51
|
Welker P, Böhlick A, Mutig K, Salanova M, Kahl T, Schlüter H, Blottner D, Ponce-Coria J, Gamba G, Bachmann S. Renal Na+-K+-Cl- cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am J Physiol Renal Physiol 2008; 295:F789-802. [PMID: 18579701 PMCID: PMC2536870 DOI: 10.1152/ajprenal.90227.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 06/17/2008] [Indexed: 11/22/2022] Open
Abstract
Apical bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), the kidney-specific member of a cation-chloride cotransporter superfamily, is an integral membrane protein responsible for the transepithelial reabsorption of NaCl. The role of NKCC2 is essential for renal volume regulation. Vasopressin (AVP) controls NKCC2 surface expression in cells of the thick ascending limb of the loop of Henle (TAL). We found that 40-70% of Triton X-100-insoluble NKCC2 was present in cholesterol-enriched lipid rafts (LR) in rat kidney and cultured TAL cells. The related Na(+)-Cl(-) cotransporter (NCC) from rat kidney was distributed in LR as well. NKCC2-containing LR were detected both intracellularly and in the plasma membrane. Bumetanide-sensitive transport of NKCC2 as analyzed by (86)Rb(+) influx in Xenopus laevis oocytes was markedly reduced by methyl-beta-cyclodextrin (MbetaCD)-induced cholesterol depletion. In TAL, short-term AVP application induced apical vesicular trafficking along with a shift of NKCC2 from non-raft to LR fractions. In parallel, increased colocalization of NKCC2 with the LR ganglioside GM1 and their polar translocation were assessed by confocal analysis. Apical biotinylation showed twofold increases in NKCC2 surface expression. These effects were blunted by mevalonate-lovastatin/MbetaCD-induced cholesterol deprivation. Collectively, these findings demonstrate that a pool of NKCC2 distributes in rafts. Results are consistent with a model in which LR mediate polar insertion, activity, and AVP-induced trafficking of NKCC2 in the control of transepithelial NaCl transport.
Collapse
Affiliation(s)
- Pia Welker
- Institute of Anatomy, Charité-Universitätsmedizin Berlin, Philippstrasse 12, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Trafficking properties and activity regulation of the neuronal glycine transporter GLYT2 by protein kinase C. Biochem J 2008; 412:495-506. [PMID: 18341477 DOI: 10.1042/bj20071018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The neuronal glycine transporter GLYT2 controls the availability of the neurotransmitter in glycinergic synapses, and the modulation of its function may influence synaptic transmission. The active transporter is located in membrane rafts and reaches the cell surface through intracellular trafficking. In the present study we prove that GLYT2 constitutively recycles between the cell interior and the plasma membrane by means of a monensin-sensitive trafficking pathway. Also, a regulated trafficking can be triggered by PMA. We demonstrate that PMA inhibits GLYT2 transport by causing net accumulation of the protein in internal compartments through an increase of the internalization rate. In addition, a small increase of plasma membrane delivery and a redistribution of the transporter to non-raft domains is triggered by PMA. A previously identified phorbol-ester-resistant mutant (K422E) displaying an acidic substitution in a regulatory site, exhibits constitutive traffic but, in contrast with the wild-type, fails to show glycine uptake inhibition, membrane raft redistribution and trafficking modulation by PMA. We prove that the action of PMA on GLYT2 involves PKC (protein kinase C)-dependent and -independent pathways, although an important fraction of the effects are PKC-mediated. We show the additional participation of signalling pathways triggered by the small GTPase Rac1 on PMA action. GLYT2 inhibition by PMA and monensin also take place in brainstem primary neurons and synaptosomes, pointing to a GLYT2 trafficking regulation in the central nervous system.
Collapse
|
53
|
Abstract
Hepatitis A virus (HAV) is an enterically transmitted virus that replicates predominantly in hepatocytes within the liver before excretion via bile through feces. Hepatocytes are polarized epithelial cells, and it has been assumed that the virus load in bile results from direct export of HAV via the apical domain of polarized hepatocytes. We have developed a subclone of hepatocyte-derived HepG2 cells (clone N6) that maintains functional characteristics of polarized hepatocytes but displays morphology typical of columnar epithelial cells, rather than the complex morphology that is typical of hepatocytes. N6 cells form microcolonies of polarized cells when grown on glass and confluent monolayers of polarized cells on semipermeable membranes. When N6 microcolonies were exposed to HAV, infection was restricted to peripheral cells of polarized colonies, whereas all cells could be infected in colonies of nonpolarized HepG2 cells (clone C11) or following disruption of tight junctions in N6 colonies with EGTA. This suggests that viral entry occurs predominantly via the basolateral plasma membrane, consistent with uptake of virus from the bloodstream after enteric exposure, as expected. Viral export was also found to be markedly vectorial in N6 but not C11 cells. However, rather than being exported from the apical domain as expected, more than 95% of HAV was exported via the basolateral domain of N6 cells, suggesting that virus is first excreted from infected hepatocytes into the bloodstream rather than to the biliary tree. Enteric excretion of HAV may therefore rely on reuptake and transcytosis of progeny HAV across hepatocytes into the bile. These studies provide the first example of the interactions between viruses and polarized hepatocytes.
Collapse
|
54
|
Welker P, Böhlick A, Mutig K, Salanova M, Kahl T, Schlüter H, Blottner D, Ponce-Coria J, Gamba G, Bachmann S. Renal Na+-K+-Cl- cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am J Physiol Renal Physiol 2008. [PMID: 18579701 DOI: 10.1152/ajprenal.90227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Apical bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), the kidney-specific member of a cation-chloride cotransporter superfamily, is an integral membrane protein responsible for the transepithelial reabsorption of NaCl. The role of NKCC2 is essential for renal volume regulation. Vasopressin (AVP) controls NKCC2 surface expression in cells of the thick ascending limb of the loop of Henle (TAL). We found that 40-70% of Triton X-100-insoluble NKCC2 was present in cholesterol-enriched lipid rafts (LR) in rat kidney and cultured TAL cells. The related Na(+)-Cl(-) cotransporter (NCC) from rat kidney was distributed in LR as well. NKCC2-containing LR were detected both intracellularly and in the plasma membrane. Bumetanide-sensitive transport of NKCC2 as analyzed by (86)Rb(+) influx in Xenopus laevis oocytes was markedly reduced by methyl-beta-cyclodextrin (MbetaCD)-induced cholesterol depletion. In TAL, short-term AVP application induced apical vesicular trafficking along with a shift of NKCC2 from non-raft to LR fractions. In parallel, increased colocalization of NKCC2 with the LR ganglioside GM1 and their polar translocation were assessed by confocal analysis. Apical biotinylation showed twofold increases in NKCC2 surface expression. These effects were blunted by mevalonate-lovastatin/MbetaCD-induced cholesterol deprivation. Collectively, these findings demonstrate that a pool of NKCC2 distributes in rafts. Results are consistent with a model in which LR mediate polar insertion, activity, and AVP-induced trafficking of NKCC2 in the control of transepithelial NaCl transport.
Collapse
Affiliation(s)
- Pia Welker
- Institute of Anatomy, Charité-Universitätsmedizin Berlin, Philippstrasse 12, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Localization of the Sodium-Taurocholate cotransporting polypeptide in membrane rafts and modulation of its activity by cholesterol in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1283-91. [DOI: 10.1016/j.bbamem.2008.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 01/25/2008] [Accepted: 01/28/2008] [Indexed: 12/12/2022]
|
56
|
de Diesbach P, Medts T, Carpentier S, D'Auria L, Van Der Smissen P, Platek A, Mettlen M, Caplanusi A, van den Hove MF, Tyteca D, Courtoy PJ. Differential subcellular membrane recruitment of Src may specify its downstream signalling. Exp Cell Res 2008; 314:1465-79. [DOI: 10.1016/j.yexcr.2008.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 12/21/2007] [Accepted: 01/14/2008] [Indexed: 12/22/2022]
|
57
|
Maier O, Hoekstra D, Baron W. Polarity Development in Oligodendrocytes: Sorting and Trafficking of Myelin Components. J Mol Neurosci 2008; 35:35-53. [DOI: 10.1007/s12031-007-9024-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 11/13/2007] [Indexed: 12/15/2022]
|
58
|
Delaunay JL, Breton M, Trugnan G, Maurice M. Differential solubilization of inner plasma membrane leaflet components by Lubrol WX and Triton X-100. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:105-12. [DOI: 10.1016/j.bbamem.2007.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 08/14/2007] [Accepted: 09/10/2007] [Indexed: 11/27/2022]
|
59
|
Bow DAJ, Perry JL, Miller DS, Pritchard JB, Brouwer KLR. Localization of P-gp (Abcb1) and Mrp2 (Abcc2) in freshly isolated rat hepatocytes. Drug Metab Dispos 2008; 36:198-202. [PMID: 17954525 PMCID: PMC2645440 DOI: 10.1124/dmd.107.018200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Freshly isolated hepatocytes are widely accepted as the "gold standard" for providing reliable data on drug uptake across the sinusoidal (basolateral) membrane. However, the suitability of freshly isolated hepatocytes in suspension to assess efflux by canalicular (apical) proteins or predict biliary excretion in the intact organ is unclear. After collagenase digestion, hepatocytes rapidly lose polarity, but localization of canalicular transport proteins in the first few hours after isolation has not been well characterized. In this study, immunostaining and confocal microscopy have provided, for the first time, a detailed examination of canalicular transport protein localization in freshly isolated rat hepatocytes fixed within 1 h of isolation and in cells cultured for 1 h. Organic anion transporting polypeptide 1a1 (Oatp1a1) was expressed in all hepatocytes and distributed evenly across the basolateral membrane; there was no evidence for colocalization of Oatp1a1 with P-glycoprotein (P-gp) or multidrug resistance-associated protein 2 (Mrp2). In contrast, P-gp and Mrp2 expression was lower than Oatp1a1 and confined to junctions between adjacent cells, intracellular compartments, and "legacy" network structures at or near the cell surface. P-gp and Mrp2 staining was more predominant in regions adjacent to former canalicular spaces, identified by zonula occludens-1 staining. Functional analysis of rat hepatocytes cultured for 1 h demonstrated that the fluorescent anion and Mrp2 substrate, 5-(and-6)-carboxy-2',7'-dichlorofluorescein (CDF), accumulated in cellular compartments; compartmental accumulation of CDF was sensitive to (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl]-[[3-dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571, Mrp inhibitor) and was not observed in hepatocytes isolated from Mrp2-deficient rats. Drug efflux from freshly isolated hepatocytes as an estimate of apical efflux/biliary excretion would give an inaccurate assessment of true apical elimination and, as such, should not be used to make in vivo extrapolations.
Collapse
Affiliation(s)
- Daniel A J Bow
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina, CB #7360 Kerr Hall, Chapel Hill, NC 27599-7360, USA
| | | | | | | | | |
Collapse
|
60
|
Hill WG, Butterworth MB, Wang H, Edinger RS, Lebowitz J, Peters KW, Frizzell RA, Johnson JP. The epithelial sodium channel (ENaC) traffics to apical membrane in lipid rafts in mouse cortical collecting duct cells. J Biol Chem 2007; 282:37402-11. [PMID: 17932048 DOI: 10.1074/jbc.m704084200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that ENaC is present in lipid rafts in A6 cells, a Xenopus kidney cell line. We now demonstrate that ENaC can be detected in lipid rafts in mouse cortical collecting duct ((MPK)CCD(14)) cells by detergent insolubility, buoyancy on density gradients using two distinct approaches, and colocalization with caveolin 1. Less than 30% of ENaC subunits were found in raft fractions. The channel subunits also colocalized on sucrose gradients with known vesicle targeting and fusion proteins syntaxin 1A, Vamp 2, and SNAP23. Hormonal stimulation of ENaC activity by either forskolin or aldosterone, short or long term, did not alter the lipid raft distribution of ENaC. Methyl-beta-cyclodextrin added apically to (MPK)CCD(14) cells resulted in a slow decline in amiloride-sensitive sodium transport with short circuit current reductions of 38.1 +/- 9.6% after 60 min. The slow decline in ENaC activity in response to apical cyclodextrin was identical to the rate of decline seen when protein synthesis was inhibited by cycloheximide. Apical biotinylation of (MPK)CCD(14) cells confirmed the loss of ENaC at the cell surface following cyclodextrin treatment. Acute stimulation of the recycling pool of ENaC was unaffected by apical cyclodextrin application. Expression of dominant negative caveolin isoforms (CAV1-eGFP and CAV3-DGV) which disrupt caveolae, reduced basal ENaC currents by 72.3 and 78.2%, respectively; but, as with cyclodextrin, the acute response to forskolin was unaffected. We conclude that ENaC is present in and regulated by lipid rafts. The data are consistent with a model in which rafts mediate the constitutive apical delivery of ENaC.
Collapse
Affiliation(s)
- Warren G Hill
- Division of Matrix Biology, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Dráber P, Dráberová L, Heneberg P, Smíd F, Farghali H, Dráber P. Preformed STAT3 transducer complexes in human HepG2 cells and rat hepatocytes. Cell Signal 2007; 19:2400-12. [PMID: 17716862 DOI: 10.1016/j.cellsig.2007.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Accepted: 07/24/2007] [Indexed: 11/16/2022]
Abstract
Interleukin 6 (IL-6) is a pleiotropic cytokine that mediates a variety of functions, including induction of the acute-phase response in hepatocytes. IL-6 initiates its action by binding to its cell surface receptor, followed by activation of Janus kinases and tyrosine phosphorylation of the signal transducer and transcription factor (STAT) 3. Although it has been suggested that cholesterol- and sphingolipid-enriched membrane domains, called lipid rafts, and caveolin are involved in this process, their roles in the earliest stages of IL-6-mediated signaling are far from being understood. Here we show that pretreatment of HepG2 hepatoma cells with methyl-beta-cyclodextrin (MbetaCD), which removes cholesterol and destroys lipid rafts, inhibited tyrosine phosphorylation of STAT3 in IL-6-activated, but not PV-activated cells. Furthermore, when the cells were lysed under conditions preserving lipid rafts, no IL-6- or PV-induced phosphorylation of STAT3 was observed. Although most of the STAT3 was found in large MbetaCD-resistant assemblies in both non-activated and IL-6-activated cells, its association with lipid rafts was weak or undetectable. The extent of IL-6-induced tyrosine phosphorylation of STAT3 was comparable in cells expressing low or high levels of caveolin. Similar STAT3 transducer complexes were observed in freshly isolated rat hepatocytes. The combined data suggest that STAT3 tyrosine phosphorylation occurs in preformed transducer complexes that can be activated in the absence of intact lipid rafts or caveolin.
Collapse
Affiliation(s)
- Peter Dráber
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
62
|
Dorsey FC, Muthusamy T, Whitt MA, Cox JV. A novel role for a YXXPhi motif in directing the caveolin-dependent sorting of membrane-spanning proteins. J Cell Sci 2007; 120:2544-54. [PMID: 17623779 DOI: 10.1242/jcs.002493] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies showed that the sequence between amino acids 38 and 63 of the chicken AE1-4 anion exchanger is sufficient to direct basolateral sorting and recycling to the Golgi when fused to a cytoplasmic tailless F(c)RII B2 receptor. Further characterization of the recycling pathway has indicated that the chimera F(c)38-63 colocalizes with caveolin 1 in the basolateral membrane of MDCK cells, and in early endosomes following its internalization from the cell surface. Studies using small interfering RNA (siRNA) and dominant-negative mutants revealed that F(c)38-63 endocytosis is primarily caveolin-dependent and clathrin-independent. The endocytosis of the chimera is also dependent upon cholesterol and dynamin. Co-precipitation studies indicated that caveolin 1 associates with F(c)38-63. Mutation of the tyrosine or leucine residues in the cytoplasmic sequence Y(47)VEL of F(c)38-63 disrupts this interaction and inhibits the endocytosis of the chimera. Additional analyses revealed that AE1-4 also associates with caveolin 1. Mutation of the leucine in the Y(47)VEL sequence of AE1-4 disrupts this interaction, and blocks the recycling of this transporter from the basolateral membrane to the Golgi. The Y(47)VEL tetrapeptide matches the sequence of a YXXPhi motif, and our results indicate a novel role for this motif in directing caveolin-dependent sorting.
Collapse
Affiliation(s)
- Frank C Dorsey
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
63
|
Orlowski S, Coméra C, Tercé F, Collet X. Lipid rafts: dream or reality for cholesterol transporters? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:869-85. [PMID: 17576551 DOI: 10.1007/s00249-007-0193-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/11/2007] [Accepted: 05/15/2007] [Indexed: 01/12/2023]
Abstract
As a key constituent of the cell membranes, cholesterol is an endogenous component of mammalian cells of primary importance, and is thus subjected to highly regulated homeostasis at the cellular level as well as at the level of the whole body. This regulation requires adapted mechanisms favoring the handling of cholesterol in aqueous compartments, as well as its transfer into or out of membranes, involving membrane proteins. A membrane exhibits functional properties largely depending on its lipid composition and on its structural organization, which very often involves cholesterol-rich microdomains. Then there is the appealing possibility that cholesterol may regulate its own transmembrane transport at a purely functional level, independently of any transcriptional regulation based on cholesterol-sensitive nuclear factors controling the expression level of lipid transport proteins. Indeed, the main cholesterol "transporters" presently believed to mediate for instance the intestinal absorption of cholesterol, that are SR-BI, NPC1L1, ABCA1, ABCG1, ABCG5/G8 and even P-glycoprotein, all present privileged functional relationships with membrane cholesterol-containing microdomains. In particular, they all more or less clearly induce membrane disorganization, supposed to facilitate cholesterol exchanges with the close aqueous medium. The actual lipid substrates handled by these transporters are not yet unambiguously determined, but they likely concern the components of membrane microdomains. Conversely, raft alterations may provide specific modulations of the transporter activities, as well as they can induce indirect effects via local perturbations of the membrane. Finally, these cholesterol transporters undergo regulated intracellular trafficking, with presumably some relationships to rafts which remain to be clarified.
Collapse
Affiliation(s)
- Stéphane Orlowski
- SB2SM/IBTS and URA 2096 CNRS, CEA, Centre de Saclay, 91191, Gif-sur-Yvette cedex, France.
| | | | | | | |
Collapse
|
64
|
Théard D, Steiner M, Kalicharan D, Hoekstra D, van IJzendoorn SC. Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/beta-catenin-based adherens junctions. Mol Biol Cell 2007; 18:2313-21. [PMID: 17429067 PMCID: PMC1877101 DOI: 10.1091/mbc.e06-11-1040] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Using a mutant hepatocyte cell line in which E-cadherin and beta-catenin are completely depleted from the cell surface, and, consequently, fail to form adherens junctions, we have investigated adherens junction requirement for apical-basolateral polarity development and polarized membrane trafficking. It is shown that these hepatocytes retain the capacity to form functional tight junctions, develop full apical-basolateral cell polarity, and assemble a subapical cortical F-actin network, although with a noted delay and a defect in subsequent apical lumen remodeling. Interestingly, whereas hepatocytes typically target the plasma membrane protein dipeptidyl peptidase IV first to the basolateral surface, followed by its transcytosis to the apical domain, hepatocytes lacking E-cadherin-based adherens junctions target dipeptidyl peptidase IV directly to the apical surface. Basolateral surface-directed transport of other proteins or lipids tested was not visibly affected in hepatocytes lacking E-cadherin-based adherens junctions. Together, our data show that E-cadherin/beta-catenin-based adherens junctions are dispensable for tight junction formation and apical lumen biogenesis but not for apical lumen remodeling. In addition, we suggest a possible requirement for E-cadherin/beta-catenin-based adherens junctions with regard to the indirect apical trafficking of specific proteins in hepatocytes.
Collapse
Affiliation(s)
| | | | - Dharamdajal Kalicharan
- Section of Electron Microscopy, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
65
|
Delaunay JL, Breton M, Goding JW, Trugnan G, Maurice M. Differential detergent resistance of the apical and basolateral NPPases: relationship with polarized targeting. J Cell Sci 2007; 120:1009-16. [PMID: 17311850 DOI: 10.1242/jcs.002717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Targeting of glycosylphosphatidylinositol-anchored proteins to the apical surface of epithelial cells involves clustering in Triton X-100-resistant membrane microdomains or rafts. The role of these microdomains in sorting transmembrane proteins is more questionable because, unlike glycosylphosphatidylinositol-anchored proteins, apical transmembrane proteins are rather soluble in Triton X-100. They are, however, resistant to milder detergents such as Lubrol WX or Tween 20. It has been proposed that specific membrane microdomains, defined by resistance to these detergents, would carry transmembrane proteins to the apical surface. We have used MDCK cells stably transfected with the apical and basolateral pyrophosphatases/phosphodiesterases, NPP3 and NPP1, to examine the relationship between detergent resistance and apical targeting. The apically expressed wild-type NPP3 was insoluble in Lubrol WX whereas wild-type NPP1, which is expressed basolaterally, was essentially soluble. By using tail mutants and chimeric constructs that combine the cytoplasmic, transmembrane and extracellular domains of NPP1 and NPP3, we show that there is not a strict correlation between detergent resistance and apical targeting. Lubrol resistance is an intrinsic property of NPP3, which is acquired early during the biosynthetic process irrespective of its final destination, and depends on positively charged residues in its cytoplasmic tail.
Collapse
|
66
|
Purkerson JM, Kittelberger AM, Schwartz GJ. Basolateral carbonic anhydrase IV in the proximal tubule is a glycosylphosphatidylinositol-anchored protein. Kidney Int 2007; 71:407-16. [PMID: 17228367 DOI: 10.1038/sj.ki.5002071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carbonic anhydrase (CA) IV facilitates HCO(3) reabsorption in the renal proximal tubule by catalyzing the reversible hydration of CO(2). CAIV is tethered to cell membranes via a glycosylphosphatidylinositol (GPI) lipid anchor. As there is basolateral as well as apical CAIV staining in proximal tubule, the molecular identity of basolateral CAIV was examined. Biotinylation of confluent monolayers of rat inner medullary collecting duct cells stably transfected with rabbit CAIV showed apical and basolateral CAIV, and in the cell transfectants expressing high levels of CAIV, a transmembrane form was targeted to the basolateral membrane. Basolateral expression of CAIV ( approximately 46 kDa) was confirmed in normal kidney tissue by Western blotting of vesicle fractions enriched for basolateral membranes by Percoll density fractionation. We examined the mode of membrane linkage of basolaterally expressed CAIV in the kidney cortex. CAIV detected in basolateral or apical membrane vesicles exhibited similar molecular size by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis following deglycosylation, and was equally sensitive to phosphatidylinositol-specific phospholipase C digestion, indicating that CAIV is expressed on the basolateral membrane as a GPI-anchored protein. Half of the hydratase activity of basolateral vesicles was resistant to SDS denaturation, compatible with being CAIV. Thus, GPI-anchored CAIV resides in the basolateral membrane of proximal tubule epithelia where it may facilitate HCO(3) reabsorption via association with kNBC1.
Collapse
Affiliation(s)
- J M Purkerson
- Department of Pediatrics, Strong Children's Research Center, University of Rochester School of Medicine, Rochester, New York, USA
| | | | | |
Collapse
|
67
|
Delmas O, Breton M, Sapin C, Le Bivic A, Colard O, Trugnan G. Heterogeneity of Raft-type membrane microdomains associated with VP4, the rotavirus spike protein, in Caco-2 and MA 104 cells. J Virol 2006; 81:1610-8. [PMID: 17135322 PMCID: PMC1797590 DOI: 10.1128/jvi.01433-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that rotavirus virions, a major cause of infantile diarrhea, assemble within small intestinal enterocytes and are released at the apical pole without significant cell lysis. In contrast, for the poorly differentiated kidney epithelial MA 104 cells, which have been used extensively to study rotavirus assembly, it has been shown that rotavirus is released by cell lysis. The subsequent discovery that rotavirus particles associate with raft-type membrane microdomains (RTM) in Caco-2 cells provided a simple explanation for rotavirus polarized targeting. However, the results presented here, together with those recently published by another group, demonstrate that rotavirus also associates with RTM in MA 104 cells, thus indicating that a simple interaction of rotavirus with rafts is not sufficient to explain its apical targeting in intestinal cells. In the present study, we explore the possibility that RTM may have distinct physicochemical properties that may account for the differences observed in the rotavirus cell cycle between MA 104 and Caco-2 cells. We show here that VP4 association with rafts is sensitive to cholesterol extraction by methyl-beta-cyclodextrin treatment in MA 104 cells and insensitive in Caco-2 cells. Using the VP4 spike protein as bait, VP4-enriched raft subsets were immunopurified. They contained 10 to 15% of the lipids present in total raft membranes. We found that the nature and proportion of phospholipids and glycosphingolipids were different between the two cell lines. We propose that this raft heterogeneity may support the cell type dependency of virus assembly and release.
Collapse
Affiliation(s)
- Olivier Delmas
- INSERM UMRS 538, Faculty of Medicine Pierre et Marie Curie, site Saint Antoine, University Pierre and Marie Curie, 27 rue de Chaligny, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|
68
|
Florek M, Bauer N, Janich P, Wilsch-Braeuninger M, Fargeas CA, Marzesco AM, Ehninger G, Thiele C, Huttner WB, Corbeil D. Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine. Cell Tissue Res 2006; 328:31-47. [PMID: 17109118 DOI: 10.1007/s00441-006-0324-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 08/08/2006] [Indexed: 02/08/2023]
Abstract
Prominin-2 is a pentaspan membrane glycoprotein structurally related to the cholesterol-binding protein prominin-1, which is expressed in epithelial and non-epithelial cells. Although prominin-1 expression is widespread throughout the organism, the loss of its function solely causes retinal degeneration. The finding that prominin-2 appears to be restricted to epithelial cells, such as those found in kidney tubules, raises the possibility that prominin-2 functionally substitutes prominin-1 in tissues other than the retina and provokes a search for a definition of its morphological and biochemical characteristics. Here, we have investigated, by using MDCK cells as an epithelial cell model, whether prominin-2 shares the biochemical and morphological properties of prominin-1. Interestingly, we have found that, whereas prominin-2 is not restricted to the apical domain like prominin-1 but is distributed in a non-polarized fashion between the apical and basolateral plasma membranes, it retains the main feature of prominin-1, i.e. its selective concentration in plasmalemmal protrusions; prominin-2 is confined to microvilli, cilia and other acetylated tubulin-positive protruding structures. Similar to prominin-1, prominin-2 is partly associated with detergent-resistant membranes in a cholesterol-dependent manner, suggesting its incorporation into membrane microdomains, and binds directly to plasma membrane cholesterol. Finally, prominin-2 is also associated with small membrane particles that are released into the culture media and found in a physiological fluid, i.e. urine. Together, these data show that all the characteristics of prominin-1 are shared by prominin-2, which is in agreement with a possible redundancy in their role as potential organizers of plasma membrane protrusions.
Collapse
Affiliation(s)
- Mareike Florek
- Medical Clinic and Polyclinic I, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Corcoran JA, Salsman J, de Antueno R, Touhami A, Jericho MH, Clancy EK, Duncan R. The p14 Fusion-associated Small Transmembrane (FAST) Protein Effects Membrane Fusion from a Subset of Membrane Microdomains. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84093-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
70
|
Wakabayashi Y, Kipp H, Arias IM. Transporters on Demand: Intracellular Reservoirs and Cycling of Bile Canalicular ABC Transporters. J Biol Chem 2006; 281:27669-73. [PMID: 16737964 DOI: 10.1074/jbc.r600013200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yoshiyuki Wakabayashi
- Unit on Cellular Polarity, Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
71
|
Corcoran JA, Salsman J, de Antueno R, Touhami A, Jericho MH, Clancy EK, Duncan R. The p14 fusion-associated small transmembrane (FAST) protein effects membrane fusion from a subset of membrane microdomains. J Biol Chem 2006; 281:31778-89. [PMID: 16936325 DOI: 10.1074/jbc.m602566200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reovirus fusion-associated small transmembrane (FAST) proteins are a unique family of viral membrane fusion proteins. These nonstructural viral proteins induce efficient cell-cell rather than virus-cell membrane fusion. We analyzed the lipid environment in which the reptilian reovirus p14 FAST protein resides to determine the influence of the cell membrane on the fusion activity of the FAST proteins. Topographical mapping of the surface of fusogenic p14-containing liposomes by atomic force microscopy under aqueous conditions revealed that p14 resides almost exclusively in thickened membrane microdomains. In transfected cells, p14 was found in both Lubrol WX- and Triton X-100-resistant membrane complexes. Cholesterol depletion of donor cell membranes led to preferential disruption of p14 association with Lubrol WX (but not Triton X-100)-resistant membranes and decreased cell-cell fusion activity, both of which were reversed upon subsequent cholesterol repletion. Furthermore, co-patching analysis by fluorescence microscopy indicated that p14 did not co-localize with classical lipid-anchored raft markers. These data suggest that the p14 FAST protein associates with heterogeneous membrane microdomains, a distinct subset of which is defined by cholesterol-dependent Lubrol WX resistance and which may be more relevant to the membrane fusion process.
Collapse
Affiliation(s)
- Jennifer A Corcoran
- Departmentnof Microbiology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|
72
|
Herrema H, Czajkowska D, Théard D, van der Wouden JM, Kalicharan D, Zolghadr B, Hoekstra D, van IJzendoorn SC. Rho kinase, myosin-II, and p42/44 MAPK control extracellular matrix-mediated apical bile canalicular lumen morphogenesis in HepG2 cells. Mol Biol Cell 2006; 17:3291-303. [PMID: 16687572 PMCID: PMC1552049 DOI: 10.1091/mbc.e06-01-0067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/18/2006] [Accepted: 04/27/2006] [Indexed: 12/29/2022] Open
Abstract
The molecular mechanisms that regulate multicellular architecture and the development of extended apical bile canalicular lumens in hepatocytes are poorly understood. Here, we show that hepatic HepG2 cells cultured on glass coverslips first develop intercellular apical lumens typically formed by a pair of cells. Prolonged cell culture results in extensive organizational changes, including cell clustering, multilayering, and apical lumen morphogenesis. The latter includes the development of large acinar structures and subsequent elongated canalicular lumens that span multiple cells. These morphological changes closely resemble the early organizational pattern during development, regeneration, and neoplasia of the liver and are rapidly induced when cells are cultured on predeposited extracellular matrix (ECM). Inhibition of Rho kinase or its target myosin-II ATPase in cells cultured on glass coverslips mimics the morphogenic response to ECM. Consistently, stimulation of Rho kinase and subsequent myosin-II ATPase activity by lipoxygenase-controlled eicosatetranoic acid metabolism inhibits ECM-mediated cell multilayering and apical lumen morphogenesis but not initial apical lumen formation. Furthermore, apical lumen remodeling but not cell multilayering requires basal p42/44 MAPK activity. Together, the data suggest a role for hepatocyte-derived ECM in the spatial organization of hepatocytes and apical lumen morphogenesis and identify Rho kinase, myosin-II, and MAPK as potentially important players in different aspects of bile canalicular lumen morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Dharamdajal Kalicharan
- Electron Microscopy, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
73
|
Wojtal KA, de Vries E, Hoekstra D, van IJzendoorn SC. Efficient trafficking of MDR1/P-glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA-RIIalpha anchoring and glucosylceramide. Mol Biol Cell 2006; 17:3638-50. [PMID: 16723498 PMCID: PMC1525225 DOI: 10.1091/mbc.e06-03-0230] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In hepatocytes, cAMP/PKA activity stimulates the exocytic insertion of apical proteins and lipids and the biogenesis of bile canalicular plasma membranes. Here, we show that the displacement of PKA-RIIalpha from the Golgi apparatus severely delays the trafficking of the bile canalicular protein MDR1 (P-glycoprotein), but not that of MRP2 (cMOAT), DPP IV and 5'NT, to newly formed apical surfaces. In addition, the direct trafficking of de novo synthesized glycosphingolipid analogues from the Golgi apparatus to the apical surface is inhibited. Instead, newly synthesized glucosylceramide analogues are rerouted to the basolateral surface via a vesicular pathway, from where they are subsequently endocytosed and delivered to the apical surface via transcytosis. Treatment of HepG2 cells with the glucosylceramide synthase inhibitor PDMP delays the appearance of MDR1, but not MRP2, DPP IV, and 5'NT at newly formed apical surfaces, implicating glucosylceramide synthesis as an important parameter for the efficient Golgi-to-apical surface transport of MDR1. Neither PKA-RIIalpha displacement nor PDMP inhibited (cAMP-stimulated) apical plasma membrane biogenesis per se, suggesting that other cAMP effectors may play a role in canalicular development. Taken together, our data implicate the involvement of PKA-RIIalpha anchoring in the efficient direct apical targeting of distinct proteins and glycosphingolipids to newly formed apical plasma membrane domains and suggest that rerouting of Golgi-derived glycosphingolipids may underlie the delayed Golgi-to-apical surface transport of MDR1.
Collapse
Affiliation(s)
- Kacper A. Wojtal
- Section of Membrane Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Erik de Vries
- Section of Membrane Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Dick Hoekstra
- Section of Membrane Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Sven C.D. van IJzendoorn
- Section of Membrane Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
74
|
Gielen E, Baron W, Vandeven M, Steels P, Hoekstra D, Ameloot M. Rafts in oligodendrocytes: Evidence and structure–function relationship. Glia 2006; 54:499-512. [PMID: 16927294 DOI: 10.1002/glia.20406] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The plasma membrane of eukaryotic cells exhibits lateral inhomogeneities, mainly containing cholesterol and sphingomyelin, which provide liquid-ordered microdomains (lipid "rafts") that segregate membrane components. Rafts are thought to modulate the biological functions of molecules that become associated with them, and as such, they appear to be involved in a variety of processes, including signal transduction, membrane sorting, cell adhesion and pathogen entry. Although still a matter of ongoing debate, evidence in favor of the presence of these microdomains is gradually accumulating but a consensus on issues like their size, lifetime, composition, and biological significance has yet to be reached. Here, we provide an overview of the evidence supporting the presence of rafts in oligodendrocytes, the myelin-producing cells of the central nervous system, and discuss their functional significance. The myelin membrane differs fundamentally from the plasma membrane, both in lipid and protein composition. Moreover, since myelin membranes are unusually enriched in glycosphingolipids, questions concerning the biogenesis and functional relevance of microdomains thus appear of special interest in oligodendrocytes. The current picture of rafts in oligodendrocytes is mainly based on detergent methods. The robustness of such data is discussed and alternative methods that may provide complementary data are indicated.
Collapse
Affiliation(s)
- Ellen Gielen
- Biomedical Research Institute, Hasselt University and transnationale Universiteit Limburg, Agoralaan, B-3590 Diepenbeek, Belgium
| | | | | | | | | | | |
Collapse
|
75
|
Claas C, Wahl J, Orlicky D, Karaduman H, Schnölzer M, Kempf T, Zöller M. The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. Biochem J 2005; 389:99-110. [PMID: 15725074 PMCID: PMC1184542 DOI: 10.1042/bj20041287] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetraspanins function as molecular organizers of multi-protein complexes by assembling primary complexes of a relatively low mass into extensive networks involved in cellular signalling. In this paper, we summarize our studies performed on the tetraspanin D6.1A/CO-029/TM4SF3 expressed by rat carcinoma cells. Primary complexes of D6.1A are almost indistinguishable from complexes isolated with anti-CD9 antibody. Indeed, both tetraspanins directly associate with each other and with a third tetraspanin, CD81. Moreover, FPRP (prostaglandin F2alpha receptor-regulatory protein)/EWI-F/CD9P-1), an Ig superfamily member that has been described to interact with CD9 and CD81, is also a prominent element in D6.1A complexes. Primary complexes isolated with D6.1A-specific antibody are clearly different from complexes containing the tetraspanin CD151. CD151 is found to interact only with D6.1A if milder conditions, i.e. lysis with LubrolWX instead of Brij96, are applied to disrupt cellular membranes. CD151 probably mediates the interaction of D6.1A primary complexes with alpha3beta1 integrin. In addition, two other molecules were identified to be part of D6.1A complexes at this higher level of association: type II phosphatidylinositol 4-kinase and EpCAM, an epithelial marker protein overexpressed by many carcinomas. The characterization of the D6.1A core complex and additional more indirect interactions will help to elucidate the role in tumour progression and metastasis attributed to D6.1A.
Collapse
Affiliation(s)
- Christoph Claas
- *Department of Tumor Progression and Immune Defense, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Joachim Wahl
- *Department of Tumor Progression and Immune Defense, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - David J. Orlicky
- †Department of Pathology, University of Colorado Health Sciences Center, Denver, CO, U.S.A
| | - Handan Karaduman
- *Department of Tumor Progression and Immune Defense, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Martina Schnölzer
- ‡Central Unit for Protein Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Tore Kempf
- ‡Central Unit for Protein Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Margot Zöller
- *Department of Tumor Progression and Immune Defense, Deutsches Krebsforschungszentrum, Heidelberg, Germany
- §Department of Applied Genetics, University Karlsruhe, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
76
|
Alfalah M, Wetzel G, Fischer I, Busche R, Sterchi EE, Zimmer KP, Sallmann HP, Naim HY. A novel type of detergent-resistant membranes may contribute to an early protein sorting event in epithelial cells. J Biol Chem 2005; 280:42636-43. [PMID: 16230359 DOI: 10.1074/jbc.m505924200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
One sorting mechanism of apical and basolateral proteins in epithelial cells is based on their solubility profiles with Triton X-100. Nevertheless, apical proteins themselves are also segregated beyond the trans-Golgi network by virtue of their association or nonassociation with cholesterol/sphingolipid-rich microdomains (Jacob, R., and Naim, H. Y. (2001) Curr. Biol. 11, 1444-1450). Therefore, extractability with Triton X-100 does not constitute an absolute criterion of protein sorting. Here, we investigate the solubility patterns of apical and basolateral proteins with other detergents and demonstrate that the mild detergent Tween 20 is adequate to discriminate between apical and basolateral proteins during early stages in their biosynthesis. Although the mannose-rich forms of the apical proteins sucrase-isomaltase, lactase-phlorizin hydrolase, aminopeptidase N, and dipeptidylpeptidase IV reveal similar solubility profiles comprising soluble and nonsoluble fractions, the basolateral proteins, vesicular stomatitis virus G protein, major histocompatibility complex class I, and CD46 are entirely soluble with this detergent. The insoluble Tween 20 membranes are enriched in phosphatidylinositol and phosphatidylglycerol compatible with their synthesis in the endoplasmic reticulum and the existence of a novel class of detergent-resistant membranes. The association of the mannose-rich biosynthetic forms of the apical proteins, sucraseisomaltase, lactase-phlorizin hydrolase, aminopeptidase N, and dipeptidylpeptidase IV with the Tween 20-resistant membranes suggests an early polarized sorting mechanism prior to maturation in the Golgi apparatus.
Collapse
Affiliation(s)
- Marwan Alfalah
- Department of Physiological Chemistry, School of Veterinary Medicine, D-30559 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Köhler K, Zahraoui A. Tight junction: a co-ordinator of cell signalling and membrane trafficking. Biol Cell 2005; 97:659-65. [PMID: 16033326 DOI: 10.1042/bc20040147] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that the tight junction plays a role in membrane transport. Various signalling and trafficking molecules localize to the sites of cell-cell junctions in epithelial cells, including Rab proteins, a family of small GTPases that regulate different steps of vesicular transport along the endocytic and exocytic pathways. We have recently shown that Rab13 controls protein kinase A activity, demonstrating a clear biochemical and functional link between Rab13 and protein kinase A signalling during tight junction assembly in epithelial cells. The present article focuses on how protein kinase A signalling and protein trafficking events could be integrated at tight junctions in epithelial cells.
Collapse
Affiliation(s)
- Katja Köhler
- Laboratory of Morphogenesis and Cell Signalling, UMR144 CNRS, Institut Curie, Paris, France
| | | |
Collapse
|
78
|
Wakabayashi Y, Dutt P, Lippincott-Schwartz J, Arias IM. Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells. Proc Natl Acad Sci U S A 2005; 102:15087-92. [PMID: 16214890 PMCID: PMC1257697 DOI: 10.1073/pnas.0503702102] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatocytes polarize by forming functionally distinct sinusoidal (basolateral) and canalicular (apical) plasma membrane domains. Two distinct routes are used for delivery of membrane proteins to the canaliculus. Proteins having glycosylphosphatidylinositol anchors or single transmembrane domains are targeted to the sinusoidal plasma membrane from where they transcytose to the canalicular domain. In contrast, apical ATP-binding-cassette (ABC) transporters, which are required for energy-dependent biliary secretion of bile acids (ABCB11), phospholipids (ABCB4), and nonbile acid organic anions (ABCC2), lack initial residence in the basolateral plasma membrane and traffic directly from Golgi membranes to the canalicular membrane. While investigating mechanisms of apical targeting in WIF-B9 cells, a polarized hepatic epithelial cell line, we observed that rab11a is required for canalicular formation. Knockdown of rab11a or overexpression of the rab11a-GDP locked form prevented canalicular formation as did overexpression of the myosin Vb motorless tail domain. In WIF-B9 cells, which lack bile canaliculi, apical ABC transporters colocalized with transcytotic membrane proteins in rab11a-containing endosomes and, unlike the transcytotic markers, did not distribute to the plasma membrane. We propose that polarization of hepatocytes (i.e., canalicular biogenesis) requires recruitment of rab11a and myosin Vb to intracellular membranes that contain apical ABC transporters and transcytotic markers, permitting their targeting to the plasma membrane. In this model, polarization is initiated upon delivery of rab11a-myosin Vb-containing membranes to the surface, which causes plasma membrane at the site of delivery to differentiate into apical domain (bile canaliculus).
Collapse
Affiliation(s)
- Yoshiyuki Wakabayashi
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
79
|
Karacsonyi C, Bedke T, Hinrichsen N, Schwinzer R, Lindner R. MHC II molecules and invariant chain reside in membranes distinct from conventional lipid rafts. J Leukoc Biol 2005; 78:1097-105. [PMID: 16204642 DOI: 10.1189/jlb.0405189] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Major histocompatibility complex class II (MHC II) peptide complexes can associate with lipid rafts, and this is a prerequisite for their recruitment to the immunological synapse and for efficient T cell stimulation. One of the most often used criterion for raft association is the resistance to extraction by the detergent Triton X-100 (TX-100) at low temperature. For MHC II, a variety of detergents have been used under different conditions, leading to variable and often conflicting conclusions about the association of MHC II with detergent-resistant membranes (DRMs). To clarify whether these inconsistencies were caused by variations in the isolation protocols or reflect different biochemical properties of MHC II lipid complexes, we used two standardized procedures for the isolation of membranes resistant to TX-100, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), or Brij 98. Our results suggest that some of the reported variations in the association of MHC II with DRMs are caused by differences in the methods. We also show that in our hands, specific and efficient flotation of MHC II and the MHC II-associated invariant chain from mouse B-lymphoma cells was only achieved with Brij 98, but not with TX-100 and CHAPS. We furthermore used DRMs prepared from hen egg lysozyme-fed B-lymphoma cells to activate the T cell hybridoma 3A9. In agreement with our biochemical data, T cell activation could only be achieved with Brij 98- but not with TX-100-resistant membranes. Thus, MHC II and also the invariant chain belong to a set of proteins comprising the T cell receptor, prominin, and the prion protein, which reside in membrane environments distinct from conventional lipid rafts.
Collapse
Affiliation(s)
- Claudia Karacsonyi
- Department of Cell Biology in the Center of Anatomy, Hannover Medical School, Germany
| | | | | | | | | |
Collapse
|
80
|
Wüstner D. Improved visualization and quantitative analysis of fluorescent membrane sterol in polarized hepatic cells. J Microsc 2005; 220:47-64. [PMID: 16269063 DOI: 10.1111/j.1365-2818.2005.01516.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dehydroergosterol is a natural yeast sterol which has recently been employed for direct observation of intracellular sterol transport by UV microscopy. Here, methods are described for improved visualization and quantification of dehydroergosterol in the membranes of polarized HepG2 cells. Using a new online assay, it is shown that dehydroergosterol derived from a cyclodextrin complex inserted into the plasma membrane with a half time of t(1/2) approximately 34 s. Based on a detailed bleaching analysis of dehydroergosterol, slightly different bleaching rates for dehydroergosterol in the basolateral and canalicular membrane were found, indicating different fluorophore environments. Bleaching correction in concert with 3D imaging allows for detection of dehydroergosterol enrichment in microvilli of the canalicular membrane forming the biliary canaliculus. Evidence is provided that some dehydroergosterol accumulating in a subapical compartment or apical recycling compartment can rapidly (t(1/2) approximately 2 min) exchange in vesicles towards the biliary canaliculus while the majority of dehydroergosterol does not redistribute from this compartment. The rapidly exchanging pool resembles only a small portion of the total subapical compartment or apical recycling compartment-associated dehydroergosterol (about 15-30%). Kinetic modelling supports the theory that the subapical compartment or apical recycling compartment to biliary canaliculus transport pathway for sterol is unidirectional. This pathway might be important for rapid biliary transport of free sterol produced by hydrolysis of cholesteryl esters derived from high density lipoprotein.
Collapse
Affiliation(s)
- D Wüstner
- Theoretical Biophysics Group, Max-Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
81
|
Radeva G, Perabo J, Sharom FJ. P-Glycoprotein is localized in intermediate-density membrane microdomains distinct from classical lipid rafts and caveolar domains. FEBS J 2005; 272:4924-37. [PMID: 16176266 DOI: 10.1111/j.1742-4658.2005.04905.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
P-glycoprotein (Pgp), a member of the ATP-binding cassette (ABC) superfamily responsible for the ATP-driven extrusion of diverse hydrophobic molecules from cells, is a cause of multidrug resistance in human tumours. Pgp can also operate as a phospholipid and glycosphingolipid flippase, and has been functionally linked to cholesterol, suggesting that it might be associated with sphingolipid-cholesterol microdomains in cell membranes. We have used nonionic detergent extraction and density gradient centrifugation of extracts from the multidrug-resistant Chinese hamster ovary cell line, CH(R)B30, to address this question. Our data indicate that Pgp is localized in intermediate-density membrane microdomains different from classical lipid rafts enriched in Src-family kinases. We demonstrate that Brij-96 can selectively isolate the Pgp domains, separating them from the caveolar and classical lipid rafts. Pgp was found entirely in the Brij-96-insoluble domains, and only partially in the Triton X-100-insoluble membrane microdomains. We studied the sensitivity of these domains to cholesterol removal, as well as their relationship to GM(1) ganglioside- and caveolin-1-enriched caveolar domains. We found that the buoyant density of the Brij-96-based Pgp-containing microdomains was sensitive to cholesterol removal by methyl-beta-cyclodextrin. The Brij-96 domains retained their structural integrity after cholesterol depletion while, in contrast, the Triton X-100-based caveolin-1/GM(1) microdomains did not. Using confocal fluorescence microscopy, we determined that caveolin-1 and GM(1) colocalized, while Pgp and caveolin-1, or Pgp and GM(1), did not. Our results suggest that Pgp does not interact directly with caveolin-1, and is localized in intermediate-density domains, distinct from classical lipid rafts and caveolae, which can be isolated using Brij-96.
Collapse
Affiliation(s)
- Galina Radeva
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
82
|
Pike LJ, Han X, Gross RW. Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study. J Biol Chem 2005; 280:26796-804. [PMID: 15917253 PMCID: PMC1266279 DOI: 10.1074/jbc.m503805200] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor (EGF) receptor partitions into lipid rafts made using a detergent-free method, but is extracted from low density fractions by Triton X-100. By screening several detergents, we identified Brij 98 as a detergent in which the EGF receptor is retained in detergent-resistant membrane fractions. To identify the difference in lipid composition between those rafts that harbored the EGF receptor (detergent-free and Brij 98-resistant) and those that did not (Triton X-100-resistant), we used multidimensional electrospray ionization mass spectrometry to perform a lipidomics study on these three raft preparations. Although all three raft preparations were similarly enriched in cholesterol, the EGF receptor-containing rafts contained more ethanolamine glycerophospholipids and less sphingomyelin than did the non-EGF receptor-containing Triton X-100 rafts. As a result, the detergent-free and Brij 98-resistant rafts exhibited a balance of inner and outer leaflet lipids, whereas the Triton X-100 rafts contained a preponderance of outer leaflet lipids. Furthermore, in all raft preparations, the outer leaflet phospholipid species were significantly different from those in the bulk membrane, whereas the inner leaflet lipids were quite similar to those found in the bulk membrane. These findings indicate that the EGF receptor is retained only in rafts that exhibit a lipid distribution compatible with a bilayer structure and that the selection of phospholipids for inclusion into rafts occurs mainly on the outer leaflet lipids.
Collapse
Affiliation(s)
- Linda J Pike
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
83
|
Papanikolaou A, Papafotika A, Murphy C, Papamarcaki T, Tsolas O, Drab M, Kurzchalia TV, Kasper M, Christoforidis S. Cholesterol-dependent Lipid Assemblies Regulate the Activity of the Ecto-nucleotidase CD39. J Biol Chem 2005; 280:26406-14. [PMID: 15890655 DOI: 10.1074/jbc.m413927200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD39 (ecto-nucleoside triphosphate diphosphohydrolase-1; E-NTPDase1) is a plasma membrane ecto-enzyme that regulates purinergic receptor signaling by controlling the levels of extracellular nucleotides. In blood vessels this enzyme exhibits a thromboregulatory role through the control of platelet aggregation. CD39 is localized in caveolae, which are plasma membrane invaginations with distinct lipid composition, similar to dynamic lipid microdomains, called rafts. Cholesterol is enriched together with sphingolipids in both rafts and caveolae, as well as in other specialized domains of the membrane, and plays a key role in their function. Here, we examine the potential role of cholesterol-enriched domains in CD39 function. Using polarized Madin-Darby canine kidney (MDCK) cells and caveolin-1 gene-disrupted mice, we show that caveolae are not essential either for the enzymatic activity of CD39 or for its targeting to plasma membrane. On the other hand, flotation experiments using detergent-free or detergent-based approaches indicate that CD39 associates, at least in part, with distinct lipid assemblies. In the apical membrane of MDCK cells, which lacks caveolae, CD39 is localized in microvilli, which are also cholesterol and raft-dependent membrane domains. Interfering with cholesterol levels using drugs that either deplete or sequester membrane cholesterol results in a strong inhibition of the enzymatic and anti-platelet activity of CD39. The effects of cholesterol depletion are completely reversed by replenishment of membranes with pure cholesterol, but not by cholestenone. These data suggest a functional link between the localization of CD39 in cholesterol-rich domains of the membrane and its role in thromboregulation.
Collapse
MESH Headings
- Actins/chemistry
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Apyrase/biosynthesis
- Apyrase/chemistry
- Apyrase/metabolism
- Caveolin 1
- Caveolins/genetics
- Cell Line
- Cell Membrane/metabolism
- Cholesterol/chemistry
- Cholesterol/metabolism
- Cricetinae
- Detergents/pharmacology
- Dogs
- Dose-Response Relationship, Drug
- Endothelium, Vascular/metabolism
- Filipin/pharmacology
- Fluorescent Antibody Technique, Indirect
- Humans
- Immunohistochemistry
- Lipids/chemistry
- Lung/metabolism
- Membrane Microdomains/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Nystatin/pharmacology
- Placenta/metabolism
- Plasmids/metabolism
- Platelet Aggregation
- Protein Binding
- Protein Structure, Tertiary
- Spleen/metabolism
- Sucrose/pharmacology
- Time Factors
- Transfection
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- Agathi Papanikolaou
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Ciana A, Balduini C, Minetti G. Detergent-resistant membranes in human erythrocytes and their connection to the membrane-skeleton. J Biosci 2005; 30:317-28. [PMID: 16052070 DOI: 10.1007/bf02703669] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In cell membranes, local inhomogeneity in the lateral distribution of lipids and proteins is thought to exist in vivo in the form of lipid 'rafts', microdomains enriched in cholesterol and sphingolipids, and in specific classes of proteins, that appear to play specialized roles for signal transduction, cell-cell recognition, parasite or virus infection, and vesicular trafficking. These structures are operationally defined as membranes resistant to solubilization by nonionic detergents at 4 degree C (detergent-resistant membranes, DRMs). This definition appears to be necessary and sufficient, although additional manoeuvres, not always described with sufficient detail, may be needed to ensure isolation of DRMs, like mechanical homogenization, and changes in the pH and/or ionic strength of the solubilization medium. We show here for the human erythrocyte that the different conditions adopted may lead to the isolation of qualitatively and quantitatively different DRM fractions, thus contributing to the complexity of the notion itself of lipid raft. A significant portion of erythrocyte DRMs enriched in reported lipid raft markers, such as flotillin-1, flotillin-2 and GM1, is anchored to the spectrin membrane-skeleton via electrostatic interactions that can be disrupted by the simultaneous increase in pH and ionic strength of the solubilization medium.
Collapse
Affiliation(s)
- Annarita Ciana
- Università di Pavia, Dipartimento di Biochimica "A. Castellani", via Bassi, 21, 27100 Pavia, Italy
| | | | | |
Collapse
|
85
|
Pike LJ. Growth factor receptors, lipid rafts and caveolae: an evolving story. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:260-73. [PMID: 15951036 DOI: 10.1016/j.bbamcr.2005.05.005] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/25/2005] [Accepted: 05/13/2005] [Indexed: 11/16/2022]
Abstract
Growth factor receptors have been shown to be localized to lipid rafts and caveolae. Consistent with a role for these cholesterol-enriched membrane domains in growth factor receptor function, the binding and kinase activities of growth factor receptors are susceptible to regulation by changes in cholesterol content. Furthermore, knockouts of caveolin-1, the structural protein of caveolae, have confirmed that this protein, and by implication caveolae, modulate the ability of growth factor receptors to signal. This article reviews the findings pertinent to the relationship between growth factor receptors, lipid rafts and caveolae and presents a model for understanding the disparate observations regarding the role of membrane microdomains in the regulation of growth factor receptor function.
Collapse
Affiliation(s)
- Linda J Pike
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 So. Euclid, Box 8231, St. Louis, MO 63110, USA.
| |
Collapse
|
86
|
Hummel I, Klappe K, Kok JW. Up-regulation of lactosylceramide synthase in MDR1 overexpressing human liver tumour cells. FEBS Lett 2005; 579:3381-4. [PMID: 15936020 DOI: 10.1016/j.febslet.2005.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 04/27/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022]
Abstract
HepG2 cells, stably transfected with MDR1 cDNA, encoding the P-glycoprotein multidrug resistance efflux pump, display an altered sphingolipid composition compared to control cells, stably transfected with empty vector. The MDR1 overexpressing cells display a approximately 3-fold increased level of lactosylceramide and an increased ganglioside mass. Both the mRNA and the activity of lactosylceramide synthase were increased in HepG2/MDR1 cells. In conclusion, the increased glycolipid content in MDR1-transfected HepG2 cells is caused by a transcriptional up-regulation of the enzyme lactosylceramide synthase.
Collapse
Affiliation(s)
- Ina Hummel
- University Medical Center Groningen, Department of Cell Biology, Section Membrane Cell Biology, A. Deusinglaan 1, Bldg 3215, 10th fl, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
87
|
Hammond AT, Heberle FA, Baumgart T, Holowka D, Baird B, Feigenson GW. Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc Natl Acad Sci U S A 2005; 102:6320-5. [PMID: 15851688 PMCID: PMC1088350 DOI: 10.1073/pnas.0405654102] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Indexed: 01/14/2023] Open
Abstract
The mechanisms by which a cell uses and adapts its functional membrane organization are poorly understood and are the subject of ongoing investigation and discussion. Here, we study one proposed mechanism: the crosslinking of membrane components. In immune cell signaling (and other membrane-associated processes), a small change in the clustering of specific membrane proteins can lead to large-scale reorganizations that involve numerous other membrane components. We have investigated the large-scale physical effect of crosslinking a minor membrane component, the ganglioside GM1, in simple lipid models of the plasma membrane containing sphingomyelin, cholesterol, and phosphatidylcholine. We observe that crosslinking GM1 can cause uniform membranes to phase-separate into large, coexistent liquid ordered and liquid disordered membrane domains. We also find that this lipid separation causes a dramatic redistribution of a transmembrane peptide, consistent with a raft model of membrane organization. These experiments demonstrate a mechanism that could contribute to the effects of crosslinking observed in cellular processes: Domains induced by clustering a small number of proteins or lipids might rapidly reorganize many other membrane proteins.
Collapse
Affiliation(s)
- A T Hammond
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
88
|
Boukh-Viner T, Guo T, Alexandrian A, Cerracchio A, Gregg C, Haile S, Kyskan R, Milijevic S, Oren D, Solomon J, Wong V, Nicaud JM, Rachubinski RA, English AM, Titorenko VI. Dynamic ergosterol- and ceramide-rich domains in the peroxisomal membrane serve as an organizing platform for peroxisome fusion. ACTA ACUST UNITED AC 2005; 168:761-73. [PMID: 15738267 PMCID: PMC2171827 DOI: 10.1083/jcb.200409045] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We describe unusual ergosterol- and ceramide-rich (ECR) domains in the membrane of yeast peroxisomes. Several key features of these detergent-resistant domains, including the nature of their sphingolipid constituent and its unusual distribution across the membrane bilayer, clearly distinguish them from well characterized detergent-insoluble lipid rafts in the plasma membrane. A distinct set of peroxisomal proteins, including two ATPases, Pex1p and Pex6p, as well as phosphoinositide- and GTP-binding proteins, transiently associates with the cytosolic face of ECR domains. All of these proteins are essential for the fusion of the immature peroxisomal vesicles P1 and P2, the earliest intermediates in a multistep pathway leading to the formation of mature, metabolically active peroxisomes. Peroxisome fusion depends on the lateral movement of Pex1p, Pex6p, and phosphatidylinositol-4,5-bisphosphate–binding proteins from ECR domains to a detergent-soluble portion of the membrane, followed by their release to the cytosol. Our data suggest a model for the multistep reorganization of the multicomponent peroxisome fusion machinery that transiently associates with ECR domains.
Collapse
Affiliation(s)
- Tatiana Boukh-Viner
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Tietz P, Jefferson J, Pagano R, Larusso NF. Membrane microdomains in hepatocytes: potential target areas for proteins involved in canalicular bile secretion. J Lipid Res 2005; 46:1426-32. [PMID: 15834130 DOI: 10.1194/jlr.m400412-jlr200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The formation of hepatic bile requires that water be transported across liver epithelia. Rat hepatocytes express three aquaporins (AQPs): AQP8, AQP9, and AQP0. Recognizing that cholesterol and sphingolipids are thought to promote the assembly of proteins into specialized membrane microdomains, we hypothesized that canalicular bile secretion involves the trafficking of vesicles to and from localized lipid-enriched microdomains in the canalicular plasma membrane. Hepatocyte plasma membranes were sonicated in Triton and centrifuged overnight on a sucrose gradient to yield a Triton-soluble pellet and a Triton-insoluble, sphingolipid-enriched microdomain fraction at the 5%/30% sucrose interface. The detergent-insoluble portion of the hepatocyte plasma membrane was enriched in alkaline phosphatase (a microdomain-positive marker) and devoid of amino-peptidase N (a microdomain-negative marker), enriched in caveolin, both AQP8 and AQP9, but negative for clathrin. The microdomain fractions contained chloride-bicarbonate anion exchanger isoform 2 and multidrug resistance-associated protein 2. Exposure of isolated hepatocytes to glucagon increased the expression of AQP8 but not AQP9 in the microdomain fractions. Sphingolipid analysis of the insoluble fraction showed the predominant species to be sphingomyelin. These data support the presence of sphingolipid-enriched microdomains of the hepatocyte membrane that represent potential localized target areas for the clustering of AQPs and functionally related proteins involved in canalicular bile secretion.
Collapse
Affiliation(s)
- P Tietz
- Center for Basic Research in Digestive Diseases, Mayo Medical School, Clinic, and Foundation, Rochester, MN, USA
| | | | | | | |
Collapse
|
90
|
Gil C, Soler-Jover A, Blasi J, Aguilera J. Synaptic proteins and SNARE complexes are localized in lipid rafts from rat brain synaptosomes. Biochem Biophys Res Commun 2005; 329:117-24. [PMID: 15721282 DOI: 10.1016/j.bbrc.2005.01.111] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Indexed: 12/17/2022]
Abstract
The biochemical characterization of the SNARE proteins present in lipid microdomains, also known as "lipid rafts," has been addressed in earlier studies, with conflicting data from different laboratories. In this study, we use rat brain synaptosomes as a model with which to examine the presence of proteins involved in exocytosis in detergent-resistant membranes (DRM), also known as 'lipid rafts.' By means of buoyancy analysis in sucrose gradients of Triton X-100-solubilized synaptosomes, we identified a pool of SNARE proteins (SNAP 25, syntaxin 1, and synaptobrevin2/VAMP2) significantly associated with DRM. Furthermore, Munc18, synaptophysin, and high amounts of the isoforms I and II of synaptotagmin were also found in DRM. In addition, SDS-resistant and temperature-dependent SNARE complexes were also detected in DRM. Treatment of synaptosomes with methyl-beta-cyclodextrin resulted in persistence of the proteins present in the DRM isolated using Triton X-100, whilst strongly impairing calcium-dependent glutamate release. The results from the present work show that lipid microdomains are sites where SNARE proteins and complexes are actually present, as well as important elements in the control of regulated exocytosis.
Collapse
Affiliation(s)
- Carles Gil
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola 08193, Catalunya, Spain.
| | | | | | | |
Collapse
|
91
|
Massimino ML, Ballarin C, Bertoli A, Casonato S, Genovesi S, Negro A, Sorgato MC. Human Doppel and prion protein share common membrane microdomains and internalization pathways. Int J Biochem Cell Biol 2005; 36:2016-31. [PMID: 15203115 DOI: 10.1016/j.biocel.2004.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 02/17/2004] [Accepted: 03/15/2004] [Indexed: 11/24/2022]
Abstract
Doppel is the first identified homologue of the prion protein (PrPc) implicated in prion disease. Doppel is considered an N-truncated form of PrPc, and shares with PrPc several structural and biochemical features. When over expressed in the brain of some PrP knockout animals, it provokes cerebellar ataxia. As this phenotype is rescued by reintroducing the PrP gene, it has been suggested that Doppel and PrPc have antagonistic functions and may compete for a common ligand. However, a direct interaction between the two proteins has recently been observed. To investigate whether the neuronal environment is suitable for such possibility, human Doppel and PrPc were expressed separately, or together, in neuroblastoma cells, and then studied by biochemical and immunomicroscopic tools, as well as in intact cells expressing fluorescent fusion constructs. The results demonstrate that Doppel and PrPc co-patch extensively at the plasma membrane, and get internalized together after ganglioside cross-linking by cholera toxin or addition of an antibody against only one of the proteins. These processes no longer occur if the integrity of rafts is disrupted. We also show that, whereas each protein expressed alone occupies Triton X-100-insoluble membrane microdomains, co-transfected Doppel and PrPc redistribute together into a less ordered lipidic environment. All these features are consistent with interactions occurring between Doppel and PrPc in our neuronal cell model.
Collapse
Affiliation(s)
- Maria Lina Massimino
- Dipartimento di Chimica Biologica, Università degli Studi di Padova, Istituto CNR di Neuroscienze and C.R.I.B.I., Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Lipid rafts are small plasma membrane domains that contain high levels of cholesterol and sphingolipids. Traditional methods for the biochemical isolation of lipid rafts involve the extraction of cells with nonionic detergents followed by the separation of a low-density, detergent-resistant membrane fraction on density gradients. Because of concerns regarding the possible introduction of artifacts through the use of detergents, it is important to develop procedures for the isolation of lipid rafts that do not involve detergent extraction. We report here a simplified method for the purification of detergent-free lipid rafts that requires only one short density gradient centrifugation, but yields a membrane fraction that is highly enriched in cholesterol and protein markers of lipid rafts, with no contamination from nonraft plasma membrane or intracellular membranes.
Collapse
Affiliation(s)
- Jennifer L Macdonald
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
93
|
Abstract
Considerable evidence shows that lateral inhomogeneities in lipid composition and physical properties exist in biological membranes. These membrane lipid domains are proposed to play important roles in processes such as signal transduction and membrane traffic. However, there is not at present an adequate description of the nature of these lipid domains in terms of their size, abundance, composition, or dynamics. We discuss the current analyses of the properties and function of membrane domains in cells and compare their properties with chemically simpler model membrane systems that can be understood in greater detail.
Collapse
Affiliation(s)
- Sushmita Mukherjee
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
94
|
Hoekstra D, Tyteca D, van IJzendoorn SCD. The subapical compartment: a traffic center in membrane polarity development. J Cell Sci 2005; 117:2183-92. [PMID: 15126620 DOI: 10.1242/jcs.01217] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Spatially separated apical and basolateral plasma membrane domains that have distinct functions and molecular compositions are a characteristic feature of epithelial cell polarity. The subapical compartment (SAC), also known as the common endosome (CE), where endocytic pathways from both surfaces merge, plays a crucial role in the maintenance and probably the biogenesis of these distinct membrane domains. Although differences in morphology are apparent, the same principal features of a SAC can be distinguished in different types of epithelial cells. As polarity develops, the compartment acquires several distinct machineries that, in conjunction with the cytoskeleton, are necessary for polarized trafficking. Disrupting trafficking via the SAC and hence bypassing its sorting machinery, as occurs upon actin depolymerization, leads to mis-sorting of apical and basolateral molecules, thereby compromising the development of polarity. The structural and functional integrity of the compartment in part depends on microtubules. Moreover, the acquisition of a particular set of Rab proteins, including Rab11 and Rab3, appears to be crucial in regulating molecular sorting and vesicular transport relevant both to recycling to either plasma membrane domain and to de novo assembly of the apical domain. Furthermore, subcompartmentalization of the SAC appears to be key to its various functions.
Collapse
Affiliation(s)
- Dick Hoekstra
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
95
|
Wüstner D. Mathematical analysis of hepatic high density lipoprotein transport based on quantitative imaging data. J Biol Chem 2004; 280:6766-79. [PMID: 15613466 DOI: 10.1074/jbc.m413238200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hepatocytes internalize high density lipoprotein (HDL) at the basolateral membrane. Most HDL is recycled while some is shuttled to the canalicular membrane by transcytosis. Here, transport of HDL was analyzed by mathematical modeling based on measurements in polarized hepatic HepG2 cells. Recycling of HDL from basolateral sorting endosomes was modeled by applying the rapid equilibrium approach. Analytical expressions were derived, which describe in one model the transport of HDL to the subapical compartment/apical recycling compartment, the biliary canaliculus (BC), and to late endosomes and lysosomes (LE/LYS). Apical endocytosis of HDL predicted by the model was confirmed for rhodamine-dextran and fluorescent asialoorosomucoid, markers for LE/LYS in living HepG2 cells. Budding of endocytic vesicles from the BC was directly observed by time lapse imaging of a fluorescent lipid probe. Based on fitted kinetic parameters and their covariance matrix a Monte Carlo simulation of HDL transport in hepatocytes was performed. The model was used to quantitatively assess release of HDL-associated free cholesterol by scavenger receptor BI. It is shown that only 6% of HDL-associated sterol reaches the BC as a constituent of the HDL particles, whereas the remaining sterol is rapidly released from HDL and shuttled to the BC by non-vesicular transport.
Collapse
Affiliation(s)
- Daniel Wüstner
- Theoretical Biophysics Group, Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany.
| |
Collapse
|
96
|
Matto M, Rice CM, Aroeti B, Glenn JS. Hepatitis C virus core protein associates with detergent-resistant membranes distinct from classical plasma membrane rafts. J Virol 2004; 78:12047-53. [PMID: 15479844 PMCID: PMC523261 DOI: 10.1128/jvi.78.21.12047-12053.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subpopulation of hepatitis C virus (HCV) core protein in cells harboring full-length HCV replicons is biochemically associated with detergent-resistant membranes (DRMs) in a manner similar to that of markers of classical lipid rafts. Core protein does not, however, colocalize in immunofluorescence studies with classical plasma membrane raft markers, such as caveolin-1 and the B subunit of cholera toxin, suggesting that core protein is bound to cytoplasmic raft microdomains distinct from caveolin-based rafts. Furthermore, while both the structural core protein and the nonstructural protein NS5A associate with membranes, they do not colocalize in the DRMs. Finally, the ability of core protein to localize to the DRMs did not require other elements of the HCV polyprotein. These results may have broad implications for the HCV life cycle and suggest that the HCV core may be a valuable probe for host cell biology.
Collapse
Affiliation(s)
- Meirav Matto
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, CCSR Building, Room 3115, 269 Campus Dr., Palo Alto, CA 94305-5187, USA
| | | | | | | |
Collapse
|
97
|
Laughlin RC, McGugan GC, Powell RR, Welter BH, Temesvari LA. Involvement of raft-like plasma membrane domains of Entamoeba histolytica in pinocytosis and adhesion. Infect Immun 2004; 72:5349-57. [PMID: 15322032 PMCID: PMC517461 DOI: 10.1128/iai.72.9.5349-5357.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 05/22/2004] [Indexed: 01/11/2023] Open
Abstract
Lipid rafts are highly ordered, cholesterol-rich, and detergent-resistant microdomains found in the plasma membrane of many eukaryotic cells. These domains play important roles in endocytosis, secretion, and adhesion in a variety of cell types. The parasitic protozoan Entamoeba histolytica, the causative agent of amoebic dysentery, was determined to have raft-like plasma membrane domains by use of fluorescent lipid analogs that specifically partition into raft and nonraft regions of the membrane. Disruption of raft-like membrane domains in Entamoeba with the cholesterol-binding agents filipin and methyl-beta-cyclodextrin resulted in the inhibition of several important virulence functions, fluid-phase pinocytosis, and adhesion to host cell monolayers. However, disruption of raft-like domains did not inhibit constitutive secretion of cysteine proteases, another important virulence function of Entamoeba. Flotation of the cold Triton X-100-insoluble portion of membranes on sucrose gradients revealed that the heavy, intermediate, and light subunits of the galactose-N-acetylgalactosamine-inhibitible lectin, an important cell surface adhesion molecule of Entamoeba, were enriched in cholesterol-rich (raft-like) fractions, whereas EhCP5, another cell surface molecule, was not enriched in these fractions. The subunits of the lectin were also observed in high-density, actin-rich fractions of the sucrose gradient. Together, these data suggest that pinocytosis and adhesion are raft-dependent functions in this pathogen. This is the first report describing the existence and physiological relevance of raft-like membrane domains in E. histolytica.
Collapse
Affiliation(s)
- Richard C Laughlin
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | | | | | | | | |
Collapse
|
98
|
Van IJzendoorn SCD, Théard D, Van Der Wouden JM, Visser W, Wojtal KA, Hoekstra D. Oncostatin M-stimulated apical plasma membrane biogenesis requires p27(Kip1)-regulated cell cycle dynamics. Mol Biol Cell 2004; 15:4105-14. [PMID: 15240818 PMCID: PMC515344 DOI: 10.1091/mbc.e04-03-0201] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 06/17/2004] [Accepted: 06/24/2004] [Indexed: 11/11/2022] Open
Abstract
Oncostatin M regulates membrane traffic and stimulates apicalization of the cell surface in hepatoma cells in a protein kinase A-dependent manner. Here, we show that oncostatin M enhances the expression of the cyclin-dependent kinase (cdk)2 inhibitor p27(Kip1), which inhibits G(1)-S phase progression. Forced G(1)-S-phase transition effectively renders presynchronized cells insensitive to the apicalization-stimulating effect of oncostatin M. G(1)-S-phase transition prevents oncostatin M-mediated recruitment of protein kinase A to the centrosomal region and precludes the oncostatin M-mediated activation of a protein kinase A-dependent transport route to the apical surface, which exits the subapical compartment (SAC). This transport route has previously been shown to be crucial for apical plasma membrane biogenesis. Together, our data indicate that oncostatin M-stimulated apicalization of the cell surface is critically dependent on the ability of oncostatin M to control p27(Kip1)/cdk2-mediated G(1)-S-phase progression and suggest that the regulation of apical plasma membrane-directed traffic from SAC is coupled to centrosome-associated signaling pathways.
Collapse
Affiliation(s)
- Sven C D Van IJzendoorn
- Department of Membrane Cell Biology, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
99
|
Van IJzendoorn SCD, Van Der Wouden JM, Liebisch G, Schmitz G, Hoekstra D. Polarized membrane traffic and cell polarity development is dependent on dihydroceramide synthase-regulated sphinganine turnover. Mol Biol Cell 2004; 15:4115-24. [PMID: 15229289 PMCID: PMC515345 DOI: 10.1091/mbc.e04-04-0290] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 06/09/2004] [Accepted: 06/17/2004] [Indexed: 01/22/2023] Open
Abstract
Sphingoid bases have been implicated in various cellular processes including cell growth, apoptosis and cell differentiation. Here, we show that the regulated turnover of sphingoid bases is crucial for cell polarity development, i.e., the biogenesis of apical plasma membrane domains, in well-differentiated hepatic cells. Thus, inhibition of dihydroceramide synthase or sphinganine kinase activity with fumonisin B1 or N,N-dimethylsphingosine, respectively, dramatically perturbs cell polarity development, which is due to increased levels of sphinganine. Consistently, reduction of free sphinganine levels stimulates cell polarity development. Moreover, dihydroceramide synthase, the predominant enzyme responsible for sphinganine turnover, is a target for cell polarity stimulating cAMP/protein kinase A (PKA) signaling cascades. Indeed, electrospray ionization tandem mass spectrometry analyses revealed a significant reduction in sphinganine levels in cAMP/PKA-stimulated cells. These data suggest that sphinganine turnover is critical for and is actively regulated during HepG2 cell polarity development. Previously, we have identified an apical plasma membrane-directed trafficking pathway from the subapical compartment. This transport pathway, which is part of the basolateral-to-apical transcytotic itinerary, plays a crucial role in apical plasma membrane biogenesis. Here, we show that, as a part of the underlying mechanism, the inhibition of dihydroceramide synthase activity and ensuing increased sphinganine levels specifically perturb the activation of this particular pathway in the de novo apical membrane biogenesis.
Collapse
Affiliation(s)
- Sven C D Van IJzendoorn
- Department of Cell Biology/Section Membrane Cell Biology, University of Groningen, 9713-AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
100
|
Lucero HA, Robbins PW. Lipid rafts-protein association and the regulation of protein activity. Arch Biochem Biophys 2004; 426:208-24. [PMID: 15158671 DOI: 10.1016/j.abb.2004.03.020] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 03/22/2004] [Indexed: 11/18/2022]
Abstract
Lipid rafts are membrane microdomains enriched in saturated phospholipids, sphingolipids, and cholesterol. They have a varied but distinct protein composition and have been implicated in diverse cellular processes including polarized traffic, signal transduction, endo- and exo-cytoses, entrance of obligate intracellular pathogens, and generation of pathological forms of proteins associated with Alzheimer's and prion diseases. Raft proteins can be permanently or temporarily associated to lipid rafts. Here, we review recent advances on the biochemical and cell biological characterization of rafts, and on the emerging concept of the temporary residency of proteins in rafts as a regulatory mechanism of their biological activity.
Collapse
Affiliation(s)
- Héctor A Lucero
- Department of Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University Medical Center, Boston, MA 02118, USA.
| | | |
Collapse
|