51
|
Reisbig NA, Hussein HA, Pinnell E, Bertone AL. Evaluation of equine synovial-derived extracellular matrix scaffolds seeded with equine synovial-derived mesenchymal stem cells. Am J Vet Res 2018; 79:124-133. [DOI: 10.2460/ajvr.79.1.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
52
|
Lam J, Lee EJ, Clark EC, Mikos AG. Honing Cell and Tissue Culture Conditions for Bone and Cartilage Tissue Engineering. Cold Spring Harb Perspect Med 2017; 7:a025734. [PMID: 28348176 PMCID: PMC5710100 DOI: 10.1101/cshperspect.a025734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An avenue of tremendous interest and need in health care encompasses the regeneration of bone and cartilage. Over the years, numerous tissue engineering strategies have contributed substantial progress toward the realization of clinically relevant therapies. Cell and tissue culture protocols, however, show many variations that make experimental results among different publications challenging to compare. This collection surveys prevalent cell sources, soluble factors, culture medium formulations, environmental factors, and genetic modification approaches in the literature. The intent of consolidating this information is to provide a starting resource for scientists considering how to optimize the parameters for cell differentiation and tissue culture procedures within the context of bone and cartilage tissue engineering.
Collapse
Affiliation(s)
- Johnny Lam
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Esther J Lee
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Elisa C Clark
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Antonios G Mikos
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251
| |
Collapse
|
53
|
Tribe HC, McEwan J, Taylor H, Oreffo ROC, Tare RS. Mesenchymal Stem Cells: Potential Role in the Treatment of Osteochondral Lesions of the Ankle. Biotechnol J 2017; 12:1700070. [PMID: 29068173 PMCID: PMC5765412 DOI: 10.1002/biot.201700070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Given articular cartilage has a limited repair potential, untreated osteochondral lesions of the ankle can lead to debilitating symptoms and joint deterioration necessitating joint replacement. While a wide range of reparative and restorative surgical techniques have been developed to treat osteochondral lesions of the ankle, there is no consensus in the literature regarding which is the ideal treatment. Tissue engineering strategies, encompassing stem cells, somatic cells, biomaterials, and stimulatory signals (biological and mechanical), have a potentially valuable role in the treatment of osteochondral lesions. Mesenchymal stem cells (MSCs) are an attractive resource for regenerative medicine approaches, given their ability to self-renew and differentiate into multiple stromal cell types, including chondrocytes. Although MSCs have demonstrated significant promise in in vitro and in vivo preclinical studies, their success in treating osteochondral lesions of the ankle is inconsistent, necessitating further clinical trials to validate their application. This review highlights the role of MSCs in cartilage regeneration and how the application of biomaterials and stimulatory signals can enhance chondrogenesis. The current treatments for osteochondral lesions of the ankle using regenerative medicine strategies are reviewed to provide a clinical context. The challenges for cartilage regeneration, along with potential solutions and safety concerns are also discussed.
Collapse
Affiliation(s)
- Howard C. Tribe
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and RegenerationFaculty of MedicineUniversity of SouthamptonSouthamptonSO16 6YDUK
- Foot and Ankle Orthopaedic DepartmentRoyal Bournemouth HospitalBournemouthBH7 7DWUK
| | - Josephine McEwan
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and RegenerationFaculty of MedicineUniversity of SouthamptonSouthamptonSO16 6YDUK
| | - Heath Taylor
- Foot and Ankle Orthopaedic DepartmentRoyal Bournemouth HospitalBournemouthBH7 7DWUK
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and RegenerationFaculty of MedicineUniversity of SouthamptonSouthamptonSO16 6YDUK
| | - Rahul S. Tare
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and RegenerationFaculty of MedicineUniversity of SouthamptonSouthamptonSO16 6YDUK
- Bioengineering Science, Mechanical Engineering DepartmentFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonSO17 1BJUK
| |
Collapse
|
54
|
Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med 2017; 6:2173-2185. [PMID: 29076267 PMCID: PMC5702523 DOI: 10.1002/sctm.17-0129] [Citation(s) in RCA: 505] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self-renewal and differentiation into tissue-specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age-related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone-forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical-grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173-2185.
Collapse
Affiliation(s)
- Rebekah M. Samsonraj
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
- Department of Biomedical EngineeringNational University of SingaporeSingapore
- Department of Orthopaedic SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Michael Raghunath
- Department of Biomedical EngineeringNational University of SingaporeSingapore
- Center for Cell Biology and Tissue Engineering, Competence Center for Tissue Engineering and Substance Testing (TEDD)Institute for Chemistry and Biotechnology, ZHAW School of Life Sciences and Facility Management, Zurich University of Applied SciencesSwitzerland
| | - Victor Nurcombe
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
| | - James H. Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | | | - Simon M. Cool
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
55
|
The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage. Stem Cell Rev Rep 2017; 13:50-67. [PMID: 27826794 DOI: 10.1007/s12015-016-9699-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Some decellularized musculoskeletal extracellular matrices (ECM)s derived from tissues such as bone, tendon and fibrocartilaginous meniscus have already been clinical use for tissue reconstruction. Repair of articular cartilage with its unique zonal ECM architecture and composition is still an unsolved problem, and the question is whether allogenic or xenogeneic decellularized cartilage ECM could serve as a biomimetic scaffold for this purpose.Hence, this survey outlines the present state of preparing decellularized cartilage ECM-derived scaffolds or composites for reconstruction of different cartilage types and of reseeding it particularly with mesenchymal stromal cells (MSCs).The preparation of natural decellularized cartilage ECM scaffolds hampers from the high density of the cartilage ECM and lacking interconnectivity of the rather small natural pores within it: the chondrocytes lacunae. Nevertheless, the reseeding of decellularized ECM scaffolds before implantation provided superior results compared with simply implanting cell-free constructs in several other tissues, but cartilage recellularization remains still challenging. Induced by cartilage ECM-derived scaffolds MSCs underwent chondrogenesis.Major problems to be addressed for the application of cell-free cartilage were discussed such as to maintain ECM structure, natural chemistry, biomechanics and to achieve a homogenous and stable cell recolonization, promote chondrogenic and prevent terminal differentiation (hypertrophy) and induce the deposition of a novel functional ECM. Some promising approaches were proposed including further processing of the decellularized ECM before recellularization of the ECM with MSCs, co-culturing of MSCs with chondrocytes and establishing bioreactor culture e.g. with mechanostimulation, flow perfusion pressure and lowered oxygen tension. Graphical Abstract Synopsis of tissue engineering approaches based on cartilage-derived ECM.
Collapse
|
56
|
Yao Y, Li ZY, Zhang H, Zheng YH, Mai LX, Liu WJ, Zhang ZG, Sun YP. Synovial fluid‑derived synovial fragments represent an improved source of synovial mesenchymal stem cells in the temporomandibular joint. Int J Mol Med 2017; 41:173-183. [PMID: 29115378 PMCID: PMC5746324 DOI: 10.3892/ijmm.2017.3210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/02/2017] [Indexed: 12/15/2022] Open
Abstract
Surgery-obtained synovium specimens (SSSs) can provide a source of synovial mesenchymal stem cells (SMSCs) for experimental studies. However, these specimens contain diverse tissues, including the intima and subintima; therefore, these SMSCs are not entirely derived from the intima and their cell source is heterogeneous. The present study isolated synovial fragments (SFs) from synovial fluid dilutions extracted from patients with temporomandibular joint (TMJ) osteoarthrosis. Unlike SSSs, SFs, which are membranous and translucent, consist of only several cell layers, indicating the presence of only the intima. In the present study, SF cells (SFCs) and SSS cells (SSSCs) exhibited a homogeneous, fibroblast-like, spindle-shaped morphology after passaging in vitro. Furthermore, both cell types exhibited similar proliferative and differentiation potentials in vitro. However, SFCs exhibited more uniform surface markers compared with SSSCs when analysed by flow cytometry. Taken together, these results indicated that SFs contained a greater amount of unmixed intima than SSSs, and that SFCs exhibited more homogeneous characteristics than SSSCs, thereby offering an improved source of SMSCs in the TMJ.
Collapse
Affiliation(s)
- Yu Yao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Zheng-Yu Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330046, P.R. China
| | - Hong Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - You-Hua Zheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Li-Xiang Mai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Wen-Jing Liu
- Stomatological Hospital of Guangdong Province, Affiliated to Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhi-Guang Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yang-Peng Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
57
|
Bearden RN, Huggins SS, Cummings KJ, Smith R, Gregory CA, Saunders WB. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study. Stem Cell Res Ther 2017; 8:218. [PMID: 28974260 PMCID: PMC5627404 DOI: 10.1186/s13287-017-0639-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Background The dog represents an excellent large animal model for translational cell-based studies. Importantly, the properties of canine multipotent stromal cells (cMSCs) and the ideal tissue source for specific translational studies have yet to be established. The aim of this study was to characterize cMSCs derived from synovium, bone marrow, and adipose tissue using a donor-matched study design and a comprehensive series of in-vitro characterization, differentiation, and immunomodulation assays. Methods Canine MSCs were isolated from five dogs with cranial cruciate ligament rupture. All 15 cMSC preparations were evaluated using colony forming unit (CFU) assays, flow cytometry analysis, RT-PCR for pluripotency-associated genes, proliferation assays, trilineage differentiation assays, and immunomodulation assays. Data were reported as mean ± standard deviation and compared using repeated-measures analysis of variance and Tukey post-hoc test. Significance was established at p < 0.05. Results All tissue samples produced plastic adherent, spindle-shaped preparations of cMSCs. Cells were negative for CD34, CD45, and STRO-1 and positive for CD9, CD44, and CD90, whereas the degree to which cells were positive for CD105 was variable depending on tissue of origin. Cells were positive for the pluripotency-associated genes NANOG, OCT4, and SOX2. Accounting for donor and tissue sources, there were significant differences in CFU potential, rate of proliferation, trilineage differentiation, and immunomodulatory response. Synovium and marrow cMSCs exhibited superior early osteogenic activity, but when assessing late-stage osteogenesis no significant differences were detected. Interestingly, bone morphogenic protein-2 (BMP-2) supplementation was necessary for early-stage and late-stage osteogenic differentiation, a finding consistent with other canine studies. Additionally, synovium and adipose cMSCs proliferated more rapidly, displayed higher CFU potential, and formed larger aggregates in chondrogenic assays, although proteoglycan and collagen type II staining were subjectively decreased in adipose pellets as compared to synovial and marrow pellets. Lastly, cMSCs derived from all three tissue sources modulated murine macrophage TNF-α and IL-6 levels in a lipopolysaccharide-stimulated coculture assay. Conclusions While cMSCs from synovium, marrow, and adipose tissue share a number of similarities, important differences in proliferation and trilineage differentiation exist and should be considered when selecting cMSCs for translational studies. These results and associated methods will prove useful for future translational studies involving the canine model. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0639-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert N Bearden
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Shannon S Huggins
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kevin J Cummings
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Roger Smith
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, College of Medicine, Texas A&M University, College Station, TX, USA
| | - William B Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
58
|
Zhang Y, Guo W, Wang M, Hao C, Lu L, Gao S, Zhang X, Li X, Chen M, Li P, Jiang P, Lu S, Liu S, Guo Q. Co-culture systems-based strategies for articular cartilage tissue engineering. J Cell Physiol 2017; 233:1940-1951. [PMID: 28548713 DOI: 10.1002/jcp.26020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023]
Abstract
Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Weimin Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Mingjie Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Chunxiang Hao
- Institute of Anesthesia, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Liang Lu
- Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Shuang Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Xueliang Zhang
- Shanxi Traditional Chinese, Taiyuan, People's Republic of China
| | - Xu Li
- School of Medicine, Naikai University, Tianjin, People's Republic of China
| | - Mingxue Chen
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Penghao Li
- School of Medicine, Naikai University, Tianjin, People's Republic of China
| | - Peng Jiang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Shibi Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| |
Collapse
|
59
|
Narayanan G, Bhattacharjee M, Nair LS, Laurencin CT. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0036-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
60
|
Fan J, Sun L, Chen X, Qu L, Li H, Liu X, Zhang Y, Cheng P, Fan H. Implementation of a stratified approach and gene immobilization to enhance the osseointegration of a silk-based ligament graft. J Mater Chem B 2017; 5:7035-7050. [PMID: 32263895 DOI: 10.1039/c7tb01579h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A silk scaffold exhibits high potential for the human anterior cruciate ligament (ACL) reconstruction due to its exceptional mechanics as well as biocompatibility. Inefficient ACL interface restoration is thought to be a major hurdle for the common implementation of a silk-based ligament graft. By integrating a stratified approach and gene immobilization, here we developed a gene-immobilized triphasic silk scaffold to enhance ACL osseointegration. Isotropic silk was divided into three regions (respectively corresponding to a ligament, fibrocartilage and the bone region of the native ACL interface) using a custom-made divider, and the lentiviral vector-encoded transforming growth factor beta-3 (TGF-β3) and bone morphogenetic protein-2 (BMP2) was further, respectively, immobilized to phosphatidylserine (PS)-coated fibrocartilage and the bone region of the triphasic silk scaffold. The in vitro assessments displayed that this gene-immobilized triphasic silk scaffold significantly promotes bone marrow mesenchymal stem cell (BMSC) proliferation and differentiation into corresponding cell lineage. Moreover, the gene-modified triphasic silk scaffold combined with BMSCs alone, which was rolled into a compact shaft to be implanted onto rabbit ACL-defect models, revealed roughly complete osseointegration restoration as a result of apparent three-layered tissue formation and robust mechanical ability as early as 12 weeks postoperatively. These outcomes demonstrated that employing the stratified approach and gene immobilization efficiently expedites silk-mediated ACL interface formation, expanding the therapeutic potential of the silk-based ligament graft for ACL reconstruction.
Collapse
Affiliation(s)
- Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Tan AR, Hung CT. Concise Review: Mesenchymal Stem Cells for Functional Cartilage Tissue Engineering: Taking Cues from Chondrocyte-Based Constructs. Stem Cells Transl Med 2017; 6:1295-1303. [PMID: 28177194 PMCID: PMC5442836 DOI: 10.1002/sctm.16-0271] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023] Open
Abstract
Osteoarthritis, the most prevalent form of joint disease, afflicts 9% of the U.S. population over the age of 30 and costs the economy nearly $100 billion annually in healthcare and socioeconomic costs. It is characterized by joint pain and dysfunction, though the pathophysiology remains largely unknown. Due to its avascular nature and limited cellularity, articular cartilage exhibits a poor intrinsic healing response following injury. As such, significant research efforts are aimed at producing engineered cartilage as a cell-based approach for articular cartilage repair. However, the knee joint is mechanically demanding, and during injury, also a milieu of harsh inflammatory agents. The unforgiving mechano-chemical environment requires tissue replacements that are capable of bearing such burdens. The use of mesenchymal stem cells (MSCs) for cartilage tissue engineering has emerged as a promising cell source due to their ease of isolation, capacity to readily expand in culture, and ability to undergo lineage-specific differentiation into chondrocytes. However, to date, very few studies utilizing MSCs have successfully recapitulated the structural and functional properties of native cartilage, exposing the difficult process of uniformly differentiating stem cells into desired cell fates and maintaining the phenotype during in vitro culture and after in vivo implantation. To address these shortcomings, here, we present a concise review on modulating stem cell behavior, tissue development and function using well-developed techniques from chondrocyte-based cartilage tissue engineering. Stem Cells Translational Medicine 2017;6:1295-1303.
Collapse
|
62
|
Escobar Ivirico JL, Bhattacharjee M, Kuyinu E, Nair LS, Laurencin CT. Regenerative Engineering for Knee Osteoarthritis Treatment: Biomaterials and Cell-Based Technologies. ENGINEERING (BEIJING, CHINA) 2017; 3:16-27. [PMID: 35392109 PMCID: PMC8986132 DOI: 10.1016/j.eng.2017.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Knee osteoarthritis (OA) is the most common form of arthritis worldwide. The incidence of this disease is rising and its treatment poses an economic burden. Two early targets of knee OA treatment include the predominant symptom of pain, and cartilage damage in the knee joint. Current treatments have been beneficial in treating the disease but none is as effective as total knee arthroplasty (TKA). However, while TKA is an end-stage solution of the disease, it is an invasive and expensive procedure. Therefore, innovative regenerative engineering strategies should be established as these could defer or annul the need for a TKA. Several biomaterial and cell-based therapies are currently in development and have shown early promise in both preclinical and clinical studies. The use of advanced biomaterials and stem cells independently or in conjunction to treat knee OA could potentially reduce pain and regenerate focal articular cartilage damage. In this review, we discuss the pathogenesis of pain and cartilage damage in knee OA and explore novel treatment options currently being studied, along with some of their limitations.
Collapse
Affiliation(s)
- Jorge L. Escobar Ivirico
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Maumita Bhattacharjee
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Emmanuel Kuyinu
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Lakshmi S. Nair
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Materials Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T. Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Materials Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA
- Corresponding author.
| |
Collapse
|
63
|
Stem Cells in Musculoskeletal Regeneration: From Benchtop to Bedside. Stem Cells Int 2016; 2016:8432314. [PMID: 27597872 PMCID: PMC5002300 DOI: 10.1155/2016/8432314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 07/03/2016] [Indexed: 11/17/2022] Open
|
64
|
Nikpou P, Soleimani Rad J, Mohammad Nejad D, Samadi N, Roshangar L, Navali AM, Shafaei H, Nozad Charoudeh H, Danandeh Oskoei N, Soleimani Rad S. Indirect coculture of stem cells with fetal chondrons using PCL electrospun nanofiber scaffolds. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:283-290. [DOI: 10.3109/21691401.2016.1146733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Parisa Nikpou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Umblical Cord Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nasser Samadi
- Department of Biochemistry and Laboratory Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hajar Shafaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Neda Danandeh Oskoei
- Department of Gynecology & Obstetrics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Soleimani Rad
- Department of Gynecology & Obstetrics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
65
|
Im GI. Endogenous Cartilage Repair by Recruitment of Stem Cells. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:160-71. [DOI: 10.1089/ten.teb.2015.0438] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
66
|
Mak J, Jablonski CL, Leonard CA, Dunn JF, Raharjo E, Matyas JR, Biernaskie J, Krawetz RJ. Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model. Sci Rep 2016; 6:23076. [PMID: 26983696 PMCID: PMC4794799 DOI: 10.1038/srep23076] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/23/2016] [Indexed: 12/20/2022] Open
Abstract
Controversy remains whether articular cartilage has an endogenous stem/progenitor cell population, since its poor healing capacity after injury can lead to diseases such as osteoarthritis. In the joint environment there are mesenchymal stem/progenitor cells (MSCs) in the synovial membrane and synovial fluid that can differentiate into cartilage, but it is still under debate if these cells contribute to cartilage repair in vivo. In this study, we isolated a Sca-1 positive, chondrogenesis capable population of mouse synovial MSCs from C57BL6 and MRL/MpJ “super-healer” strains. Intra-articular injection of Sca-1 + GFP + synovial cells from C57BL6 or MRL/MpJ into C57BL6 mice following cartilage injury led to increased cartilage repair by 4 weeks after injury. GFP expression was detected in the injury site at 2 weeks, but not 4 weeks after injury. These results suggest that synovial stem/progenitor cells, regardless of strain background, have beneficial effects when injected into an injured joint. MSCs derived from MRL/MpJ mice did not promote an increased repair capacity compared to MSCs derived from non-healing C57BL6 controls; however, MRL/MpJ MSCs were observed within the defect area at the time points examined, while C57BL6 MSCs were not.
Collapse
Affiliation(s)
- J Mak
- McCaig Institute for Bone &Joint Health, University of Calgary, Calgary, AB, Canada
| | - C L Jablonski
- McCaig Institute for Bone &Joint Health, University of Calgary, Calgary, AB, Canada
| | - C A Leonard
- McCaig Institute for Bone &Joint Health, University of Calgary, Calgary, AB, Canada.,University of Calgary, Department of Surgery, Calgary, AB, Canada
| | - J F Dunn
- McCaig Institute for Bone &Joint Health, University of Calgary, Calgary, AB, Canada.,University of Calgary, Department of Radiology, Calgary, AB, Canada.,Experimental Imaging Centre, University of Calgary, Calgary, AB, Canada
| | - E Raharjo
- University of Calgary, Department of Comparative Biology and Experimental Medicine, Calgary, AB, Canada
| | - J R Matyas
- McCaig Institute for Bone &Joint Health, University of Calgary, Calgary, AB, Canada.,University of Calgary, Department of Comparative Biology and Experimental Medicine, Calgary, AB, Canada
| | - J Biernaskie
- University of Calgary, Department of Surgery, Calgary, AB, Canada.,University of Calgary, Department of Comparative Biology and Experimental Medicine, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - R J Krawetz
- McCaig Institute for Bone &Joint Health, University of Calgary, Calgary, AB, Canada.,University of Calgary, Department of Surgery, Calgary, AB, Canada.,University of Calgary, Department of Anatomy and Cell Biology, Calgary, AB, Canada
| |
Collapse
|
67
|
Abstract
Bone is one of the few tissues to display a true potential for regeneration. Fracture healing is an obvious example where regeneration occurs through tightly regulated sequences of molecular and cellular events which recapitulate tissue formation seen during embryogenesis. Still in some instances, bone regeneration does not occur properly (i.e. critical size lesions) and an appropriate therapeutic intervention is necessary. Successful replacement of bone by tissue engineering will likely depend on the recapitulation of this flow of events. In fact, bone regeneration requires cross-talk between microenvironmental factors and cells; for example, resident mesenchymal progenitors are recruited and properly guided by soluble and insoluble signaling molecules. Tissue engineering attempts to reproduce and to mimic this natural milieu by delivering cells capable of differentiating into osteoblasts, inducing growth factors and biomaterials to support cellular attachment, proliferation, migration, and matrix deposition. In the last two decades, a significant effort has been made by the scientific community in the development of methods and protocols to repair and regenerate tissues such as bone, cartilage, tendons, and ligaments. In this same period, great advancements have been achieved in the biology of stem cells and on the mechanisms governing "stemness". Unfortunately, after two decades, effective clinical translation does not exist, besides a few limited examples. Many years have passed since cell-based regenerative therapies were first described as "promising approaches", but this definition still engulfs the present literature. Failure to envisage translational cell therapy applications in routine medical practice evidences the existence of unresolved scientific and technical struggles, some of which still puzzle researchers in the field and are presented in this chapter.
Collapse
Affiliation(s)
- Rodolfo Quarto
- Stem Cell Laboratory, Department of Experimental Medicine, University of Genova, c/o Advanced Biotechnology Center, L.go R. Benzi, 10, 16132, Genoa, Italy.
| | - Paolo Giannoni
- Stem Cell Laboratory, Department of Experimental Medicine, University of Genova, c/o Advanced Biotechnology Center, L.go R. Benzi, 10, 16132, Genoa, Italy
| |
Collapse
|
68
|
The Immunomodulatory Effects of Mesenchymal Stem Cells in Prevention or Treatment of Excessive Scars. Stem Cells Int 2015; 2016:6937976. [PMID: 26839566 PMCID: PMC4709788 DOI: 10.1155/2016/6937976] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/22/2015] [Accepted: 09/17/2015] [Indexed: 12/12/2022] Open
Abstract
Excessive scars, including keloids and hypertrophic scars, result from aberrations in the process of physiologic wound healing. An exaggerated inflammatory process is one of the main pathophysiological contributors. Scars may cause pain, and pruritis, limit joint mobility, and cause a range of cosmetic deformities that affect the patient's quality of life. Extensive research has been done on hypertrophic scar and keloid formation that has resulted in the plethora of treatment and prevention methods practiced today. Mesenchymal stem cells, among their multifunctional roles, are known regulators of inflammation and have been receiving attention as a major candidate for cell therapy to treat or prevent excessive scars. This paper extensively reviews the body of research examining the mechanism and potential of stem cell therapy in the treatment of excessive scars.
Collapse
|
69
|
Tan AR, VandenBerg CD, Attur M, Abramson SB, Knight MM, Bulinski JC, Ateshian GA, Cook JL, Hung CT. Cytokine preconditioning of engineered cartilage provides protection against interleukin-1 insult. Arthritis Res Ther 2015; 17:361. [PMID: 26667364 PMCID: PMC4704536 DOI: 10.1186/s13075-015-0876-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/26/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND During osteoarthritis and following surgical procedures, the environment of the knee is rich in proinflammatory cytokines such as IL-1. Introduction of tissue-engineered cartilage constructs to a chemically harsh milieu may limit the functionality of the implanted tissue over long periods. A chemical preconditioning scheme (application of low doses of IL-1) was tested as a method to prepare developing engineered tissue to withstand exposure to a higher concentration of the cytokine, known to elicit proteolysis as well as rapid degeneration of cartilage. METHODS Using an established juvenile bovine model system, engineered cartilage was preconditioned with low doses of IL-1α (0.1 ng/mL, 0.5 ng/mL, and 1.0 ng/mL) for 7 days before exposure to an insult dose (10 ng/mL). The time frame over which this protection is afforded was investigated by altering the amount of time between preconditioning and insult as well as the time following insult. To explore a potential mechanism for this protection, one set of constructs was preconditioned with CoCl2, a chemical inducer of hypoxia, before exposure to the IL-1α insult. Finally, we examined the translation of this preconditioning method to extend to clinically relevant adult, passaged chondrocytes from a preclinical canine model. RESULTS Low doses of IL-1α (0.1 ng/mL and 0.5 ng/mL) protected against subsequent catabolic degradation by cytokine insult, preserving mechanical stiffness and biochemical composition. Regardless of amount of time between preconditioning scheme and insult, protection was afforded. In a similar manner, preconditioning with CoCl2 similarly allowed for mediation of catabolic damage by IL-1α. The effects of preconditioning on clinically relevant adult, passaged chondrocytes from a preclinical canine model followed the same trends with low-dose IL-1β offering variable protection against insult. CONCLUSIONS Chemical preconditioning schemes have the ability to protect engineered cartilage constructs from IL-1-induced catabolic degradation, offering potential modalities for therapeutic treatments.
Collapse
Affiliation(s)
- Andrea R Tan
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, USA.
| | - Curtis D VandenBerg
- Department of Orthopedic Surgery, St. Luke's-Roosevelt Hospital Center, 1000 10th Avenue, New York, NY, USA.
| | - Mukundan Attur
- New York University Hospital for Joint Disease, 301 E. 17th Street, New York, NY, USA.
| | - Steven B Abramson
- New York University Hospital for Joint Disease, 301 E. 17th Street, New York, NY, USA.
| | - Martin M Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, London, UK.
| | - J Chloe Bulinski
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY, USA.
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, USA.
- Department of Mechanical Engineering, Columbia University, 500 W. 120th Street, New York, NY, USA.
| | - James L Cook
- Comparative Orthopaedic Laboratory, University of Missouri, 1100 Virginia Avenue, Columbia, MO, USA.
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, USA.
| |
Collapse
|
70
|
Prado AAF, Favaron PO, da Silva LCLC, Baccarin RYA, Miglino MA, Maria DA. Characterization of mesenchymal stem cells derived from the equine synovial fluid and membrane. BMC Vet Res 2015; 11:281. [PMID: 26555093 PMCID: PMC4640348 DOI: 10.1186/s12917-015-0531-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/04/2015] [Indexed: 01/20/2023] Open
Abstract
Background Isolation of mesenchymal stem cells (MSCs) in equines, has been reported for different tissues including bone marrow, adipose, umbilical cord, peripheral blood, and yolk sac. In regard to the MSCs derived from synovial fluid (SF) or membrane (SM), there is data available for humans, dogs, pigs, goats and horses. Especially in equines, these cells have being considered promising candidates for articular regeneration. Herein, we established and characterized MSCs obtained from equine SF and SM. Samples were obtained during arthroscopy and cultured using MEM (Minimum Essential Medium). MSCs were characterized by morphology and expression of specific markers for stem cells, pluripotency, inflammation, and cell cycle. Results The medium MEM was more effective (97 % ± 2) to maintain both cultures. The cultures were composed by adherent cells with fibroblast-like shape, which had a growth pattern represented by a sigmoidal curve. After the expansion, the cells were analyzed by flow cytometry for stem cells, inflammatory, and cell cycle markers, and both lineages showed significant expression of CD45, Oct3/4, Nanog, CD105, CD90, CD34, CD117, CD133, TRA-1-81, VEGF, and LY6a. In contrast, there were differences in the cell cycle phases between the lineages, which was not observed in relation to the mitochondrial electrical potential. Conclusion Given the large impact that joint pathology has on the athletic performance horses, our results suggested that the SF and SM are promising sources of stem cells with satisfactory characteristics of growth and gene expression that can be used in equine regenerative medicine.
Collapse
Affiliation(s)
- Aline Ambrogi Franco Prado
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270, São Paulo, SP, Brazil.
| | - Phelipe Oliveira Favaron
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270, São Paulo, SP, Brazil.
| | - Luis Claudio Lopes Correia da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270, São Paulo, SP, Brazil.
| | - Raquel Yvonne Arantes Baccarin
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270, São Paulo, SP, Brazil.
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270, São Paulo, SP, Brazil.
| | - Durvanei Augusto Maria
- Laboratory of Biochemical and Biophisic, Butantan Institute, Av. Dr. Vital Brasil, 1500, 05503-900, Sao Paulo, Brazil.
| |
Collapse
|
71
|
Shafiee A, Kabiri M, Langroudi L, Soleimani M, Ai J. Evaluation and comparison of the in vitro characteristics and chondrogenic capacity of four adult stem/progenitor cells for cartilage cell-based repair. J Biomed Mater Res A 2015; 104:600-610. [PMID: 26507473 DOI: 10.1002/jbm.a.35603] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/17/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022]
Abstract
Cell-based therapy is being considered as a promising approach to regenerate damaged cartilage. Though, autologous chondrocyte implantation is the most effective strategy currently in use, but is hampered by some drawbacks seeking comprehensive research to surmount existing limitations or introducing alternative cell sources. In this study, we aimed to evaluate and compare the in vitro characteristics and chondrogenic capacity of some easily available adult cell sources for use in cartilage repair which includes: bone marrow-derived mesenchymal stem cells (MSC), adipose tissue-derived MSC, articular chondrocyte progenitors, and nasal septum-derived progenitors. Human stem/progenitor cells were isolated and expanded. Cell's immunophenotype, biosafety, and cell cycle status were evaluated. Also, cells were seeded onto aligned electrospun poly (l-lactic acid)/poly (ε-caprolactone) nanofibrous scaffolds and their proliferation rate as well as chondrogenic potential were assessed. Cells were almost phenotypically alike as they showed similar cell surface marker expression pattern. The aligned nanofibrous hybrid scaffolds could support the proliferation and chondrogenic differentiation of all cell types. However, nasal cartilage progenitors showed a higher proliferation potential and a higher chondrogenic capacity. Though, mostly similar in the majority of the studied features, nasal septum progenitors demonstrated a higher chondrogenic potential that in combination with their higher proliferation rate and easier access to the source tissue, introduces it as a promising cell source for cartilage tissue engineering and regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 600-610, 2016.
Collapse
Affiliation(s)
- Abbas Shafiee
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Stem Cell Biology and Tissue Engineering Department, Stem Cell Technology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Mahboubeh Kabiri
- Stem Cell Biology and Tissue Engineering Department, Stem Cell Technology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.,Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Lida Langroudi
- Stem Cell Biology and Tissue Engineering Department, Stem Cell Technology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Injury Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
72
|
Mesenchymal stromal cell therapy: different sources exhibit different immunobiological properties. Transplantation 2015; 99:1113-8. [PMID: 26035274 DOI: 10.1097/tp.0000000000000734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
73
|
Pan JF, Li S, Guo CA, Xu DL, Zhang F, Yan ZQ, Mo XM. Evaluation of synovium-derived mesenchymal stem cells and 3D printed nanocomposite scaffolds for tissue engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:045001. [PMID: 27877821 PMCID: PMC5090180 DOI: 10.1088/1468-6996/16/4/045001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 06/06/2023]
Abstract
Stem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF-Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF-Gel, NP/Gel-1, and NP/Gel-2). The microstructure was examined by scanning electron microscopy. Biocompatibility assessment was performed through CCK-8 assay by coculturing with SMSCs at 1, 3, 7 and 14 days. According to the results, SMSCs are similar to other MSCs in their surface epitope expression, which are negative for CD45 and positive for CD44, CD90, and CD105. After incubation in lineage-specific medium, SMSCs could differentiate into chondrocytes, osteocytes and adipocytes. 3D printed nanocomposite scaffolds exhibited a good biocompatibility in the process of coculturing with SMSCs and had no negative effect on cell behavior. The study provides a strategy to obtain SMSCs and fabricate 3D printed nanocomposite scaffolds, the combination of which could be used for practical applications in tissue engineering.
Collapse
Affiliation(s)
- Jian-Feng Pan
- Department of Orthopedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, People’s Republic of China
| | - Shuo Li
- Department of Orthopedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, People’s Republic of China
| | - Chang-An Guo
- Department of Orthopedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, People’s Republic of China
| | - Du-Liang Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, People’s Republic of China
- Biomaterials and Tissue Engineering Lab, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, People’s Republic of China
| | - Feng Zhang
- Department of Orthopedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, People’s Republic of China
| | - Zuo-Qin Yan
- Department of Orthopedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, People’s Republic of China
| | - Xiu-Mei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, People’s Republic of China
- Biomaterials and Tissue Engineering Lab, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, People’s Republic of China
| |
Collapse
|
74
|
Hunziker EB, Lippuner K, Keel MJ, Shintani N. Age-Independent Cartilage Generation for Synovium-Based Autologous Chondrocyte Implantation. Tissue Eng Part A 2015; 21:2089-98. [DOI: 10.1089/ten.tea.2014.0599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ernst B. Hunziker
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, Inselspital, University of Bern, Bern, Switzerland
| | - Kurt Lippuner
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, Inselspital, University of Bern, Bern, Switzerland
| | - Marius J.B. Keel
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, Inselspital, University of Bern, Bern, Switzerland
| | - Nahoko Shintani
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
75
|
Dai L, Hu X, Zhang X, Zhu J, Zhang J, Fu X, Duan X, Ao Y, Zhou C. Different tenogenic differentiation capacities of different mesenchymal stem cells in the presence of BMP-12. J Transl Med 2015; 13:200. [PMID: 26104414 PMCID: PMC4479325 DOI: 10.1186/s12967-015-0560-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/03/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are regarded as a promising cell-based therapeutic tool for tendon repair. This study aimed to compare the different tenogenic differentiation capacities of the three types of MSCs in the presence of bone morphogenic protein 12 (BMP-12). METHODS MSCs were isolated from rat bone marrow (BM), inguinal adipose tissue (AD), and synovium (SM) from the knee joint. MSCs were characterized by morphology, proliferation, trilineage differentiation, and surface marker analysis. Tenogenic differentiation potential was initially assessed using real-time polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay in vitro. Histological assessments were also performed after subcutaneous implantation of BMP-12 recombinant adenovirus-infected MSCs in nude mice in vivo. RESULTS The three types of MSCs exhibited similar fibroblast-like morphology and surface markers but different differentiation potentials toward adipogenic, osteogenic, and chondrogenic lineage fates. Bone marrow-derived MSCs (BM-MSCs) showed the most superior in vitro tenogenic differentiation capacity, followed by synovial membrane-derived MSCs (SM-MSCs) and then adipose-derived MSCs (AD-MSCs). After implantation, all three types of MSC masses infected with BMP-12 recombinant adenovirus emerged in the form of fiber-like matrix, especially in 6-week specimens, compared with the control MSCs in vivo. BM-MSCs and SM-MSCs revealed more intense staining for collagen type I (Col I) compared with AD-MSCs. Differences were not observed between BM-MSCs and SM-MSCs. However, SM-MSCs demonstrated higher proliferation capacity than BM-MSCs. CONCLUSION BM-MSCs exhibited the most superior tenogenic differentiation capacity, followed by SM-MSCs. By contrast, AD-MSCs demonstrated the inferior capacity among the three types of MSCs in the presence of BMP-12 both in vivo and in vitro.
Collapse
Affiliation(s)
- Linghui Dai
- Department of Biochemistry and Molecular Biology, Peking University School of Basic Medical Sciences, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, People's Republic of China.
| | - Xiaoqing Hu
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, People's Republic of China.
| | - Xin Zhang
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, People's Republic of China.
| | - Jingxian Zhu
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, People's Republic of China.
| | - Jiying Zhang
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, People's Republic of China.
| | - Xin Fu
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, People's Republic of China.
| | - Xiaoning Duan
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, People's Republic of China.
| | - Yingfang Ao
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, People's Republic of China.
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, Peking University School of Basic Medical Sciences, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, People's Republic of China.
| |
Collapse
|
76
|
Dolcino M, Ottria A, Barbieri A, Patuzzo G, Tinazzi E, Argentino G, Beri R, Lunardi C, Puccetti A. Gene Expression Profiling in Peripheral Blood Cells and Synovial Membranes of Patients with Psoriatic Arthritis. PLoS One 2015; 10:e0128262. [PMID: 26086874 PMCID: PMC4473102 DOI: 10.1371/journal.pone.0128262] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/24/2015] [Indexed: 12/22/2022] Open
Abstract
Background Psoriatic arthritis (PsA) is an inflammatory arthritis whose pathogenesis is poorly understood; it is characterized by bone erosions and new bone formation. The diagnosis of PsA is mainly clinical and diagnostic biomarkers are not yet available. The aim of this work was to clarify some aspects of the disease pathogenesis and to identify specific gene signatures in paired peripheral blood cells (PBC) and synovial biopsies of patients with PsA. Moreover, we tried to identify biomarkers that can be used in clinical practice. Methods PBC and synovial biopsies of 10 patients with PsA were used to study gene expression using Affymetrix arrays. The expression values were validated by Q-PCR, FACS analysis and by the detection of soluble mediators. Results Synovial biopsies of patients showed a modulation of approximately 200 genes when compared to the biopsies of healthy donors. Among the differentially expressed genes we observed the upregulation of Th17 related genes and of type I interferon (IFN) inducible genes. FACS analysis confirmed the Th17 polarization. Moreover, the synovial trascriptome shows gene clusters (bone remodeling, angiogenesis and inflammation) involved in the pathogenesis of PsA. Interestingly 90 genes are modulated in both compartments (PBC and synovium) suggesting that signature pathways in PBC mirror those of the inflamed synovium. Finally the osteoactivin gene was upregulared in both PBC and synovial biopsies and this finding was confirmed by the detection of high levels of osteoactivin in PsA sera but not in other inflammatory arthritides. Conclusions We describe the first analysis of the trancriptome in paired synovial tissue and PBC of patients with PsA. This study strengthens the hypothesis that PsA is of autoimmune origin since the coactivity of IFN and Th17 pathways is typical of autoimmunity. Finally these findings have allowed the identification of a possible disease biomarker, osteoactivin, easily detectable in PsA serum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonio Puccetti
- Institute G. Gaslini, Genova, Italy
- University of Genova, Genova, Italy
- * E-mail:
| |
Collapse
|
77
|
Bone marrow stromal stem cells transplantation in mice with acute spinal cord injury. Methods Mol Biol 2015; 1213:257-64. [PMID: 25173389 DOI: 10.1007/978-1-4939-1453-1_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Spinal cord injured experimental animals are widely used for studying pathophysiological processes after central nervous system acute traumatic lesion and elaborating therapeutic solutions, some of them based on stem cell transplantation. Here, we describe a protocol of spinal cord contusion in C57BL/6J mice, directly followed by bone marrow stromal stem cells transplantation. This model allows for the characterization of neuroprotective and neurorestorative abilities of these stem cells in a context of spinal cord trauma.
Collapse
|
78
|
Increased levels of p21((CIP1/WAF1)) correlate with decreased chondrogenic differentiation potential in synovial membrane progenitor cells. Mech Ageing Dev 2015; 149:31-40. [PMID: 25987237 DOI: 10.1016/j.mad.2015.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 04/27/2015] [Accepted: 05/06/2015] [Indexed: 12/20/2022]
Abstract
Cartilage injuries are a major concern in the field of orthopedics. They occur following trauma, as well as from a variety of pathological conditions including Osteoarthritis (OA). Although cartilage does not exhibit robust endogenous repair, it has been demonstrated that modulating the activity of p21 can increase the regenerative abilities of cartilage in vitro and in vivo. Since the synovial membrane is abundant with mesenchymal progenitor cells (MPCs) capable of differentiating into cartilage both in vitro and in vivo, we examined if p21 expression levels varied between MPCs derived from normal vs. OA knee joints. Analysis of p21 at the mRNA and protein levels within normal and OA MPCs demonstrated differential levels of expression between these two groups, with OA MPCs having higher p21 expression levels. The higher levels of p21 in OA MPCs are also correlated with a decreased chondrogenic differentiation capacity and synovial inflammation, however, there was no evidence of senescence in the OA cells. The results of this study suggest that cell cycle regulation in MPCs may be altered in OA and that modulation of this pathway may have therapeutic potential once the mechanism by which this regulates stem/progenitor cells is better understood.
Collapse
|
79
|
Stoddart MJ, Bara J, Alini M. Cells and secretome--towards endogenous cell re-activation for cartilage repair. Adv Drug Deliv Rev 2015; 84:135-45. [PMID: 25174306 DOI: 10.1016/j.addr.2014.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/26/2014] [Accepted: 08/20/2014] [Indexed: 01/01/2023]
Abstract
Regenerative medicine approaches to cartilage tissue repair have mainly been concerned with the implantation of a scaffold material containing monolayer expanded cells into the defect, with the aim to differentiate the cells into chondrocytes. While this may be a valid approach, the secretome of the implanted cells and its effects on the endogenous resident cells, is gaining in interest. This review aims to summarize the knowledge on the secretome of mesenchymal stem cells, including knowledge from other tissues, in order to indicate how these mechanisms may be of value in repairing articular cartilage defects. Potential therapies and their effects on the repair of articular cartilage defects will be discussed, with a focus on the transition from classical cell therapy to the implantation of cell free matrices releasing specific cytokines.
Collapse
|
80
|
Beneficial effects of coculturing synovial derived mesenchymal stem cells with meniscus fibrochondrocytes are mediated by fibroblast growth factor 1: increased proliferation and collagen synthesis. Stem Cells Int 2015; 2015:926325. [PMID: 25852755 PMCID: PMC4379431 DOI: 10.1155/2015/926325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/16/2014] [Accepted: 01/01/2015] [Indexed: 01/06/2023] Open
Abstract
Meniscus reconstruction is in great need for orthopedic surgeons. Meniscal fibrochondrocytes transplantation was proposed to regenerate functional meniscus, with limited donor supply. We hypothesized that coculture of synovial mesenchymal stem cells (SSC) with meniscal fibrochondrocytes (me-CH) can support matrix production of me-CH, thus reducing the number of me-CH needed for meniscus reconstruction. A pellet coculture system of human SSC and me-CH was used in this study. Enhanced glycosaminoglycans (GAG) in coculture pellets were demonstrated by Alcian blue staining and GAG quantification, when compared to monoculture. More collagen synthesis was shown in coculture pellets by hydroxyproline assay. Increased proliferation of me-CH was observed in coculture. Data from BrdU staining and ELISA demonstrated that conditioned medium of SSCs enhanced the proliferation and collagen synthesis of me-CH, and this effect was blocked by neutralizing antibody against fibroblast growth factor 1 (FGF1). Western blot showed that conditioned medium of SSCs can activate mitogen-activated protein kinase (MAPK) signaling pathways by increasing the phosphorylation of mitogen-activated regulated protein kinase 1/2 (MEK) and extracellular-signal-regulated kinases 1/2 (ERK). Overall, this study provided evidence that synovial MSCs can support proliferation and collagen synthesis of fibrochondrocytes, by secreting FGF1. Coimplantation of SSC and me-CH could be a useful strategy for reconstructing meniscus.
Collapse
|
81
|
Li Y, El Mozen LA, Cai H, Fang W, Meng Q, Li J, Deng M, Long X. Transforming growth factor beta 3 involved in the pathogenesis of synovial chondromatosis of temporomandibular joint. Sci Rep 2015; 5:8843. [PMID: 25742744 PMCID: PMC4351526 DOI: 10.1038/srep08843] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/06/2015] [Indexed: 12/11/2022] Open
Abstract
Synovial chondromatosis (SC) of temporomandibular joint is rare proliferative disorder featured by the formation of cartilaginous nodules in synovium and joint space. Transforming growth factor beta 3 (TGF-β3) is closely related to chondrogenic differentiation, and might participate in pathogenesis of SC. We discovered that increased quantity of synoviocytes and blood vessels were observed in SC synovium. The vessel wall and sublining fibroblasts were stained positively by the antibodies against TGF-β3, fibroblast growth factor 2 (FGF-2), and CD34. In loose bodies (LBs), TGF-β3 was mainly expressed in chondrocytes and FGF-2 was expressed in chondrocytes, fibroblasts, and vessel walls. Expressions of TGF-β1, TGF-β3, FGF-2, Sox9, Wnt-4, Foxc2, and VEGF-A mRNA were significantly higher in SC synovium. Stimulation of TGF-β3 on synoviocytes increased alkaline phosphatase (ALP) activity and expressions of chondrogenic genes (Sox9, Col2α1, Aggrecan, Wnt-4, and Wnt-11), osteogenic genes (Runx2, Foxc2, osteocalcin, and Col1α1), and VEGF-A, but failed to influence FGF-2 expression. However, the addition of FGF-2 increased TGF-β3 expression. In conclusion, TGF-β3 existed in synovium and LBs of SC, and was responsible for the pathogenesis of SC.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology &Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Loaye Abdelaziz El Mozen
- Department of Orthodontics, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Hengxing Cai
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology &Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Wei Fang
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology &Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Qinggong Meng
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology &Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jian Li
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology &Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Mohong Deng
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology &Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology &Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
82
|
Wong HL, Siu WS, Fung CH, Zhang C, Shum WT, Zhou XL, Lau CBS, Zhang JF, Leung PC, Fu WM, Ko CH. Characteristics of stem cells derived from rat fascia: in vitro proliferative and multilineage potential assessment. Mol Med Rep 2015; 11:1982-1990. [PMID: 25405325 DOI: 10.3892/mmr.2014.2967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/01/2014] [Indexed: 11/06/2022] Open
Abstract
Fascia‑derived stem cells (FDSCs) were previously isolated from the fascia of the gluteus maximus of the rat. However, the use of FDSCs as a cell source for musculoskeletal tissue engineering has not been compared with that of adipose‑derived stem cells (ADSCs) and bone marrow‑derived mesenchymal stem cells (BMSCs). Therefore, the present study aimed to compare the mesenchymal stem cell (MSC) and self‑renewal stem cell markers, proliferative capacity and multilineage differentiation potential of these stem cells in vitro. The MSC and embryonic stem cell (ESC) marker profiles were compared using flow cytometry and quantitative polymerase chain reaction (qPCR). Their proliferative capacities were compared using 5‑bromo‑2'‑deoxyuridine and MTT assays. Their osteogenic, adipogenic and chondrogenic differentiation potentials were compared using standard staining assays and qPCR. The FDSCs possessed similar cell morphology and immunophenotypic profiles with BMSCs and ADSCs. FDSCs demonstrated a similar expression pattern of ESC markers with ADSCs, which has higher expression of sex determining region Y‑box (Sox)2 and octamer‑binding transcription factor 4, and lower expression of Krüppel‑like factor 4, when compared with BMSCs. FDSCs exhibited higher proliferation under serum‑deprived conditions (0.5% FBS growth medium), and attained higher expression levels of collagen type I, α 2 and type II, α 1 as well as Sox9 mRNA than ADSCs and BMSCs upon chondrogenic induction. An increased amount of proteoglycan deposition was also observed in the FDSC group. However, lower levels of adipogenic and osteogenic marker expression in FDSCs were detected compared with ADSCs and BMSCs upon adipogenic and osteogenic induction, respectively. FDSCs possessed high chondrogenic potential, low osteogenic and adipogenic differentiation potential and were responsive to the induction signals for collagen‑rich fascial structure regeneration. Therefore, FDSCs may represent an improved alternative cell source to conventional ADSCs and BMSCs for musculoskeletal tissue repair and tissue engineering, particularly for collagen‑rich structures with poor vasculature.
Collapse
Affiliation(s)
- Hing-Lok Wong
- Institute of Chinese Medicine, Chinese University of Hong Kong, Shenzhen, Guangdong 518057, P.R. China
| | - Wing-Sum Siu
- Institute of Chinese Medicine, Chinese University of Hong Kong, Shenzhen, Guangdong 518057, P.R. China
| | - Chak-Hei Fung
- Institute of Chinese Medicine, Chinese University of Hong Kong, Shenzhen, Guangdong 518057, P.R. China
| | - Cheng Zhang
- Institute of Chinese Medicine, Chinese University of Hong Kong, Shenzhen, Guangdong 518057, P.R. China
| | - Wai-Ting Shum
- Institute of Chinese Medicine, Chinese University of Hong Kong, Shenzhen, Guangdong 518057, P.R. China
| | - Xue-Lin Zhou
- Institute of Chinese Medicine, Chinese University of Hong Kong, Shenzhen, Guangdong 518057, P.R. China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, Chinese University of Hong Kong, Shenzhen, Guangdong 518057, P.R. China
| | - Jing-Fang Zhang
- Institute Guangzhou of Advanced Technology, Chinese Academy of Sciences, Guangzhou, Guangdong 510275, P.R. China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, Chinese University of Hong Kong, Shenzhen, Guangdong 518057, P.R. China
| | - Wei-Ming Fu
- Institute Guangzhou of Advanced Technology, Chinese Academy of Sciences, Guangzhou, Guangdong 510275, P.R. China
| | - Chun-Hay Ko
- Institute of Chinese Medicine, Chinese University of Hong Kong, Shenzhen, Guangdong 518057, P.R. China
| |
Collapse
|
83
|
Tan AR, Alegre-Aguarón E, O’Connell GD, VandenBerg CD, Aaron RK, Vunjak-Novakovic G, Bulinski JC, Ateshian GA, Hung CT. Passage-dependent relationship between mesenchymal stem cell mobilization and chondrogenic potential. Osteoarthritis Cartilage 2015; 23:319-27. [PMID: 25452155 PMCID: PMC4369922 DOI: 10.1016/j.joca.2014.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Galvanotaxis, the migratory response of cells in response to electrical stimulation, has been implicated in development and wound healing. The use of mesenchymal stem cells (MSCs) from the synovium (synovium-derived stem cells, SDSCs) has been investigated for repair strategies. Expansion of SDSCs is necessary to achieve clinically relevant cell numbers; however, the effects of culture passage on their subsequent cartilaginous extracellular matrix production are not well understood. METHODS Over four passages of SDSCs, we measured the expression of cell surface markers (CD31, CD34, CD49c, CD73) and assessed their migratory potential in response to applied direct current (DC) electric field. Cells from each passage were also used to form micropellets to assess the degree of cartilage-like tissue formation. RESULTS Expression of CD31, CD34, and CD49c remained constant throughout cell expansion; CD73 showed a transient increase through the first two passages. Correspondingly, we observed that early passage SDSCs exhibit anodal migration when subjected to applied DC electric field strength of 6 V/cm. By passage 3, CD73 expression significantly decreased; these cells exhibited cell migration toward the cathode, as previously observed for terminally differentiated chondrocytes. Only late passage cells (P4) were capable of developing cartilage-like tissue in micropellet culture. CONCLUSIONS Our results show cell priming protocols carried out for four passages selectively differentiate stem cells to behave like chondrocytes, both in their motility response to applied electric field and their production of cartilaginous tissue.
Collapse
Affiliation(s)
- Andrea R. Tan
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Elena Alegre-Aguarón
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Grace D. O’Connell
- Department of Mechanical Engineering, University of California, Berkeley, 5122 Etcheverry Hall, Berkeley, CA 94720, USA
| | - Curtis D. VandenBerg
- Department of Orthopaedic Surgery, St. Luke’s-Roosevelt Hospital Center, 1000 10th Ave, New York, NY 10019, USA
| | - Roy K. Aaron
- Department of Orthopaedic Surgery, Brown University, 100 Butler Drive, Providence, RI 02906, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - J. Chloe Bulinski
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY 10027, USA
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA,Department of Mechanical Engineering, Columbia University, 500 W. 120th St, New York, NY 10027, USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA,Corresponding author: . Phone: (212) 854-6542
| |
Collapse
|
84
|
Liu H, Wei X, Ding X, Li X, Zhou G, Li P, Fan Y. Comparison of cellular responses of mesenchymal stem cells derived from bone marrow and synovium on combined silk scaffolds. J Biomed Mater Res A 2015; 103:115-125. [PMID: 24616406 DOI: 10.1002/jbm.a.35154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/12/2014] [Accepted: 02/20/2014] [Indexed: 12/12/2022]
Abstract
As a brand new member in mesenchymal stem cells (MSCs) families, synovium-derived mesenchymal stem cells (SMSCs) have been increasingly regarded as a promising therapeutic cell species for musculoskeletal regeneration. However, there are few reports mentioning ligamentogenesis of SMSCs and especially null for their engineering use towards ligament regeneration. The aim of this study was to investigate and compare the cellular responses of MSCs derived from bone marrow and synovium on combined silk scaffolds that can be used to determine the cell source most appropriate for tissue-engineered ligament. Rabbit SMSCs and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitro for two weeks after seeding on the combined silk scaffolds. Samples were studied and compared for their cellular morphology, proliferation, collagen production, gene, and protein expression of ligament-related extracellular matrix (ECM) markers. In addition, the two cell types were transfected with green fluorescent protein to evaluate their fate after implantation in an intraarticular environment of the knee joint. After 14 days of culturing, SMSCs showed a significant increase in proliferation as compared with BMSCs. The transcript and protein expression levels of ligament-related ECM markers in SMSCs were significantly higher than those in BMSCs. Moreover, 6 weeks postoperatively, more viable cells were presented in SMSC-loaded constructs than in BMSC-loaded constructs. Therefore, based on the cellular response in vitro and in vivo, SMSCs may represent a more suitable cell source than BMSCs for further study and development of tissue-engineered ligament.
Collapse
Affiliation(s)
- Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Xue Yuan Road No. 37, Haidian District, Beijing, 100191, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
85
|
Pan JF, Yuan L, Guo CA, Geng XH, Fei T, Fan WS, Li S, Yuan HF, Yan ZQ, Mo XM. Fabrication of modified dextran-gelatin in situ forming hydrogel and application in cartilage tissue engineering. J Mater Chem B 2014; 2:8346-8360. [PMID: 32262005 DOI: 10.1039/c4tb01221f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogels play a very important role in cartilage tissue engineering. Here, we oxidized dextran (Odex) and modified gelatin (Mgel) to fabricate a fast forming hydrogel without the addition of a chemical crosslinking agent. The dynamic gelling process was measured through rheological measurements. The microstructure was examined by lyophilizing to get porous scaffolds. Biological assessment was performed through CCK-8 assays by using synovium-derived mesenchymal cells (SMSCs) at 1, 3, 7 and 14 days. In vivo evaluation for application in cartilage tissue engineering was performed 8 weeks after subcutaneous injection of SMSC-loaded Odex/Mgel hydrogels combined with TGF-β3 in the dorsa of nude mice. According to the results, a fast forming hydrogel was obtained by simply modifying dextran and gelatin. Moreover, the Odex/Mgel hydrogel exhibited good biocompatibility in cultures of SMSCs and a homogeneous distribution of live cells was achieved inside the hydrogels. After 8 weeks, newly formed cartilage was achieved in the dorsa of nude mice; no inflammatory reaction was observed and high production of GAGs was shown. The method provides a strategy for the design and fabrication of fast in situ forming hydrogels. The Odex/Mgel hydrogel could be used for the regeneration of cartilage in tissue engineering.
Collapse
Affiliation(s)
- Jian-Feng Pan
- Department of Orthopedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Kadivar M, Alijani N, Farahmandfar M, Rahmati S, Ghahhari NM, Mahdian R. Effect of acute hypoxia on CXCR4 gene expression in C57BL/6 mouse bone marrow-derived mesenchymal stem cells. Adv Biomed Res 2014; 3:222. [PMID: 25538908 PMCID: PMC4260281 DOI: 10.4103/2277-9175.145682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/24/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND One of the most important stimuli in stem cell biology is oxygen. Chemokine receptor 4 (CXCR4) plays a crucial role in the migration and homing of stem cells. In this study, mesenchymal stem cells (MSCs) were exposed to 1% oxygen to investigate the effect of acute hypoxia on CXCR4 gene expression. MATERIALS AND METHODS MSCs were isolated from C57BL/6 mouse bone marrow and were identified and expanded in normoxic culture. Cells were incubated at 37°C under 1% hypoxic conditions for periods of 4, 8, 16, 24, and 48 h. After hypoxia preconditioning, the cells were placed in normoxic condition for 8 h to achieve cellular hypoxia-reoxygenation. To assess the level of CXCR4 gene expression, real-time quantitative reverse transcription-polymerase chain reaction was carried out for each group. RESULTS Data from statistical analysis illustrated that exposure of MSCs to acute hypoxic condition down-regulates CXCR4 expression with the maximum under-expression observed in 4 h (0.91 ± 0.107) and 8 h (50 ± 2.98) groups. Moreover, the relative gene expression of CXCR4 was decreased after hypoxia-reoxygenation by more than 80% in 4 h (0.136 ± 0.018) and 24 h (12.77 ± 0.707) groups. CONCLUSION The results suggest that CXCR4 expression in MSCs decreases upon acute hypoxic stress. Furthermore, hypoxia-reoxygenated MSCs showed decreased expression of CXCR4, compared to cells subjected to acute hypoxia. This difference could have resulted from the cells being compatible with low oxygen metabolism. In summary, before the therapeutic application of MSCs, it should be regarded as a necessity to optimize the oxygen concentration in these cells, as it is a critical factor in modulating CXCR4 expression.
Collapse
Affiliation(s)
- Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Najva Alijani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Rahmati
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Reza Mahdian
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
87
|
Kim SH, Chung SW, Oh JH. Expression of insulin-like growth factor type 1 receptor and myosin heavy chain in rabbit's rotator cuff muscle after injection of adipose-derived stem cell. Knee Surg Sports Traumatol Arthrosc 2014; 22:2867-73. [PMID: 23736255 DOI: 10.1007/s00167-013-2560-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/29/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE This study was performed to evaluate the effects of adipose-derived mesenchymal stem cells (ADMSC) in a subacute rotator cuff tear model of a rabbit by way of comparing the expression of insulin-like growth factor 1 receptor (IGF-1R) and myosin heavy chain (MyHC) in the ADMSC injected muscle and control. METHODS Supraspinatus tears were created in both shoulders of 11 rabbits, and rotator cuff repair was performed after 3 weeks. At the time of repair, each side of the shoulders was randomly selected, and the injection of the ADMSCs at the muscle belly near musculotendinous junction (injection side) and saline to the contralateral side (control side) was performed. After 3 weeks, we randomly assigned 5 rabbits to the immunohistochemistric analysis and 6 to Western blot analysis. RESULTS Expression of both IGF-1R (95 kD) and MyHC (200 kD) at the injection side was significantly elevated compared to control side (both p = 0.028). Immunohistochemistry showed that staining areas of both IGF-1R and MyHC were overlapped with staining of ADMSCs. CONCLUSION The injection of ADMSCs resulted in high expression of IGF-1R and MyHC in subacute rotator cuff tear and repaired model in rabbit compared to control side. Therefore, the injected ADMSCs may assist in regeneration of the rotator cuff muscle by way of insulin-like growth factor 1 (IGF-1) signalling pathway. This result may suggest another solution to facilitate the recovery of rotator cuff muscle and to improve the result of rotator cuff repair by ADMSC injection via IGF-1 pathway, which is one of the potent anabolic pathways.
Collapse
Affiliation(s)
- Sae Hoon Kim
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | | | | |
Collapse
|
88
|
Bhardwaj N, Devi D, Mandal BB. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors. Macromol Biosci 2014; 15:153-82. [PMID: 25283763 DOI: 10.1002/mabi.201400335] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/25/2014] [Indexed: 02/06/2023]
Abstract
Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering.
Collapse
Affiliation(s)
- Nandana Bhardwaj
- Seri-Biotechnology Unit, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, India
| | | | | |
Collapse
|
89
|
Fan J, Park H, Lee MK, Bezouglaia O, Fartash A, Kim J, Aghaloo T, Lee M. Adipose-derived stem cells and BMP-2 delivery in chitosan-based 3D constructs to enhance bone regeneration in a rat mandibular defect model. Tissue Eng Part A 2014; 20:2169-79. [PMID: 24524819 PMCID: PMC4137352 DOI: 10.1089/ten.tea.2013.0523] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/10/2014] [Indexed: 12/29/2022] Open
Abstract
Reconstructing segmental mandiblular defects remains a challenge in the clinic. Tissue engineering strategies provide an alternative option to resolve this problem. The objective of the present study was to determine the effects of adipose-derived stem cells (ASCs) and bone morphogenetic proteins-2 (BMP-2) in three-dimensional (3D) scaffolds on mandibular repair in a small animal model. Noggin expression levels in ASCs were downregulated by a lentiviral short hairpin RNA strategy to enhance ASC osteogenesis (ASCs(Nog-)). Chitosan (CH) and chondroitin sulfate (CS), natural polysaccharides, were fabricated into 3D porous scaffolds, which were further modified with apatite coatings for enhanced cellular responses and efficient delivery of BMP-2. The efficacy of 3D apatite-coated CH/CS scaffolds supplemented with ASCs(Nog-) and BMP-2 were evaluated in a rat critical-sized mandibular defect model. After 8 weeks postimplantation, the scaffolds treated with ASCs(Nog-) and BMP-2 significantly promoted rat mandibular regeneration as demonstrated by micro-computerized tomography, histology, and immunohistochemistry, compared with the groups treated with ASCs(Nog-) or BMP-2 alone. These results suggest that our combinatorial strategy of ASCs(Nog-)+BMP-2 in 3D apatite microenvironments can significantly promote mandibular regeneration, and these may provide a potential tissue engineering approach to repair large bony defects.
Collapse
Affiliation(s)
- Jiabing Fan
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Hyejin Park
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Matthew K. Lee
- Department of Head and Neck Surgery, University of California, Los Angeles, Los Angeles, California
| | - Olga Bezouglaia
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, California
| | - Armita Fartash
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, California
| | - Jinku Kim
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Korea
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, California
| | - Min Lee
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
90
|
Kim YI, Ryu JS, Yeo JE, Choi YJ, Kim YS, Ko K, Koh YG. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells. Biochem Biophys Res Commun 2014; 450:1593-9. [PMID: 25035928 DOI: 10.1016/j.bbrc.2014.07.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.
Collapse
Affiliation(s)
- Yong Il Kim
- Center for Stem Cell & Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Jae-Sung Ryu
- Center for Stem Cell & Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Jee Eun Yeo
- Center for Stem Cell & Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Yun Jin Choi
- Center for Stem Cell & Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Yong Sang Kim
- Center for Stem Cell & Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Kinarm Ko
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yong-Gon Koh
- Center for Stem Cell & Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea.
| |
Collapse
|
91
|
Abstract
The vast majority of literature pertaining to mesenchymal stem cells (MSC) immunomodulation has focussed on bone marrow-derived MSC that are systemically infused to alleviate inflammatory conditions. Rheumatoid arthritis (RA) is the commonest autoimmune joint disease that has witnessed significant therapeutic advances in the past decade, but remains stubbornly difficult to treat in a subset of cases. Pre-clinical research has demonstrated that bone marrow, adipose, synovial and umbilical cord-derived MSC all suppress the functions of different immune cells thus raising the possibility of new therapies for autoimmune diseases including RA. Indeed, preliminary evidence for MSC efficacy has been reported in some cases of RA and systemic lupus erythromatosis. The potential use of bone marrow-MSC (BM-MSC) for RA therapy is emerging but the use of synovial MSC (S-MSC) to suppress the exaggerated immune response within the inflamed joints remains rudimentary. Synovial fibroblasts that are likely derived from S-MSCs, also give rise to a cell-cultured progeny termed fibroblast-like synoviocytes (FLS), which are key players in the perpetuation of joint inflammation and destruction. A better understanding of the link between these cells and their biology could be a key to developing novel MSC-based strategies for therapy. The review briefly focuses on BM-MSC and gives particular attention to joint niche synovial MSC and FLS with respect to immunoregulatory potential therapy roles.
Collapse
Affiliation(s)
- J J El-Jawhari
- From the Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital , WTBB, LS9 7TF University of Leeds, UK and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, EgyptFrom the Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital , WTBB, LS9 7TF University of Leeds, UK and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Y M El-Sherbiny
- From the Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital , WTBB, LS9 7TF University of Leeds, UK and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, EgyptFrom the Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital , WTBB, LS9 7TF University of Leeds, UK and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - E A Jones
- From the Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital , WTBB, LS9 7TF University of Leeds, UK and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - D McGonagle
- From the Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital , WTBB, LS9 7TF University of Leeds, UK and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
92
|
Shen W, Chen X, Hu Y, Yin Z, Zhu T, Hu J, Chen J, Zheng Z, Zhang W, Ran J, Heng BC, Ji J, Chen W, Ouyang HW. Long-term effects of knitted silk-collagen sponge scaffold on anterior cruciate ligament reconstruction and osteoarthritis prevention. Biomaterials 2014; 35:8154-63. [PMID: 24974007 DOI: 10.1016/j.biomaterials.2014.06.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/08/2014] [Indexed: 12/21/2022]
Abstract
Anterior cruciate ligament (ACL) is difficult to heal after injury due to the dynamic fluid environment of joint. Previously, we have achieved satisfactory regeneration of subcutaneous tendon/ligament with knitted silk-collagen sponge scaffold due to its specific "internal-space-preservation" property. This study aims to investigate the long-term effects of knitted silk-collagen sponge scaffold on ACL regeneration and osteoarthritis prevention. The knitted silk-collagen sponge scaffold was fabricated and implanted into a rabbit ACL injury model. The knitted silk-collagen sponge scaffold was found to enhance migration and adhesion of spindle-shaped cells into the scaffold at 2 months post-surgery. After 6 months, ACL treated with the knitted silk-collagen sponge scaffold exhibited increased expression of ligament genes and better microstructural morphology. After 18 months, the knitted silk-collagen sponge scaffold-treated group had more mature ligament structure and direct ligament-to-bone healing. Implanted knitted silk-collagen sponge scaffolds degraded much more slowly compared to subcutaneous implantation. Furthermore, the knitted silk-collagen sponge scaffold effectively protected joint surface cartilage and preserved joint space for up to 18 months post-surgery. These findings thus demonstrated that the knitted silk-collagen sponge scaffold can regenerate functional ACL and prevent osteoarthritis in the long-term, suggesting its clinical use as a functional bioscaffold for ACL reconstruction.
Collapse
Affiliation(s)
- Weiliang Shen
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Zhejiang Key Laboratory for Tissue Engineering and Repair Technology, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Xiao Chen
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Yejun Hu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Zi Yin
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Ting Zhu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Jiajie Hu
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Jialin Chen
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Zefeng Zheng
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Wei Zhang
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Boon Chin Heng
- Department of Biosystems Science & Engineering (D-BSSE), ETH-Zurich, Switzerland
| | - Junfeng Ji
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China.
| | - Hong-Wei Ouyang
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Zhejiang Key Laboratory for Tissue Engineering and Repair Technology, School of Medicine, Zhejiang University, Zhejiang 310009, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China.
| |
Collapse
|
93
|
Harris Q, Seto J, O'Brien K, Lee PS, Kondo C, Heard BJ, Hart DA, Krawetz RJ. Monocyte chemotactic protein-1 inhibits chondrogenesis of synovial mesenchymal progenitor cells: an in vitro study. Stem Cells 2014; 31:2253-65. [PMID: 23836536 DOI: 10.1002/stem.1477] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 06/14/2013] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a multifactorial, often progressive, painful disease. OA often progresses with an apparent irreversible loss of articular cartilage, exposing underlying bone, resulting in pain and loss of mobility. This cartilage loss is thought to be permanent due to ineffective repair and apparent lack of stem/progenitor cells in that tissue. However, the adjacent synovial lining and synovial fluid are abundant with mesenchymal progenitor/stem cells (synovial mesenchymal progenitor cells [sMPCs]) capable of differentiating into cartilage both in vitro and in vivo. Previous studies have demonstrated that MPCs can home to factors such as monocyte chemotactic protein 1 (MCP-1/CCL2) expressed after injury. While MCP-1 (and its corresponding receptors) appears to play a role in recruiting stem cells to the site of injury, in this study, we have demonstrated that MCP-1 is upregulated in OA synovial fluid and that exposure to MCP-1 activates sMPCs, while concurrently inhibiting these cells from undergoing chondrogenesis in vitro. Furthermore, exposure to physiological (OA knee joint synovial fluid) levels of MCP-1 triggers changes in the transcriptome of sMPCs and prolonged exposure to the chemokine induces the expression of MCP-1 in sMPCs, resulting in a positive feedback loop from which sMPCs cannot apparently escape. Therefore, we propose a model where MCP-1 (normally expressed after joint injury) recruits sMPCs to the area of injury, but concurrently triggers changes in sMPC transcriptional regulation, leading to a blockage in the chondrogenic program. These results may open up new avenues of research into the lack of endogenous repair observed after articular cartilage injury and/or arthritis.
Collapse
Affiliation(s)
- Quinn Harris
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Osteoarthritis (OA) is a common joint degenerative disease affecting the whole joint structure, including articular cartilage, subchondral bone and synovial tissue. Although extensive work has been done in recent years to explore the molecular mechanism underlying this disease, the pathogenesis of OA is still poorly understood and currently, there is no effective disease-modifying treatment for OA. Recently, both in vitro and in vivo studies suggest that confirmed (TGF-β)/SMAD pathway plays a critical role during OA development. This short review will focus on the function and signaling mechanisms of TGF-β/SMAD pathway in articular chondrocytes, mesenchymal progenitor cells of subchondral bone and synovial lining cells during OA development.
Collapse
Affiliation(s)
- Jie Shen
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Shan Li
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
95
|
Ribitsch I, Burk J, Delling U, Geißler C, Gittel C, Jülke H, Brehm W. Basic science and clinical application of stem cells in veterinary medicine. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 123:219-63. [PMID: 20309674 DOI: 10.1007/10_2010_66] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stem cells play an important role in veterinary medicine in different ways. Currently several stem cell therapies for animal patients are being developed and some, like the treatment of equine tendinopathies with mesenchymal stem cells (MSCs), have already successfully entered the market. Moreover, animal models are widely used to study the properties and potential of stem cells for possible future applications in human medicine. Therefore, in the young and emerging field of stem cell research, human and veterinary medicine are intrinsically tied to one another. Many of the pioneering innovations in the field of stem cell research are achieved by cooperating teams of human and veterinary medical scientists.Embryonic stem (ES) cell research, for instance, is mainly performed in animals. Key feature of ES cells is their potential to contribute to any tissue type of the body (Reed and Johnson, J Cell Physiol 215:329-336, 2008). ES cells are capable of self-renewal and thus have the inherent potential for exceptionally prolonged culture (up to 1-2 years). So far, ES cells have been recovered and maintained from non-human primate, mouse (Fortier, Vet Surg 34:415-423, 2005) and horse blastocysts (Guest and Allen, Stem Cells Dev 16:789-796, 2007). In addition, bovine ES cells have been grown in primary culture and there are several reports of ES cells derived from mink, rat, rabbit, chicken and pigs (Fortier, Vet Surg 34:415-423, 2005). However, clinical applications of ES cells are not possible yet, due to their in vivo teratogenic degeneration. The potential to form a teratoma consisting of tissues from all three germ lines even serves as a definitive in vivo test for ES cells.Stem cells obtained from any postnatal organism are defined as adult stem cells. Adult haematopoietic and MSCs, which can easily be recovered from extra embryonic or adult tissues, possess a more limited plasticity than their embryonic counterparts (Reed and Johnson, J Cell Physiol 215:329-336, 2008). It is believed that these stem cells serve as cell source to maintain tissue and organ mass during normal cell turnover in adult individuals. Therefore, the focus of attention in veterinary science is currently drawn to adult stem cells and their potential in regenerative medicine. Also experience gained from the treatment of animal patients provides valuable information for human medicine and serves as precursor to future stem cell use in human medicine.Compared to human medicine, haematopoietic stem cells only play a minor role in veterinary medicine because medical conditions requiring myeloablative chemotherapy followed by haematopoietic stem cell induced recovery of the immune system are relatively rare and usually not being treated for monetary as well as animal welfare reasons.In contrast, regenerative medicine utilising MSCs for the treatment of acute injuries as well as chronic disorders is gradually turning into clinical routine. Therefore, MSCs from either extra embryonic or adult tissues are in the focus of attention in veterinary medicine and research. Hence the purpose of this chapter is to offer an overview on basic science and clinical application of MSCs in veterinary medicine.
Collapse
Affiliation(s)
- I Ribitsch
- Translational Centre for Regenerative Medicine, Leipzig, Germany,
| | | | | | | | | | | | | |
Collapse
|
96
|
Automated Enumeration and Viability Measurement of Canine Stromal Vascular Fraction Cells Using Fluorescence-Based Image Cytometry Method. J Fluoresc 2014; 24:983-9. [DOI: 10.1007/s10895-014-1388-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/07/2014] [Indexed: 02/06/2023]
|
97
|
Im W, Ban JJ, Lim J, Lee M, Chung JY, Bhattacharya R, Kim SH. Adipose-derived stem cells extract has a proliferative effect on myogenic progenitors. In Vitro Cell Dev Biol Anim 2014; 50:740-6. [PMID: 24719183 DOI: 10.1007/s11626-014-9752-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/20/2014] [Indexed: 12/19/2022]
Abstract
Finding an effective method to regenerate muscle is a growing issue in the orthopedic field. Platelet-rich plasma (PRP) has recently been considered for therapeutic use due to its capacity to induce proliferation of myogenic progenitor cells (MPCs). Adipose-derived stem cells (ASCs) and its extract are regarded as a promising treatment for various disorders within the orthopedic field but their therapeutic relevance in the muscle regeneration is poorly investigated. In this study, rabbit MPCs were cultured from the supraspinatus of rabbit and characterized by myogenic markers. To investigate the paracrine effect of ASCs on MPCs, coculture experiments were performed. In order to see the anabolic effect of ASC-extracts (ASC-ex) in MPCs, cell proliferation assays were performed and compared with the PRP-added condition. Coculture experiment showed ASCs had an anabolic paracrine effect on proliferation of MPCs. PRP had a positive effect on proliferation of MPCs when compared to the control (100 ± 7.4% vs 195.2 ± 19.2%, p < 0.001); however, ASC-ex promoted greater proliferation than the PRP condition (467.3 ± 38.7%, p < 0.001 compared with PRP). Similarly, in C2C12 cells, PRP showed an increased rate when compared to the control (100 ± 5.9% vs 205.1 ± 45.4%, p < 0.001), and treatment of ASC-ex showed dramatic increase in proliferation (335.9 ± 37.8%, p < 0.001 compared with PRP). ASC-ex had positive effect on expanding MPCs of rabbit and myoblast cell line, and its capacity to induce proliferation was notably stronger than that of PRP. In conclusion, the study suggests that rabbit ASC-ex have stronger proliferative effect on MPCs than rabbit PRP. Thus, ASC-ex could be a therapeutic candidate for muscle regeneration by activation of endogenous MPCs.
Collapse
Affiliation(s)
- Wooseok Im
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
98
|
Shao Z, Zhang X, Pi Y, Yin L, Li L, Chen H, Zhou C, Ao Y. Surface modification on polycaprolactone electrospun mesh and human decalcified bone scaffold with synovium-derived mesenchymal stem cells-affinity peptide for tissue engineering. J Biomed Mater Res A 2014; 103:318-29. [PMID: 24659568 DOI: 10.1002/jbm.a.35177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/11/2014] [Accepted: 03/21/2014] [Indexed: 12/13/2022]
Abstract
Synovium-derived mesenchymal stem cells (SMSC) have been studied for over a decade since first being successfully isolated in 2001. These cells demonstrate the most promising therapeutic efficacy for musculoskeletal regeneration of the MSC family, particularly for cartilage regeneration. However, the mobilization and transfer of MSCs to defective or damaged tissues and organs in vivo with high accuracy and efficiency has been a major problem in tissue engineering (TE). In the present study, we identified a seven amino acid peptide sequence [SMSCs-affinity peptide (LTHPRWP; L7)] through phage display technology that has a high specific affinity to SMSCs. Our analysis suggested that L7 efficiently and specifically interacted with SMSCs without any species specificity. Thereafter, L7 was covalently conjugated onto both polycaprolactone (PCL) electrospun meshes and human decalcified bone scaffolds (hDBSc) to investigate its TE applications. After 24 h coculture with human SMSCs (hSMSCs), L7-conjugated PCL electrospun meshes had significantly more adherent hSMSCs than the control group, and the cells expanded well. Similar results were obtained using hDBSs. These results suggest that the novel L7 peptide sequence has a high specific affinity to SMSCs. Covalently conjugating this peptide to either artificial polymer material (PCL mesh) or natural material (hDBS) significantly enhances the adhesion of SMSCs. This method is applicable to a wide range of potential SMSC-based TE applications, particularly to cartilage regeneration, via surface modification on various type of materials.
Collapse
Affiliation(s)
- Zhenxing Shao
- Institute of Sports Medicine, Peking University Third Hospital, Haidian District, Beijing, 100191, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Neirinckx V, Cantinieaux D, Coste C, Rogister B, Franzen R, Wislet-Gendebien S. Concise Review: Spinal Cord Injuries: How Could Adult Mesenchymal and Neural Crest Stem Cells Take Up the Challenge? Stem Cells 2014; 32:829-43. [DOI: 10.1002/stem.1579] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/03/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Virginie Neirinckx
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Dorothée Cantinieaux
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Cécile Coste
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Bernard Rogister
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
- GIGA, Development, Stem Cells and Regenerative Medicine Unit; University of Liège; Liège Belgium
- Department of Neurology; Centre Hospitalier Universitaire de Liège; Liège Belgium
| | - Rachelle Franzen
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Sabine Wislet-Gendebien
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| |
Collapse
|
100
|
Moran CJ, Pascual-Garrido C, Chubinskaya S, Potter HG, Warren RF, Cole BJ, Rodeo SA. Restoration of articular cartilage. J Bone Joint Surg Am 2014; 96:336-44. [PMID: 24553893 DOI: 10.2106/jbjs.l.01329] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
➤ Novel (i.e., quantitative and semiquantitative) cartilage imaging techniques can evaluate cartilage composition to augment information obtained from traditional magnetic resonance imaging sequences that detail morphology.➤ A well-defined role for drugs leading to chondroprotection has not yet been determined.➤ Shortcomings of bone marrow stimulation include limited production of hyaline repair tissue, unpredictable repair cartilage volume, and a negative impact on later cellular transplantation if required.➤ The role of biological augments, such as cellular concentrates or platelet-rich plasma, remains undefined. When their use is reported in the literature, it is important that their process of production and characterization be detailed.➤ Rehabilitation programs, incorporating controlled exercise and progressive partial weight-bearing, are an important part of cartilage repair surgery and should be detailed in reports on operative techniques applied.➤ Malalignment, meniscal injury, and ligament deficiency should be corrected in a staged or concomitant fashion to reduce the overall likelihood of mechanical failure in cartilage repair surgery.
Collapse
Affiliation(s)
- Cathal J Moran
- Sports Medicine and Shoulder Service (C.J.M., C.P.-G., R.F.W., and S.A.R.) and Department of Radiology and Imaging (H.G.P.), Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for C.J. Moran:
| | - Cecilia Pascual-Garrido
- Sports Medicine and Shoulder Service (C.J.M., C.P.-G., R.F.W., and S.A.R.) and Department of Radiology and Imaging (H.G.P.), Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for C.J. Moran:
| | - Susan Chubinskaya
- Department of Biochemistry, Rush University Medical Center, Cohn Research Building, Suite 522, 1735 West Harrison Street, Chicago, IL 60612
| | - Hollis G Potter
- Sports Medicine and Shoulder Service (C.J.M., C.P.-G., R.F.W., and S.A.R.) and Department of Radiology and Imaging (H.G.P.), Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for C.J. Moran:
| | - Russell F Warren
- Sports Medicine and Shoulder Service (C.J.M., C.P.-G., R.F.W., and S.A.R.) and Department of Radiology and Imaging (H.G.P.), Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for C.J. Moran:
| | - Brian J Cole
- Division of Sports Medicine, Cartilage Restoration Center, Midwest Orthopedics at Rush, Rush University Medical Center, 1611 West Harrison Street, Suite 300, Chicago, IL 60612
| | - Scott A Rodeo
- Sports Medicine and Shoulder Service (C.J.M., C.P.-G., R.F.W., and S.A.R.) and Department of Radiology and Imaging (H.G.P.), Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for C.J. Moran:
| |
Collapse
|