51
|
Simoes IC, Janikiewicz J, Bauer J, Karkucinska-Wieckowska A, Kalinowski P, Dobrzyń A, Wolski A, Pronicki M, Zieniewicz K, Dobrzyń P, Krawczyk M, Zischka H, Wieckowski MR, Potes Y. Fat and Sugar-A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients 2019; 11:2871. [PMID: 31771244 PMCID: PMC6950566 DOI: 10.3390/nu11122871] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disease in Western society and ranges from steatosis to steatohepatitis to end-stage liver disease such as cirrhosis and hepatocellular carcinoma. The molecular mechanisms that are involved in the progression of steatosis to more severe liver damage in patients are not fully understood. A deeper investigation of NAFLD pathogenesis is possible due to the many different animal models developed recently. In this review, we present a comparative overview of the most common dietary NAFLD rodent models with respect to their metabolic phenotype and morphological manifestation. Moreover, we describe similarities and controversies concerning the effect of NAFLD-inducing diets on mitochondria as well as mitochondria-derived oxidative stress in the progression of NAFLD.
Collapse
Affiliation(s)
- Ines C.M. Simoes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Justyna Janikiewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Judith Bauer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
| | | | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Andrzej Wolski
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Maciej Pronicki
- Department of Pathology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (A.K.-W.); (M.P.)
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Paweł Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mariusz R. Wieckowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Yaiza Potes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| |
Collapse
|
52
|
Steatosis and gut microbiota dysbiosis induced by high-fat diet are reversed by 1-week chow diet administration. Nutr Res 2019; 71:72-88. [PMID: 31757631 DOI: 10.1016/j.nutres.2019.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/26/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Many studies have recently shown that diet and its impact on gut microbiota are closely related to obesity and metabolic diseases including nonalcoholic fatty liver disease. Gut microbiota may be an important intermediate link, causing gastrointestinal and metabolic diseases under the influence of changes in diet and genetic predisposition. The aim of this study was to assess the reversibility of liver phenotype in parallel with exploring the resilience of the mice gut microbiota by switching high-fat diet (HFD) to chow diet (CD). Mice were fed an HF for 8 weeks. A part of the mice was euthanized, whereas the rest were then fed a CD. These mice were euthanized after 3 and 7 days of feeding with CD, respectively. Gut microbiota composition, serum parameters, and liver morphology were assessed. Eight weeks of HFD treatment induced marked liver steatosis in mice with a perturbed microbiome. Interestingly, only 7 days of CD was enough to recover the liver to a normal status, whereas the microbiome was accordingly reshaped to a close to initial pattern. The abundance of some of the bacteria including Prevotella, Parabacteroides, Lactobacillus, and Allobaculum was reversible upon diet change from HFD to CD. This suggests that microbiome modifications contribute to the metabolic effects of HFD feeding and that restoration of a normal microbiota may lead to improvement of the liver phenotype. In conclusion, we found that steatosis and gut microbiota dysbiosis induced by 8 weeks of high-fat diet can be reversed by 1 week of chow diet administration, and we identified gut bacteria associated with the metabolic phenotype.
Collapse
|
53
|
Lee J, Park JS, Roh YS. Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease. Arch Pharm Res 2019; 42:935-946. [DOI: 10.1007/s12272-019-01178-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023]
|
54
|
Echeverría F, Valenzuela R, Bustamante A, Álvarez D, Ortiz M, Espinosa A, Illesca P, Gonzalez-Mañan D, Videla LA. High-fat diet induces mouse liver steatosis with a concomitant decline in energy metabolism: attenuation by eicosapentaenoic acid (EPA) or hydroxytyrosol (HT) supplementation and the additive effects upon EPA and HT co-administration. Food Funct 2019; 10:6170-6183. [PMID: 31501836 DOI: 10.1039/c9fo01373c] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-fat-diet (HFD) feeding is associated with liver oxidative stress (OS), n-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) depletion, hepatic steatosis and mitochondrial dysfunction. Our hypothesis is that the HFD-induced liver injury can be attenuated by the combined supplementation of n-3 LCPUFA eicosapentaenoic acid (EPA) and the antioxidant hydroxytyrosol (HT). The C57BL/6J mice were administered an HFD (60% fat, 20% protein, 20% carbohydrates) or control diet (CD; 10% fat, 20% protein, 70% carbohydrates), with or without EPA (50 mg kg-1 day-1), HT (5 mg kg-1 day-1), or EPA + HT (50 and 5 mg kg-1 day-1, respectively) for 12 weeks. We measured the body and liver weights and dietary and energy intakes along with liver histology, FA composition, steatosis score and associated transcription factors, mitochondrial functions and metabolic factors related to energy sensing through the AMP-activated protein kinase (AMPK) and PPAR-γ coactivator-1α (PGC-1α) cascade. It was found that the HFD significantly induced liver steatosis, with a 66% depletion of n-3 LCPUFAs and a 100% increase in n-6/n-3 LCPUFA ratio as compared to the case of CD (p < 0.05). These changes were concomitant with (i) a 95% higher lipogenic and 70% lower FA oxidation signaling, (ii) a 40% diminution in mitochondrial respiratory capacity and (iii) a 56% lower ATP content. HFD-induced liver steatosis was also associated with (iv) a depressed mRNA expression of AMPK-PGC-1α signaling components, nuclear respiratory factor-2 (NRF-2) and β-ATP synthase. These HFD effects were significantly attenuated by the combined EPA + HT supplementation in an additive manner. These results suggested that EPA and HT co-administration partly prevented HFD-induced liver steatosis, thus strengthening the importance of combined interventions in hepatoprotection in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Francisca Echeverría
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Andrés Bustamante
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Daniela Álvarez
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Macarena Ortiz
- Nutrition and Dietetics School, Faculty of Health Sciences, Catholic University of Maule, Curicó, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Illesca
- Biochemistry Department, Faculty of Biochemistry, University of Litoral, Santa Fe, Argentina
| | | | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
55
|
Zeng QM, Li J. Diet-induced animal models of nonalcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2019; 27:835-841. [DOI: 10.11569/wcjd.v27.i13.835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), mainly characterized by excessive lipid accumulation in hepatocytes, is a metabolically-stressed liver injury that is closely related to insulin resistance and genetic susceptibility. The spectrum of NAFLD includes non-alcoholic simple hepatic steatosis, non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. With changes in lifestyle and dietary patterns, the prevalence of NAFLD has increased significantly, paralleling the prevalence of obesity, type 2 diabetes, and metabolic syndrome. To date, no specific drugs have been recommended for routine treatment of NASH. Therefore, it is of great significance to establish high-quality animal models that simulate the histopathology and pathophysiology of various stages of human NAFLD for exploring the pathogenesis of NAFLD and guiding drug intervention. Considering that high-calorie dietary patterns and sedentary lifestyle are the main risk factors for NAFLD, this review summarizes diet-induced NAFLD models.
Collapse
Affiliation(s)
- Qing-Min Zeng
- Graduate School, Tianjin Medical University, Tianjin Institute of Hepatology, Tianjin 300070, China,Department of Hepatology, Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin 300192, China
| | - Jia Li
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin 300192, China
| |
Collapse
|
56
|
Bons J, Macron C, Aude-Garcia C, Vaca-Jacome SA, Rompais M, Cianférani S, Carapito C, Rabilloud T. A Combined N-terminomics and Shotgun Proteomics Approach to Investigate the Responses of Human Cells to Rapamycin and Zinc at the Mitochondrial Level. Mol Cell Proteomics 2019; 18:1085-1095. [PMID: 31154437 PMCID: PMC6553941 DOI: 10.1074/mcp.ra118.001269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/14/2019] [Indexed: 12/19/2022] Open
Abstract
All but thirteen mammalian mitochondrial proteins are encoded by the nuclear genome, translated in the cytosol and then imported into the mitochondria. For a significant proportion of the mitochondrial proteins, import is coupled with the cleavage of a presequence called the transit peptide, and the formation of a new N-terminus. Determination of the neo N-termini has been investigated by proteomic approaches in several systems, but generally in a static way to compile as many N-termini as possible. In the present study, we have investigated how the mitochondrial proteome and N-terminome react to chemical stimuli that alter mitochondrial metabolism, namely zinc ions and rapamycin. To this end, we have used a strategy that analyzes both internal and N-terminal peptides in a single run, the dN-TOP approach. We used these two very different stressors to sort out what could be a generic response to stress and what is specific to each of these stressors. Rapamycin and zinc induced different changes in the mitochondrial proteome. However, convergent changes to key mitochondrial enzymatic activities such as pyruvate dehydrogenase, succinate dehydrogenase and citrate synthase were observed for both treatments. Other convergent changes were seen in components of the N-terminal processing system and mitochondrial proteases. Investigations into the generation of neo-N-termini in mitochondria showed that the processing system is robust, as indicated by the lack of change in neo N-termini under the conditions tested. Detailed analysis of the data revealed that zinc caused a slight reduction in the efficiency of the N-terminal trimming system and that both treatments increased the degradation of mitochondrial proteins. In conclusion, the use of this combined strategy allowed a detailed analysis of the dynamics of the mitochondrial N-terminome in response to treatments which impact the mitochondria.
Collapse
Affiliation(s)
- Joanna Bons
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Charlotte Macron
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Catherine Aude-Garcia
- §Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS UMR5249, CEA, BIG-LCBM, 38000 Grenoble, France
| | - Sebastian Alvaro Vaca-Jacome
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Magali Rompais
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Sarah Cianférani
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Christine Carapito
- From the ‡Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France;
| | - Thierry Rabilloud
- §Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS UMR5249, CEA, BIG-LCBM, 38000 Grenoble, France
| |
Collapse
|
57
|
Yousf S, Sardesai DM, Mathew AB, Khandelwal R, Acharya JD, Sharma S, Chugh J. Metabolic signatures suggest o-phosphocholine to UDP-N-acetylglucosamine ratio as a potential biomarker for high-glucose and/or palmitate exposure in pancreatic β-cells. Metabolomics 2019; 15:55. [PMID: 30927092 DOI: 10.1007/s11306-019-1516-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/19/2019] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Chronic exposure to high-glucose and free fatty acids (FFA) alone/or in combination; and the resulting gluco-, lipo- and glucolipo-toxic conditions, respectively, have been known to induce dysfunction and apoptosis of β-cells in Diabetes. The molecular mechanisms and the development of biomarkers that can be used to predict similarities and differences behind these conditions would help in easier and earlier diagnosis of Diabetes. OBJECTIVES This study aims to use metabolomics to gain insight into the mechanisms by which β-cells respond to excess-nutrient stress and identify associated biomarkers. METHODS INS-1E cells were cultured in high-glucose, palmitate alone/or in combination for 24 h to mimic gluco-, lipo- and glucolipo-toxic conditions, respectively. Biochemical and cellular experiments were performed to confirm the establishment of these conditions. To gain molecular insights, abundant metabolites were identified and quantified using 1H-NMR. RESULTS No loss of cellular viability was observed in high-glucose while exposure to FFA alone/in combination with high-glucose was associated with increased ROS levels, membrane damage, lipid accumulation, and DNA double-strand breaks. Forty-nine abundant metabolites were identified and quantified using 1H-NMR. Chemometric pair-wise analysis in glucotoxic and lipotoxic conditions, when compared with glucolipotoxic conditions, revealed partial overlap in the dysregulated metabolites; however, the dysregulation was more significant under glucolipotoxic conditions. CONCLUSION The current study compared gluco-, lipo- and glucolipotoxic conditions in parallel and elucidated differences in metabolic pathways that play major roles in Diabetes. o-phosphocholine and UDP-N-acetylglucosamine were identified as common dysregulated metabolites and their ratio was proposed as a potential biomarker for these conditions.
Collapse
Affiliation(s)
- Saleem Yousf
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Devika M Sardesai
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, 411007, India
| | - Abraham B Mathew
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, 411007, India
| | - Rashi Khandelwal
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, 411007, India
| | - Jhankar D Acharya
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, 411007, India.
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India.
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India.
| |
Collapse
|
58
|
Jiang M, Wu N, Chen X, Wang W, Chu Y, Liu H, Li W, Chen D, Li X, Xu B. Pathogenesis of and major animal models used for nonalcoholic fatty liver disease. J Int Med Res 2019; 47:1453-1466. [PMID: 30871397 PMCID: PMC6460620 DOI: 10.1177/0300060519833527] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its pathologically more severe form, nonalcoholic steatohepatitis (NASH), have become prevalent worldwide and carry an increased risk of developing hepatocellular carcinoma and other metabolic diseases. Diverse animal models have been proposed to replicate particular characteristics of NAFLD and NASH and have provided significant clues to the critical molecular targets of NASH treatment. In this review, we summarize the histopathology, pathogenesis, and molecular basis of NAFLD progression and discuss the benchmark animal models of NAFLD/NASH.
Collapse
Affiliation(s)
- Mingzuo Jiang
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Nan Wu
- 2 Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Xi Chen
- 3 Department of Surgical Anesthesiology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Weijie Wang
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Yi Chu
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Hao Liu
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Wenjiao Li
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Di Chen
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China.,5 Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaowei Li
- 4 Department of Gastroenterology, PLA Navy General Hospital, Beijing, China.,5 Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bing Xu
- 5 Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
59
|
Abdelmegeed MA, Ha SK, Choi Y, Akbar M, Song BJ. Role of CYP2E1 in Mitochondrial Dysfunction and Hepatic Injury by Alcohol and Non-Alcoholic Substances. Curr Mol Pharmacol 2019; 10:207-225. [PMID: 26278393 DOI: 10.2174/1874467208666150817111114] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
Alcoholic fatty liver disease (AFLD) and non-alcoholic fatty liver disease (NAFLD) are two pathological conditions that are spreading worldwide. Both conditions are remarkably similar with regard to the pathophysiological mechanism and progression despite different causes. Oxidative stressinduced mitochondrial dysfunction through post-translational protein modifications and/or mitochondrial DNA damage has been a major risk factor in both AFLD and NAFLD development and progression. Cytochrome P450-2E1 (CYP2E1), a known important inducer of oxidative radicals in the cells, has been reported to remarkably increase in both AFLD and NAFLD. Interestingly, CYP2E1 isoforms expressed in both endoplasmic reticulum (ER) and mitochondria, likely lead to the deleterious consequences in response to alcohol or in conditions of NAFLD after exposure to high fat diet (HFD) and in obesity and diabetes. Whether CYP2E1 in both ER and mitochondria work simultaneously or sequentially in various conditions and whether mitochondrial CYP2E1 may exert more pronounced effects on mitochondrial dysfunction in AFLD and NAFLD are unclear. The aims of this review are to briefly describe the role of CYP2E1 and resultant oxidative stress in promoting mitochondrial dysfunction and the development or progression of AFLD and NAFLD, to shed a light on the function of the mitochondrial CYP2E1 as compared with the ER-associated CYP2E1. We finally discuss translational research opportunities related to this field.
Collapse
Affiliation(s)
- Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892. United States
| | - Seung-Kwon Ha
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| |
Collapse
|
60
|
Pepin ME, Koentges C, Pfeil K, Gollmer J, Kersting S, Wiese S, Hoffmann MM, Odening KE, von zur Mühlen C, Diehl P, Stachon P, Wolf D, Wende AR, Bode C, Zirlik A, Bugger H. Dysregulation of the Mitochondrial Proteome Occurs in Mice Lacking Adiponectin Receptor 1. Front Endocrinol (Lausanne) 2019; 10:872. [PMID: 31920982 PMCID: PMC6923683 DOI: 10.3389/fendo.2019.00872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Decreased serum adiponectin levels in type 2 diabetes has been linked to the onset of mitochondrial dysfunction in diabetic complications by impairing AMPK-SIRT1-PGC-1α signaling via impaired adiponectin receptor 1 (AdipoR1) signaling. Here, we aimed to characterize the previously undefined role of disrupted AdipoR1 signaling on the mitochondrial protein composition of cardiac, renal, and hepatic tissues as three organs principally associated with diabetic complications. Comparative proteomics were performed in mitochondria isolated from the heart, kidneys and liver of Adipor1 -/- mice. A total of 790, 1,573, and 1,833 proteins were identified in cardiac, renal and hepatic mitochondria, respectively. While 121, 98, and 78 proteins were differentially regulated in cardiac, renal, and hepatic tissue of Adipor1-/- mice, respectively; only 15 proteins were regulated in the same direction across all investigated tissues. Enrichment analysis of differentially expressed proteins revealed disproportionate representation of proteins involved in oxidative phosphorylation conserved across tissue types. Curated pathway analysis identified HNF4, NRF1, LONP, RICTOR, SURF1, insulin receptor, and PGC-1α as candidate upstream regulators. In high fat-fed non-transgenic mice with obesity and insulin resistance, AdipoR1 gene expression was markedly reduced in heart (-70%), kidney (-80%), and liver (-90%) (all P < 0.05) as compared to low fat-fed mice. NRF1 was the only upstream regulator downregulated both in Adipor1-/- mice and in high fat-fed mice, suggesting common mechanisms of regulation. Thus, AdipoR1 signaling regulates mitochondrial protein composition across all investigated tissues in a functionally conserved, yet molecularly distinct, manner. The biological significance and potential implications of impaired AdipoR1 signaling are discussed.
Collapse
Affiliation(s)
- Mark E. Pepin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christoph Koentges
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
| | - Katharina Pfeil
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Johannes Gollmer
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Sophia Kersting
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Michael M. Hoffmann
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Katja E. Odening
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantin von zur Mühlen
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Stachon
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christoph Bode
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Division of Cardiology, Medical University of Graz, Graz, Austria
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Bugger
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
- Division of Cardiology, Medical University of Graz, Graz, Austria
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Heiko Bugger
| |
Collapse
|
61
|
Yu Y, Park SJ, Beyak MJ. Inducible nitric oxide synthase-derived nitric oxide reduces vagal satiety signalling in obese mice. J Physiol 2018; 597:1487-1502. [PMID: 30565225 DOI: 10.1113/jp276894] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Obesity is associated with disrupted satiety regulation. Mice with diet-induced obesity have reduced vagal afferent neuronal excitability and a decreased afferent response to satiety signals. A low grade inflammation occurs in obesity with increased expression of inducible nitric oxide synthase (iNOS). Inhibition of iNOS in diet-induced obese mice restored vagal afferent neuronal excitability, increased the afferent response to satiety mediators and distention of the gut, and reduced short-term energy intake. A prolonged inhibition of iNOS reduced energy intake and body weight gain during the first week, and reduced amounts of epididymal fat after 3 weeks. We identified a novel pathway underlying disrupted satiety regulation in obesity. Blocking of this pathway might be clinically useful for the management of obesity. ABSTRACT Vagal afferents regulate feeding by transmitting satiety signals to the brain. Mice with diet-induced obesity have reduced vagal afferent sensitivity to satiety signals. We investigated whether inducible nitric oxide synthase (iNOS)-derived NO contributed to this reduction. C57BL/6J mice were fed a high- or low-fat diet for 6-8 weeks. Nodose ganglia and jejunum were analysed by immunoblotting for iNOS expression; NO production was measured using a fluorometric assay. Nodose neuron excitability and intestinal afferent sensitivity were evaluated by whole-cell patch clamp and in vitro afferent recording, respectively. Expression of iNOS and production of NO were increased in nodose ganglia and the small intestine in obese mice. Inhibition of iNOS in obese mice by pre-treatment with an iNOS inhibitor increased nodose neuron excitability via 2-pore-domain K+ channel leak currents, restored afferent sensitivity to satiety signals and reduced short-term energy intake. Obese mice given the iNOS inhibitor daily for 3 weeks had reduced energy intake and decreased body weight gain during the first week, compared to mice given saline, and lower amounts of epididymal fat at the end of 3 weeks. Inhibition of iNOS or blocking the action of iNOS-derived NO on vagal afferent pathways might comprise therapeutic strategies for hyperphagia and obesity.
Collapse
Affiliation(s)
- Yang Yu
- Gastrointestinal Disease Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Sung Jin Park
- Gastrointestinal Disease Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Michael J Beyak
- Gastrointestinal Disease Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| |
Collapse
|
62
|
van den Berg MP, Meurs H, Gosens R. Targeting arginase and nitric oxide metabolism in chronic airway diseases and their co-morbidities. Curr Opin Pharmacol 2018; 40:126-133. [PMID: 29729549 DOI: 10.1016/j.coph.2018.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/22/2023]
Abstract
In the airways, arginase and NOS compete for the common substrate l-arginine. In chronic airway diseases, such as asthma and COPD, elevated arginase expression contributes to airway contractility, hyperresponsiveness, inflammation and remodeling. The disrupted l-arginine homeostasis, through changes in arginase and NOS expression and activity, does not only play a central role in the development of various airways diseases such as asthma or COPD. It possibly also affects l-arginine homeostasis throughout the body contributing to the emergence of co-morbidities. This review focusses on the role of arginase, NOS and ADMA in co-morbidities of asthma and COPD and speculates on their possible connection.
Collapse
Affiliation(s)
- Mariska Pm van den Berg
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1 (XB10), 9713 AV Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1 (XB10), 9713 AV Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1 (XB10), 9713 AV Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
63
|
Simões ICM, Fontes A, Pinton P, Zischka H, Wieckowski MR. Mitochondria in non-alcoholic fatty liver disease. Int J Biochem Cell Biol 2017; 95:93-99. [PMID: 29288054 DOI: 10.1016/j.biocel.2017.12.019] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
NAFLD is a common disease in Western society and ranges from steatosis to steatohepatitis and to end-stage liver disease. The molecular mechanisms that cause the progression of steatosis to severe liver damage are not fully understood. One suggested mechanism involves the oxidation of biomolecules by mitochondrial ROS which initiates a vicious cycle of exacerbated mitochondrial dysfunction and increased hepatocellular oxidative damage. This may ultimately pave the way for hepatic inflammation and liver failure. This review updates our current understanding of mitochondria-derived oxidative stress in the progression of NAFLD.
Collapse
Affiliation(s)
- Inês C M Simões
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3 Str., 02-093 Warsaw, Poland
| | - Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstraße 1, D-85764, Neuherberg, Germany
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstraße 1, D-85764, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University Munich, Biedersteiner Straße 29, D-80802 Munich, Germany
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3 Str., 02-093 Warsaw, Poland.
| |
Collapse
|
64
|
Translational Aspects of Diet and Non-Alcoholic Fatty Liver Disease. Nutrients 2017; 9:nu9101077. [PMID: 28956824 PMCID: PMC5691694 DOI: 10.3390/nu9101077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of diseases ranging from simple steatosis without inflammation or fibrosis to nonalcoholic steatohepatitis (NASH). Despite the strong association between dietary factors and NAFLD, no dietary animal model of NAFLD fully recapitulates the complex metabolic and histological phenotype of the disease, although recent models show promise. Although animal models have significantly contributed to our understanding of human diseases, they have been less successful in accurate translation to predict effective treatment strategies. We discuss strategies to overcome this challenge, in particular the adoption of big data approaches combining clinical phenotype, genomic heterogeneity, transcriptomics, and metabolomics changes to identify the ideal NAFLD animal model for a given scientific question or to test a given drug. We conclude by noting that novel big data approaches may help to bridge the translational gap for selecting dietary models of NAFLD.
Collapse
|
65
|
Rahman MM, Alam MN, Ulla A, Sumi FA, Subhan N, Khan T, Sikder B, Hossain H, Reza HM, Alam MA. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats. Lipids Health Dis 2017; 16:151. [PMID: 28806968 PMCID: PMC5557534 DOI: 10.1186/s12944-017-0539-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
Background Cardamom is a well-known spice in Indian subcontinent, used in culinary and traditional medicine practices since ancient times. The current investigation was untaken to evaluate the potential benefit of cardamom powder supplementation in high carbohydrate high fat (HCHF) diet induced obese rats. Method Male Wistar rats (28 rats) were divided into four different groups such as Control, Control + cardamom, HCHF, HCHF + cardamom. High carbohydrate and high fat (HCHF) diet was prepared in our laboratory. Oral glucose tolerance test, organs wet weight measurements and oxidative stress parameters analysis as well as liver marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities were assayed on the tissues collected from the rats. Plasma lipids profiles were also measured in all groups of animals. Moreover, histological staining was also performed to evaluate inflammatory cells infiltration and fibrosis in liver. Results The current investigation showed that, HCHF diet feeding in rats developed glucose intolerance and increased peritoneal fat deposition compared to control rats. Cardamom powder supplementation improved the glucose intolerance significantly (p > 0.05) and prevented the abdominal fat deposition in HCHF diet fed rats. HCHF diet feeding in rats also developed dyslipidemia, increased fat deposition and inflammation in liver compared to control rats. Cardamom powder supplementation significantly prevented the rise of lipid parameters (p > 0.05) in HCHF diet fed rats. Histological assessments confirmed that HCHF diet increased the fat deposition and inflammatory cells infiltration in liver which was normalized by cardamom powder supplementation in HCHF diet fed rats. Furthermore, HCHF diet increased lipid peroxidation, decreased antioxidant enzymes activities and increased advanced protein oxidation product level significantly (p > 0.05) both in plasma and liver tissue which were modulated by cardamom powder supplementation in HCHF diet fed rats. HCHF diet feeding in rats also increased the ALT, AST and ALP enzyme activities in plasma which were also normalized by cardamom powder supplementation in HCHF diet fed rats. Moreover, cardamom powder supplementation ameliorated the fibrosis in liver of HCHF diet fed rats. Conclusion This study suggests that, cardamom powder supplementation can prevent dyslipidemia, oxidative stress and hepatic damage in HCHF diet fed rats.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Mohammad Nazmul Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Anayt Ulla
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Farzana Akther Sumi
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Trisha Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Bishwajit Sikder
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Hemayet Hossain
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh.
| |
Collapse
|
66
|
Anavi S, Madar Z, Tirosh O. Non-alcoholic fatty liver disease, to struggle with the strangle: Oxygen availability in fatty livers. Redox Biol 2017; 13:386-392. [PMID: 28667907 PMCID: PMC5493836 DOI: 10.1016/j.redox.2017.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 12/29/2022] Open
Abstract
Nonalcoholic fatty liver diseases (NAFLD) is one of the most common chronic liver disease in Western countries. Oxygen is a central component of the cellular microenvironment, which participate in the regulation of cell survival, differentiation, functions and energy metabolism. Accordingly, sufficient oxygen supply is an important factor for tissue durability, mainly in highly metabolic tissues, such as the liver. Accumulating evidence from the past few decades provides strong support for the existence of interruptions in oxygen availability in fatty livers. This outcome may be the consequence of both, impaired systemic microcirculation and cellular membrane modifications which occur under steatotic conditions. This review summarizes current knowledge regarding the main factors which can affect oxygen supply in fatty liver.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Zecharia Madar
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
67
|
Caira S, Iannelli A, Sciarrillo R, Picariello G, Renzone G, Scaloni A, Addeo P. Differential representation of liver proteins in obese human subjects suggests novel biomarkers and promising targets for drug development in obesity. J Enzyme Inhib Med Chem 2017; 32:672-682. [PMID: 28274171 PMCID: PMC6009959 DOI: 10.1080/14756366.2017.1292262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proteome of liver biopsies from human obese (O) subjects has been compared to those of nonobese (NO) subjects using two-dimensional gel electrophoresis (2-DE). Differentially represented proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)-based peptide mass fingerprinting (PMF) and nanoflow-liquid chromatography coupled to electrospray-tandem mass spectrometry (nLC-ESI-MS/MS). Overall, 61 gene products common to all of the liver biopsies were identified within 65 spots, among which 25 ones were differently represented between O and NO subjects. In particular, over-representation of short-chain acyl-CoA dehydrogenase, Δ(3,5)-Δ(2,4)dienoyl-CoA isomerase, acetyl-CoA acetyltransferase, glyoxylate reductase/hydroxypyruvate reductase, fructose-biphosphate aldolase B, peroxiredoxin I, protein DJ-1, catalase, α- and β-hemoglobin subunits, 3-mercaptopyruvate S-transferase, calreticulin, aminoacylase 1, phenazine biosynthesis-like domain-containing protein and a form of fatty acid-binding protein, together with downrepresentation of glutamate dehydrogenase, glutathione S-transferase A1, S-adenosylmethionine synthase 1A and a form of apolipoprotein A-I, was associated with the obesity condition. Some of these metabolic enzymes and antioxidant proteins have already been identified as putative diagnostic markers of liver dysfunction in animal models of steatosis or obesity, suggesting additional investigations on their role in these syndromes. Their differential representation in human liver was suggestive of their consideration as obesity human biomarkers and for the development of novel antiobesity drugs.
Collapse
Affiliation(s)
- Simonetta Caira
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Antonio Iannelli
- b Département de Chirurgie Digestive , Centre Hospitalier Universitarie de Nice , Nice , France
| | - Rosaria Sciarrillo
- c Dipartimento di Scienze e Tecnologie , Università degli Studi del Sannio , Benevento , Italy
| | | | - Giovanni Renzone
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Andrea Scaloni
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Pietro Addeo
- e Service de Chirurgie Hépatique, Pancréatique, Biliaire et Transplantation, Pôle des Pathologies Digestives, Hépatiques et de la Transplantation, Hôpital de Hautepierre , Université de Strasbourg, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| |
Collapse
|
68
|
Lau JKC, Zhang X, Yu J. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J Pathol 2016; 241:36-44. [PMID: 27757953 PMCID: PMC5215469 DOI: 10.1002/path.4829] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/12/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is a continuous spectrum of diseases characterized by excessive lipid accumulation in hepatocytes. NAFLD progresses from simple liver steatosis to non‐alcoholic steatohepatitis and, in more severe cases, to liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Because of its growing worldwide prevalence, various animal models that mirror both the histopathology and the pathophysiology of each stage of human NAFLD have been developed. The selection of appropriate animal models continues to be one of the key questions faced in this field. This review presents a critical analysis of the histopathology and pathogenesis of NAFLD, the most frequently used and recently developed animal models for each stage of NAFLD and NAFLD‐induced HCC, the main mechanisms involved in the experimental pathogenesis of NAFLD in different animal models, and a brief summary of recent therapeutic targets found by the use of animal models. Integrating the data from human disease with those from animal studies indicates that, although current animal models provide critical guidance in understanding specific stages of NAFLD pathogenesis and progression, further research is necessary to develop more accurate models that better mimic the disease spectrum, in order to provide both increased mechanistic understanding and identification/testing of novel therapeutic approaches. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jennie Ka Ching Lau
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China.,Faculty of Medicine, SHHO College, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Xiang Zhang
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Jun Yu
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
69
|
Charytoniuk T, Drygalski K, Konstantynowicz-Nowicka K, Berk K, Chabowski A. Alternative treatment methods attenuate the development of NAFLD: A review of resveratrol molecular mechanisms and clinical trials. Nutrition 2016; 34:108-117. [PMID: 28063505 DOI: 10.1016/j.nut.2016.09.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered to be one of the most common liver pathologies that occur widely among societies with a predominance of the Western dietary pattern. NAFLD may progress from hepatic steatosis to nonalcoholic steatohepatitis (NASH), subsequently leading to cirrhosis and becoming a major cause of hepatocellular carcinoma. Thus its prevention and therapy play an important role in hepatology. To our knowledge, there is no effective treatment for patients with NAFLD. The aim of this review was to summarize the results of recent alternative treatment studies conducted both on cell cultures and in vivo that concern molecular effects of resveratrol (3,5,4'-trihydroxystilbene) in the treatment of NAFLD. The precise metabolism, pharmacology, and clinical trials with different concentrations of resveratrol were described. The review also presents a brief summary of other alternative treatment methods of NAFLD and their mechanisms compared with current clinical understanding.
Collapse
Affiliation(s)
- Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Drygalski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | | | - Klaudia Berk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
70
|
Nuño-Lámbarri N, Barbero-Becerra VJ, Uribe M, Chávez-Tapia NC. Mitochondrial Molecular Pathophysiology of Nonalcoholic Fatty Liver Disease: A Proteomics Approach. Int J Mol Sci 2016; 17:281. [PMID: 26999105 PMCID: PMC4813145 DOI: 10.3390/ijms17030281] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver condition that can progress to nonalcoholic steatohepatitis, cirrhosis and cancer. It is considered an emerging health problem due to malnourishment or a high-fat diet (HFD) intake, which is observed worldwide. It is well known that the hepatocytes’ apoptosis phenomenon is one of the most important features of NAFLD. Thus, this review focuses on revealing, through a proteomics approach, the complex network of protein interactions that promote fibrosis, liver cell stress, and apoptosis. According to different types of in vitro and murine models, it has been found that oxidative/nitrative protein stress leads to mitochondrial dysfunction, which plays a major role in stimulating NAFLD damage. Human studies have revealed the importance of novel biomarkers, such as retinol-binding protein 4, lumican, transgelin 2 and hemoglobin, which have a significant role in the disease. The post-genome era has brought proteomics technology, which allows the determination of molecular pathogenesis in NAFLD. This has led to the search for biomarkers which improve early diagnosis and optimal treatment and which may effectively prevent fatal consequences such as cirrhosis or cancer.
Collapse
Affiliation(s)
- Natalia Nuño-Lámbarri
- Traslational Research Unit, Médica Sur Clinic & Foundation, Mexico City 14050, Mexico.
| | | | - Misael Uribe
- Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation, Mexico City 14050, Mexico.
| | - Norberto C Chávez-Tapia
- Traslational Research Unit, Médica Sur Clinic & Foundation, Mexico City 14050, Mexico.
- Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation, Mexico City 14050, Mexico.
| |
Collapse
|
71
|
Kakimoto PA, Kowaltowski AJ. Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance. Redox Biol 2016; 8:216-25. [PMID: 26826574 PMCID: PMC4753394 DOI: 10.1016/j.redox.2016.01.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 02/08/2023] Open
Abstract
Human metabolic diseases can be mimicked in rodents by using dietary interventions such as high fat diets (HFD). Nonalcoholic fatty liver disease (NAFLD) develops as a result of HFD and the disease may progress in a manner involving increased production of oxidants. The main intracellular source of these oxidants are mitochondria, which are also responsible for lipid metabolism and thus widely recognized as important players in the pathology and progression of steatosis. Here, we review publications that study redox and bioenergetic effects of HFD in the liver. We find that dietary composition and protocol implementations vary widely, as do the results of these dietary interventions. Overall, all HFD promote steatosis, changes in β-oxidation, generation and consequences of oxidants, while effects on body weight, insulin signaling and other bioenergetic parameters are more variable with the experimental models adopted. Our review provides a broad analysis of the bioenergetic and redox changes promoted by HFD as well as suggestions for changes and specifications in methodologies that may help explain apparent disparities in the current literature. High fat diets (HFDs) induce steatosis, even with no weight changes . HFDs activate β-oxidation. HFDs promote oxidative imbalance.
Collapse
Affiliation(s)
- Pâmela A Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| |
Collapse
|
72
|
Pedersen BA, Wang W, Taylor JF, Khattab OS, Chen YH, Edwards RA, Yazdi PG, Wang PH. Hepatic proteomic analysis revealed altered metabolic pathways in insulin resistant Akt1(+/-)/Akt2(-/-) mice. Metabolism 2015; 64:1694-703. [PMID: 26455965 PMCID: PMC4641788 DOI: 10.1016/j.metabol.2015.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/19/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of this study was to identify liver proteome changes in a mouse model of severe insulin resistance and markedly decreased leptin levels. METHODS Two-dimensional differential gel electrophoresis was utilized to identify liver proteome changes in AKT1(+/-)/AKT2(-/-) mice. Proteins with altered levels were identified with tandem mass spectrometry. Ingenuity Pathway Analysis was performed for the interpretation of the biological significance of the observed proteomic changes. RESULTS 11 proteins were identified from 2 biological replicates to be differentially expressed by a ratio of at least 1.3 between age-matched insulin resistant (Akt1(+/-)/Akt2(-/-)) and wild type mice. Albumin and mitochondrial ornithine aminotransferase were detected from multiple spots, which suggest post-translational modifications. Enzymes of the urea cycle were common members of top regulated pathways. CONCLUSION Our results help to unveil the regulation of the liver proteome underlying altered metabolism in an animal model of severe insulin resistance.
Collapse
Affiliation(s)
- Brian A Pedersen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Weiwen Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL, 33136
| | - Jared F Taylor
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Omar S Khattab
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
| | - Yu-Han Chen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Robert A Edwards
- Department of Pathology, University of California at Irvine, Irvine, CA 92697, USA
| | - Puya G Yazdi
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Ping H Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
73
|
Kwon B, Gamache T, Lee HK, Querfurth HW. Synergistic effects of β-amyloid and ceramide-induced insulin resistance on mitochondrial metabolism in neuronal cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1810-23. [DOI: 10.1016/j.bbadis.2015.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022]
|
74
|
Kochan K, Maslak E, Krafft C, Kostogrys R, Chlopicki S, Baranska M. Raman spectroscopy analysis of lipid droplets content, distribution and saturation level in Non-Alcoholic Fatty Liver Disease in mice. JOURNAL OF BIOPHOTONICS 2015; 8:597-609. [PMID: 25346221 DOI: 10.1002/jbio.201400077] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/05/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common liver disorder, characterized by an excessive lipids deposition within the hepatic tissue. Due to the lack of clear-cut symptoms and optimal diagnostic method, the actual prevalence of NAFLD and its pathogenesis remains unclear, especially in the early stages of progression. In the presented work confocal Raman microspectroscopy was used to investigate alterations in the chemical composition of the NAFLD-affected liver. We have investigated two NAFLD models, representative for macrovesicular and microvesicular steatosis, induced by High Fat Diet (60 kcal %) and Low Carbohydrate High Protein Diet (LCHP), respectively. In both models we confirmed the development of NAFLD, manifested by the presence of lipid droplets (LDs), but of different sizes. Model of macrovesicular steatosis was characterized by large LDs, whereas in the microvesicular steatosis model small droplets were found. In both models, however, we observed a significant decrease in the degree of unsaturation of lipids, in comparison to the control. In addition, for both models, the impact of medical treatment with selected drugs (perindopril and nicotinic acid, respectively) was tested, indicating a significant influence of medicine not only on the occurrence and size of the droplets, but also on their composition. In both cases the drug treatment resulted in an increase of the degree of unsaturation of lipids forming droplets. Confocal Raman microspectroscopy was proven to be a powerful tool providing detailed insight into selected areas of hepatic tissue, following the NAFLD pathogenesis and diagnostic potential of the applied drugs.
Collapse
Affiliation(s)
- Kamila Kochan
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Edyta Maslak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | | | - Renata Kostogrys
- Department of Human Nutrition, Faculty of Food Technology, Agricultural University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Experimental Pharmacology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.
| |
Collapse
|
75
|
Song BJ, Akbar M, Jo I, Hardwick JP, Abdelmegeed MA. Translational Implications of the Alcohol-Metabolizing Enzymes, Including Cytochrome P450-2E1, in Alcoholic and Nonalcoholic Liver Disease. ADVANCES IN PHARMACOLOGY 2015; 74:303-72. [PMID: 26233911 DOI: 10.1016/bs.apha.2015.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fat accumulation (hepatic steatosis) in alcoholic and nonalcoholic fatty liver disease is a potentially pathologic condition which can progress to steatohepatitis (inflammation), fibrosis, cirrhosis, and carcinogenesis. Many clinically used drugs or some alternative medicine compounds are also known to cause drug-induced liver injury, which can further lead to fulminant liver failure and acute deaths in extreme cases. During liver disease process, certain cytochromes P450 such as the ethanol-inducible cytochrome P450-2E1 (CYP2E1) and CYP4A isozymes can be induced and/or activated by alcohol and/or high-fat diets and pathophysiological conditions such as fasting, obesity, and diabetes. Activation of these P450 isozymes, involved in the metabolism of ethanol, fatty acids, and various drugs, can produce reactive oxygen/nitrogen species directly and/or indirectly, contributing to oxidative modifications of DNA/RNA, proteins and lipids. In addition, aldehyde dehydrogenases including the mitochondrial low Km aldehyde dehydrogenase-2 (ALDH2), responsible for the metabolism of acetaldehyde and lipid aldehydes, can be inactivated by various hepatotoxic agents. These highly reactive acetaldehyde and lipid peroxides, accumulated due to ALDH2 suppression, can interact with cellular macromolecules DNA/RNA, lipids, and proteins, leading to suppression of their normal function, contributing to DNA mutations, endoplasmic reticulum stress, mitochondrial dysfunction, steatosis, and cell death. In this chapter, we specifically review the roles of the alcohol-metabolizing enzymes including the alcohol dehydrogenase, ALDH2, CYP2E1, and other enzymes in promoting liver disease. We also discuss translational research opportunities with natural and/or synthetic antioxidants, which can prevent or delay the onset of inflammation and liver disease.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - James P Hardwick
- Biochemistry and Molecular Pathology in Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| |
Collapse
|
76
|
Hui ST, Parks BW, Org E, Norheim F, Che N, Pan C, Castellani LW, Charugundla S, Dirks DL, Psychogios N, Neuhaus I, Gerszten RE, Kirchgessner T, Gargalovic PS, Lusis AJ. The genetic architecture of NAFLD among inbred strains of mice. eLife 2015; 4:e05607. [PMID: 26067236 PMCID: PMC4493743 DOI: 10.7554/elife.05607] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 06/11/2015] [Indexed: 02/06/2023] Open
Abstract
To identify genetic and environmental factors contributing to the pathogenesis of non-alcoholic fatty liver disease, we examined liver steatosis and related clinical and molecular traits in more than 100 unique inbred mouse strains, which were fed a diet rich in fat and carbohydrates. A >30-fold variation in hepatic TG accumulation was observed among the strains. Genome-wide association studies revealed three loci associated with hepatic TG accumulation. Utilizing transcriptomic data from the liver and adipose tissue, we identified several high-confidence candidate genes for hepatic steatosis, including Gde1, a glycerophosphodiester phosphodiesterase not previously implicated in triglyceride metabolism. We confirmed the role of Gde1 by in vivo hepatic over-expression and shRNA knockdown studies. We hypothesize that Gde1 expression increases TG production by contributing to the production of glycerol-3-phosphate. Our multi-level data, including transcript levels, metabolite levels, and gut microbiota composition, provide a framework for understanding genetic and environmental interactions underlying hepatic steatosis.
Collapse
Affiliation(s)
- Simon T Hui
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Brian W Parks
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Elin Org
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nam Che
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Calvin Pan
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Lawrence W Castellani
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Sarada Charugundla
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Darwin L Dirks
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Nikolaos Psychogios
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Isaac Neuhaus
- Department of Computational Genomics, Bristol-Myers Squibb, Princeton, United States
| | - Robert E Gerszten
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Todd Kirchgessner
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, United States
| | - Peter S Gargalovic
- Department of Computational Genomics, Bristol-Myers Squibb, Princeton, United States
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
77
|
Individual CLA Isomers, c9t11 and t10c12, Prevent Excess Liver Glycogen Storage and Inhibit Lipogenic Genes Expression Induced by High-Fructose Diet in Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:535982. [PMID: 26090419 PMCID: PMC4450214 DOI: 10.1155/2015/535982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/12/2015] [Accepted: 02/26/2015] [Indexed: 01/22/2023]
Abstract
This study assessed the effects of individual conjugated linoleic acid isomers, c9t11-CLA and t10c12-CLA, on nonalcoholic fatty liver disease (NAFLD) and systemic endothelial dysfunction in rats fed for four weeks with control or high-fructose diet. The high-fructose diet hampered body weight gain (without influencing food intake), increased liver weight and glycogen storage in hepatocytes, upregulated expression of fatty acid synthase (FAS) and stearoyl-CoA desaturase-1 (SCD-1), and increased saturated fatty acid (SFA) content in the liver. Both CLA isomers prevented excessive accumulation of glycogen in the liver. Specifically, t10c12-CLA decreased concentration of serum triacylglycerols and LDL + VLDL cholesterol, increased HDL cholesterol, and affected liver lipid content and fatty acid composition by downregulation of liver SCD-1 and FAS expression. In turn, the c9t11-CLA decreased LDL+VLDL cholesterol in the control group and downregulated liver expression of FAS without significant effects on liver weight, lipid content, and fatty acid composition. In summary, feeding rats with a high-fructose diet resulted in increased liver glycogen storage, indicating the induction of gluconeogenesis despite simultaneous upregulation of genes involved in de novo lipogenesis. Although both CLA isomers (c9t11 and t10c12) display hepatoprotective activity, the hypolipemic action of the t10c12-CLA isomer proved to be more pronounced than that of c9t11-CLA.
Collapse
|
78
|
Peinado JR, Diaz-Ruiz A, Frühbeck G, Malagon MM. Mitochondria in metabolic disease: getting clues from proteomic studies. Proteomics 2014; 14:452-66. [PMID: 24339000 DOI: 10.1002/pmic.201300376] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/08/2013] [Accepted: 11/21/2013] [Indexed: 01/11/2023]
Abstract
Mitochondria play a key role as major regulators of cellular energy homeostasis, but in the context of mitochondrial dysfunction, mitochondria may generate reactive oxidative species and induce cellular apoptosis. Indeed, altered mitochondrial status has been linked to the pathogenesis of several metabolic disorders and specially disorders related to insulin resistance, such as obesity, type 2 diabetes, and other comorbidities comprising the metabolic syndrome. In the present review, we summarize information from various mitochondrial proteomic studies of insulin-sensitive tissues under different metabolic states. To that end, we first focus our attention on the pancreas, as mitochondrial malfunction has been shown to contribute to beta cell failure and impaired insulin release. Furthermore, proteomic studies of mitochondria obtained from liver, muscle, and adipose tissue are summarized, as these tissues constitute the primary insulin target metabolic tissues. Since recent advances in proteomic techniques have exposed the importance of PTMs in the development of metabolic disease, we also present information on specific PTMs that may directly affect mitochondria during the pathogenesis of metabolic disease. Specifically, mitochondrial protein acetylation, phosphorylation, and other PTMs related to oxidative damage, such as nitrosylation and carbonylation, are discussed.
Collapse
Affiliation(s)
- Juan R Peinado
- Department of Medical Sciences, Faculty of Medicine, Ciudad Real, Spain
| | | | | | | |
Collapse
|
79
|
Galloway CA, Lee H, Brookes PS, Yoon Y. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2014; 307:G632-41. [PMID: 25080922 PMCID: PMC4166723 DOI: 10.1152/ajpgi.00182.2014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitochondria produce the majority of cellular ATP through oxidative phosphorylation, and their capacity to do so is influenced by many factors. Mitochondrial morphology is recently suggested as an important contributor in controlling mitochondrial bioenergetics. Mitochondria divide and fuse continuously, which is affected by environmental factors, including metabolic alterations. Underscoring its bioenergetic influence, altered mitochondrial morphology is reported in tissues of patients and in animal models of metabolic dysfunction. In this study, we found that mitochondrial fission plays a vital role in the progression of nonalcoholic fatty liver disease (NAFLD). The development of hepatic steatosis, oxidative/nitrative stress, and hepatic tissue damage, induced by a high-fat diet, were alleviated in genetically manipulated mice suppressing mitochondrial fission. The alleviation of steatosis was recapitulated in primary hepatocytes with the inhibition of mitochondrial fission. Mechanistically, our study indicates that fission inhibition enhances proton leak under conditions of free fatty acid incubation, implicating bioenergetic change through manipulating mitochondrial fission. Taken together, our results suggest a mechanistic role for mitochondrial fission in the etiology of NAFLD. The efficacy of decreasing mitochondrial fission in the suppression of NAFLD suggests that mitochondrial fission represents a novel target for therapeutic treatment of NAFLD.
Collapse
Affiliation(s)
- Chad A. Galloway
- 1Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| | - Hakjoo Lee
- 2Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Paul S. Brookes
- 1Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
80
|
Mitochondrial-nuclear genome interactions in non-alcoholic fatty liver disease in mice. Biochem J 2014; 461:223-32. [PMID: 24758559 DOI: 10.1042/bj20131433] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
NAFLD (non-alcoholic fatty liver disease) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. In the present study, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, MNX (mitochondrial-nuclear exchange) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared with wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR (respiratory control ratio) when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD.
Collapse
|
81
|
Duivenvoorde LPM, van Schothorst EM, Derous D, van der Stelt I, Masania J, Rabbani N, Thornalley PJ, Keijer J. Oxygen restriction as challenge test reveals early high-fat-diet-induced changes in glucose and lipid metabolism. Pflugers Arch 2014; 467:1179-93. [PMID: 24974902 DOI: 10.1007/s00424-014-1553-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/06/2014] [Accepted: 06/09/2014] [Indexed: 01/17/2023]
Abstract
Challenge tests stress homeostasis and may reveal deviations in health that remain masked under unchallenged conditions. Ideally, challenge tests are non-invasive and applicable in an early phase of an animal experiment. Oxygen restriction (OxR; based on ambient, mild normobaric hypoxia) is a non-invasive challenge test that measures the flexibility to adapt metabolism. Metabolic inflexibility is one of the hallmarks of the metabolic syndrome. To test whether OxR can be used to reveal early diet-induced health effects, we exposed mice to a low-fat (LF) or high-fat (HF) diet for only 5 days. The response to OxR was assessed by calorimetric measurements, followed by analysis of gene expression in liver and epididymal white adipose tissue (eWAT) and serum markers for e.g. protein glycation and oxidation. Although HF feeding increased body weight, HF and LF mice did not differ in indirect calorimetric values under normoxic conditions and in a fasting state. Exposure to OxR; however, increased oxygen consumption and lipid oxidation in HF mice versus LF mice. Furthermore, OxR induced gluconeogenesis and an antioxidant response in the liver of HF mice, whereas it induced de novo lipogenesis and an antioxidant response in eWAT of LF mice, indicating that HF and LF mice differed in their adaptation to OxR. OxR also increased serum markers of protein glycation and oxidation in HF mice, whereas these changes were absent in LF mice. Cumulatively, OxR is a promising new method to test food products on potential beneficial effects for human health.
Collapse
Affiliation(s)
- Loes P M Duivenvoorde
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Functional roles of protein nitration in acute and chronic liver diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:149627. [PMID: 24876909 PMCID: PMC4021747 DOI: 10.1155/2014/149627] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 02/06/2023]
Abstract
Nitric oxide, when combined with superoxide, produces peroxynitrite, which is known to be an important mediator for a number of diseases including various liver diseases. Peroxynitrite can modify tyrosine residue(s) of many proteins resulting in protein nitration, which may alter structure and function of each target protein. Various proteomics and immunological methods including mass spectrometry combined with both high pressure liquid chromatography and 2D PAGE have been employed to identify and characterize nitrated proteins from pathological tissue samples to determine their roles. However, these methods contain a few technical problems such as low efficiencies with the detection of a limited number of nitrated proteins and labor intensiveness. Therefore, a systematic approach to efficiently identify nitrated proteins and characterize their functional roles is likely to shed new insights into understanding of the mechanisms of hepatic disease pathophysiology and subsequent development of new therapeutics. The aims of this review are to briefly describe the mechanisms of hepatic diseases. In addition, we specifically describe a systematic approach to efficiently identify nitrated proteins to study their causal roles or functional consequences in promoting acute and chronic liver diseases including alcoholic and nonalcoholic fatty liver diseases. We finally discuss translational research applications by analyzing nitrated proteins in evaluating the efficacies of potentially beneficial agents to prevent or treat various diseases in the liver and other tissues.
Collapse
|
83
|
Nesteruk M, Hennig EE, Mikula M, Karczmarski J, Dzwonek A, Goryca K, Rubel T, Paziewska A, Woszczynski M, Ledwon J, Dabrowska M, Dadlez M, Ostrowski J. Mitochondrial-related proteomic changes during obesity and fasting in mice are greater in the liver than skeletal muscles. Funct Integr Genomics 2014; 14:245-59. [PMID: 24178926 PMCID: PMC3968515 DOI: 10.1007/s10142-013-0342-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/24/2013] [Accepted: 09/30/2013] [Indexed: 01/19/2023]
Abstract
Although mitochondrial dysfunction is implicated in the pathogenesis of obesity, the molecular mechanisms underlying obesity-related metabolic abnormalities are not well established. We performed mitochondrial quantitative proteomic and whole transcriptome analysis followed by functional annotations within liver and skeletal muscles, using fasted and non-fasted 16- and 48-week-old high-fat diet (HFD)-fed and normal diet-fed (control group) wild-type C56BL/6J mice, and hyperphagic ob/ob and db/db obese mice. Our study identified 1,675 and 704 mitochondria-associated proteins with at least two peptides in liver and muscle, respectively. Of these, 221 liver and 44 muscle proteins were differentially expressed (adjusted p values ≤ 0.05) between control and all obese mice, while overnight fasting altered expression of 107 liver and 35 muscle proteins. In the liver, we distinguished a network of 27 proteins exhibiting opposite direction of expression changes in HFD-fed and hyperphagic mice when compared to control. The network centered on cytochromes P450 3a11 (Cyp3a11) and 4a14 (Cyp4a14), and fructose-bisphosphate aldolase B (Aldob) proteins which bridged proteins cluster involved in Metabolism of xenobiotics with proteins engaged in Fatty acid metabolism and PPAR signaling pathways. Functional annotations revealed that most of the hepatic molecular alterations, which characterized both obesity and fasting, related to different aspects of energy metabolism (such as Fatty acid metabolism, Peroxisome, and PPAR signaling); however, only a limited number of functional annotations could be selected from skeletal muscle data sets. Thus, our comprehensive molecular overview revealed that both obesity and fasting states induce more pronounced mitochondrial proteome changes in the liver than in the muscles.
Collapse
Affiliation(s)
- Monika Nesteruk
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Artur Dzwonek
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Tymon Rubel
- Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Marek Woszczynski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Joanna Ledwon
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Michalina Dabrowska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| |
Collapse
|
84
|
Al-Nimer MSM, Al-Gareeb AI, Al-Kuraishy HM. Orlistat improves psychomotor performance in humans. Clin Pharmacol Drug Dev 2014; 3:163-5. [PMID: 27128462 DOI: 10.1002/cpdd.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/13/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Marwan S M Al-Nimer
- Department of Pharmacology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| |
Collapse
|
85
|
Das S, Seth RK, Kumar A, Kadiiska MB, Michelotti G, Diehl AM, Chatterjee S. Purinergic receptor X7 is a key modulator of metabolic oxidative stress-mediated autophagy and inflammation in experimental nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2013; 305:G950-63. [PMID: 24157968 PMCID: PMC3882442 DOI: 10.1152/ajpgi.00235.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies indicate that metabolic oxidative stress, autophagy, and inflammation are hallmarks of nonalcoholic steatohepatitis (NASH) progression. However, the molecular mechanisms that link these important events in NASH remain unclear. In this study, we investigated the mechanistic role of purinergic receptor X7 (P2X7) in modulating autophagy and resultant inflammation in NASH in response to metabolic oxidative stress. The study uses two rodent models of NASH. In one of them, a CYP2E1 substrate bromodichloromethane is used to induce metabolic oxidative stress and NASH. Methyl choline-deficient diet feeding is used for the other NASH model. CYP2E1 and P2X7 receptor gene-deleted mice are used to establish their roles in regulating metabolic oxidative stress and autophagy. Autophagy gene expression, protein levels, confocal microscopy based-immunolocalization of lysosome-associated membrane protein (LAMP)2A and histopathological analysis were performed. CYP2E1-dependent metabolic oxidative stress induced increases in P2X7 receptor expression and chaperone-mediated autophagy markers LAMP2A and heat shock cognate 70 but caused depletion of light chain 3 isoform B (LC3B) protein levels. P2X7 receptor gene deletion significantly decreased LAMP2A and inflammatory indicators while significantly increasing LC3B protein levels compared with wild-type mice treated with bromodichloromethane. P2X7 receptor-deleted mice were also protected from NASH pathology as evidenced by decreased inflammation and fibrosis. Our studies establish that P2X7 receptor is a key regulator of autophagy induced by metabolic oxidative stress in NASH, thereby modulating hepatic inflammation. Furthermore, our findings presented here form a basis for P2X7 receptor as a potential therapeutic target in the treatment for NASH.
Collapse
Affiliation(s)
- Suvarthi Das
- Environmental Health and Disease Laboratory, Dept. of Environmental Health Sciences, Univ. of South Carolina, Columbia, SC 29208.
| | - Ratanesh Kumar Seth
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Ashutosh Kumar
- 2Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina;
| | - Maria B. Kadiiska
- 2Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina;
| | | | - Anna Mae Diehl
- 3Division of Gastroenterology, Duke University, Durham North Carolina
| | - Saurabh Chatterjee
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| |
Collapse
|
86
|
Schleicher J, Guthke R, Dahmen U, Dirsch O, Holzhuetter HG, Schuster S. A theoretical study of lipid accumulation in the liver-implications for nonalcoholic fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:62-9. [PMID: 23999488 DOI: 10.1016/j.bbalip.2013.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/24/2013] [Accepted: 08/15/2013] [Indexed: 02/08/2023]
Abstract
A hallmark of the nonalcoholic fatty liver disease is the accumulation of lipids. We developed a mathematical model of the hepatic lipid dynamics to simulate the fate of fatty acids in hepatocytes. Our model involves fatty acid uptake, lipid oxidation, and lipid export. It takes into account that storage of triacylglycerol within hepatocytes leads to cell enlargement reducing the sinusoids radius and impairing hepatic microcirculation. Thus oxygen supply is reduced, which impairs lipid oxidation. The analysis of our model revealed a bistable behavior (two stable steady states) of the system, in agreement with histological observations showing distinct areas of lipid accumulation in lobules. The first (healthy) state is characterized by intact lipid oxidation and a low amount of stored lipids. The second state in our model may correspond to the steatotic cell; it is marked by a high amount of stored lipids and a reduced lipid oxidation caused by impaired oxygen supply. Our model stresses the role of insufficient oxygen supply for the development of steatosis. We discuss implications of our results in regard to the experimental design aimed at exploring lipid metabolism reactions under steatotic conditions. Moreover, the model helps to understand the reversibility of lipid accumulation and predicts the reversible switch to show hysteresis. The system can switch from the steatotic state back to the healthy state by reduction of fatty acid uptake below the threshold at which steatosis started. The reversibility corresponds to the observation that caloric restriction can reduce the lipid content in the liver.
Collapse
Affiliation(s)
- J Schleicher
- Department of Bioinformatics, University of Jena, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
87
|
Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease: implications for mitochondrial therapeutics. Biochem Soc Trans 2013; 41:127-33. [PMID: 23356271 DOI: 10.1042/bst20120231] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction is associated with a broad range of pathologies including diabetes, ethanol toxicity, metabolic syndrome and cardiac failure. It is now becoming clear that maintaining mitochondrial quality through a balance between biogenesis, reserve capacity and mitophagy is critical in determining the response to metabolic or xenobiotic stress. In diseases associated with metabolic stress, such as Type II diabetes and non-alcoholic and alcoholic steatosis, the mitochondria are subjected to multiple 'hits' such as hypoxia and oxidative and nitrative stress, which can overwhelm the mitochondrial quality control pathways. In addition, the underlying mitochondrial genetics that evolved to accommodate high-energy demand, low-calorie supply environments may now be maladapted to modern lifestyles (low-energy demand, high-calorie environments). The pro-oxidant and pro-inflammatory environment of a sedentary western lifestyle has been associated with modified redox cell signalling pathways such as steatosis, hypoxic signalling, inflammation and fibrosis. These data suggest that loss of mitochondrial quality control is intimately associated with the aberrant activation of redox cell signalling pathways under pathological conditions. In the present short review, we discuss evidence from alcoholic liver disease supporting this concept, the insights obtained from experimental models and the application of bioenergetic-based therapeutics in the context of maintaining mitochondrial quality.
Collapse
|
88
|
Duan Y, An Y, Li N, Liu B, Wang Y, Tang H. Multiple univariate data analysis reveals the inulin effects on the high-fat-diet induced metabolic alterations in rat myocardium and testicles in the preobesity state. J Proteome Res 2013; 12:3480-95. [PMID: 23700965 DOI: 10.1021/pr400341f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is a worldwide epidemic and a well-known risk factor for many diseases affecting billions of people's health and well-being. However, little information is available for metabolic changes associated with the effects of obesity development and interventions on cardiovascular and reproduction systems. Here, we systematically analyzed the effects of high-fat diet (HFD) and inulin intake on the metabolite compositions of myocardium and testicle using NMR spectroscopy. We developed a useful high-throughput method based on multiple univariate data analysis (MUDA) to visualize and efficiently extract information on metabolites significantly affected by an intervention. We found that HFD caused widespread metabolic changes in both rat myocardium and testicles involving fatty acid β-oxidation together with the metabolisms of choline, amino acids, purines and pyrimidines even before HFD caused significant body-weight increases. Inulin intake ameliorated some of the HFD-induced metabolic changes in both myocardium (3-HB, lactate and guanosine) and testicle tissues (3-HB, inosine and betaine). A remarkable elevation of scyllo-inositol was also observable with inulin intake in both tissues. These findings offered essential information for the inulin effects on the HFD-induced metabolic changes and demonstrated this MUDA method as a powerful alternative to traditionally used multivariate data analysis for metabonomics.
Collapse
Affiliation(s)
- Yixuan Duan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | | | | | | | | | | |
Collapse
|
89
|
Proteomics identifies molecular networks affected by tetradecylthioacetic acid and fish oil supplemented diets. J Proteomics 2013; 84:61-77. [PMID: 23568020 DOI: 10.1016/j.jprot.2013.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Fish oil (FO) and tetradecylthioacetic acid (TTA) - a synthetic modified fatty acid have beneficial effects in regulating lipid metabolism. In order to dissect the mechanisms underlying the molecular action of those two fatty acids we have investigated the changes in mitochondrial protein expression in a long-term study (50weeks) in male Wistar rats fed 5 different diets. The diets were as follows: low fat diet; high fat diet; and three diets that combined high fat diet with fish oil, TTA or combination of those two as food supplements. We used two different proteomics techniques: a protein centric based on 2D gel electrophoresis and mass spectrometry, and LC-MS(E) based peptide centric approach. As a result we provide evidence that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate that fatty acid metabolism; lipid oxidation, amino acid metabolism and oxidative phosphorylation pathways are involved in fish oil and TTA action. Evidence for the involvement of PPAR mediated signalling is provided. Additionally we postulate that down regulation of components of complexes I and II contributes to the strong antioxidant properties of TTA. BIOLOGICAL SIGNIFICANCE This study for the first time explores the effect of fish oil and TTA - tetradecyl-thioacetic acid and the combination of those two as diet supplements on mitochondria metabolism in a comprehensive and systematic manner. We show that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate in a large scale that fatty acid metabolism and lipid oxidation are affected by fish oil and TTA, a phenomenon already known from more directed molecular biology studies. Our approach, however, shows additionally that amino acid metabolism and oxidative phosphorylation pathways are also strongly affected by TTA and also to some extent by fish oil administration. Strong evidence for the involvement of PPAR mediated signalling is provided linking the different metabolic effects. The global and systematic viewpoint of this study compiles many of the known phenomena related to the effects of fish oil and fatty acids giving a solid foundation for further exploratory and more directed studies of the mechanisms behind the beneficial and detrimental effects of fish oil and TTA diet supplementation. This work is already a second article in a series of studies conducted using this model of dietary intervention. In the previous study (Vigerust et al., [21]) the effects of fish oil and TTA on the plasma lipids and cholesterol levels as well as key metabolic enzymes in the liver have been studied. In an ongoing study more work is being done to explore in detail for example the link between the down regulation of the components of the respiratory chain (observed in this study) and the strong antioxidant effects of TTA. The reference diet in this study has been designed to mimic an unhealthy - high fat diet that is thought to contribute to the development of metabolic syndrome - a condition that is strongly associated with diabetes, obesity and heart failure. Fish oil and TTA are known to have beneficial effects for the fatty acid metabolism and have been shown to alleviate some of the symptoms of the metabolic syndrome. To date very little is known about the molecular mechanisms behind these beneficial effects and the potential pitfalls of the consumption of those two compounds. Only studies of each compound separately and using only small scale molecular biology approaches have been carried out. The results of this work provide an excellent starting point for further studies that will help to understand the metabolic effects of fish oil and TTA and will hopefully help to design dietary programs directed towards reduction of the prevalence of metabolic syndrome and associated diseases.
Collapse
|
90
|
Mariee AD, Abd-Allah GM, El-Beshbishy HA. Protective effect of dietary flavonoid quercetin against lipemic-oxidative hepatic injury in hypercholesterolemic rats. PHARMACEUTICAL BIOLOGY 2012; 50:1019-1025. [PMID: 22775419 DOI: 10.3109/13880209.2012.655424] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Quercetin, a dietary-derived flavonoid, is ubiquitous in fruits and vegetables and plays important roles in human health by virtue of its antioxidant activity. OBJECTIVE This study was conducted to investigate the possible modulatory effect of quercetin against hepatic lipemic-oxidative injury in rats fed with a high cholesterol diet (HCD), and to highlight the underlying mechanisms of such effect. MATERIALS AND METHODS Different groups of male Sprague-Dawley rats were used; one group was treated by gavage with HCD cocktail (1 mL/100 g) whereas another group was orally administered HCD-enriched with quercetin (15 mg/kg). Corresponding control animals were also used. RESULTS Quercetin administration significantly decreased liver triglycerides (24%), liver total cholesterol (TC) (22%), serum TC (20%), serum low-density lipoprotein cholesterol (31%), and duplicated serum high-density lipoprotein cholesterol (HDL-C). This study also revealed that quercetin administration significantly reduced the activity of serum alanine aminotransferase (41%), aspartate aminotransferase (51%), and γ-glutamyl transpeptidase (G-GT) (35%). Significant inhibition of thiobarbituric acid-reacting substances (40%), together with a valuable enhancement of reduced glutathione (GSH) content (53%) in the liver homogenates, was observed. In addition, quercetin-treated hypercholesterolemic animals exhibited a reasonable improvement of hepatic antioxidant enzymes. Moreover, serum and liver content of nitric oxide (NO) were markedly decreased in this model (26 and 25%, respectively), and were almost normalized following quercetin administration. DISCUSSION AND CONCLUSION These data revealed that quercetin has the ability to ameliorate HCD-induced lipemic-oxidative injury in rat liver possibly through its antioxidant potential and/or increased NO bioavailability.
Collapse
Affiliation(s)
- Amr D Mariee
- Department of Biochemistry, College of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | | | | |
Collapse
|
91
|
Jiang Y, Wang X. Comparative mitochondrial proteomics: perspective in human diseases. J Hematol Oncol 2012; 5:11. [PMID: 22424240 PMCID: PMC3337254 DOI: 10.1186/1756-8722-5-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/18/2012] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets.
Collapse
Affiliation(s)
- Yujie Jiang
- Department of Hematology, Provincial Hospital affiliated to Shandong University, Jinan, China
| | | |
Collapse
|
92
|
Bondia-Pons I, Boqué N, Paternain L, Santamaría E, Fernández J, Campión J, Milagro F, Corrales F, Martínez JA. Liver proteome changes induced by a short-term high-fat sucrose diet in wistar rats. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2012; 4:344-353. [PMID: 22378233 DOI: 10.1159/000336075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/13/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The aim of this study was to gain insight into those proteins that might be involved in the early stages of liver fat accumulation as a consequence of a different fat versus simple sugar dietary intake. METHODS Forty-five male Wistar rats were randomly distributed into four dietary groups: a starch-rich control diet (CD; n = 10), a high-fat diet (n = 12), a high-sucrose diet (n = 11), and a high-fat sucrose diet (HFSD; n = 12) for 5 weeks. A comparative analysis by 2D-DIGE and LC-ESI-MS/MS was performed to characterize the liver protein expression profiles due to the three obesogenic diets. RESULTS Ten out of 17 proteins whose expression levels were altered by >1.25-fold were identified. Four proteins (Hspa8, Hspa9, Ca3, and Cat) were differentially expressed after the HFSD period compared to CD. The heat shock proteins (Hspa8 and Hspa9) resulted significantly downregulated in liver from rats fed HFSD versus CD (p < 0.05). The results were confirmed by Western blot. CONCLUSIONS This descriptive study might be useful for further studies aiming at understanding the mechanisms by which diets rich in both fat and sugar affect the initiation of hepatic steatosis.
Collapse
Affiliation(s)
- Isabel Bondia-Pons
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Ruiz-Ramírez A, Chávez-Salgado M, Peñeda-Flores JA, Zapata E, Masso F, El-Hafidi M. High-sucrose diet increases ROS generation, FFA accumulation, UCP2 level, and proton leak in liver mitochondria. Am J Physiol Endocrinol Metab 2011; 301:E1198-207. [PMID: 21917631 DOI: 10.1152/ajpendo.00631.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity, a risk factor for insulin resistance, contributes to the development of type 2 diabetes and cardiovascular diseases. The relationship between increased levels of free fatty acids in the liver mitochondria, mitochondrial function, and ROS generation in rat model of obesity induced by a high-sucrose diet was not sufficiently established. We determined how the bioenergetic functions and ROS generation of the mitochondria respond to a hyperlipidemic environment. Mitochondria from sucrose-fed rats generated H(2)O(2) at a higher rate than the control mitochondria. Adding fatty acid-free bovine serum albumin to mitochondria from sucrose-fed rats significantly reduced the rate of H(2)O(2) generation. In contrast, adding exogenous oleic or linoleic acid exacerbated the rate of H(2)O(2) generation in both sucrose-fed and control mitochondria, and the mitochondria from sucrose-fed rats were more sensitive than the control mitochondria. The increased rate of H(2)O(2) generation in sucrose-fed mitochondria corresponded to decreased levels of reduced GSH and vitamin E and increased levels of Cu/Zn-SOD in the intermembrane space. There was no difference between the levels of lipid peroxidation and protein carbonylation in the two types of mitochondria. In addition to the normal activity of Mn-SOD, GPX and catalase detected an increased activity of complex II, and upregulation of UCP2 was observed in mitochondria from sucrose-fed rats, all of which may accelerate respiration rates and reduce generation of ROS. In turn, these effects may protect the mitochondria of sucrose-fed rats from oxidative stress and preserve their function and integrity. However, in whole liver these adaptive mechanisms of the mitochondria were inefficient at counteracting redox imbalances and inhibiting oxidative stress outside of the mitochondria.
Collapse
Affiliation(s)
- Angélica Ruiz-Ramírez
- Cardiovascular Biomedicine, Cellular Biology, National Institute of Cardiology Ignacio Chávez, Tlalpan, Mexico
| | | | | | | | | | | |
Collapse
|
94
|
Leiva A, Pardo F, Ramírez MA, Farías M, Casanello P, Sobrevia L. Fetoplacental vascular endothelial dysfunction as an early phenomenon in the programming of human adult diseases in subjects born from gestational diabetes mellitus or obesity in pregnancy. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:349286. [PMID: 22144986 PMCID: PMC3226353 DOI: 10.1155/2011/349286] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/11/2011] [Accepted: 09/07/2011] [Indexed: 12/16/2022]
Abstract
Gestational diabetes mellitus (GDM) and obesity in pregnancy (OP) are pathological conditions associated with placenta vascular dysfunction coursing with metabolic changes at the fetoplacental microvascular and macrovascular endothelium. These alterations are seen as abnormal expression and activity of the cationic amino acid transporters and endothelial nitric oxide synthase isoform, that is, the "endothelial L-arginine/nitric oxide signalling pathway." Several studies suggest that the endogenous nucleoside adenosine along with insulin, and potentially arginases, are factors involved in GDM-, but much less information regards their role in OP-associated placental vascular alterations. There is convincing evidence that GDM and OP prone placental endothelium to an "altered metabolic state" leading to fetal programming evidenced at birth, a phenomenon associated with future development of chronic diseases. In this paper it is suggested that this pathological state could be considered as a metabolic marker that could predict occurrence of diseases in adulthood, such as cardiovascular disease, obesity, diabetes mellitus (including gestational diabetes), and metabolic syndrome.
Collapse
Affiliation(s)
- Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
95
|
Feldstein AE, Bailey SM. Emerging role of redox dysregulation in alcoholic and nonalcoholic fatty liver disease. Antioxid Redox Signal 2011; 15:421-4. [PMID: 21254858 PMCID: PMC3118602 DOI: 10.1089/ars.2011.3897] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fatty liver disease (FLD), associated with chronic alcohol consumption or obesity, is a serious medical problem. Strong evidence indicates that oxidative stress and dysregulation of redox-sensitive signaling pathways are central to the pathobiology of FLD. Herein, this Forum summarizes current knowledge regarding mechanisms of FLD from both clinical and experimental studies. Special emphasis is given to the role of redox biology disturbances in the initiation and progression of FLD from both chronic alcohol consumption and obesity. Focus areas in this Forum include discussions on the (i) multi-hit hypothesis; (ii) interaction of adipokines and redox signaling pathways; (iii) role of sub-cellular organelle systems (i.e., endoplasmic reticulum and mitochondria); and (iv) contribution of the innate immune system, in FLD. A state-of-the-art discussion is also included highlighting key lessons learned from experimental studies using rodent models of FLD.
Collapse
Affiliation(s)
| | - Shannon M. Bailey
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
96
|
Do GM, Oh HY, Kwon EY, Cho YY, Shin SK, Park HJ, Jeon SM, Kim E, Hur CG, Park TS, Sung MK, McGregor RA, Choi MS. Long-term adaptation of global transcription and metabolism in the liver of high-fat diet-fed C57BL/6J mice. Mol Nutr Food Res 2011; 55 Suppl 2:S173-85. [PMID: 21618427 DOI: 10.1002/mnfr.201100064] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/24/2011] [Accepted: 03/08/2011] [Indexed: 12/20/2022]
Abstract
SCOPE This study investigated the global transcriptional and metabolic changes occurring at multiple time points over 24 wk in response to a high-fat diet (HFD). METHODS AND RESULTS C57BL/6J mice were fed a HFD or normal diet (ND) over 24 wk. HFD-fed mice developed early clinical indicators of obesity-related co-morbidities including fatty liver, insulin resistance, hyperglycemia and hypercholesterolemia. Time-course microarray analysis at eight time points over 24 wk identified 332 HFD responsive genes as potential targets to counteract diet-induced obesity (DIO) and related co-morbidities. Glucose regulating enzyme activity and gene expression were altered early in the HFD-fed mice. Fatty acid (FA) and triglyceride (TG) accumulation in combination with inflammatory changes appear to be likely candidates contributing to hepatic insulin resistance. Cidea seemed to be one of representative genes related to these changes. CONCLUSION Global transcriptional and metabolic profiling across multiple time points in liver revealed potential targets for nutritional interventions to reverse DIO. In future, new approaches targeting HFD responsive genes and hepatic metabolism could help ameliorate the deleterious effects of an HFD and DIO-related complication.
Collapse
Affiliation(s)
- Gyeong-Min Do
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Differential expression of liver proteins between obesity-prone and obesity-resistant rats in response to a high-fat diet. Br J Nutr 2011; 106:612-26. [PMID: 21535901 DOI: 10.1017/s0007114511000651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rodents respond to a chronic high-fat diet (HFD) in two ways: some readily become obese (obesity prone, OP) and others do not (obesity resistant, OR). Although several hypotheses have been proposed, the mechanisms underlying the inter-individual susceptibility to diet-induced obesity remain to be fully defined. In the present study, two-dimensional gel electrophoresis (2-DE) combined with matrix-assisted laser desorption ionisation time-of-flight MS was carried out for identification of differentially expressed liver proteins in OP and OR rats fed a HFD, in an attempt to discover marker proteins involved in susceptibility and/or resistance to obesity in rat liver. The 2-DE analysis demonstrated that forty spots from 380 visualised spots were differentially regulated between the groups. Among these forty spots, twelve were differentially expressed proteins between OP and OR rats, reaching statistical significance. Of these, five proteins have already been linked to obesity; however, seven proteins involved in obesity susceptibility or resistance were identified for the first time in the present study. In order to validate the proteomic results and gain insight into the metabolic changes between the OP and OR groups, we further confirmed the expression pattern of some proteins of interest by Western blot analysis. Combined results of proteomic analysis with Western blot analysis revealed that reduced lipogenesis and increased fat oxidation were achieved in the livers of OR rats. In conclusion, the present proteomic study is an important advance over the previous steps required for identification of OP and OR rats, and should prove valuable in the search for the pathogenesis of obesity in humans.
Collapse
|