51
|
Esmaeili A, Hosseini S, Kamali A, Hosseinzadeh M, Shekari F, Baghaban Eslaminejad M. Co-aggregation of MSC/chondrocyte in a dynamic 3D culture elevates the therapeutic effect of secreted extracellular vesicles on osteoarthritis in a rat model. Sci Rep 2022; 12:19827. [PMID: 36400827 PMCID: PMC9674636 DOI: 10.1038/s41598-022-22592-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Extracellular vesicles (EVs) have therapeutic effects on osteoarthritis (OA). Some recent strategies could elevate EV's therapeutic properties including cell aggregation, co-culture, and 3D culture. It seems that a combination of these strategies could augment EV production and therapeutic potential. The current study aims to evaluate the quantity of EV yield and the therapeutic effect of EVs harvested from rabbit mesenchymal stem cells (MSCs) aggregates, chondrocyte aggregates, and their co-aggregates in a dynamic 3D culture in a rat osteoarthritis model. MSC and chondrocytes were aggregated and co-aggregated by spinner flasks, and their conditioned medium was collected. EVs were isolated by size exclusion chromatography and characterized in terms of size, morphology and surface markers. The chondrogenic potential of the MSC-ag, Cho-ag and Co-ag EVs on MSC micromass differentiation in chondrogenic media were assessed by qRT-PCR, histological and immunohistochemical analysis. 50 μg of MSC-ag-EVs, Cho-ag-EVs and Co-ag-EVs was injected intra-articularly per knee of OA models established by monoiodoacetate in rats. After 8 weeks follow up, the knee joints were harvested and analyzed by radiographic, histological and immunohistochemical features. MSC/chondrocyte co-aggregation in comparison to MSC or chondrocyte aggregation could increase EV yield during dynamic 3D culture by spinner flasks. Although MSC-ag-, Cho-ag- and Co-ag-derived EVs could induce chondrogenesis similar to transforming growth factor-beta during in vitro study, Co-ag-EV could more effectively prevent OA progression than MSC-ag- and Cho-ag-EVs. Our study demonstrated that EVs harvested from the co-aggregation of MSCs and chondrocytes could be considered as a new therapeutic potential for OA treatment.
Collapse
Affiliation(s)
- Abazar Esmaeili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Kamali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Hosseinzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
52
|
Cho S, Choi H, Jeong H, Kwon SY, Roh EJ, Jeong KH, Baek I, Kim BJ, Lee SH, Han I, Cha JM. Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion. Stem Cells Transl Med 2022; 11:1072-1088. [PMID: 36180050 PMCID: PMC9585955 DOI: 10.1093/stcltm/szac052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute.
Collapse
Affiliation(s)
- Sumin Cho
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hyundoo Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Eun Ji Roh
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwang-Hun Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Inho Baek
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Byoung Ju Kim
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
53
|
Building a tissue: mesenchymal and epithelial cell spheroids' mechanical properties at micro- and nanoscale. Acta Biomater 2022:S1742-7061(22)00621-3. [PMID: 36167239 DOI: 10.1016/j.actbio.2022.09.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Cell transitions between the epithelial and mesenchymal phenotypes provide the regulated morphogenesis and regeneration throughout the ontogenesis. The tissue mechanics and mechanotransduction play an essential role in these processes. Cell spheroids reproduce the cell density of native tissues and represent simple building blocks for the tissue engineering purposes. The mechanical properties of mesenchymal and epithelial cells have been extensively studied in 2D monolayer cultures, but have not been sufficiently compared in spheroids. Here, we have simultaneously applied several techniques to assess the mechanical parameters of such spheroids. The local surface mechanical properties were measured by AFM, and the bulk properties were analyzed with parallel-plate compression, as well as by observing cut opening after microdissection. The comparison of the collected data allowed us to apply the model of a solid body with surface tension, and estimate the parameters of this model. We found an expectedly higher surface tension in mesenchymal spheroids, as well as a higher bulk modulus and relaxation time. The two latter parameters agree with the bulk poroelastic behavior of spheroids, and with the higher cell density and extracellular matrix content in mesenchymal spheroids. The higher tension of the surface layer cells in mesenchymal cell spheroids was also confirmed by the viscoelastic AFM characterization. The cell phenotype affected the self-organization during the spheroid formation, as well as the structure, biomechanical properties, and spreading of spheroids. The obtained results will contribute to a more detailed description of spheroid and tissue biomechanics, and will help in controlling the tissue regeneration and morphogenesis. STATEMENT OF SIGNIFICANCE: Spheroids are widely used as building blocks for scaffold-based and scaffold-free strategies in tissue engineering. In the majority of the past studies, either the concept of a solid body or a liquid with surface tension was used to describe the biomechanical behavior of spheroids. Here, we have used a model which combines both aspects, a solid body with surface tension. The "solid" aspect was described as a visco-poroelastic material, affected by the liquid redistribution through the cells and ECM at the scale of the whole spheroid. A higher surface tension was found for mesenchymal spheroids than that for epithelial spheroids, observed as a higher stiffness of the spheroid surface, as well as a larger spontaneous opening of the cut edges after microdissection.
Collapse
|
54
|
Min Lim K, Kim S, Yeom J, Choi Y, Lee Y, An J, Gil M, Abdal Dayem A, Kim K, Kang GH, Kim A, Hong K, Kim K, Cho SG. Advanced 3D dynamic culture system with transforming growth factor-β3 enhances production of potent extracellular vesicles with modified protein cargoes via upregulation of TGF-β signaling. J Adv Res 2022; 47:57-74. [PMID: 36130685 PMCID: PMC10173176 DOI: 10.1016/j.jare.2022.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/29/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) release extracellular vesicles (MSC-EVs) containing various cargoes. Although MSC-EVs show significant therapeutic effects, the low production of EVs in MSCs hinders MSC-EV-mediated therapeutic development. OBJECTIVES Here, we developed an advanced three-dimensional (a3D) dynamic culture technique with exogenous transforming growth factor beta-3 (TGF-β3) treatment (T-a3D) to produce potent MSC-EVs. METHODS Our system enabled preparation of a highly concentrated EV-containing medium for efficient EV isolation and purification with higher yield and efficacy. RESULTS MSC spheroids in T-a3D system (T-a3D spheroids) showed high expression of CD9 and TGF-β3, which was dependent on TGF-β signaling. Treatment with EVs produced under T-a3D conditions (T-a3D-EVs) led to significantly improved migration of dermal fibroblasts and wound closure in an excisional wound model. The relative total efficacy (relative yield of single-batch EVs (10-11-fold) × relative regeneration effect of EVs (2-3-fold)) of T-a3D-EVs was approximately up to 33-fold higher than that of 2D-EVs. Importantly the quantitative proteomic analyses of the T-a3D spheroids and T-a3D-EVs supported the improved EV production as well as the therapeutic potency of T-a3D-EVs. CONCLUSION TGF-β signalling differentially regulated by fluid shear stress produced in our system and exogenous TGF-β3 addition was confirmed to play an important role in the enhanced production of EVs with modified protein cargoes. We suggest that the T-a3D system leads to the efficient production of MSC-EVs with high potential in therapies and clinical development.
Collapse
Affiliation(s)
- Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Sehee Kim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul 05505, Republic of Korea.
| | - Yujin Choi
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Yoonjoo Lee
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Jongyub An
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Minchan Gil
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Geun-Ho Kang
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea.
| | - Kwonho Hong
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Kyunggon Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul 05505, Republic of Korea; Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul 05505, Republic of Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul 05505, Republic of Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
55
|
Li Q, Qi G, Lutter D, Beard W, Souza CRS, Highland MA, Wu W, Li P, Zhang Y, Atala A, Sun X. Injectable Peptide Hydrogel Encapsulation of Mesenchymal Stem Cells Improved Viability, Stemness, Anti-Inflammatory Effects, and Early Stage Wound Healing. Biomolecules 2022; 12:1317. [PMID: 36139156 PMCID: PMC9496061 DOI: 10.3390/biom12091317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Human-adipose-derived mesenchymal stem cells (hADMSCs) are adult stem cells and are relatively easy to access compared to other sources of mesenchymal stem cells (MSCs). They have shown immunomodulation properties as well as effects in improving tissue regeneration. To better stimulate and preserve the therapeutic properties of hADMSCs, biomaterials for cell delivery have been studied extensively. To date, hyaluronic acid (HA)-based materials have been most widely adopted by researchers around the world. PGmatrix is a new peptide-based hydrogel that has shown superior functional properties in 3D cell cultures. Here, we reported the in vitro and in vivo functional effects of PGmatrix on hADMSCs in comparison with HA and HA-based Hystem hydrogels. Our results showed that PGmatrix was far superior in maintaining hADMSC viability during prolonged incubation and stimulated expression of SSEA4 (stage-specific embryonic antigen-4) in hADMSCs. hADMSCs encapsulated in PGmatrix secreted more immune-responsive proteins than those in HA or Hystem, though similar VEGF-A and TGFβ1 release levels were observed in all three hydrogels. In vivo studies revealed that hADMSCs encapsulated with PGmatrix showed improved skin wound healing in diabetic-induced mice at an early stage, suggesting possible anti-inflammatory effects, though similar re-epithelialization and collagen density were observed among PGmatrix and HA or Hystem hydrogels by day 21.
Collapse
Affiliation(s)
- Quan Li
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Guangyan Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Dylan Lutter
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Warren Beard
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Margaret A. Highland
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Wu
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Ping Li
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Yuanyuan Zhang
- Wake Forest Institute Regenerative Medicine, Wake Forest University, Winston-Salem, NC 27151, USA
| | - Anthony Atala
- Wake Forest Institute Regenerative Medicine, Wake Forest University, Winston-Salem, NC 27151, USA
| | - Xiuzhi Sun
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
56
|
Mesenchymal Stem Cell Sheet Centrifuge-Assisted Layering Augments Pro-Regenerative Cytokine Production. Cells 2022; 11:cells11182840. [PMID: 36139414 PMCID: PMC9497223 DOI: 10.3390/cells11182840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
A focal advantage of cell sheet technology has been as a scaffold-free three-dimensional (3D) cell delivery platform capable of sustained cell engraftment, survival, and reparative function. Recent evidence demonstrates that the intrinsic cell sheet 3D tissue-like microenvironment stimulates mesenchymal stem cell (MSC) paracrine factor production. In this capacity, cell sheets not only function as 3D cell delivery platforms, but also prime MSC therapeutic paracrine capacity. This study introduces a “cell sheet multilayering by centrifugation” strategy to non-invasively augment MSC paracrine factor production. Cell sheets fabricated by temperature-mediated harvest were first centrifuged as single layers using optimized conditions of rotational speed and time. Centrifugation enhanced cell physical and biochemical interactions related to intercellular communication and matrix interactions within the single cell sheet, upregulating MSC gene expression of connexin 43, integrin β1, and laminin α5. Single cell sheet centrifugation triggered MSC functional enhancement, secreting higher concentrations of pro-regenerative cytokines vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and interleukin-10 (IL-10). Subsequent cell sheet stacking, and centrifugation generated cohesive, bilayer MSC sheets within 2 h, which could not be accomplished within 24 h by conventional layering methods. Conventional layering led to H1F-1α upregulation and increased cell death, indicating a hypoxic thickness limitation to this approach. Comparing centrifuged single and bilayer cell sheets revealed that layering increased VEGF production 10-fold, attributed to intercellular interactions at the layered sheet interface. The “MSC sheet multilayering by centrifugation” strategy described herein generates a 3D MSC-delivery platform with boosted therapeutic factor production capacity.
Collapse
|
57
|
Majood M, Shakeel A, Agarwal A, Jeevanandham S, Bhattacharya R, Kochhar D, Singh A, Kalyanasundaram D, Mohanty S, Mukherjee M. Hydrogel Nanosheets Confined 2D Rhombic Ice: A New Platform Enhancing Chondrogenesis. Biomed Mater 2022; 17. [PMID: 36044885 DOI: 10.1088/1748-605x/ac8e43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/31/2022] [Indexed: 11/12/2022]
Abstract
Nanoconfinement within flexible interfaces is a key step towards exploiting confinement effects in several biological and technological systems wherein flexible 2D materials are frequently utilized but are arduous to prepare. Hitherto unreported, the synthesis of 2D Hydrogel nanosheets (HNS) using a template- and catalyst-free process is developed representing a fertile ground for fundamental structure-property investigations. In due course of time, nucleating folds propagating along the edges trigger co-operative deformations of HNS generating regions of nanoconfinement within trapped water islands. These severely constricting surfaces force water molecules to pack within the nanoscale regime of HNS almost parallel to the surface bringing about phase transition into puckered rhombic ice with AA and AB Bernal stacking pattern, which was mostly restricted to Molecular dynamics (MD) studies so far. Interestingly, under high lateral pressure and spatial inhomogeneity within nanoscale confinement, bilayer rhombic ice structures were formed with an in-plane lattice spacing of 0.31 nm. In this work, a systematic exploration of rhombic ice formation within HNS has been delineated using High-resolution transmission electron microscopy (HRTEM), and its ultrathin morphology was examined using Atomic Force Microscopy (AFM). Scanning Electron Microscopy (SEM) images revealed high porosity while mechanical testing presented young's modulus of 155 kPa with ~84% deformation, whereas contact angle suggested high hydrophilicity. The combinations of nanosheets, porosity, nanoconfinement, hydrophilicity, and mechanical strength, motivated us to explore their application as a scaffold for cartilage regeneration, by inducing chondrogenesis of human Wharton Jelly derived mesenchymal stem cells (hWJ MSCs). HNS promoted the formation of cell aggregates giving higher number of spheroid formation and a marked expression of chondrogenic markers (ColI, ColII, ColX, ACAN and S-100), thereby providing some cues for guiding chondrogenic differentiation.
Collapse
Affiliation(s)
- Misba Majood
- AICCRS, Amity University, Sector 125, Noida, Noida, Uttar Pradesh, 201313, INDIA
| | - Adeeba Shakeel
- AICCRS, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, INDIA
| | - Aakanksha Agarwal
- AICCRS, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, INDIA
| | | | | | - Dakshi Kochhar
- Amity University, Sector 125, Noida, Uttar Pradesh, 201313, INDIA
| | - Aarti Singh
- AICCRS, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, INDIA
| | | | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences Cardio-Thoracic Sciences Centre, Orbo Building, first floor,, Ansari Nagar, New Delhi, New Delhi, Delhi, 110029, INDIA
| | | |
Collapse
|
58
|
Fuentes P, Torres MJ, Arancibia R, Aulestia F, Vergara M, Carrión F, Osses N, Altamirano C. Dynamic Culture of Mesenchymal Stromal/Stem Cell Spheroids and Secretion of Paracrine Factors. Front Bioeng Biotechnol 2022; 10:916229. [PMID: 36046670 PMCID: PMC9421039 DOI: 10.3389/fbioe.2022.916229] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, conditioned medium (CM) obtained from the culture of mesenchymal stromal/stem cells (MSCs) has been shown to effectively promote tissue repair and modulate the immune response in vitro and in different animal models, with potential for application in regenerative medicine. Using CM offers multiple advantages over the implantation of MSCs themselves: 1) simpler storage, transport, and preservation requirements, 2) avoidance of the inherent risks of cell transplantation, and 3) potential application as a ready-to-go biologic product. For these reasons, a large amount of MSCs research has focused on the characterization of the obtained CM, including soluble trophic factors and vesicles, preconditioning strategies for enhancing paracrine secretion, such as hypoxia, a three-dimensional (3D) environment, and biochemical stimuli, and potential clinical applications. In vitro preconditioning strategies can increase the viability, proliferation, and paracrine properties of MSCs and therefore improve the therapeutic potential of the cells and their derived products. Specifically, dynamic cultivation conditions, such as fluid flow and 3D aggregate culture, substantially impact cellular behaviour. Increased levels of growth factors and cytokines were observed in 3D cultures of MSC grown on orbital or rotatory shaking platforms, in stirred systems, such as spinner flasks or stirred tank reactors, and in microgravity bioreactors. However, only a few studies have established dynamic culture conditions and protocols for 3D aggregate cultivation of MSCs as a scalable and reproducible strategy for CM production. This review summarizes significant advances into the upstream processing, mainly the dynamic generation and cultivation of MSC aggregates, for de CM manufacture and focuses on the standardization of the soluble factor production.
Collapse
Affiliation(s)
- Paloma Fuentes
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María José Torres
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Rodrigo Arancibia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Francisco Aulestia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Mauricio Vergara
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Flavio Carrión
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Nelson Osses
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- CREAS, Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
- *Correspondence: Claudia Altamirano,
| |
Collapse
|
59
|
Lee N, Park GT, Lim JK, Choi EB, Moon HJ, Kim DK, Choi SM, Song YC, Kim TK, Kim JH. Mesenchymal stem cell spheroids alleviate neuropathic pain by modulating chronic inflammatory response genes. Front Immunol 2022; 13:940258. [PMID: 36003384 PMCID: PMC9393760 DOI: 10.3389/fimmu.2022.940258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic neuropathic pain is caused by dysfunction of the peripheral nerves associated with the somatosensory system. Mesenchymal stem cells (MSCs) have attracted attention as promising cell therapeutics for chronic pain; however, their clinical application has been hampered by the poor in vivo survival and low therapeutic efficacy of transplanted cells. Increasing evidence suggests enhanced therapeutic efficacy of spheroids formed by three-dimensional culture of MSCs. In the present study, we established a neuropathic pain murine model by inducing a chronic constriction injury through ligation of the right sciatic nerve and measured the therapeutic effects and survival efficacy of spheroids. Monolayer-cultured and spheroids were transplanted into the gastrocnemius muscle close to the damaged sciatic nerve. Transplantation of spheroids alleviated chronic pain more potently and exhibited prolonged in vivo survival compared to monolayer-cultured cells. Moreover, spheroids significantly reduced macrophage infiltration into the injured tissues. Interestingly, the expression of mouse-origin genes associated with inflammatory responses, Ccl11/Eotaxin, interleukin 1A, tumor necrosis factor B, and tumor necrosis factor, was significantly attenuated by the administration of spheroids compared to that of monolayer. These results suggest that MSC spheroids exhibit enhanced in vivo survival after cell transplantation and reduced the host inflammatory response through the regulation of main chronic inflammatory response-related genes.
Collapse
Affiliation(s)
- Nayeon Lee
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University, Yangsan, South Korea
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Gyu Tae Park
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University, Yangsan, South Korea
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Jae Kyung Lim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Eun Bae Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Hye Ji Moon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Dae Kyoung Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Seong Min Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Young Cheol Song
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Tae Kyun Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jae Ho Kim
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University, Yangsan, South Korea
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
- *Correspondence: Jae Ho Kim,
| |
Collapse
|
60
|
Hazrati A, Malekpour K, Soudi S, Hashemi SM. Mesenchymal stromal/stem cells spheroid culture effect on the therapeutic efficacy of these cells and their exosomes: A new strategy to overcome cell therapy limitations. Biomed Pharmacother 2022; 152:113211. [PMID: 35696942 DOI: 10.1016/j.biopha.2022.113211] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cell therapy is one of the new treatment methods in which mesenchymal stem/stromal cell (MSCs) transplantation is one of the cells widely used in this field. The results of MSCs application in the clinic prove their therapeutic efficacy. For this reason, many clinical trials have been designed based on the application of MSCs for various diseases, especially inflammatory disease and regenerative medicine. These cells perform their therapeutic functions through multiple mechanisms, including the differentiative potential, immunomodulatory properties, production of therapeutic exosomes, production of growth factors and cytokines, and anti-apoptotic effects. Exosomes are nanosized extracellular vesicles (EVs) that change target cell functions by transferring different cargos. The therapeutic ability of MSCs-derived exosomes has been demonstrated in many studies. However, some limitations, such as the low production of exosomes by cells and the need for large amounts of them and also their limited therapeutic ability, have encouraged researchers to find methods that increase exosomes' therapeutic potential. One of these methods is the spheroid culture of MSCs. Studies show that the three-dimensional culture (3DCC) of MSCs in the form of multicellular spheroids increases the therapeutic efficacy of these cells in laboratory and animal applications. In addition, the spheroid culture of MSCs leads to enhanced therapeutic properties of their exosomes and production rate. Due to the novelty of the field of using 3DCC MSCs-derived exosomes, examination of their properties and the results of their therapeutic application can increase our view of this field. This review discussed MSCs and their exosomes enhanced properties in spheroid culture.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
61
|
Panigrahi AR, Srinivas L, Panda J. Exosomes: Insights and therapeutic applications in cancer. Transl Oncol 2022; 21:101439. [PMID: 35551002 PMCID: PMC9108525 DOI: 10.1016/j.tranon.2022.101439] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/19/2022] Open
Abstract
Cancer refers to the division of abnormal cells at an uncontrollable rate that possesses the ability to infiltrate and destroy normal tissues. It frequently spreads to normal tissues throughout the body, a condition known as metastasis, which is a significant concern. It is the second leading cause of mortality globally and treatment therapy can assist in improving survival rates. Exosomes are the extracellular vesicles secreted by several cells that act as messengers between cells. When engineered, exosomes act as promising drug delivery vehicles that help achieve targeted action at the tumour site and reduce the limitations of conventional treatments such as castration, chemotherapy, radiation, etc. The present review provides an overview of exosomes, the biogenesis, sources, isolation methods and characterization. The current status and applications of chemotherapeutic agents loaded, engineered exosomes in cancer treatment were convoluted.
Collapse
Affiliation(s)
- Anita Raj Panigrahi
- GITAM Institute of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam, 530045, India
| | - Lankalapalli Srinivas
- GITAM Institute of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam, 530045, India.
| | - Jagadeesh Panda
- Raghu College of Pharmacy, Dakamarri, Visakhapatnam - 531162, India
| |
Collapse
|
62
|
Pizzolitto C, Esposito F, Sacco P, Marsich E, Gargiulo V, Bedini E, Donati I. Sulfated lactose-modified chitosan. A novel synthetic glycosaminoglycan-like polysaccharide inducing chondrocyte aggregation. Carbohydr Polym 2022; 288:119379. [DOI: 10.1016/j.carbpol.2022.119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/02/2022]
|
63
|
Yuan X, Sun L, Jeske R, Nkosi D, York SB, Liu Y, Grant SC, Meckes DG, Li Y. Engineering extracellular vesicles by three-dimensional dynamic culture of human mesenchymal stem cells. J Extracell Vesicles 2022; 11:e12235. [PMID: 35716062 PMCID: PMC9206229 DOI: 10.1002/jev2.12235] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Human mesenchymal stem cell (hMSC) derived extracellular vesicles (EVs) have shown therapeutic potential in recent studies. However, the corresponding therapeutic components are largely unknown, and scale-up production of hMSC EVs is a major challenge for translational applications. In the current study, hMSCs were grown as 3D aggregates under wave motion to promote EV secretion. Results demonstrate that 3D hMSC aggregates promote activation of the endosomal sorting complexes required for transport (ESCRT)-dependent and -independent pathways. mRNA sequencing revealed global transcriptome alterations for 3D hMSC aggregates. Compared to 2D-hMSC-EVs, the quantity of 3D-hMSC-EVs was enhanced significantly (by 2-fold), with smaller sizes, higher miR-21 and miR-22 expression, and an altered protein cargo (e.g., upregulation of cytokines and anti-inflammatory factors) uncovered by proteomics analysis, possibly due to altered EV biogenesis. Functionally, 3D-hMSC-EVs rejuvenated senescent stem cells and exhibited enhanced immunomodulatory potentials. In summary, this study provides a promising strategy for scalable production of high-quality EVs from hMSCs with enhanced therapeutic potential.
Collapse
Affiliation(s)
- Xuegang Yuan
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Present address:
Broad Stem Cell Research Center, David Geffen School of MedicineUniversity of California‐Los Angeles (UCLA)Los AngelesCAUSA
- The National High Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical SciencesCollege of MedicineTallahasseeFloridaUSA
| | - Richard Jeske
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Dingani Nkosi
- Department of Biomedical SciencesCollege of MedicineTallahasseeFloridaUSA
| | - Sara B. York
- Department of Biomedical SciencesCollege of MedicineTallahasseeFloridaUSA
| | - Yuan Liu
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Samuel C. Grant
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
- The National High Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - David G. Meckes
- Department of Biomedical SciencesCollege of MedicineTallahasseeFloridaUSA
| | - Yan Li
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
64
|
Sun W, Zhang J, Qin Y, Tang H, Chen Y, Lin W, She Y, Zhang K, Yin J, Chen C. A Simple and Efficient Strategy for Preparing a Cell-Spheroid-Based Bioink. Adv Healthc Mater 2022; 11:e2200648. [PMID: 35543489 DOI: 10.1002/adhm.202200648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/19/2022] [Indexed: 12/28/2022]
Abstract
Cell spheroids are a promising bioprinting building block that can mimic several physiological conditions in embryonic development. However, it remains challenging to efficiently prepare cell-spheroid-based bioink (Sph-bioink) with favorable printability and spheroid fusion ability. In this work, a poly(N-isopropylacrylamide) (PNIPAAm)-based porous hydrogel is developed as an "all-in-one" platform for Sph-bioink preparation. On the one hand, the nonadhesive porous structure in hydrogels is an effective tool for fabricating adipose-derived stem cell (ASC) spheroids in high yield, and the hydrogel itself also serves as a "carrier" for conveniently transferring cell spheroids to the bioprinter. On the other hand, the integration of redox/thermo-responsiveness allows the hydrogel to shift from a solid spheroid-making tool to an extrudable bioprinting medium that is sensitive to temperature. These features enabled a simple procedure for preparing Sph-bioink, in which the cell spheroids were densely packed to retain fusion capability. The present study also demonstrates that ASC spheroids formed in hydrogels have good biological preservation and superior chondrogenic differentiation, and verified the feasibility of using Sph-bioink to build custom-shaped mature cartilage. In conclusion, this strategy provides a simple, efficient, and standardized approach for Sph-bioink preparation, making it possible to produce tissue-engineered constructs with accelerated maturation and functionalization.
Collapse
Affiliation(s)
- Weiyan Sun
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 P. R. China
| | - Jiahui Zhang
- Department of Polymer Materials School of Materials Science and Engineering Shanghai University Shanghai 200444 P. R. China
| | - Yechi Qin
- Department of Polymer Materials School of Materials Science and Engineering Shanghai University Shanghai 200444 P. R. China
| | - Hai Tang
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 P. R. China
| | - Yi Chen
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 P. R. China
| | - Weikang Lin
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 P. R. China
| | - Yunlang She
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Lung Transplantation Shanghai 200433 P. R. China
| | - Kunxi Zhang
- Department of Polymer Materials School of Materials Science and Engineering Shanghai University Shanghai 200444 P. R. China
- Interventional Cancer Institute of Chinese Integrative Medicine Putuo Hospital Shanghai University of Traditional Chinese Medicine Shanghai 200060 P. R. China
| | - Jingbo Yin
- Department of Polymer Materials School of Materials Science and Engineering Shanghai University Shanghai 200444 P. R. China
| | - Chang Chen
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Lung Transplantation Shanghai 200433 P. R. China
| |
Collapse
|
65
|
Beaune G, Sinkkonen L, Gonzalez-Rodriguez D, Timonen JVI, Brochard-Wyart F. Fusion Dynamics of Hybrid Cell-Microparticle Aggregates: A Jelly Pearl Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5296-5306. [PMID: 35109658 DOI: 10.1021/acs.langmuir.1c02949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We study the fusion of homogeneous cell aggregates and of hybrid aggregates combining cells and microparticles. In all cases, we find that the contact area does not vary linearly over time, as observed for liquid drops, but rather it follows a power law in t2/3. This result is interpreted by generalizing the fusion model of soft viscoelastic solid balls to viscoelastic liquid balls, akin to jelly pearls. We also explore the asymmetric fusion between a homogeneous aggregate and a hybrid aggregate. This latter experiment allows the determination of the self-diffusion coefficient of the cells in a tissue by following the spatial distribution of internalized particles in the cells.
Collapse
Affiliation(s)
- Grégory Beaune
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 02150 Espoo, Finland
| | - Laura Sinkkonen
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 02150 Espoo, Finland
| | | | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 02150 Espoo, Finland
| | - Françoise Brochard-Wyart
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| |
Collapse
|
66
|
Fan X, Zhan J, Pan X, Liao X, Guo W, Chen P, Li H, Feng W, Cai Y, Chen M. Enzymatic self-assembly nanofibers anchoring mesenchymal stem cells induce cell spheroids and amplify paracrine function for myocardial infarction therapy. CHEMICAL ENGINEERING JOURNAL 2022; 436:135224. [DOI: 10.1016/j.cej.2022.135224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
67
|
Large-Scale Production of Size-Adjusted β-Cell Spheroids in a Fully Controlled Stirred-Tank Reactor. Processes (Basel) 2022. [DOI: 10.3390/pr10050861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For β-cell replacement therapies, one challenge is the manufacturing of enough β-cells (Edmonton protocol for islet transplantation requires 0.5–1 × 106 islet equivalents). To maintain their functionality, β-cells should be manufactured as 3D constructs, known as spheroids. In this study, we investigated whether β-cell spheroid manufacturing can be addressed by a stirred-tank bioreactor (STR) process. STRs are fully controlled bioreactor systems, which allow the establishment of robust, larger-scale manufacturing processes. Using the INS-1 β-cell line as a model for process development, we investigated the dynamic agglomeration of β-cells to determine minimal seeding densities, spheroid strength, and the influence of turbulent shear stress. We established a correlation to exploit shear forces within the turbulent flow regime, in order to generate spheroids of a defined size, and to predict the spheroid size in an STR by using the determined spheroid strength. Finally, we transferred the dynamic agglomeration process from shaking flasks to a fully controlled and monitored STR, and tested the influence of three different stirrer types on spheroid formation. We achieved the shear stress-guided production of up to 22 × 106 ± 2 × 106 viable and functional β-cell spheroids per liter of culture medium, which is sufficient for β-cell therapy applications.
Collapse
|
68
|
Wiese DM, Wood CA, Braid LR. From Vial to Vein: Crucial Gaps in Mesenchymal Stromal Cell Clinical Trial Reporting. Front Cell Dev Biol 2022; 10:867426. [PMID: 35493074 PMCID: PMC9043315 DOI: 10.3389/fcell.2022.867426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Retrospective analysis of clinical trial outcomes is a vital exercise to facilitate efficient translation of cellular therapies. These analyses are particularly important for mesenchymal stem/stromal cell (MSC) products. The exquisite responsiveness of MSCs, which makes them attractive candidates for immunotherapies, is a double-edged sword; MSC clinical trials result in inconsistent outcomes that may correlate with underlying patient biology or procedural differences at trial sites. Here we review 45 North American MSC clinical trial results published between 2015 and 2021 to assess whether these reports provide sufficient information for retrospective analysis. Trial reports routinely specify the MSC tissue source, autologous or allogeneic origin and administration route. However, most methodological aspects related to cell preparation and handling immediately prior to administration are under-reported. Clinical trial reports inconsistently provide information about cryopreservation media composition, delivery vehicle, post-thaw time and storage until administration, duration of infusion, and pre-administration viability or potency assessments. In addition, there appears to be significant variability in how cell products are formulated, handled or assessed between trials. The apparent gaps in reporting, combined with high process variability, are not sufficient for retrospective analyses that could potentially identify optimal cell preparation and handling protocols that correlate with successful intra- and inter-trial outcomes. The substantial preclinical data demonstrating that cell handling affects MSC potency highlights the need for more comprehensive clinical trial reporting of MSC conditions from expansion through delivery to support development of globally standardized protocols to efficiently advance MSCs as commercial products.
Collapse
Affiliation(s)
| | | | - Lorena R. Braid
- Aurora BioSolutions Inc., Medicine Hat, AB, Canada
- Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Lorena R. Braid, ,
| |
Collapse
|
69
|
Hsieh HY, Yao CC, Hsu LF, Tsai LH, Jeng JH, Young TH, Chen YJ. Biological properties of human periodontal ligament cell spheroids cultivated on chitosan and polyvinyl alcohol membranes. J Formos Med Assoc 2022; 121:2191-2202. [DOI: 10.1016/j.jfma.2022.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/02/2023] Open
|
70
|
Decarli MC, Mizukami A, Azoubel RA, Neto PI, Mota C, Moraes ÂM, Silva JVL, Moroni L. Static systems to obtain 3D spheroid cell models: a cost analysis comparing the implementation of four types of microwell array inserts. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
71
|
Maji S, Lee H. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. Int J Mol Sci 2022; 23:2662. [PMID: 35269803 PMCID: PMC8910155 DOI: 10.3390/ijms23052662] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
The superiority of in vitro 3D cultures over conventional 2D cell cultures is well recognized by the scientific community for its relevance in mimicking the native tissue architecture and functionality. The recent paradigm shift in the field of tissue engineering toward the development of 3D in vitro models can be realized with its myriad of applications, including drug screening, developing alternative diagnostics, and regenerative medicine. Hydrogels are considered the most suitable biomaterial for developing an in vitro model owing to their similarity in features to the extracellular microenvironment of native tissue. In this review article, recent progress in the use of hydrogel-based biomaterial for the development of 3D in vitro biomimetic tissue models is highlighted. Discussions of hydrogel sources and the latest hybrid system with different combinations of biopolymers are also presented. The hydrogel crosslinking mechanism and design consideration are summarized, followed by different types of available hydrogel module systems along with recent microfabrication technologies. We also present the latest developments in engineering hydrogel-based 3D in vitro models targeting specific tissues. Finally, we discuss the challenges surrounding current in vitro platforms and 3D models in the light of future perspectives for an improved biomimetic in vitro organ system.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
| | - Hyungseok Lee
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
- Department of Smart Health Science and Technology, Kangwon National University (KNU), Chuncheon 24341, Korea
| |
Collapse
|
72
|
Extended Ischemic Recovery After Implantation of Human Mesenchymal Stem Cell Aggregates Indicated by Sodium MRI at 21.1 T. Transl Stroke Res 2022; 13:543-555. [DOI: 10.1007/s12975-021-00976-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 12/19/2022]
|
73
|
Nebel S, Lux M, Kuth S, Bider F, Dietrich W, Egger D, Boccaccini AR, Kasper C. Alginate Core-Shell Capsules for 3D Cultivation of Adipose-Derived Mesenchymal Stem Cells. Bioengineering (Basel) 2022; 9:66. [PMID: 35200419 PMCID: PMC8869374 DOI: 10.3390/bioengineering9020066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are primary candidates in tissue engineering and stem cell therapies due to their intriguing regenerative and immunomodulatory potential. Their ability to self-assemble into three-dimensional (3D) aggregates further improves some of their therapeutic properties, e.g., differentiation potential, secretion of cytokines, and homing capacity after administration. However, high hydrodynamic shear forces and the resulting mechanical stresses within commercially available dynamic cultivation systems can decrease their regenerative properties. Cells embedded within a polymer matrix, however, lack cell-to-cell interactions found in their physiological environment. Here, we present a "semi scaffold-free" approach to protect the cells from high shear forces by a physical barrier, but still allow formation of a 3D structure with in vivo-like cell-to-cell contacts. We highlight a relatively simple method to create core-shell capsules by inverse gelation. The capsules consist of an outer barrier made from sodium alginate, which allows for nutrient and waste diffusion and an inner compartment for direct cell-cell interactions. Next to capsule characterization, a harvesting procedure was established and viability and proliferation of human adipose-derived MSCs were investigated. In the future, this encapsulation and cultivation technique might be used for MSC-expansion in scalable dynamic bioreactor systems, facilitating downstream procedures, such as cell harvest and differentiation into mature tissue grafts.
Collapse
Affiliation(s)
- Sabrina Nebel
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences BOKU Vienna, 1190 Vienna, Austria; (S.N.); (M.L.); (D.E.)
| | - Manuel Lux
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences BOKU Vienna, 1190 Vienna, Austria; (S.N.); (M.L.); (D.E.)
| | - Sonja Kuth
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (S.K.); (F.B.); (A.R.B.)
| | - Faina Bider
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (S.K.); (F.B.); (A.R.B.)
| | - Wolf Dietrich
- Department of Gynecology and Obstetrics, Karl Landsteiner University of Health Sciences, Alter Ziegelweg 10, 3430 Tulln, Austria;
| | - Dominik Egger
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences BOKU Vienna, 1190 Vienna, Austria; (S.N.); (M.L.); (D.E.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (S.K.); (F.B.); (A.R.B.)
| | - Cornelia Kasper
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences BOKU Vienna, 1190 Vienna, Austria; (S.N.); (M.L.); (D.E.)
| |
Collapse
|
74
|
Savoj S, Esfahani MHN, Karimi A, Karamali F. Integrated stem cells from apical papilla in a 3D culture system improve human embryonic stem cell derived retinal organoid formation. Life Sci 2022; 291:120273. [PMID: 35016877 DOI: 10.1016/j.lfs.2021.120273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
AIM Eye organoids are 3D models of the retina that provide new possibilities for studying retinal development, drug toxicity and the molecular mechanisms of diseases. Although there are several protocols that can be used to generate functional tissues, none have been used to assemble human retinal organoids containing mesenchymal stem cells (MSCs). MAIN METHODS In this study we intend to assess the effective interactions of MSCs and human embryonic stem cells (hESCs) during retinal organoid formation. We evaluated the inducing activities of bone marrow MSCs (BM-MSCs), trabecular meshwork (TM), and stem cells from apical papilla (SCAP)-derived MSCs in differentiation of hESCs in a three-dimensional (3D) direct co-culture system. KEY FINDINGS In comparison with the two other MSC sources, the induction potential of SCAP was confirmed in the co-culture system. Although the different SCAP cell ratios did not show any significant morphology changes during the first seven days, increasing the number of SCAPs improved formation of the optic vesicle (OV) structure, which was confirmed by assessment of specific markers. The OVs subsequently developed to an optic cup (OC), which was similar to the in vivo environment. These arrangements expressed MITF in the outer layer and CHX10 in the inner layer. SIGNIFICANCE We assessed the inducing activity of SCAP during differentiation of hESCs towards a retinal fate in a 3D organoid system. However, future studies be conducted to gather additional details about the development of the eye field, retinal differentiation, and the molecular mechanisms of diseases.
Collapse
Affiliation(s)
- Soraya Savoj
- Department of Biology, University of Payam Noor, Isfahan, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Akbar Karimi
- Department of Biology, University of Payam Noor, Isfahan, Iran.
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
75
|
Chouw A, Facicilia G, Sartika CR, Faried A, Milanda T. Factors Influencing the Therapeutic Potential of the MSC-derived Secretome. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-021-00242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
76
|
Decarli MC, de Castro MV, Nogueira JA, Nagahara MHT, Westin CB, de Oliveira ALR, Silva JVL, Moroni L, Mota C, Moraes ÂM. Development of a device useful to reproducibly produce large quantities of viable and uniform stem cell spheroids with controlled diameters. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112685. [DOI: 10.1016/j.msec.2022.112685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/20/2021] [Accepted: 01/22/2022] [Indexed: 01/08/2023]
|
77
|
Panero AJ, Hirahara AM, Podesta L, Jamali AA, Andersen W, Smith AA. Allograft Tissues. ATLAS OF INTERVENTIONAL ORTHOPEDICS PROCEDURES 2022:89-101. [DOI: 10.1016/b978-0-323-75514-6.00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
78
|
Kim EM, Lee GM, Lee S, Kim SJ, Lee D, Yoon DS, Joo J, Kong H, Park HH, Shin H. Effects of mechanical properties of gelatin methacryloyl hydrogels on encapsulated stem cell spheroids for 3D tissue engineering. Int J Biol Macromol 2022; 194:903-913. [PMID: 34838857 DOI: 10.1016/j.ijbiomac.2021.11.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023]
Abstract
Cell spheroids are three-dimensional cell aggregates that have been widely employed in tissue engineering. Spheroid encapsulation has been explored as a method to enhance cell-cell interactions. However, the effect of hydrogel mechanical properties on spheroids, specifically soft hydrogels (<1 kPa), has not yet been studied. In this study, we determined the effect of encapsulation of stem cell spheroids by hydrogels crosslinked with different concentrations of gelatin methacryloyl (GelMA) on the functions of the stem cells. To this end, human adipose-derived stem cell (ADSC) spheroids with a defined size were prepared, and spheroid-laden hydrogels with various concentrations (5, 10, 15%) were fabricated. The apoptotic index of cells from spheroids encapsulated in the 15% hydrogel was high. The migration distance was five-fold higher in cells encapsulated in the 5% hydrogel than the 10% hydrogel. After 14 days of culture, cells from spheroids in the 5% hydrogel were observed to have spread and proliferated. Osteogenic factor and pro-angiogenic factor production in the 15% hydrogel was high. Collectively, our results indicate that the functionality of spheroids can be regulated by the mechanical properties of hydrogel, even under 1 kPa. These results indicate that spheroid-laden hydrogels are suitable for use in 3D tissue construction.
Collapse
Affiliation(s)
- Eun Mi Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Gyeong Min Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, College of Engineering, Hanyang University, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, College of Engineering, Hanyang University, Republic of Korea
| | - Se-Jeong Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, College of Engineering, Hanyang University, Republic of Korea
| | - Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul 20841, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 20841, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, College of Engineering, Hanyang University, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
79
|
Sart S, Yuan X, Jeske R, Li Y. Engineering exosomal microRNAs in human pluripotent stem cells. MOLECULAR PLAYERS IN IPSC TECHNOLOGY 2022:1-27. [DOI: 10.1016/b978-0-323-90059-1.00014-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
80
|
Shanbhag S, Kampleitner C, Mohamed-Ahmed S, Yassin MA, Dongre H, Costea DE, Tangl S, Hassan MN, Stavropoulos A, Bolstad AI, Suliman S, Mustafa K. Ectopic Bone Tissue Engineering in Mice Using Human Gingiva or Bone Marrow-Derived Stromal/Progenitor Cells in Scaffold-Hydrogel Constructs. Front Bioeng Biotechnol 2021; 9:783468. [PMID: 34917602 PMCID: PMC8670384 DOI: 10.3389/fbioe.2021.783468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/16/2021] [Indexed: 01/22/2023] Open
Abstract
Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation and bone regeneration capacity of mesenchymal stromal cells (MSC). Gingiva-derived progenitor cells (GPC) represent a less invasive alternative to bone marrow MSC (BMSC) for clinical applications. The aim of this study was to test the in vivo bone forming potential of human GPC and BMSC cultured as 3D spheroids or dissociated cells (2D). 2D and 3D cells encapsulated in constructs of human platelet lysate hydrogels (HPLG) and 3D-printed poly (L-lactide-co-trimethylene carbonate) scaffolds (HPLG-PLATMC) were implanted subcutaneously in nude mice; cell-free HPLG-PLATMC constructs served as a control. Mineralization was assessed using micro-computed tomography (µCT), histology, scanning electron microscopy (SEM) and in situ hybridization (ISH). After 4–8 weeks, µCT revealed greater mineralization in 3D-BMSC vs. 2D-BMSC and 3D-GPC (p < 0.05), and a similar trend in 2D-GPC vs. 2D-BMSC (p > 0.05). After 8 weeks, greater mineralization was observed in cell-free constructs vs. all 2D- and 3D-cell groups (p < 0.05). Histology and SEM revealed an irregular but similar mineralization pattern in all groups. ISH revealed similar numbers of 2D and 3D BMSC/GPC within and/or surrounding the mineralized areas. In summary, spheroid culture promoted ectopic mineralization in constructs of BMSC, while constructs of dissociated GPC and BMSC performed similarly. The combination of HPLG and PLATMC represents a promising scaffold for bone tissue engineering applications.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- *Correspondence: Siddharth Shanbhag, ; Kamal Mustafa,
| | - Carina Kampleitner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mohammed Ahmad Yassin
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Harsh Dongre
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mohamad Nageeb Hassan
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Anne Isine Bolstad
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Salwa Suliman
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- *Correspondence: Siddharth Shanbhag, ; Kamal Mustafa,
| |
Collapse
|
81
|
Zhao Y, Wang M, Liang F, Li J. Recent strategies for enhancing the therapeutic efficacy of stem cells in wound healing. Stem Cell Res Ther 2021; 12:588. [PMID: 34823579 PMCID: PMC8614023 DOI: 10.1186/s13287-021-02657-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/03/2021] [Indexed: 01/09/2023] Open
Abstract
Skin wound healing is a multi-stage process that depends on the coordination of multiple cells and mediators. Chronic or non-healing wounds resulting from the dysregulation of this process represent a challenge for the healthcare system. For skin wound management, there are various approaches to tissue recovery. For decades, stem cell therapy has made outstanding achievements in wound regeneration. Three major types of stem cells, including embryonic stem cells, adult stem cells, and induced pluripotent stem cells, have been explored intensely. Mostly, mesenchymal stem cells are thought to be an extensive cell type for tissue repair. However, the limited cell efficacy and the underutilized therapeutic potential remain to be addressed. Exploring novel and advanced treatments to enhance stem cell efficacy is an urgent need. Diverse strategies are applied to maintain cell survival and increase cell functionality. In this study, we outline current approaches aiming to improve the beneficial outcomes of cell therapy to better grasp clinical cell transformation.
Collapse
Affiliation(s)
- Yongqing Zhao
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, Jilin, China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, Jilin, China
| | - Feng Liang
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, Jilin, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, Jilin, China.
| |
Collapse
|
82
|
Shanbhag S, Suliman S, Mohamed-Ahmed S, Kampleitner C, Hassan MN, Heimel P, Dobsak T, Tangl S, Bolstad AI, Mustafa K. Bone regeneration in rat calvarial defects using dissociated or spheroid mesenchymal stromal cells in scaffold-hydrogel constructs. Stem Cell Res Ther 2021; 12:575. [PMID: 34776000 PMCID: PMC8591809 DOI: 10.1186/s13287-021-02642-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSC). 3D printing offers the possibility to produce customized scaffolds for complex bone defects. The aim of this study was to compare the potential of human BMSC cultured as 2D monolayers or 3D spheroids encapsulated in constructs of 3D-printed poly-L-lactide-co-trimethylene carbonate scaffolds and modified human platelet lysate hydrogels (PLATMC-HPLG) for bone regeneration. Methods PLATMC-HPLG constructs with 2D or 3D BMSC were assessed for osteogenic differentiation based on gene expression and in vitro mineralization. Subsequently, PLATMC-HPLG constructs with 2D or 3D BMSC were implanted in rat calvarial defects for 12 weeks; cell-free constructs served as controls. Bone regeneration was assessed via in vivo computed tomography (CT), ex vivo micro-CT and histology. Results Osteogenic gene expression was significantly enhanced in 3D versus 2D BMSC prior to, but not after, encapsulation in PLATMC-HPLG constructs. A trend for greater in vitro mineralization was observed in constructs with 3D versus 2D BMSC (p > 0.05). In vivo CT revealed comparable bone formation after 4, 8 and 12 weeks in all groups. After 12 weeks, micro-CT revealed substantial regeneration in 2D BMSC (62.47 ± 19.46%), 3D BMSC (51.01 ± 24.43%) and cell-free PLATMC-HPLG constructs (43.20 ± 30.09%) (p > 0.05). A similar trend was observed in the histological analysis. Conclusion Despite a trend for superior in vitro mineralization, constructs with 3D and 2D BMSC performed similarly in vivo. Regardless of monolayer or spheroid cell culture, PLATMC-HPLG constructs represent promising scaffolds for bone tissue engineering applications. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02642-w.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway. .,Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Salwa Suliman
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway
| | - Carina Kampleitner
- Core Facility Hard Tissue and Biomaterial Research/Karl Donath Laboratory, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Traumatology, The research center in cooperation with AUVA, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mohamed Nageeb Hassan
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway
| | - Patrick Heimel
- Core Facility Hard Tissue and Biomaterial Research/Karl Donath Laboratory, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Traumatology, The research center in cooperation with AUVA, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Toni Dobsak
- Core Facility Hard Tissue and Biomaterial Research/Karl Donath Laboratory, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Stefan Tangl
- Core Facility Hard Tissue and Biomaterial Research/Karl Donath Laboratory, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Anne Isine Bolstad
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway.
| |
Collapse
|
83
|
Zhao L, Zhang K, He H, Yang Y, Li W, Liu T, Li J. The Relationship Between Mesenchymal Stem Cells and Tumor Dormancy. Front Cell Dev Biol 2021; 9:731393. [PMID: 34712663 PMCID: PMC8545891 DOI: 10.3389/fcell.2021.731393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor dormancy, a state of tumor, is clinically undetectable and the outgrowth of dormant tumor cells into overt metastases is responsible for cancer-associated deaths. However, the dormancy-related molecular mechanism has not been clearly described. Some researchers have proposed that cancer stem cells (CSCs) and disseminated tumor cells (DTCs) can be seen as progenitor cells of tumor dormancy, both of which can remain dormant in a non-permissive soil/niche. Nowadays, research interest in the cancer biology field is skyrocketing as mesenchymal stem cells (MSCs) are capable of regulating tumor dormancy, which will provide a unique therapeutic window to cure cancer. Although the influence of MSCs on tumor dormancy has been investigated in previous studies, there is no thorough review on the relationship between MSCs and tumor dormancy. In this paper, the root of tumor dormancy is analyzed and dormancy-related molecular mechanisms are summarized. With an emphasis on the role of the MSCs during tumor dormancy, new therapeutic strategies to prevent metastatic disease are proposed, whose clinical application potentials are discussed, and some challenges and prospects of the studies of tumor dormancy are also described.
Collapse
Affiliation(s)
- Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu He
- Operating Theater and Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Yongping Yang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
84
|
Modulation of Inherent Niches in 3D Multicellular MSC Spheroids Reconfigures Metabolism and Enhances Therapeutic Potential. Cells 2021; 10:cells10102747. [PMID: 34685727 PMCID: PMC8534378 DOI: 10.3390/cells10102747] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/02/2023] Open
Abstract
Multicellular spheroids show three-dimensional (3D) organization with extensive cell–cell and cell–extracellular matrix interactions. Owing to their native tissue-mimicking characteristics, mesenchymal stem cell (MSC) spheroids are considered promising as implantable therapeutics for stem cell therapy. Herein, we aim to further enhance their therapeutic potential by tuning the cultivation parameters and thus the inherent niche of 3D MSC spheroids. Significantly increased expression of multiple pro-regenerative paracrine signaling molecules and immunomodulatory factors by MSCs was observed after optimizing the conditions for spheroid culture. Moreover, these alterations in cellular behaviors may be associated with not only the hypoxic niche developed in the spheroid core but also with the metabolic reconfiguration of MSCs. The present study provides efficient methods for manipulating the therapeutic capacity of 3D MSC spheroids, thus laying solid foundations for future development and clinical application of spheroid-based MSC therapy for regenerative medicine.
Collapse
|
85
|
Teale M, Jossen V, Eibl D, Eibl R. Chemically Defined, Xeno-Free Expansion of Human Mesenchymal Stem Cells (hMSCs) on Benchtop-Scale Using a Stirred Single-Use Bioreactor. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2436:83-111. [PMID: 34611815 DOI: 10.1007/7651_2021_426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In recent years, the use of hMSCs, which may be isolated from adipose tissue among others, for the treatment of diseases has increased significantly. The cell quantities required for such therapeutic approaches, between 1012 and 1013, have thus far been predominantly produced using commercially available multi-tray systems, such as the Cell Factory (Thermo Fisher Scientific) or HYPERStack (Corning), which can be purchased with up to 40 layers. However, the handling of these planar multilayer systems is difficult, and process monitoring opportunities remain limited. Here, automated stirred single-use bioreactors provide a viable alternative to the time-consuming multiplication of cells using such planar systems, while still managing to achieve the desired clinically relevant quantities. In these stirred single-use systems, adherent cells are predominantly cultivated in suspension up to pilot scale using carrier materials, also referred to as microcarriers (MCs).This chapter describes the steps which need to be realized to guarantee successful hMSC expansion within a stirred single-use bioreactor (Eppendorf's BioBLU® 0.3c) operated using MCs under serum- and xeno-free conditions at benchtop scale. The cultivations were performed using an immortalized human adipose-derived mesenchymal stem cell (hASC) line, hence referred to as hASC52telo, and a new chemically defined, xeno-free medium, hence referred to as the UrSuppe formulation. Spinner flask cultivations were performed under comparable process conditions.
Collapse
Affiliation(s)
- Misha Teale
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland.
| | - Valentin Jossen
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Dieter Eibl
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Regine Eibl
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| |
Collapse
|
86
|
Sart S, F-X Tomasi R, Barizien A, Amselem G, Cumano A, Baroud CN. Structural and Functional Mapping of Mesenchymal Bodies. Bio Protoc 2021; 11:e4177. [PMID: 34722824 DOI: 10.21769/bioprotoc.4177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/23/2021] [Accepted: 06/14/2021] [Indexed: 11/02/2022] Open
Abstract
The formation of spheroids with mesenchymal stem/stromal cells (MSCs), mesenchymal bodies (MBs), is usually performed using bioreactors or conventional well plates. While these methods promote the formation of a large number of spheroids, they provide limited control over their structure or over the regulation of their environment. It has therefore been hard to elucidate the mechanisms orchestrating the structural organization and the induction of the trophic functions of MBs until now. We have recently demonstrated an integrated droplet-based microfluidic platform for the high-density formation and culture of MBs, as well as for the quantitative characterization of the structural and functional organization of cells within them. The protocol starts with a suspension of a few hundred MSCs encapsulated within microfluidic droplets held in capillary traps. After droplet immobilization, MSCs start clustering and form densely packed spherical aggregates that display a tight size distribution. Quantitative imaging is used to provide a robust demonstration that human MSCs self-organize in a hierarchical manner, by taking advantage of the good fit between the microfluidic chip and conventional microscopy techniques. Moreover, the structural organization within the MBs is found to correlate with the induction of osteo-endocrine functions (i.e., COX-2 and VEGF-A expression). Therefore, the present platform provides a unique method to link the structural organization in MBs to their functional properties. Graphic abstract: Droplet microfluidic platform for integrated formation, culture, and characterization of mesenchymal bodies (MBs). The device is equipped with a droplet production area (flow focusing) and a culture chamber that enables the culture of 270 MBs in parallel. A layer-by-layer analysis revealed a hierarchical developmental organization within MBs.
Collapse
Affiliation(s)
- Sébastien Sart
- LadHyX and Department of Mechanics, Ecole Polytechnique CNRS - UMR 7646, Palaiseau, France.,Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Raphaël F-X Tomasi
- LadHyX and Department of Mechanics, Ecole Polytechnique CNRS - UMR 7646, Palaiseau, France.,Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Antoine Barizien
- LadHyX and Department of Mechanics, Ecole Polytechnique CNRS - UMR 7646, Palaiseau, France.,Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Gabriel Amselem
- LadHyX and Department of Mechanics, Ecole Polytechnique CNRS - UMR 7646, Palaiseau, France
| | - Ana Cumano
- Unit for Lymphopoiesis, Deparment of Immunolgy - INSERM U1223, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 75018, Paris, France
| | - Charles N Baroud
- LadHyX and Department of Mechanics, Ecole Polytechnique CNRS - UMR 7646, Palaiseau, France.,Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| |
Collapse
|
87
|
Jamalpoor Z, Taromi N. Pre-vascularization of biomimetic 3-D scaffolds via direct co-culture of human umbilical cord derived osteogenic and angiogenic progenitor cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
88
|
Genovese P, Patel A, Ziemkiewicz N, Paoli A, Bruns J, Case N, Zustiak SP, Garg K. Co-delivery of fibrin-laminin hydrogel with mesenchymal stem cell spheroids supports skeletal muscle regeneration following trauma. J Tissue Eng Regen Med 2021; 15:1131-1143. [PMID: 34551191 DOI: 10.1002/term.3243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/09/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Volumetric muscle loss (VML) is traumatic or surgical loss of skeletal muscle with resultant functional impairment. Skeletal muscle's innate capacity for regeneration is lost with VML due to a critical loss of stem cells, extracellular matrix, and neuromuscular junctions. Consequences of VML include permanent disability or delayed amputations of the affected limb. Currently, a successful clinical therapy has not been identified. Mesenchymal stem cells (MSCs) possess regenerative and immunomodulatory properties and their three-dimensional aggregation can further enhance therapeutic efficacy. In this study, MSC aggregation into spheroids was optimized in vitro based on cellular viability, spheroid size, and trophic factor secretion. The regenerative potential of the optimized MSC spheroid therapy was then investigated in a murine model of VML injury. Experimental groups included an untreated VML injury control, intramuscular injection of MSC spheroids, and MSC spheroids encapsulated in a fibrin-laminin hydrogel. Compared to the untreated VML group, the spheroid encapsulating hydrogel group enhanced myogenic marker (i.e., MyoD and myogenin) protein expression, improved muscle mass, increased presence of centrally nucleated myofibers as well as small fibers (<500 μm2 ), modulated pro- and anti-inflammatory macrophage marker expression (i.e., iNOS and Arginase), and increased the presence of CD146+ pericytes and CD31+ endothelial cells in the VML injured muscles. Future studies will evaluate the extent of functional recovery with the spheroid encapsulating hydrogel therapy.
Collapse
Affiliation(s)
- Peter Genovese
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Anjali Patel
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Natalia Ziemkiewicz
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Allison Paoli
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Joseph Bruns
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Natasha Case
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Silviya P Zustiak
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| | - Koyal Garg
- Program of Biomedical Engineering, School of Engineering, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
89
|
Shanbhag S, Rashad A, Nymark EH, Suliman S, de Lange Davies C, Stavropoulos A, Bolstad AI, Mustafa K. Spheroid Coculture of Human Gingiva-Derived Progenitor Cells With Endothelial Cells in Modified Platelet Lysate Hydrogels. Front Bioeng Biotechnol 2021; 9:739225. [PMID: 34513817 PMCID: PMC8427051 DOI: 10.3389/fbioe.2021.739225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
Cell coculture strategies can promote angiogenesis within tissue engineering constructs. This study aimed to test the angiogenic potential of human umbilical vein endothelial cells (HUVEC) cocultured with gingiva-derived progenitor cells (GPC) as spheroids in a xeno-free environment. Human platelet lysate (HPL) was used as a cell culture supplement and as a hydrogel matrix (HPLG) for spheroid encapsulation. HUVEC and HUVEC + GPC (1:1 or 5:1) spheroids were encapsulated in various HPLG formulations. Angiogenesis was assessed via in vitro sprouting and in vivo chick chorioallantoic membrane (CAM) assays. HUVEC revealed characteristic in vitro sprouting in HPL/HPLG and this was significantly enhanced in cocultures with GPC (p < 0.05). A trend for greater sprouting was observed in 5:1 vs 1:1 HUVEC + GPC spheroids and in certain HPLG formulations (p > 0.05). Both HUVEC and HUVEC + GPC spheroids in HPLG revealed abundant and comparable neoangiogenesis in the CAM assay (p > 0.05). Spheroid coculture of HUVEC + GPC in HPLG represents a promising strategy to promote angiogenesis.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ahmad Rashad
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ellen Helgeland Nymark
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Salwa Suliman
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Regenerative Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Anne Isine Bolstad
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
90
|
Olszewski C, Maassen J, Guenther R, Skazik-Voogt C, Gutermuth A. Mechanotransductive Differentiation of Hair Follicle Stem Cells Derived from Aged Eyelid Skin into Corneal Endothelial-Like Cells. Stem Cell Rev Rep 2021; 18:1668-1685. [PMID: 34515937 PMCID: PMC9209348 DOI: 10.1007/s12015-021-10249-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Corneal endothelial insufficiency is one of the leading causes of blindness. The main contemporary treatment for corneal blindness is endothelial keratoplasty, which, however, is unsatisfactory as a medical therapy due to the lack of donor corneas and graft rejection. Therefore, autologous stem cell-based corneal endothelial tissue substitutes may be a promising alternative to conventional grafts in the future. To address the age of most patients suffering from corneal endothelial deficiencies, we investigated the presence and potential of hair-derived stem cells from older tissue donors. Our studies revealed the presence of pluripotency- and neural crest-associated markers in tissue sections from blepharoplasty patients aged 50 to 80 years. In vitro outgrowths from eyelid hair follicles on collagen-coated tissue culture plates revealed a weak decrease in stem-cell potency. In contrast, cells within the spheres that spontaneously formed from the adherent cell layer retained full stem-cell potency and could be differentiated into cells of the ecto- meso and endodermal lineages. Although these highly potent hair follicle derived stem cells (HFSC) were only very slightly expandable, they were able to recognize the biomimicry of the Descemet’s-like topography and differentiate into corneal endothelial-like cells. In conclusion, HFSCs derived from epidermal skin of eyelid biopsies are a promising cell source to provide autologous corneal endothelial replacement for any age group of patients.
Collapse
Affiliation(s)
- Christian Olszewski
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Jessika Maassen
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Rebecca Guenther
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Claudia Skazik-Voogt
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Angela Gutermuth
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany.
| |
Collapse
|
91
|
Valente S, Ciavarella C, Hernández-Aguilera A, Salvador FA, Buzzi M, Joven J, Pasquinelli G. Phenotypic, morphological, and metabolic characterization of vascular-spheres from human vascular mesenchymal stem cells. Microsc Res Tech 2021; 85:447-459. [PMID: 34448515 PMCID: PMC9290655 DOI: 10.1002/jemt.23918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/15/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023]
Abstract
The ability to form spheroids under non‐adherent conditions is a well‐known property of human mesenchymal stem cells (hMSCs), in addition to stemness and multilineage differentiation features. In the present study, we tested the ability of hMSCs isolated from the vascular wall (hVW‐MSCs) to grow as spheres, and provide a characterization of this 3D model. hVW‐MSCs were isolated from femoral arteries through enzymatic digestion. Spheres were obtained using ultra‐low attachment and hanging drop methods. Immunophenotype and pluripotent genes (SOX‐2, OCT‐4, NANOG) were analyzed by immunocytochemistry and real‐time PCR, respectively. Spheres histological and ultrastructural architecture were examined. Cell viability and proliferative capacity were measured using LIVE/DEATH assay and ki‐67 proliferation marker. Metabolomic profile was obtained with liquid chromatography–mass spectrometry. In 2D, hVW‐MSCs were spindle‐shaped, expressed mesenchymal antigens, and displayed mesengenic potential. 3D cultures of hVW‐MSCs were CD44+, CD105low, CD90low, exhibited a low propensity to enter the cell cycle as indicated by low percentage of ki‐67 expression and accumulated intermediate metabolites pointing to slowed metabolism. The 3D model of hVW‐MSCs exhibits stemness, dormancy and slow metabolism, typically observed in stem cell niches. This culture strategy can represent an accurate model to investigate hMSCs features for future clinical applications in the vascular field.
Collapse
Affiliation(s)
- Sabrina Valente
- DIMES - Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Carmen Ciavarella
- DIMES - Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Spain
| | - Fernández-Arroyo Salvador
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Spain
| | - Marina Buzzi
- Emilia Romagna Cord Blood Bank - Transfusion Service, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Spain
| | - Gianandrea Pasquinelli
- DIMES - Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Subcellular Nephro-Vascular Diagnostic Program, Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
92
|
Sion C, Ghannoum D, Ebel B, Gallo F, de Isla N, Guedon E, Chevalot I, Olmos E. A new perfusion mode of culture for WJ-MSCs expansion in a stirred and online monitored bioreactor. Biotechnol Bioeng 2021; 118:4453-4464. [PMID: 34387862 DOI: 10.1002/bit.27914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023]
Abstract
As a clinical dose requires a minimum of 106 cells per kilogram of patients, it is, therefore, crucial to develop a scalable method of production of Wharton Jelly mesenchymal stem cells (WJ-MSCs) with maintained inner characteristics. Scalable expansion of WJ-MSCs on microcarriers usually found in cell culture, involves specific cell detachment using trypsin and could have harmful effects on cells. In this study, the performance of batch, fed-batch, and perfused-continuous mode of culture were compared. The batch and fed-batch modes resulted in expansion factors of 5 and 43, respectively. The perfused-continuous mode strategy consisted of the implementation of a settling tube inside the bioreactor. The diameter of the tube was calculated to maintain microcarriers colonized by cells in the bioreactor whereas empty microcarriers (responsible for potentially damaging collisions) were removed, using a continuous flow rate based on MSCs physiological requirements. Thanks to this strategy, a maximal number of 800 million cells was obtained in a 1.5 L bioreactor in 10 days. Lastly, online dielectric spectroscopy was implemented in the bioreactor and indicated that cell growth could be monitored during the culture.
Collapse
Affiliation(s)
- Caroline Sion
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Dima Ghannoum
- Ingénierie Moléculaire et Physiopathologie Articulaire, Université de Lorraine, CNRS UMR 7365, Vandœuvre-lès-Nancy, France
| | - Bruno Ebel
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Fanny Gallo
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Natalia de Isla
- Ingénierie Moléculaire et Physiopathologie Articulaire, Université de Lorraine, CNRS UMR 7365, Vandœuvre-lès-Nancy, France
| | - Emmanuel Guedon
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Isabelle Chevalot
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Eric Olmos
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| |
Collapse
|
93
|
Petry F, Salzig D. Impact of Bioreactor Geometry on Mesenchymal Stem Cell Production in Stirred‐Tank Bioreactors. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Florian Petry
- University of Applied Sciences Mittelhessen Institute of Bioprocess Engineering and Pharmaceutical Technology Wiesenstraße 14 35390 Giessen Germany
| | - Denise Salzig
- University of Applied Sciences Mittelhessen Institute of Bioprocess Engineering and Pharmaceutical Technology Wiesenstraße 14 35390 Giessen Germany
| |
Collapse
|
94
|
Doron G, Temenoff JS. Culture Substrates for Improved Manufacture of Mesenchymal Stromal Cell Therapies. Adv Healthc Mater 2021; 10:e2100016. [PMID: 33930252 DOI: 10.1002/adhm.202100016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Recent developments in mesenchymal stromal cell (MSC) therapies have increased the demand for tools to improve their manufacture, including the selection of optimal culture substrate materials. While many clinical manufacturers use planar tissue culture plastic (TCP) surfaces for MSC production, others have begun exploring the use of alternative culture substrates that present a variety of spatial, mechanical, and biochemical cues that influence cell expansion and resulting cell quality. In this review, the effects of culture and material properties distinct from traditional planar TCP surfaces on MSC proliferation, surface marker expression, and commonly used indications for therapeutic potency are examined. The different properties summarized include the use of alternative culture formats such as cellular aggregates or 3D scaffolds, as well as the effects of culture substrate stiffness and presentation of specific adhesive ligands and topographical cues. Specific substrate properties can be related to greater cell expansion and improvement in specific therapeutic functionalities, demonstrating the utility of culture materials in further improving the clinical-scale manufacture of highly secretory MSC products.
Collapse
Affiliation(s)
- Gilad Doron
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 313 Ferst Drive Atlanta GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| | - Johnna S. Temenoff
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 313 Ferst Drive Atlanta GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
95
|
Xie AW, Zacharias NA, Binder BYK, Murphy WL. Controlled aggregation enhances immunomodulatory potential of mesenchymal stromal cell aggregates. Stem Cells Transl Med 2021; 10:1184-1201. [PMID: 33818906 PMCID: PMC8284773 DOI: 10.1002/sctm.19-0414] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/04/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stromal cells (MSCs) are promising candidates for cell therapy due to their ease of isolation and expansion and their ability to secrete antiapoptotic, pro-angiogenic, and immunomodulatory factors. Three-dimensional (3D) aggregation "self-activates" MSCs to augment their pro-angiogenic and immunomodulatory potential, but the microenvironmental features and culture parameters that promote optimal MSC immunomodulatory function in 3D aggregates are poorly understood. Here, we generated MSC aggregates via three distinct methods and compared them with regard to their (a) aggregate structure and (b) immunomodulatory phenotype under resting conditions and in response to inflammatory stimulus. Methods associated with fast aggregation kinetics formed aggregates with higher cell packing density and reduced extracellular matrix (ECM) synthesis compared to those with slow aggregation kinetics. While all three methods of 3D aggregation enhanced MSC expression of immunomodulatory factors compared to two-dimensional culture, different aggregation methods modulated cells' temporal expression of these factors. A Design of Experiments approach, in which aggregate size and aggregation kinetics were systematically covaried, identified a significant effect of both parameters on MSCs' ability to regulate immune cells. Compared to small aggregates formed with fast kinetics, large aggregates with slow assembly kinetics were more effective at T-cell suppression and macrophage polarization toward anti-inflammatory phenotypes. Thus, culture parameters including aggregation method, kinetics, and aggregate size influence both the structural properties of aggregates and their paracrine immunomodulatory function. These findings underscore the utility of engineering strategies to control properties of 3D MSC aggregates, which may identify new avenues for optimizing the immunomodulatory function of MSC-based cell therapies.
Collapse
Affiliation(s)
- Angela W. Xie
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Nicholas A. Zacharias
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Bernard Y. K. Binder
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - William L. Murphy
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Materials Science and EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
96
|
Rauch A, Mandrup S. Transcriptional networks controlling stromal cell differentiation. Nat Rev Mol Cell Biol 2021; 22:465-482. [PMID: 33837369 DOI: 10.1038/s41580-021-00357-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/02/2023]
Abstract
Stromal progenitors are found in many different tissues, where they play an important role in the maintenance of tissue homeostasis owing to their ability to differentiate into parenchymal cells. These progenitor cells are differentially pre-programmed by their tissue microenvironment but, when cultured and stimulated in vitro, these cells - commonly referred to as mesenchymal stromal cells (MSCs) - exhibit a marked plasticity to differentiate into many different cell lineages. Loss-of-function studies in vitro and in vivo have uncovered the involvement of specific signalling pathways and key transcriptional regulators that work in a sequential and coordinated fashion to activate lineage-selective gene programmes. Recent advances in omics and single-cell technologies have made it possible to obtain system-wide insights into the gene regulatory networks that drive lineage determination and cell differentiation. These insights have important implications for the understanding of cell differentiation, the contribution of stromal cells to human disease and for the development of cell-based therapeutic applications.
Collapse
Affiliation(s)
- Alexander Rauch
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark. .,Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
97
|
Progress in Mesenchymal Stem Cell Therapy for Ischemic Stroke. Stem Cells Int 2021; 2021:9923566. [PMID: 34221026 PMCID: PMC8219421 DOI: 10.1155/2021/9923566] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) is a serious cerebrovascular disease with high morbidity and disability worldwide. Despite the great efforts that have been made, the prognosis of patients with IS remains unsatisfactory. Notably, recent studies indicated that mesenchymal stem cell (MSCs) therapy is becoming a novel research hotspot with large potential in treating multiple human diseases including IS. The current article is aimed at reviewing the progress of MSC treatment on IS. The mechanism of MSCs in the treatment of IS involved with immune regulation, neuroprotection, angiogenesis, and neural circuit reconstruction. In addition, nutritional cytokines, mitochondria, and extracellular vesicles (EVs) may be the main mediators of the therapeutic effect of MSCs. Transplantation of MSCs-derived EVs (MSCs-EVs) affords a better neuroprotective against IS when compared with transplantation of MSCs alone. MSC therapy can prolong the treatment time window of ischemic stroke, and early administration within 7 days after stroke may be the best treatment opportunity. The deliver routine consists of intraventricular, intravascular, intranasal, and intraperitoneal. Furthermore, several methods such as hypoxic preconditioning and gene technology could increase the homing and survival ability of MSCs after transplantation. In addition, MSCs combined with some drugs or physical therapy measures also show better neurological improvement. These data supported the notion that MSC therapy might be a promising therapeutic strategy for IS. And the application of new technology will promote MSC therapy of IS.
Collapse
|
98
|
Jauković A, Abadjieva D, Trivanović D, Stoyanova E, Kostadinova M, Pashova S, Kestendjieva S, Kukolj T, Jeseta M, Kistanova E, Mourdjeva M. Specificity of 3D MSC Spheroids Microenvironment: Impact on MSC Behavior and Properties. Stem Cell Rev Rep 2021; 16:853-875. [PMID: 32681232 DOI: 10.1007/s12015-020-10006-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSC) have been considered the promising candidates for the regenerative and personalized medicine due to their self-renewal potential, multilineage differentiation and immunomodulatory capacity. Although these properties have encouraged profound MSC studies in recent years, the majority of research has been based on standard 2D culture utilization. The opportunity to resemble in vivo characteristics of cells native niche has been provided by implementation of 3D culturing models such as MSC spheroid formation assesed through cells self-assembling. In this review, we address the current literature on physical and biochemical features of 3D MSC spheroid microenvironment and their impact on MSC properties and behaviors. Starting with the reduction in the cells' dimensions and volume due to the changes in adhesion molecules expression and cytoskeletal proteins rearrangement resembling native conditions, through the microenvironment shifts in oxygen, nutrients and metabolites gradients and demands, we focus on distinctive and beneficial features of MSC in spheroids compared to cells cultured in 2D conditions. By summarizing the data for 3D MSC spheroids regarding cell survival, pluripotency, differentiation, immunomodulatory activities and potential to affect tumor cells growth we highlighted advantages and perspectives of MSC spheroids use in regenerative medicine. Further detailed analyses are needed to deepen our understanding of mechanisms responsible for modified MSC behavior in spheroids and to set future directions for MSC clinical application.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia.,IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Röntgenring 11, D-97070, Wuerzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Germany
| | - Elena Stoyanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Kostadinova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Shina Pashova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Snejana Kestendjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Obilní trh 11, 602 00, Brno, Czech Republic.,Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 00, Suchdol, Praha 6, Czech Republic
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Mourdjeva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria.
| |
Collapse
|
99
|
Berg IC, Mohagheghian E, Habing K, Wang N, Underhill GH. Microtissue Geometry and Cell-Generated Forces Drive Patterning of Liver Progenitor Cell Differentiation in 3D. Adv Healthc Mater 2021; 10:e2100223. [PMID: 33890430 PMCID: PMC8222189 DOI: 10.1002/adhm.202100223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/27/2021] [Indexed: 01/13/2023]
Abstract
3D microenvironments provide a unique opportunity to investigate the impact of intrinsic mechanical signaling on progenitor cell differentiation. Using a hydrogel-based microwell platform, arrays of 3D, multicellular microtissues in constrained geometries, including toroids and cylinders are produced. These generated distinct mechanical profiles to investigate the impact of geometry and stress on early liver progenitor cell fate using a model liver development system. Image segmentation allows the tracking of individual cell fate and the characterization of distinct patterning of hepatocytic makers to the outer shell of the microtissues, and the exclusion from the inner diameter surface of the toroids. Biliary markers are distributed throughout the interior regions of micropatterned tissues and are increased in toroidal tissues when compared with those in cylindrical tissues. Finite element models of predicted stress distributions, combined with mechanical measurements, demonstrates that intercellular tension correlates with increased hepatocytic fate, while compression correlates with decreased hepatocytic and increased biliary fate. This system, which integrates microfabrication, imaging, mechanical modeling, and quantitative analysis, demonstrates how microtissue geometry can drive patterning of mechanical stresses that regulate cell differentiation trajectories. This approach may serve as a platform for further investigation of signaling mechanisms in the liver and other developmental systems.
Collapse
Affiliation(s)
- Ian C. Berg
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Erfan Mohagheghian
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Krista Habing
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Ning Wang
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Gregory H. Underhill
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| |
Collapse
|
100
|
Pfeiffenberger M, Damerau A, Ponomarev I, Bucher CH, Chen Y, Barnewitz D, Thöne-Reineke C, Hoff P, Buttgereit F, Gaber T, Lang A. Functional Scaffold-Free Bone Equivalents Induce Osteogenic and Angiogenic Processes in a Human In Vitro Fracture Hematoma Model. J Bone Miner Res 2021; 36:1189-1201. [PMID: 33534144 DOI: 10.1002/jbmr.4267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
After trauma, the formed fracture hematoma within the fracture gap contains all the important components (immune/stem cells, mediators) to initiate bone regeneration immediately. Thus, it is of great importance but also the most susceptible to negative influences. To study the interaction between bone and immune cells within the fracture gap, up-to-date in vitro systems should be capable of recapitulating cellular and humoral interactions and the physicochemical microenvironment (eg, hypoxia). Here, we first developed and characterized scaffold-free bone-like constructs (SFBCs), which were produced from bone marrow-derived mesenchymal stromal cells (MSCs) using a macroscale mesenchymal condensation approach. SFBCs revealed permeating mineralization characterized by increased bone volume (μCT, histology) and expression of osteogenic markers (RUNX2, SPP1, RANKL). Fracture hematoma (FH) models, consisting of human peripheral blood (immune cells) mixed with MSCs, were co-cultivated with SFBCs under hypoxic conditions. As a result, FH models revealed an increased expression of osteogenic (RUNX2, SPP1), angiogenic (MMP2, VEGF), HIF-related (LDHA, PGK1), and inflammatory (IL6, IL8) markers after 12 and 48 hours co-cultivation. Osteogenic and angiogenic gene expression of the FH indicate the osteoinductive potential and, thus, the biological functionality of the SFBCs. IL-6, IL-8, GM-CSF, and MIP-1β were detectable within the supernatant after 24 and 48 hours of co-cultivation. To confirm the responsiveness of our model to modifying substances (eg, therapeutics), we used deferoxamine (DFO), which is well known to induce a cellular hypoxic adaptation response. Indeed, DFO particularly increased hypoxia-adaptive, osteogenic, and angiogenic processes within the FH models but had little effect on the SFBCs, indicating different response dynamics within the co-cultivation system. Therefore, based on our data, we have successfully modeled processes within the initial fracture healing phase in vitro and concluded that the cross-talk between bone and immune cells in the initial fracture healing phase is of particular importance for preclinical studies. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Moritz Pfeiffenberger
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Alexandra Damerau
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Igor Ponomarev
- Research Center of Medical Technology and Biotechnology, Bad Langensalza, Germany
| | - Christian H Bucher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Julius Wolff Institute, Berlin, Germany
| | - Yuling Chen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Dirk Barnewitz
- Research Center of Medical Technology and Biotechnology, Bad Langensalza, Germany
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behavior, and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Paula Hoff
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Endokrinologikum Berlin, MVZ am Gendarmenmarkt, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Annemarie Lang
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|