among the hepatically expressed genes, the degree of linkage disequilibrium varied among populations. These results suggest that rare functional gene variants and inter-population variability must be considered in the interpretation of association studies between UGT1A and drug metabolism/toxicity phenotypes.
Collapse
Affiliation(s)
- M L Maitland
- Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Kim T, Loh YP. Chromogranin A: a surprising link between granule biogenesis and hypertension. J Clin Invest 2005; 115:1711-3. [PMID: 16007250 PMCID: PMC1159154 DOI: 10.1172/jci25706] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chromogranin A (CHGA) and its derived peptides, which are stored and released from dense-core secretory granules of neuroendocrine cells, have been implicated as playing multiple roles in the endocrine, cardiovascular, and nervous systems. In this issue of the JCI, Mahapatra et al. present in vivo evidence for 2 important functions of CHGA: the regulation of catecholamine-containing dense-core chromaffin granule biogenesis in the adrenal gland and the control of blood pressure. Obliteration of CHGA expression in a KO mouse model led to decreased size and number of chromaffin granules as well as hypertension in these animals. Transgenic expression of human Chga and exogenous injection of human catestatin, a CHGA-derived nicotinic cholinergic antagonist, restored normal blood pressure in these mice. These results suggest a coupled relationship between CHGA-mediated chromaffin granule biogenesis, necessary for catecholamine storage, and catestatin-induced inhibition of cholinergic-stimulated catecholamine release, which regulates autonomic control of blood pressure.
Collapse
Affiliation(s)
- Taeyoon Kim
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
89
|
Mahapatra NR, O'Connor DT, Vaingankar SM, Hikim APS, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N, Kennedy BP, Ziegler MG, Ross J, Mahata SK. Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 2005; 115:1942-52. [PMID: 16007257 PMCID: PMC1159140 DOI: 10.1172/jci24354] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 04/19/2005] [Indexed: 01/21/2023] Open
Abstract
The secretory prohormone chromogranin A (CHGA) is overexpressed in essential hypertension, a complex trait with genetic predisposition, while its catecholamine release-inhibitory fragment catestatin is diminished, and low catestatin predicts augmented adrenergic pressor responses. These findings from studies on humans suggest a mechanism whereby diminished catestatin might increase the risk for hypertension. We generated Chga and humanized mice through transgenic insertion of a human CHGA haplotype in order to probe CHGA and catestatin in vivo. Chga mice displayed extreme phenotypic changes, including: (a) decreased chromaffin granule size and number; (b) elevated BP; (c) loss of diurnal BP variation; (d) increased left ventricular mass and cavity dimensions; (e) decreased adrenal catecholamine, neuropeptide Y (Npy), and ATP contents; (f) increased catecholamine/ATP ratio in the chromaffin granule; and (g) increased plasma catecholamine and Npy levels. Rescue of elevated BP to normalcy was achieved by either exogenous catestatin replacement or humanization of Chga mice. Loss of the physiological "brake" catestatin in Chga mice coupled with dysregulation of transmitter storage and release may act in concert to alter autonomic control of the circulation in vivo, eventuating in hypertension.
Collapse
|
90
|
Mahata SK, Mahata M, Wen G, Wong WB, Mahapatra NR, Hamilton BA, O'Connor DT. The catecholamine release-inhibitory "catestatin" fragment of chromogranin a: naturally occurring human variants with different potencies for multiple chromaffin cell nicotinic cholinergic responses. Mol Pharmacol 2004; 66:1180-91. [PMID: 15326220 DOI: 10.1124/mol.104.002139] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The catestatin fragment of chromogranin A is an endogenous inhibitor of nicotinic cholinergic transmission, functioning in negative feedback control of catecholamine secretion. We explored naturally occurring polymorphisms in the amino acid sequence of catestatin. Three human variants were identified: Gly364Ser, Pro370Leu, and Arg374Gln. Variants were tested for ability to inhibit four nicotinic processes. The rank order of potency for inhibition of catecholamine secretion was Pro370Leu > wild type > Gly364Ser > Arg374Gln. Decrease in potency was paralleled by decline in Hill slope, suggesting that negative cooperativity at ascending dose might underlie loss of potency. Several lines of evidence indicated that each variant acted as a nicotinic antagonist: potency to inhibit secretion paralleled inhibition of agonist-triggered (22)Na(+) uptake (r = 0.986); variants inhibited secretion with similar potency when triggered by several nicotinic agonists, though not by agents using other secretory pathways or bypassing the nicotinic receptor; and blockade of secretion was noncompetitive with agonist. Variants also inhibited desensitization of secretion after prior agonist exposure and stimulation of secretory protein biosynthesis by agonist. Rank order of variant inhibitory potency for all four nicotinic processes was identical (Pro370Leu > wild type > Gly364Ser > Arg374Gln), suggesting mediation by similar combinations of receptor alpha/beta subunits and that crucial catestatin residues are likely to be identical across the four processes. When catestatin variants were mixed in likely heterozygotic (1:1 M ratio) combinations, the inhibitory curve was left-shifted onto that of the more potent variant in the combination, suggesting phenotypic dominance. The results have quantitative implications for interindividual variations in human nicotinic signaling.
Collapse
Affiliation(s)
- Sushil K Mahata
- Department of Medicine and Center for Molecular Genetics, University of California, San Diego, CA 92093-0838, USA.
| | | | | | | | | | | | | |
Collapse
|
91
|
Zhang L, Rao F, Wessel J, Kennedy BP, Rana BK, Taupenot L, Lillie EO, Cockburn M, Schork NJ, Ziegler MG, O'Connor DT. Functional allelic heterogeneity and pleiotropy of a repeat polymorphism in tyrosine hydroxylase: prediction of catecholamines and response to stress in twins. Physiol Genomics 2004; 19:277-91. [PMID: 15367723 DOI: 10.1152/physiolgenomics.00151.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, has a common tetranucleotide repeat polymorphism, (TCAT)(n). We asked whether variation at (TCAT)(n) may influence the autonomic nervous system and its response to environmental stress. To understand the role of heredity in such traits, we turned to a human twin study design. Both biochemical and physiological autonomic traits displayed substantial heritability (h(2)), up to h(2) = 56.8 +/- 7.5% (P < 0.0001) for norepinephrine secretion, and h(2) = 61 +/- 6% (P < 0.001) for heart rate. Common (TCAT)(n) alleles, particularly (TCAT)(6) and (TCAT)(10i), predicted such traits (including catecholamine secretion, as well as basal and poststress heart rate) in allele copy number dose-dependent fashion, although in directionally opposite ways, indicating functional allelic heterogeneity. (TCAT)(n) diploid genotypes (e.g., [TCAT](6)/[TCAT](10i)) predicted the same physiological traits but with increased explanatory power for trait variation (in contrast to allele copy number). Multivariate ANOVA documented genetic pleiotropy: joint effects of the (TCAT)(10i) allele on both biochemical (norepinephrine) and physiological (heart rate) traits. (TCAT)(6) allele frequencies were lower in normotensive twins at genetic risk of hypertension, consistent with an effect to protect against later development of hypertension, and suggesting that the traits predicted by these variants in still-normotensive subjects are early, heritable, "intermediate phenotypes" in the pathogenetic scheme for later development of sustained hypertension. We conclude that common allelic variation within the tyrosine hydroxylase locus exerts a powerful, heritable effect on autonomic control of the circulation and that such variation may have implications in later development of cardiovascular disease traits such as hypertension.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Medicine, University of California at San Diego, 92161, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Shastry BS. Role of SNP/haplotype map in gene discovery and drug development: An overview. Drug Dev Res 2004. [DOI: 10.1002/ddr.10377] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|