51
|
Leandro-García LJ, Leskelä S, Landa I, Montero-Conde C, López-Jiménez E, Letón R, Cascón A, Robledo M, Rodríguez-Antona C. Tumoral and tissue-specific expression of the major human beta-tubulin isotypes. Cytoskeleton (Hoboken) 2010; 67:214-23. [PMID: 20191564 DOI: 10.1002/cm.20436] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The beta-tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several widely used anticancer drugs base their activity on beta-tubulin binding, microtubule dynamics alteration, and cell division blockage. The expression of these drug targets in tumoral and normal cells could be of crucial importance for therapy outcome, unfortunately, the complex beta-tubulin expression patterns have been poorly characterized in human. In this study, we developed a quantitative RT-PCR technique that accurately determines the mRNA expression of the eight human beta-tubulin isotypes, encoding class I, IIa, IIb, III, IVa, IVb, V, and VI and applied it to 21 nontumoral tissues and 79 tumor samples belonging to seven cancer types. In the nontumoral tissues, we found that, overall, TUBB (I), TUBB2C (IVb), and TUBB6 (V) were ubiquitous, TUBB1(VI) was hematopoietic cell-specific, and TUBB2A (IIa), TUBB2B (IIb), TUBB3 (III), and TUBB4 (IVa) had high expression in brain; however, the contribution of the different isotypes to the total beta-tubulin content varied for each tissue and had a complex pattern. In tumoral tissues, most isotypes exhibited an altered expression in specific tumor types or related to tumoral characteristics. In general, TUBB3 showed a great increase in expression while TUBB6 expression was largely decreased in most tumors. Thus, normal tissues showed a complex beta-tubulin isotype distribution, which could contribute to the toxicity profile of the microtubule-binding drugs. In addition, the specific isotypes significantly altered in tumors might represent markers for drug response.
Collapse
Affiliation(s)
- Luis J Leandro-García
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro n 3, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Guo J, Walss-Bass C, Ludueña RF. The beta isotypes of tubulin in neuronal differentiation. Cytoskeleton (Hoboken) 2010; 67:431-41. [PMID: 20506160 PMCID: PMC2905799 DOI: 10.1002/cm.20455] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 05/05/2010] [Indexed: 11/10/2022]
Abstract
The differences among the vertebrate beta isotypes of tubulin are highly conserved in evolution, suggesting that they have functional significance. To address this, we have used differentiating neuroblastoma cells as a model system. These cells express the betaI, betaII, and betaIII isotypes. Although there is no difference prior to differentiation, a striking difference is seen after differentiation. Both betaI and betaIII occur in cell bodies and neurites, while betaII occurs mostly in neurites. Knocking down betaI causes a large decrease in cell viability while silencing betaII and betaIII does not. Knocking down betaII causes a large decrease in neurite outgrowth without affecting viability. Knocking down betaIII has little effect on neurite outgrowth and only decreases viability if cells are treated with glutamate and glycine, a combination known to generate free radicals and reactive oxygen species. It appears, therefore, that betaI is required for cell viability, betaII for neurite outgrowth and betaIII for protection against free radicals and reactive oxygen species.
Collapse
Affiliation(s)
- Jiayan Guo
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Consuelo Walss-Bass
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Richard F. Ludueña
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
53
|
Abstract
Microtubules are dynamic structures composed of alpha-beta-tubulin heterodimers that are essential in cell division and are important targets for cancer drugs. Mutations in beta-tubulin that affect microtubule polymer mass and/or drug binding are associated with resistance to tubulin-binding agents such as paclitaxel. The aberrant expression of specific beta-tubulin isotypes, in particular betaIII-tubulin, or of microtubule-regulating proteins is important clinically in tumour aggressiveness and resistance to chemotherapy. In addition, changes in actin regulation can also mediate resistance to tubulin-binding agents. Understanding the molecular mechanisms that mediate resistance to tubulin-binding agents will be vital to improve the efficacy of these agents.
Collapse
Affiliation(s)
- Maria Kavallaris
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW 2031, Australia.
| |
Collapse
|
54
|
Abstract
The involvement of tubulin mutations as a cause of clinical drug resistance has been intensely debated in recent years. In the studies described here, we used transfection to test whether beta1-tubulin mutations and polymorphisms found in cancer patients are able to confer resistance to drugs that target microtubules. Three of four mutations (A185T, A248V, R306C, but not G437S) that we tested caused paclitaxel resistance, as indicated by the following observations: (a) essentially 100% of cells selected in paclitaxel contained transfected mutant tubulin; (b) paclitaxel resistance could be turned off using tetracycline to turn off transgene expression; (c) paclitaxel resistance increased as mutant tubulin production increased. All the paclitaxel resistance mutations disrupted microtubule assembly, conferred increased sensitivity to microtubule-disruptive drugs, and produced defects in mitosis. The results are consistent with a mechanism in which tubulin mutations alter microtubule stability in a way that counteracts drug action. These studies show that human tumor cells can acquire spontaneous mutations in beta1-tubulin that cause resistance to paclitaxel, and suggest that patients with some polymorphisms in beta1-tubulin may require higher drug concentrations for effective therapy.
Collapse
Affiliation(s)
- Shanghua Yin
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, PO Box 20708, Houston, TX 77225, USA
| | | | | |
Collapse
|
55
|
Global gene expression analysis during sporulation of the aquatic fungus Blastocladiella emersonii. EUKARYOTIC CELL 2009; 9:415-23. [PMID: 20038607 DOI: 10.1128/ec.00312-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Blastocladiella emersonii life cycle presents a number of drastic biochemical and morphological changes, mainly during two cell differentiation stages: germination and sporulation. To investigate the transcriptional changes taking place during the sporulation phase, which culminates with the production of the zoospores, motile cells responsible for the dispersal of the fungus, microarray experiments were performed. Among the 3,773 distinct genes investigated, a total of 1,207 were classified as differentially expressed, relative to time zero of sporulation, at at least one of the time points analyzed. These results indicate that accurate transcriptional control takes place during sporulation, as well as indicating the necessity for distinct molecular functions throughout this differentiation process. The main functional categories overrepresented among upregulated genes were those involving the microtubule, the cytoskeleton, signal transduction involving Ca(2+), and chromosome organization. On the other hand, protein biosynthesis, central carbon metabolism, and protein degradation were the most represented functional categories among downregulated genes. Gene expression changes were also analyzed in cells sporulating in the presence of subinhibitory concentrations of glucose or tryptophan. Data obtained revealed overexpression of microtubule and cytoskeleton transcripts in the presence of glucose, probably causing the shape and motility problems observed in the zoospores produced under this condition. In contrast, the presence of tryptophan during sporulation led to upregulation of genes involved in oxidative stress, proteolysis, and protein folding. These results indicate that distinct physiological pathways are involved in the inhibition of sporulation due to these two classes of nutrient sources.
Collapse
|
56
|
Yang H, Cabral F, Bhattacharya R. Tubulin isotype specificity and identification of the epitope for antibody Tub 2.1. Protein Eng Des Sel 2009; 22:625-9. [DOI: 10.1093/protein/gzp046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
57
|
Alonso ADC, Corbo CP. Novel therapeutics based on tau/microtubule dynamics: WO2008084483. Expert Opin Ther Pat 2009; 19:1335-8. [DOI: 10.1517/13543770902887815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
58
|
Bhattacharya R, Cabral F. Molecular basis for class V beta-tubulin effects on microtubule assembly and paclitaxel resistance. J Biol Chem 2009; 284:13023-32. [PMID: 19282281 DOI: 10.1074/jbc.m900167200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrates produce at least seven distinct beta-tubulin isotypes that coassemble into all cellular microtubules. The functional differences among these tubulin isoforms are largely unknown, but recent studies indicate that tubulin composition can affect microtubule properties and cellular microtubule-dependent behavior. One of the isotypes whose incorporation causes the largest change in microtubule assembly is beta5-tubulin. Overexpression of this isotype can almost completely destroy the microtubule network, yet it appears to be required in smaller amounts for normal mitotic progression. Moderate levels of overexpression can also confer paclitaxel resistance. Experiments using chimeric constructs and site-directed mutagenesis now indicate that the hypervariable C-terminal region of beta5 plays no role in these phenotypes. Instead, we demonstrate that two residues found in beta5 (Ser-239 and Ser-365) are each sufficient to inhibit microtubule assembly and confer paclitaxel resistance when introduced into beta1-tubulin; yet the single mutation of residue Ser-239 in beta5 eliminates its ability to confer these phenotypes. Despite the high degree of conservation among beta-tubulin isotypes, mutations affecting residue 365 demonstrate that amino acid substitutions can be context sensitive; i.e. an amino acid change in one isotype will not necessarily produce the same phenotype when introduced into a different isotype. Modeling studies indicate that residue Cys-239 of beta1-tubulin is close to a highly conserved Cys-354 residue suggesting the possibility that disulfide formation could play a significant role in the stability of microtubules formed with beta1- but not with beta5-tubulin.
Collapse
Affiliation(s)
- Rajat Bhattacharya
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School, Houston, TX 77030, USA
| | | |
Collapse
|
59
|
Dumontet C, Jordan MA, Lee FFY. Ixabepilone: targeting betaIII-tubulin expression in taxane-resistant malignancies. Mol Cancer Ther 2009; 8:17-25. [PMID: 19139109 DOI: 10.1158/1535-7163.mct-08-0986] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microtubule-targeting agents, such as taxanes and epothilones, block mitosis and cell proliferation by targeting the dynamics of the cytoskeleton. The taxanes are widely used for treatment of various malignancies, but primary and acquired resistance to chemotherapy remains a significant clinical concern. Class I, II, III, IV, and V beta-tubulin isotypes are expressed in human tumors. Overexpression of the betaIII-tubulin isotype is one mechanism that can render tumor cells resistant to taxanes. The relative expression of betaIII-tubulin correlates with clinical outcomes in several tumor types, including breast cancer, non-small cell lung cancer, and ovarian cancer. A novel analogue of epothilone B, ixabepilone, has recently been approved in combination with capecitabine for the treatment of patients with anthracycline- and taxane-resistant locally advanced or metastatic breast cancer and as monotherapy in patients whose tumors are resistant or refractory to an anthracycline, a taxane, and capecitabine. The significant antitumor activity of ixabepilone in taxane-resistant tumors may be related to its preferential suppression of the dynamic instability of alpha/betaIII-microtubules in cells expressing high levels of betaIII-tubulin.
Collapse
Affiliation(s)
- Charles Dumontet
- Unité Institut National de la Sante et de la Recherche Medicale 590, Laboratoire de Cytologie Analytique, Faculté de Médecine Rockefeller, 8 Avenue Rockefeller, 69373 Lyon Cedex 08, France.
| | | | | |
Collapse
|
60
|
Bhattacharya R, Frankfurter A, Cabral F. A minor beta-tubulin essential for mammalian cell proliferation. ACTA ACUST UNITED AC 2008; 65:708-20. [PMID: 18553364 DOI: 10.1002/cm.20292] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mammals use tubulin from multiple genes to construct microtubules. Some genes are expressed in a tissue specific manner, while others are expressed in almost all cell types. beta5-Tubulin is a minor, ubiquitous isoform whose overexpression was recently shown to disrupt microtubules. Using inhibitory RNA, we now report that suppression of beta5 production in both human and hamster cells blocks cell proliferation. Cells depleted of beta5 either trigger the mitotic checkpoint and undergo apoptosis; or they experience a transient mitotic block, a high incidence of lagging chromosomes, and progression into G1 without cytokinesis to become large, flat cells with elevated DNA content. Microtubules appear to be normally organized in cells depleted of beta5, but they are rich in acetylated alpha-tubulin indicating that they may be more stable than normal. The results provide the first evidence that a specific isoform of beta-tubulin is required for mitosis.
Collapse
Affiliation(s)
- Rajat Bhattacharya
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
61
|
Galletti E, Magnani M, Renzulli ML, Botta M. Paclitaxel and docetaxel resistance: molecular mechanisms and development of new generation taxanes. ChemMedChem 2008; 2:920-42. [PMID: 17530726 DOI: 10.1002/cmdc.200600308] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Taxanes represent one of the most promising classes of anticancer agents. Unfortunately, their clinical success has been limited by the insurgence of cellular resistance, mainly mediated by the expression of the MDR phenotype or by microtubule alterations. However, the remarkable relevance of paclitaxel and docetaxel in clinical oncology stimulated intensive efforts in the last decade to identify new derivatives endowed with improved activities towards resistant tumor cells, resulting in a huge number of novel natural and synthetic taxanes. Among them, several structurally different derivatives were found to exhibit a promising behavior against the MDR phenotype in terms of either MDR inhibiting properties, or enhanced cytotoxicity compared to parental drugs, or both. On the other hand, only in more recent years have the first taxanes retaining activity against resistant cancer cells bearing alterations of the tubulin/microtubule system emerged. This review describes the main molecular mechanisms of resistance to paclitaxel and docetaxel identified so far, focusing on the advances achieved in the development of new taxanes potentially useful for the treatment of resistant tumors.
Collapse
Affiliation(s)
- Elena Galletti
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi, 2, I-53100 Siena, Italy
| | | | | | | |
Collapse
|
62
|
Jordan MA, Horwitz SB, Lobert S, Correia JJ. Exploring the mechanisms of action of the novel microtubule inhibitor vinflunine. Semin Oncol 2008; 35:S6-S12. [PMID: 18538179 DOI: 10.1053/j.seminoncol.2008.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microtubules have been identified as a suitable target for anticancer therapy, primarily based on their biological importance in coordinating chromosomal segregation at mitosis. Two main classes of microtubule-targeted agents, the taxanes and vinca alkaloids, suppress the dynamic behavior of spindle microtubules, inducing mitotic arrest and subsequent apoptotic cell death. Clinical activity of taxanes and first-generation vinca alkaloids in the treatment of solid tumors and hematologic malignancies, respectively, has prompted further research for novel analogs with improved clinical efficacy and safety. Such efforts have led to the development of vinflunine, a bifluorinated vinca alkaloid endowed with unique antitumor properties. Highlighted in this review are the key features of vinflunine that lead to effective suppression of microtubule dynamics and induction of cell death in cancer cells.
Collapse
Affiliation(s)
- Mary Ann Jordan
- Department of Molecular, Cellular and Developmental Biology, University of California-Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
63
|
Cucchiarelli V, Hiser L, Smith H, Frankfurter A, Spano A, Correia JJ, Lobert S. β‐tubulin isotype classes II and V expression patterns in nonsmall cell lung carcinomas. ACTA ACUST UNITED AC 2008; 65:675-85. [DOI: 10.1002/cm.20297] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
64
|
Seward ME, Easley CA, McLeod JJ, Myers AL, Tombes RM. Flightless-I, a gelsolin family member and transcriptional regulator, preferentially binds directly to activated cytosolic CaMK-II. FEBS Lett 2008; 582:2489-95. [DOI: 10.1016/j.febslet.2008.06.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 05/29/2008] [Accepted: 06/05/2008] [Indexed: 11/28/2022]
|
65
|
Sackett DL, Ozbun L, Zudaire E, Wessner L, Chirgwin JM, Cuttitta F, Martínez A. Intracellular proadrenomedullin-derived peptides decorate the microtubules and contribute to cytoskeleton function. Endocrinology 2008; 149:2888-98. [PMID: 18325988 PMCID: PMC2408810 DOI: 10.1210/en.2007-1763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are secretory hormones, but it is not unusual to find them in intracellular compartments. Using yeast-2 hybrid technology, we found interactions between AM and several microtubule-associated proteins (MAPs), and between PAMP and tubulin. Expression of fluorescent-tagged AM and PAMP as well as immunofluorescence for the native peptides showed a complete decoration of the microtubules and colocalization with other MAPs. PAMP, but not AM, bound to tubulin in vitro and destabilized tubulin polymerization. Down-regulation of the gene coding for both AM and PAMP through small interfering RNA technology resulted in morphological changes, microtubule stabilization, increase in posttranslational modifications of tubulin such as acetylation and detyrosination, reduction in cell motility, and partial arrest at the G2 phase of the cell cycle, when compared with cells transfected with the same vector carrying a scrambled sequence. These results show that PAMP is a novel MAP, whereas AM may be exerting more subtle effects in regulating cytoskeleton function.
Collapse
Affiliation(s)
- Dan L Sackett
- Laboratory of Integrative and Medical Biophysics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Yin S, Cabral F, Veeraraghavan S. Amino acid substitutions at proline 220 of beta-tubulin confer resistance to paclitaxel and colcemid. Mol Cancer Ther 2008; 6:2798-806. [PMID: 17938271 DOI: 10.1158/1535-7163.mct-06-0791] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chinese hamster ovary cells selected for resistance to paclitaxel have a high incidence of mutations affecting L215, L217, and L228 in the H6/H7 loop region of beta1-tubulin. To determine whether other mutations in this loop are also capable of conferring resistance to drugs that affect microtubule assembly, saturation mutagenesis of the highly conserved P220 codon in beta1-tubulin cDNA was carried out. Transfection of a mixed pool of plasmids encoding all possible amino acid substitutions at P220 followed by selection in paclitaxel produced cell lines containing P220L and P220V substitutions. Similar selections in colcemid, on the other hand, yielded cell lines with P220C, P220S, and P220T substitutions. Site-directed mutagenesis and retransfection confirmed that these mutations were responsible for drug resistance. Expression of tubulin containing the P220L and P220V mutations reduced microtubule assembly, conferred resistance to paclitaxel and epothilone A, but increased sensitivity to colcemid and vinblastine. In contrast, tubulin with the P220C, P220S, and P220T mutations increased microtubule assembly, conferred resistance to colcemid and vinblastine, but increased sensitivity to paclitaxel and epothilone A. The results are consistent with molecular modeling studies and support a drug resistance mechanism based on changes in microtubule assembly that counteract the effects of drug treatment. These studies show for the first time that different substitutions at the same amino acid residue in beta1-tubulin can confer cellular resistance to either microtubule-stabilizing or microtubule-destabilizing drugs.
Collapse
Affiliation(s)
- Shanghua Yin
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, P. O. Box 20708, Houston, TX 77225, USA
| | | | | |
Collapse
|
67
|
Mhaidat NM, Thorne RF, de Bock CE, Zhang XD, Hersey P. Melanoma cell sensitivity to Docetaxel-induced apoptosis is determined by class III beta-tubulin levels. FEBS Lett 2007; 582:267-72. [PMID: 18086570 DOI: 10.1016/j.febslet.2007.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 12/06/2007] [Indexed: 11/17/2022]
Abstract
We have previously shown that Docetaxel-induced variable degrees of apoptosis in melanoma. In this report, we studied the beta-tubulin repertoire of melanoma cell lines and show that class III beta-tubulin expression correlated with Docetaxel-resistance. Sensitive cells showed low levels of class III beta-tubulin with little microtubular incorporation, whereas class III beta-tubulin expression was higher in resistant cells and was incorporated into the cytoskeleton. As proof of concept, abrogation of class III by siRNA reverted Docetaxel-resistant cells to a sensitive phenotype, restoring the microtubular polymerisation response and promoting high levels of apoptosis through Bax activation. These results suggest that phenotypic expression of beta-tubulin class III in melanoma may help identify patients with melanoma that can respond to taxanes.
Collapse
Affiliation(s)
- Nizar M Mhaidat
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | | | | | | | | |
Collapse
|
68
|
Aggarwal A, Kruczynski A, Frankfurter A, Correia JJ, Lobert S. Murine leukemia P388 vinorelbine-resistant cell lines are sensitive to vinflunine. Invest New Drugs 2007; 26:319-30. [DOI: 10.1007/s10637-007-9102-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Accepted: 11/15/2007] [Indexed: 11/28/2022]
|
69
|
Yang H, Cabral F. Heightened Sensitivity to Paclitaxel in Class IVa β-Tubulin-transfected Cells Is Lost as Expression Increases. J Biol Chem 2007; 282:27058-27066. [PMID: 17627938 DOI: 10.1074/jbc.m704101200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stably transfected Chinese hamster ovary cell lines expressing increasing levels of beta4a, a class IV neuronal-specific beta-tubulin, were compared for effects on microtubule organization, assembly, and sensitivity to antimitotic drugs. It was found that beta4a reduced microtubule assembly in proportion to its abundance and thereby caused supersensitivity to microtubule disruptive drugs such as colcemid, vinblastine, and nocodazole. However, the response to paclitaxel was more complex. Low expression of beta4a caused supersensitivity to paclitaxel, whereas higher expression resulted in the loss of supersensitivity. The results suggest that beta4a may possess an enhanced ability to bind paclitaxel that increases sensitivity to the drug and acts substoichiometrically. At high levels of beta4a expression, however, microtubule disruptive effects counteract the assembly promoting pressure exerted by paclitaxel binding, and drug supersensitivity is lost. beta4a-Tubulin differs from the more ubiquitous beta4b isotype at relatively few amino acid residues, yet beta4b expression has little effect on microtubule assembly or drug response. To determine which amino acids mediate the effects of beta4a expression, beta4a and beta4b were altered by site-directed mutagenesis and expressed in Chinese hamster ovary cells. The introduction of N332S or N335S mutations into beta4b-tubulin was sufficient to confer microtubule disruption and increased colcemid sensitivity. On the other hand, mutation of Ala(115) to serine in beta4a-tubulin almost completely reversed heightened sensitivity to paclitaxel, but introduction of an S115A mutation into beta4b had no effect, suggesting that a complex interaction of multiple amino acids are necessary to produce this phenotype.
Collapse
Affiliation(s)
- Hailing Yang
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, Texas 77030
| | - Fernando Cabral
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, Texas 77030.
| |
Collapse
|
70
|
Altmann KH, Gertsch J. Anticancer drugs from nature--natural products as a unique source of new microtubule-stabilizing agents. Nat Prod Rep 2007; 24:327-57. [PMID: 17390000 DOI: 10.1039/b515619j] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This review article provides an overview on the current state of research in the area of microtubule-stabilizing agents from natural sources, with a primary focus on the biochemistry, biology, and pharmacology associated with these compounds. A variety of natural products have been discovered over the last decade to inhibit human cancer cell proliferation through a taxol-like mechanism. These compounds represent a whole new range of structurally diverse lead structures for anticancer drug discovery.
Collapse
Affiliation(s)
- Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH), HCI H405, Wolfgang-Pauli-Str. 10, CH-8093, Zürich, Switzerland.
| | | |
Collapse
|
71
|
Hari M, Loganzo F, Annable T, Tan X, Musto S, Morilla DB, Nettles JH, Snyder JP, Greenberger LM. Paclitaxel-resistant cells have a mutation in the paclitaxel-binding region of beta-tubulin (Asp26Glu) and less stable microtubules. Mol Cancer Ther 2006; 5:270-8. [PMID: 16505100 DOI: 10.1158/1535-7163.mct-05-0190] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance to paclitaxel-based therapy is frequently encountered in the clinic. The mechanisms of intrinsic or acquired paclitaxel resistance are not well understood. We sought to characterize the resistance mechanisms that develop upon chronic exposure of a cancer cell line to paclitaxel in the presence of the P-glycoprotein reversal agent, CL-347099. The epidermoid tumor line KB-3-1 was exposed to increasing concentrations of paclitaxel and 5 micromol/L CL-347099 for up to 1 year. Cells grown in 15 nmol/L paclitaxel plus CL-347099 (KB-15-PTX/099) developed 18-fold resistance to paclitaxel and were dependent upon paclitaxel for maximal growth. They grew well and retained resistance to paclitaxel when grown in athymic mice. Cross-resistance (3- to 5-fold) was observed in tissue culture to docetaxel, the novel taxane MAC-321, and epothilone B. Collateral sensitivity (approximately 3-fold) was observed to the depolymerizing agents vinblastine, dolastatin-10, and HTI-286. KB-15-PTX/099-resistant cells did not overexpress P-glycoprotein nor did they have an alteration of [14C]paclitaxel accumulation compared with parental cells. However, a novel point mutation (T to A) resulting in Asp26 to glutamate substitution in class I (M40) beta-tubulin was found. Based on an electron crystallography structure of Zn-stabilized tubulin sheets, the phenyl ring of C-3' NHCO-C6H5 of paclitaxel makes contact with Asp26 of beta-tubulin, suggesting a ligand-induced mutation. Optimized model complexes of paclitaxel, docetaxel, and MAC-321 in beta-tubulin show a novel hydrogen bonding pattern for the glutamate mutant and rationalize the observed resistance profiles. However, a mutation in the paclitaxel binding pocket does not explain the phenotype completely. KB-15-PTX/099 cells have impaired microtubule stability as determined by a reduced percentage of tubulin in microtubules and reflected by less acetylated tubulin. These results suggest that a mutation in tubulin might affect microtubule stability as well as drug binding and contribute to the observed resistance profile.
Collapse
Affiliation(s)
- Malathi Hari
- Discovery Oncology, Wyeth, 401 North Middletown Road, Room 4709, Building 200, Pearl River, NY 10965, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Hiser L, Aggarwal A, Young R, Frankfurter A, Spano A, Correia JJ, Lobert S. Comparison of β-tubulin mRNA and protein levels in 12 human cancer cell lines. ACTA ACUST UNITED AC 2006; 63:41-52. [PMID: 16362954 DOI: 10.1002/cm.20109] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antimitotic drugs are chemotherapeutic agents that bind tubulin and microtubules. Resistance to these drugs is a major clinical problem. One hypothesis is that the cellular composition of tubulin isotypes may predict the sensitivity of a tumor to antimitotics. Reliable and sensitive methods for measuring tubulin isotype levels in cells and tissues are needed to address this hypothesis. Quantitative measurements of tubulin isotypes have frequently relied upon inferring protein amounts from mRNA levels. To determine whether this approach is justified, protein and mRNA levels of beta-tubulin isotypes from 12 human cancer cell lines were measured. This work focused on only beta-tubulin isotypes because we had readily available monoclonal antibodies for quantitative immunoblots. The percentage of beta-tubulin isotype classes I, II, III, and IVa + IVb mRNA and protein were compared. For beta-tubulin class I that comprises >50% of the beta-tubulin protein in 10 of the 12 cell lines, there was good agreement between mRNA and protein percentages. Agreement between mRNA and protein was also found for beta-tubulin class III. For beta-tubulin classes IVa + IVb, we observed higher protein levels compared to mRNA levels.Beta-tubulin class II protein was found in only four cell lines and in very low abundance. We conclude that quantitative Western blotting is a reliable method for measuring tubulin isotype levels in human cancer cell lines. Inferring protein amounts from mRNA levels should be done with caution, since the correspondence is not one-to-one for all tubulin isotypes.
Collapse
Affiliation(s)
- Laree Hiser
- School of Nursing, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Klink VP, Alkharouf N, MacDonald M, Matthews B. Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). PLANT MOLECULAR BIOLOGY 2005; 59:965-79. [PMID: 16307369 DOI: 10.1007/s11103-005-2416-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2005] [Accepted: 08/22/2005] [Indexed: 05/05/2023]
Abstract
Roots of soybean, Glycine max cv. Kent L. Merr., plants susceptible to the soybean cyst nematode (SCN), Heterodera glycines Ichinohe, were inoculated and allowed to develop feeding sites (syncytia) for 8 days. Root samples enriched in syncytial cells were collected using laser capture microdissection (LCM). RNA was extracted and used to make a cDNA library and expressed sequence tags (ESTs) were produced and used for a Gene Ontology (GO) analysis. RT-PCR results indicated enhanced expression of an aquaporin (GmPIP2,2), alpha-tubulin (GmTubA1), beta-tubulin (GmTubB4) and several other genes in syncytium-enriched samples as compared to samples extracted from whole roots. While RT-PCR data showed increased transcript levels of GmPIP2,2 from LCM tissue enriched in syncytial cells, in situ hybridization showed prominent GmPIP2,2 hybridization to RNA in the parenchymal cells tightly juxtaposed to the syncytium. Immunolocalization indicated stronger alpha-tubulin signal within the syncytium as compared to surrounding tissue. However, alpha-tubulin labeling appeared diffuse or clumped. Thus, LCM allowed for the isolation of tissue enriched for syncytial cells, providing material suitable for a variety of molecular analyses.
Collapse
Affiliation(s)
- Vincent P Klink
- United States Department of Agriculture, 10300, Baltimore Ave., Bldg. 006, Rm. 118, Beltsville, MD, 20705-2350, USA.
| | | | | | | |
Collapse
|
74
|
Wang Y, Cabral F. Paclitaxel resistance in cells with reduced β-tubulin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:245-55. [PMID: 15950754 DOI: 10.1016/j.bbamcr.2004.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 12/20/2004] [Indexed: 11/30/2022]
Abstract
We previously described the isolation of colcemid resistant Chinese hamster ovary cell lines containing alpha- and beta-tubulin mutations that increase microtubule assembly and stability. By analyzing colcemid sensitive revertants from one of the beta-tubulin mutants, we now find that loss or inactivation of the mutant allele represents the most common mechanism of reversion. Consistent with this loss, the revertants have 35% less tubulin at steady state, no evidence for the presence of a mutant polypeptide, and a normal extent of tubulin polymerization. In addition to the loss of colcemid resistance, the revertant cells exhibit increased resistance to paclitaxel relative to wild-type cells. This paclitaxel resistance can be suppressed by transfecting the revertant cells with a cDNA for wild-type beta-tubulin, indicating that the reduction in tubulin in the revertant cells is responsible for the resistance phenotype. We propose that reducing tubulin levels may represent a novel mechanism of paclitaxel resistance.
Collapse
Affiliation(s)
- Yaqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, 77030, USA
| | | |
Collapse
|
75
|
Evans KJ, Gomes ER, Reisenweber SM, Gundersen GG, Lauring BP. Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. ACTA ACUST UNITED AC 2005; 168:599-606. [PMID: 15716377 PMCID: PMC2171748 DOI: 10.1083/jcb.200409058] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the AAA adenosine triphosphatase (ATPase) Spastin (SPG4) cause an autosomal dominant form of hereditary spastic paraplegia, which is a retrograde axonopathy primarily characterized pathologically by the degeneration of long spinal neurons in the corticospinal tracts and the dorsal columns. Using recombinant Spastin, we find that six mutant forms of Spastin, including three disease-associated forms, are severely impaired in ATPase activity. In contrast to a mutation designed to prevent adenosine triphosphate (ATP) binding, an ATP hydrolysis-deficient Spastin mutant predicted to remain kinetically trapped on target proteins decorates microtubules in transfected cells. Analysis of disease-associated missense mutations shows that some more closely resemble the canonical hydrolysis mutant, whereas others resemble the ATP-binding mutant. Using real-time imaging, we show that Spastin severs microtubules when added to permeabilized, cytosol-depleted cells stably expressing GFP-tubulin. Using purified components, we also show that Spastin interacts directly with microtubules and is sufficient for severing. These studies suggest that defects in microtubule severing are a cause of axonal degeneration in human disease.
Collapse
Affiliation(s)
- Katia J Evans
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|