51
|
Zhao P, Xu Y, Wei Y, Qiu Q, Chew TL, Kang Y, Cheng C. The CD44s splice isoform is a central mediator for invadopodia activity. J Cell Sci 2016; 129:1355-65. [PMID: 26869223 DOI: 10.1242/jcs.171959] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 02/04/2016] [Indexed: 01/04/2023] Open
Abstract
The ability for tumor cells to spread and metastasize to distant organs requires proteolytic degradation of extracellular matrix (ECM). This activity is mediated by invadopodia, actin-rich membrane protrusions that are enriched for proteases. However, the mechanisms underlying invadopodia activity are not fully understood. Here, we report that a specific CD44 splice isoform, CD44s, is an integral component in invadopodia. We show that CD44s, but not another splice isoform CD44v, is localized in invadopodia. Small hairpin (sh)RNA-mediated depletion of CD44s abolishes invadopodia activity, prevents matrix degradation and decreases tumor cell invasiveness. Our results suggest that CD44s promotes cortactin phosphorylation and recruits MT1-MMP (also known as MMP14) to sites of matrix degradation, which are important activities for invadopodia function. Importantly, we show that depletion of CD44s inhibits breast cancer cell metastasis to the lung in animals. These findings suggest a crucial mechanism underlying the role of the CD44s splice isoform in breast cancer metastasis.
Collapse
Affiliation(s)
- Pu Zhao
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yilin Xu
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Qiong Qiu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Teng-Leong Chew
- Cell Imaging Facility & Nikon Imaging Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Chonghui Cheng
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
52
|
Zhao H, Liu X, Zou H, Dai N, Yao L, Zhang X, Gao Q, Liu W, Gu J, Yuan Y, Bian J, Liu Z. Osteoprotegerin disrupts peripheral adhesive structures of osteoclasts by modulating Pyk2 and Src activities. Cell Adh Migr 2016; 10:299-309. [PMID: 26743491 DOI: 10.1080/19336918.2015.1129480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoprotegerin has previously been shown to modulate bone mass by blocking osteoclast maturation and function. The detailed mechanisms of osteoprotegerin-induced disassembly of podosomes, disruption of adhesive structures and modulation of adhesion-related proteins in osteoclasts, however, are not well characterized. In this study, tartrate-resistant acidic phosphatase staining demonstrated that osteoprotegerin inhibited differentiation of osteoclasts. The use of scanning electron microscopy, real-time cell monitoring and confocal microscopy indicated that osteoclasts responded in a time and dose-dependent manner to osteoprotegerin treatments with retraction of peripheral adhesive structures and detachment from the extracellular substrate. Combined imaging and Western blot studies showed that osteoprotegerin induced dephosphorylation of Tyr 402 in Pyk2 and decreased its labeling in peripheral adhesion regions. osteoprotegerin induced increased intracellular labeling of Tyr 402 in Pyk2, Tyr 416 in Src, increased dephosphorylation of Tyr 527 in Src, and increased Pyk2/Src association in the central region of osteoclasts. This evidence suggests that Src may function as an adaptor protein that competes for Pyk2 and relocates it from the peripheral adhesive zone to the central region of osteoclasts in response to osteoprotegerin treatment. Osteoprotegerin may induce podosome reassembly and peripheral adhesive structure detachment by modulating phosphorylation of Pyk2 and Src and their intracellular distribution in osteoclasts.
Collapse
Affiliation(s)
- Hongyan Zhao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Xuezhong Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Hui Zou
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Nannan Dai
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Lulian Yao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Xiao Zhang
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Qian Gao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Wei Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Jianhong Gu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Yan Yuan
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Jianchun Bian
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Zongping Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| |
Collapse
|
53
|
Linder S, Wiesner C. Feel the force: Podosomes in mechanosensing. Exp Cell Res 2015; 343:67-72. [PMID: 26658516 DOI: 10.1016/j.yexcr.2015.11.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 01/27/2023]
Abstract
Cells interact with their environment through highly localized contact structures. Podosomes represent a subgroup of cell-matrix contacts, which is especially prominent in cells of the monocytic lineage such as monocytes, macrophages and dendritic cells, but also in a variety of other cell types. Comparable to other adhesion structures, podosomes feature a complex architecture, which forms the basis for their extensive repertoire of sensory and effector functions. These functions are mainly linked to interactions with the extracellular matrix and comprise well known properties such as cell-matrix adhesion and extracellular matrix degradation. A more recent discovery is the ability of podosomes to act as mechanosensory devices, by detecting rigidity and topography of the substratum. In this review, we focus especially on the molecular events involved in mechanosensing by podosomes, the structural elements of podosomes that enable this function, as well as the intra- and extracellular signals generated downstream of podosome mechanosensing.
Collapse
Affiliation(s)
- Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Christiane Wiesner
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
54
|
Veillat V, Spuul P, Daubon T, Egaña I, Kramer IJ, Génot E. Podosomes: Multipurpose organelles? Int J Biochem Cell Biol 2015; 65:52-60. [DOI: 10.1016/j.biocel.2015.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/20/2015] [Indexed: 01/11/2023]
|
55
|
Georgess D, Machuca-Gayet I, Blangy A, Jurdic P. Podosome organization drives osteoclast-mediated bone resorption. Cell Adh Migr 2015; 8:191-204. [PMID: 24714644 DOI: 10.4161/cam.27840] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Osteoclasts are the cells responsible for physiological bone resorption. A specific organization of their most prominent cytoskeletal structures, podosomes, is crucial for the degradation of mineralized bone matrix. Each podosome is constituted of an F-actin-enriched central core surrounded by a loose F-actin network, called the podosome cloud. In addition to intrinsic actin dynamics, podosomes are defined by their adhesion to the extracellular matrix, mainly via core-linking CD44 and cloud-linking integrins. These properties allow podosomes to collectively evolve into different patterns implicated in migration and bone resorption. Indeed, to resorb bone, osteoclasts polarize, actively secrete protons, and proteases into the resorption pit where these molecules are confined by a podosome-containing sealing zone. Here, we review recent advancements on podosome structure and regulatory pathways in osteoclasts. We also discuss the distinct functions of different podosome patterns during the lifespan of a single osteoclast.
Collapse
Affiliation(s)
- Dan Georgess
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Irma Machuca-Gayet
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Anne Blangy
- Centre de Recherche de Biochimie Macromoléculaire; CNRS UMR 5237; Montpellier University; Montpellier, France
| | - Pierre Jurdic
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| |
Collapse
|
56
|
Di Martino J, Paysan L, Gest C, Lagrée V, Juin A, Saltel F, Moreau V. Cdc42 and Tks5: a minimal and universal molecular signature for functional invadosomes. Cell Adh Migr 2015; 8:280-92. [PMID: 24840388 DOI: 10.4161/cam.28833] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Invadosomes are actin-based structures involved in extracellular-matrix degradation. Invadosomes, either known as podosomes or invadopodia, are found in an increasing number of cell types. Moreover, their overall organization and molecular composition may vary from one cell type to the other. Some are constitutive such as podosomes in hematopoietic cells whereas others are inducible. However, they share the same feature, their ability to interact and to degrade the extracellular matrix. Based on the literature and our own experiments, the aim of this study was to establish a minimal molecular definition of active invadosomes. We first highlighted that Cdc42 is the key RhoGTPase involved in invadosome formation in all described models. Using different cellular models, such as NIH-3T3, HeLa, and endothelial cells, we demonstrated that overexpression of an active form of Cdc42 is sufficient to form invadosome actin cores. Therefore, active Cdc42 must be considered not only as an inducer of filopodia, but also as an inducer of invadosomes. Depending on the expression level of Tks5, these Cdc42-dependent actin cores were endowed or not with a proteolytic activity. In fact, Tks5 overexpression rescued this activity in Tks5 low expressing cells. We thus described the adaptor protein Tks5 as a major actor of the invadosome degradation function. Surprisingly, we found that Src kinases are not always required for invadosome formation and function. These data suggest that even if Src family members are the principal kinases involved in the majority of invadosomes, it cannot be considered as a common element for all invadosome structures. We thus define a minimal and universal molecular signature of invadosome that includes Cdc42 activity and Tks5 presence in order to drive the actin machinery and the proteolytic activity of these invasive structures.
Collapse
Affiliation(s)
- Julie Di Martino
- INSERM; Physiopathologie du cancer du foie; U1053; Bordeaux, France; Univ. Bordeaux; Physiopathologie du cancer du foie; U1053; Bordeaux, France
| | - Lisa Paysan
- INSERM; Physiopathologie du cancer du foie; U1053; Bordeaux, France; Univ. Bordeaux; Physiopathologie du cancer du foie; U1053; Bordeaux, France
| | - Caroline Gest
- INSERM; Physiopathologie du cancer du foie; U1053; Bordeaux, France; Univ. Bordeaux; Physiopathologie du cancer du foie; U1053; Bordeaux, France
| | - Valérie Lagrée
- INSERM; Physiopathologie du cancer du foie; U1053; Bordeaux, France; Univ. Bordeaux; Physiopathologie du cancer du foie; U1053; Bordeaux, France
| | - Amélie Juin
- INSERM; Physiopathologie du cancer du foie; U1053; Bordeaux, France; Univ. Bordeaux; Physiopathologie du cancer du foie; U1053; Bordeaux, France
| | - Frédéric Saltel
- INSERM; Physiopathologie du cancer du foie; U1053; Bordeaux, France; Univ. Bordeaux; Physiopathologie du cancer du foie; U1053; Bordeaux, France
| | - Violaine Moreau
- INSERM; Physiopathologie du cancer du foie; U1053; Bordeaux, France; Univ. Bordeaux; Physiopathologie du cancer du foie; U1053; Bordeaux, France
| |
Collapse
|
57
|
Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:421746. [PMID: 26247020 PMCID: PMC4515490 DOI: 10.1155/2015/421746] [Citation(s) in RCA: 1048] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023]
Abstract
Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.
Collapse
|
58
|
Liu H, Cui J, Sun J, Du J, Feng W, Sun B, Li J, Han X, Liu B, Yimin, Oda K, Amizuka N, Li M. Histochemical evidence of zoledronate inhibiting c-src expression and interfering with CD44/OPN-mediated osteoclast adhesion in the tibiae of mice. J Mol Histol 2015; 46:313-23. [DOI: 10.1007/s10735-015-9620-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/07/2015] [Indexed: 01/28/2023]
|
59
|
Vijayakumar V, Monypenny J, Chen XJ, Machesky LM, Lilla S, Thrasher AJ, Antón IM, Calle Y, Jones GE. Tyrosine phosphorylation of WIP releases bound WASP and impairs podosome assembly in macrophages. J Cell Sci 2015; 128:251-65. [PMID: 25413351 PMCID: PMC4294773 DOI: 10.1242/jcs.154880] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/07/2014] [Indexed: 01/18/2023] Open
Abstract
Podosomes are integrin-containing adhesion structures commonly found in migrating leukocytes of the monocytic lineage. The actin cytoskeletal organisation of podosomes is based on a WASP- and Arp2/3-mediated mechanism. WASP also associates with a second protein, WIP (also known as WIPF1), and they co-localise in podosome cores. Here, we report for the first time that WIP can be phosphorylated on tyrosine residues and that tyrosine phosphorylation of WIP is a trigger for release of WASP from the WIP-WASP complex. Using a knockdown approach together with expression of WIP phosphomimics, we show that in the absence of WIP-WASP binding, cellular WASP is rapidly degraded, leading to disruption of podosomes and a failure of cells to degrade an underlying matrix. In the absence of tyrosine phosphorylation, the WIP-WASP complex remains intact and podosome lifetimes are extended. A screen of candidate kinases and inhibitor-based assays identified Bruton's tyrosine kinase (Btk) as a regulator of WIP tyrosine phosphorylation. We conclude that tyrosine phosphorylation of WIP is a crucial regulator of WASP stability and function as an actin-nucleation-promoting factor.
Collapse
Affiliation(s)
- Vineetha Vijayakumar
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - James Monypenny
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Xing Judy Chen
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | - Sergio Lilla
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Adrian J Thrasher
- Section of Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Inés M Antón
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Yolanda Calle
- Department of Haematological & Molecular Medicine, King's College London, London SE5 9NU, UK
| | - Gareth E Jones
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| |
Collapse
|
60
|
Akisaka T, Yoshida A. Visualization of structural organization of ventral membranes of sheared-open resorbing osteoclasts attached to apatite pellets. Cell Tissue Res 2015; 360:347-62. [PMID: 25582780 DOI: 10.1007/s00441-014-2085-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/30/2014] [Indexed: 01/15/2023]
Abstract
Osteoclasts are highly polarized cells from both morphological and functional points of view. Using quick-freeze, rotary-replication methods combined with cell-shearing, we clarified the variability of cytoplasmic surface of the polarized membranes of osteoclasts seeded on apatite. As to the organization of actin filaments and clathrin sheets, we confirmed almost the same ventral membrane specializations of osteoclasts on apatite as seen on glass plates. The organized actin filaments and membrane-associated particles supported the ruffled border membranes. Inside the actin sealing zone, membrane specializations were not always occupied with the ruffled border but also with other types of membranes. Some osteoclasts formed an actin ring but lacked the ruffled border projections. We report a unique and distinctive membrane modification of apatite-attached osteoclasts, i.e., the presence of dense aggregates of membrane-associated particles and related structures not found in the osteoclasts seeded on glass plates. Actin filament polarity in the podosomes was determined by decoration with myosin S1. The actin filament polarity within podosome appears to be oriented predominantly with its barbed ends toward the core, whereas the interconnecting F-actin appears to be mixed oriented. Two different types of clathrin plaques displayed different distributions: clathrin-dependent endocytosis was observed in the ruffled border regions, whereas flat clathrin sheets were found in the leading edge of lamellipodia and near podosomes. The clathrin sheets adhered to the apatite surface tightly on the ventral membranes overlaying the resorption lacunae. All these membrane specializations as mentioned above may indicate the functional variability of osteoclasts seeded on apatite.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan,
| | | |
Collapse
|
61
|
Linder S, Wiesner C. Tools of the trade: podosomes as multipurpose organelles of monocytic cells. Cell Mol Life Sci 2015; 72:121-35. [PMID: 25300510 PMCID: PMC11113205 DOI: 10.1007/s00018-014-1731-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023]
Abstract
Podosomes are adhesion and invasion structures that are particularly prominent in cells of the monocytic lineage such as macrophages, dendritic cells, and osteoclasts. They are multifunctional organelles that combine several key abilities required for cell migration and invasion. The podosome repertoire includes well-established functions such as cell-substrate adhesion, and extracellular matrix degradation, recently discovered abilities such as rigidity and topology sensing as well as antigen sampling, and also more speculative functions such as cell protrusion stabilization and transmigration. Collectively, podosomes not only enable dynamic interactions of cells with their surroundings, they also gather information about the pericellular environment, and are actively involved in its reshaping. This review presents an overview of the current knowledge on podosome composition, architecture, and regulation. We focus in particular on the growing list of podosome functions and discuss the specific properties of podosomes in macrophages, dendritic cells, and osteoclasts. Moreover, this article highlights podosome-related intracellular transport processes, the formation of podosomes in 3D environments as well as potentially podosome-associated diseases involving monocytic cells.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Martinistr. 52, 20246, Hamburg, Germany,
| | | |
Collapse
|
62
|
Ellis SJ, Lostchuck E, Goult BT, Bouaouina M, Fairchild MJ, López-Ceballos P, Calderwood DA, Tanentzapf G. The talin head domain reinforces integrin-mediated adhesion by promoting adhesion complex stability and clustering. PLoS Genet 2014; 10:e1004756. [PMID: 25393120 PMCID: PMC4230843 DOI: 10.1371/journal.pgen.1004756] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. Cells are the building blocks of our bodies. How do cells rearrange to form three-dimensional body plans and maintain specific tissue structures? Specialized adhesion molecules on the cell surface mediate attachment between cells and their surrounding environment to hold tissues together. Our work uses the developing fruit fly embryo to demonstrate how such connections are regulated during tissue growth. Since the genes and molecules involved in this process are highly similar between flies and humans, we can also apply our findings to our understanding of how human tissues form and are maintained. We observe that, in late developing muscles, clusters of cell adhesion molecules concentrate together to create stronger attachments between muscle cells and tendon cells. This strengthening mechanism allows the fruit fly to accommodate increasing amounts of force imposed by larger, more active muscles. We identify specific genetic mutations that disrupt these strengthening mechanisms and lead to severe developmental defects during fly development. Our results illustrate how subtle fine-tuning of the connections between cells and their surrounding environment is important to form and maintain normal tissue structure across the animal kingdom.
Collapse
Affiliation(s)
- Stephanie J. Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Emily Lostchuck
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Mohamed Bouaouina
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
- Carnegie Mellon University Qatar, Education City, Doha, Qatar
| | - Michael J. Fairchild
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Pablo López-Ceballos
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - David A. Calderwood
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
63
|
Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nat Commun 2014; 5:5343. [PMID: 25385672 DOI: 10.1038/ncomms6343] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/22/2014] [Indexed: 12/22/2022] Open
Abstract
Podosomes are adhesion structures formed in monocyte-derived cells. They are F-actin-rich columns perpendicular to the substrate surrounded by a ring of integrins. Here, to measure podosome protrusive forces, we designed an innovative experimental setup named protrusion force microscopy (PFM), which consists in measuring by atomic force microscopy the deformation induced by living cells onto a compliant Formvar sheet. By quantifying the heights of protrusions made by podosomes onto Formvar sheets, we estimate that a single podosome generates a protrusion force that increases with the stiffness of the substratum, which is a hallmark of mechanosensing activity. We show that the protrusive force generated at podosomes oscillates with a constant period and requires combined actomyosin contraction and actin polymerization. Finally, we elaborate a model to explain the mechanical and oscillatory activities of podosomes. Thus, PFM shows that podosomes are mechanosensing cell structures exerting a protrusive force.
Collapse
|
64
|
Itzstein C, Coxon FP, Rogers MJ. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2014; 2:117-130. [PMID: 21776413 DOI: 10.4161/sgtp.2.3.16453] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts are multinucleated cells that are responsible for resorption of bone, and increased activity of these cells is associated with several common bone diseases, including postmenopausal osteoporosis. Upon adhesion to bone, osteoclasts become polarized and reorganise their cytoskeleton and membrane to form unique domains including the sealing zone (SZ), which is a dense ring of F-actin-rich podosomes delimiting the ruffled border (RB), where protons and proteases are secreted to demineralise and degrade the bone matrix, respectively. These processes are dependent on the activity of small GTPases. Rho GTPases are well known to control the organization of F-actin and adhesion structures of different cell types, affecting subsequently their migration. In osteoclasts, RhoA, Rac, Cdc42, RhoU and also Arf6 regulate podosome assembly and their organization into the SZ. By contrast, the formation of the RB involves vesicular trafficking pathways that are regulated by the Rab family of GTPases, in particular lysosomal Rab7. Finally, osteoclast survival is dependent on the activity of Ras GTPases. The correct function of almost all these GTPases is absolutely dependent on post-translational prenylation, which enables them to localize to specific target membranes. Bisphosphonate drugs, which are widely used in the treatment of bone diseases such as osteoporosis, act by preventing the prenylation of small GTPases, resulting in the loss of the SZ and RB and therefore inhibition of osteoclast activity, as well as inducing osteoclast apoptosis. In this review we summarize current understanding of the role of specific prenylated small GTPases in osteoclast polarization, function and survival.
Collapse
Affiliation(s)
- Cecile Itzstein
- Musculoskeletal Research Programme; Institute of Medical Sciences; University of Aberdeen; Aberdeen, Scotland UK
| | | | | |
Collapse
|
65
|
Gawden-Bone C, West MA, Morrison VL, Edgar AJ, McMillan SJ, Dill BD, Trost M, Prescott A, Fagerholm SC, Watts C. A crucial role for β2 integrins in podosome formation, dynamics and Toll-like-receptor-signaled disassembly in dendritic cells. J Cell Sci 2014; 127:4213-24. [PMID: 25086067 PMCID: PMC4179490 DOI: 10.1242/jcs.151167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The dynamic properties of podosomes, their ability to degrade the underlying matrix and their modulation by Toll-like receptor (TLR) signaling in dendritic cells (DCs) suggests they have an important role in migration. Integrins are thought to participate in formation and dynamics of podosomes but the multiplicity of integrins in podosomes has made this difficult to assess. We report that murine DCs that lack β2 integrins fail to form podosomes. Re-expression of β2 integrins restored podosomes but not when the membrane proximal or distal NPxF motifs, or when an intervening triplet of threonine residues were mutated. We show that β2 integrins are remarkably long-lived in podosome clusters and form a persistent framework that hosts multiple actin-core-formation events at the same or adjacent sites. When β2 integrin amino acid residues 745 or 756 were mutated from Ser to Ala, podosomes became resistant to dissolution mediated through TLR signaling. TLR signaling did not detectably modulate phosphorylation at these sites but mutation of either residue to phospho-mimetic Asp increased β2 integrin turnover in podosomes, indicating that phosphorylation at one or both sites establishes permissive conditions for TLR-signaled podosome disassembly.
Collapse
Affiliation(s)
- Christian Gawden-Bone
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michele A West
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Vicky L Morrison
- University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Alexander J Edgar
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sarah J McMillan
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Brian D Dill
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alan Prescott
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Susanna C Fagerholm
- University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Colin Watts
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
66
|
Spuul P, Ciufici P, Veillat V, Leclercq A, Daubon T, Kramer IJ, Génot E. Importance of RhoGTPases in formation, characteristics, and functions of invadosomes. Small GTPases 2014; 5:e28195. [PMID: 24967648 DOI: 10.4161/sgtp.28713] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes and invadopodia (collectively known as invadosomes) are specialized plasma-membrane actin-based microdomains that combine adhesive properties with matrix degrading and/or mechanosensor activities. These organelles have been extensively studied in vitro and current concerted efforts aim at establishing their physiological relevance and subsequent association with human diseases. Proper functioning of the bone, immune, and vascular systems is likely to depend on these structures while their occurrence in cancer cells appears to be linked to tumor metastasis. The elucidation of the mechanisms driving invadosome assembly is a prerequisite to understanding their role in vivo and ultimately to controlling their functions. Adhesive and soluble ligands act via transmembrane receptors that propagate signals to the cytoskeleton via small G proteins of the Rho family, assisted by tyrosine kinases and scaffold proteins to induce invadosome formation and rearrangements. Oncogene expression and cell-cell interactions may also trigger their assembly. Manipulation of the signals that regulate invadosome formation and dynamics could therefore be a strategy to interfere with their functions in a multitude of pathological settings, such as excessive bone breakdown, infections, vascular remodeling, transendothelial diapedesis, and metastasis.
Collapse
Affiliation(s)
- Pirjo Spuul
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Paolo Ciufici
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Véronique Veillat
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Anne Leclercq
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Thomas Daubon
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - IJsbrand Kramer
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Elisabeth Génot
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| |
Collapse
|
67
|
Touaitahuata H, Blangy A, Vives V. Modulation of osteoclast differentiation and bone resorption by Rho GTPases. Small GTPases 2014; 5:e28119. [PMID: 24614674 DOI: 10.4161/sgtp.28119] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bone is a dynamic tissue constantly renewed through a regulated balance between bone formation and resorption. Excessive bone degradation by osteoclasts leads to pathological decreased bone density characteristic of osteolytic diseases such as post-menopausal osteoporosis or bone metastasis. Osteoclasts are multinucleated cells derived from hematopoietic stem cells via a complex differentiation process. Their unique ability to resorb bone is dependent on the formation of the actin-rich sealing zone. Within this adhesion structure, the plasma membrane differentiates into the ruffled border where protons and proteases are secreted to demineralize and degrade bone, respectively. On the bone surface, mature osteoclasts alternate between stationary resorptive and migratory phases. These are associated with profound actin cytoskeleton reorganization, until osteoclasts die of apoptosis. In this review, we highlight the role of Rho GTPases in all the steps of osteoclasts differentiation, function, and death and conclude on their interest as targets for treatment of osteolytic pathologies.
Collapse
Affiliation(s)
- Heiani Touaitahuata
- Montpellier University; CNRS UMR 5237; Centre de Recherche de Biochimie Macromoléculaire; Montpellier, France
| | - Anne Blangy
- Montpellier University; CNRS UMR 5237; Centre de Recherche de Biochimie Macromoléculaire; Montpellier, France
| | - Virginie Vives
- Montpellier University; CNRS UMR 5237; Centre de Recherche de Biochimie Macromoléculaire; Montpellier, France
| |
Collapse
|
68
|
Griera M, Martin-Villar E, Banon-Rodríguez I, Blundell MP, Jones GE, Anton IM, Thrasher AJ, Rodriguez-Puyol M, Calle Y. Integrin linked kinase (ILK) regulates podosome maturation and stability in dendritic cells. Int J Biochem Cell Biol 2014; 50:47-54. [PMID: 24508783 PMCID: PMC3998073 DOI: 10.1016/j.biocel.2014.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 12/30/2013] [Accepted: 01/28/2014] [Indexed: 01/10/2023]
Abstract
Podosomes are integrin-based adhesions fundamental for stabilisation of the leading lamellae in migrating dendritic cells (DCs) and for extracellular matrix (ECM) degradation. We have previously shown that soluble factors and chemokines such as SDF 1-a trigger podosome initiation whereas integrin ligands promote podosome maturation and stability in DCs. The exact intracellular signalling pathways that regulate the sequential organisation of podosomal components in response to extracellular cues remain largely undetermined. The Wiskott Aldrich Syndrome Protein (WASP) mediates actin polymerisation and the initial recruitment of integrins and associated proteins in a circular configuration surrounding the core of filamentous actin (F-actin) during podosome initiation. We have now identified integrin linked kinase (ILK) surrounding the podosomal actin core. We report that DC polarisation in response to chemokines and the assembly of actin cores during podosome initiation require PI3K-dependent clustering of the Wiskott Aldrich Syndrome Protein (WASP) in puncta independently of ILK. ILK is essential for the clustering of integrins and associated proteins leading to podosome maturation and stability that are required for degradation of the subjacent extracellular matrix and the invasive motility of DCs across connective tissue barriers. We conclude that WASP regulates DCs polarisation for migration and initiation of actin polymerisation downstream of PI3K in nascent podosomes. Subsequently, ILK mediates the accumulation of integrin-associated proteins during podosome maturation and stability for efficient degradation of the subjacent ECM during the invasive migration of DCs.
Collapse
Affiliation(s)
- Mercedes Griera
- Department of Physiology, Facultad de Medicina, Universidad de Alcalá, Campus Universitario s/n, Alcalá de Henares, Madrid 28871, Spain
| | - Ester Martin-Villar
- Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid 28029, Spain
| | | | - Michael P Blundell
- Wolfson Centre for Gene Therapy, Molecular Immunology Unit, Institute of Child Health, University College London, WC1N UK
| | - Gareth E Jones
- Randall Division of Cell & Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Ines M Anton
- Cellular and Molecular Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Adrian J Thrasher
- Wolfson Centre for Gene Therapy, Molecular Immunology Unit, Institute of Child Health, University College London, WC1N UK
| | - Manuel Rodriguez-Puyol
- Department of Physiology, Facultad de Medicina, Universidad de Alcalá, Campus Universitario s/n, Alcalá de Henares, Madrid 28871, Spain
| | - Yolanda Calle
- Department of Haemato-oncology, King's College London, London SE5 9NU, UK.
| |
Collapse
|
69
|
Georgess D, Mazzorana M, Terrado J, Delprat C, Chamot C, Guasch RM, Pérez-Roger I, Jurdic P, Machuca-Gayet I. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts. Mol Biol Cell 2013; 25:380-96. [PMID: 24284899 PMCID: PMC3907278 DOI: 10.1091/mbc.e13-07-0363] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two-step transcriptomic profiling of bone-resorbing OCs versus nonresorbing MGCs generated a list of 115 genes potentially involved in bone resorption. Of these, RhoE was investigated. Its role in podosome dynamics is central for OC migration, SZ formation, and, ultimately, bone resorption. The function of osteoclasts (OCs), multinucleated giant cells (MGCs) of the monocytic lineage, is bone resorption. To resorb bone, OCs form podosomes. These are actin-rich adhesive structures that pattern into rings that drive OC migration and into “sealing-zones” (SZs) that confine the resorption lacuna. Although changes in actin dynamics during podosome patterning have been documented, the mechanisms that regulate these changes are largely unknown. From human monocytic precursors, we differentiated MGCs that express OC degradation enzymes but are unable to resorb the mineral matrix. We demonstrated that, despite exhibiting bona fide podosomes, these cells presented dysfunctional SZs. We then performed two-step differential transcriptomic profiling of bone-resorbing OCs versus nonresorbing MGCs to generate a list of genes implicated in bone resorption. From this list of candidate genes, we investigated the role of Rho/Rnd3. Using primary RhoE-deficient OCs, we demonstrated that RhoE is indispensable for OC migration and bone resorption by maintaining fast actin turnover in podosomes. We further showed that RhoE activates podosome component cofilin by inhibiting its Rock-mediated phosphorylation. We conclude that the RhoE-Rock-cofilin pathway, by promoting podosome dynamics and patterning, is central for OC migration, SZ formation, and, ultimately, bone resorption.
Collapse
Affiliation(s)
- Dan Georgess
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France Laboratoire de Biologie Moléculaire de la Cellule, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France Departamento Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, 46115 Alfara del Patriarca, Valencia, Spain Plateau Technique Imagerie/Microscopie Facility, SFR Biosciences (UMS3444/US8), Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France Laboratory of Cellular Pathology, 46012 Valencia, Spain Departamento Ciencias Biomédicas-Seminario Salud, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Shugg RPP, Thomson A, Tanabe N, Kashishian A, Steiner BH, Puri KD, Pereverzev A, Lannutti BJ, Jirik FR, Dixon SJ, Sims SM. Effects of isoform-selective phosphatidylinositol 3-kinase inhibitors on osteoclasts: actions on cytoskeletal organization, survival, and resorption. J Biol Chem 2013; 288:35346-57. [PMID: 24133210 DOI: 10.1074/jbc.m113.507525] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15-20 min to 65-75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics.
Collapse
Affiliation(s)
- Ryan P P Shugg
- From the Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Schachtner H, Calaminus SDJ, Thomas SG, Machesky LM. Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton (Hoboken) 2013; 70:572-89. [PMID: 23804547 DOI: 10.1002/cm.21119] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
Cells use various actin-based motile structures to allow them to move across and through matrix of varying density and composition. Podosomes are actin cytoskeletal structures that form in motile cells and that mediate adhesion to substrate, migration, and other specialized functions such as transmigration through cell and matrix barriers. The podosome is a unique and interesting entity, which appears in the light microscope as an individual punctum, but is linked to other podosomes like a node on a network of the underlying cytoskeleton. Here, we discuss the signals that control podosome assembly and dynamics in different cell types and the actin organising proteins that regulate both the inner actin core and integrin-rich surrounding ring structures. We review the structure and composition of podosomes and also their functions in various cell types of both myeloid and endothelial lineage. We also discuss the emerging idea that podosomes can sense matrix stiffness and enable cells to respond to their environment.
Collapse
Affiliation(s)
- Hannah Schachtner
- CRUK Beatson Institute for Cancer Research and College of Medical, Veterinary and Life Sciences, Glasgow University, Garscube Campus, Switchback Rd., Bearsden, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
72
|
Antelmi E, Cardone RA, Greco MR, Rubino R, Di Sole F, Martino NA, Casavola V, Carcangiu M, Moro L, Reshkin SJ. ß1 integrin binding phosphorylates ezrin at T567 to activate a lipid raft signalsome driving invadopodia activity and invasion. PLoS One 2013; 8:e75113. [PMID: 24086451 PMCID: PMC3782503 DOI: 10.1371/journal.pone.0075113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/09/2013] [Indexed: 01/11/2023] Open
Abstract
Extracellular matrix (ECM) degradation is a critical process in tumor cell invasion and requires matrix degrading protrusions called invadopodia. The Na+/H+ exchanger (NHE1) has recently been shown to be fundamental in the regulation of invadopodia actin cytoskeleton dynamics and activity. However, the structural link between the invadopodia cytoskeleton and NHE1 is still unknown. A candidate could be ezrin, a linker between the NHE1 and the actin cytoskeleton known to play a pivotal role in invasion and metastasis. However, the mechanistic basis for its role remains unknown. Here, we demonstrate that ezrin phosphorylated at T567 is highly overexpressed in the membrane of human breast tumors and positively associated with invasive growth and HER2 overexpression. Further, in the metastatic cell line, MDA-MB-231, p-ezrin was almost exclusively expressed in invadopodia lipid rafts where it co-localized in a functional complex with NHE1, EGFR, ß1-integrin and phosphorylated-NHERF1. Manipulation by mutation of ezrins T567 phosphorylation state and/or PIP2 binding capacity or of NHE1s binding to ezrin or PIP2 demonstrated that p-ezrin expression and binding to PIP2 are required for invadopodia-mediated ECM degradation and invasion and identified NHE1 as the membrane protein that p-ezrin regulates to induce invadopodia formation and activity.
Collapse
Affiliation(s)
- Ester Antelmi
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
- Department of Pathology, Anatomic Pathology A Unit, Istituto Nazionale Tumori, Milan, Italy
| | - Rosa A. Cardone
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - Maria R. Greco
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - Rosa Rubino
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - Francesca Di Sole
- Department of Medicine, University of Maryland School of Medicine and the Medical Service, Department of Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Nicola A. Martino
- Department of Animal Production, Faculty of Biotechnological Sciences, University of Bari, Bari, Italy
| | - Valeria Casavola
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - MariaLuisa Carcangiu
- Department of Pathology, Anatomic Pathology A Unit, Istituto Nazionale Tumori, Milan, Italy
| | - Loredana Moro
- Institute of Biomembranes and Bioenergetics (IBBE), CNR, Bari, Italy
| | - Stephan J. Reshkin
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
- * E-mail:
| |
Collapse
|
73
|
Touaitahuata H, Planus E, Albiges-Rizo C, Blangy A, Pawlak G. Podosomes are dispensable for osteoclast differentiation and migration. Eur J Cell Biol 2013; 92:139-49. [DOI: 10.1016/j.ejcb.2013.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/28/2013] [Accepted: 03/11/2013] [Indexed: 01/27/2023] Open
|
74
|
Pan YR, Tseng WS, Chang PW, Chen HC. Phosphorylation of moesin by c-Jun N-terminal kinase is important for podosome rosette formation in Src-transformed fibroblasts. J Cell Sci 2013; 126:5670-80. [DOI: 10.1242/jcs.134361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Podosomes are actin-based membrane protrusions that facilitate extracellular matrix degradation and invasive cell motility. Podosomes can self-organize into large rosette-like structures in Src-transformed fibroblasts, osteoclasts, and some highly invasive cancer cells. However, the mechanism of this assembly remains obscure. In this study, we show that the suppression of c-Jun N-terminal kinase (JNK) by the JNK inhibitor SP600125 or short-hairpin RNA inhibited podosome rosette formation in SrcY527F-transformed NIH3T3 fibroblasts. In addition, SrcY527F was less potent to induce podosome rosettes in JNK1-null or JNK2-null mouse embryo fibroblasts than in their wild-type counterparts. The kinase activity of JNK was essential for promoting podosome rosette formation but not for its localization to podosome rosettes. Moesin, a member of the ERM (ezrin, radixin, and moesin) protein family, was identified as a substrate of JNK. We show that the phosphorylation of moesin at Thr558 by JNK was important for podosome rosette formation in SrcY527F-transformed NIH3T3 fibroblasts. Taken together, our results unveil a novel role of JNK in podosome rosette formation by phosphorylating moesin.
Collapse
|
75
|
New insights into adhesion signaling in bone formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:1-68. [PMID: 23890379 DOI: 10.1016/b978-0-12-407695-2.00001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mineralized tissues that are protective scaffolds in the most primitive species have evolved and acquired more specific functions in modern animals. These are as diverse as support in locomotion, ion homeostasis, and precise hormonal regulation. Bone formation is tightly controlled by a balance between anabolism, in which osteoblasts are the main players, and catabolism mediated by the osteoclasts. The bone matrix is deposited in a cyclic fashion during homeostasis and integrates several environmental cues. These include diffusible elements that would include estrogen or growth factors and physicochemical parameters such as bone matrix composition, stiffness, and mechanical stress. Therefore, the microenvironment is of paramount importance for controlling this delicate equilibrium. Here, we provide an overview of the most recent data highlighting the role of cell-adhesion molecules during bone formation. Due to the very large scope of the topic, we focus mainly on the role of the integrin receptor family during osteogenesis. Bone phenotypes of some deficient mice as well as diseases of human bones involving cell adhesion during this process are discussed in the context of bone physiology.
Collapse
|
76
|
Xing L, Xiu Y, Boyce BF. Osteoclast fusion and regulation by RANKL-dependent and independent factors. World J Orthop 2012; 3:212-22. [PMID: 23362465 PMCID: PMC3557323 DOI: 10.5312/wjo.v3.i12.212] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 11/21/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023] Open
Abstract
Osteoclasts are the bone resorbing cells essential for bone remodeling. Osteoclasts are formed from hematopoietic progenitors in the monocyte/macrophage lineage. Osteoclastogenesis is composed of several steps including progenitor survival, differentiation to mono-nuclear pre-osteoclasts, fusion to multi-nuclear mature osteoclasts, and activation to bone resorbing osteoclasts. The regulation of osteoclastogenesis has been extensively studied, in which the receptor activator of NF-κB ligand (RANKL)-mediated signaling pathway and downstream transcription factors play essential roles. However, less is known about osteoclast fusion, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone. Several proteins that affect cell fusion have been identified. Among them, dendritic cell-specific transmembrane protein (DC-STAMP) is directly associated to osteoclast fusion in vivo. Cytokines and factors influence osteoclast fusion through regulation of DC-STAMP. Here we review the recently discovered new factors that regulate osteoclast fusion with specific focus on DC-STAMP. A better understanding of the mechanistic basis of osteoclast fusion will lead to the development of a new therapeutic strategy for bone disorders due to elevated osteoclast bone resorption. Cell-cell fusion is essential for a variety of cellular biological processes. In mammals, there is a limited number of cell types that fuse to form multinucleated cells, such as the fusion of myoblasts for the formation of skeletal muscle and the fusion of cells of the monocyte/macrophage lineage for the formation of multinucleated osteoclasts and giant cells. In most cases, cell-cell fusion is beneficial for cells by enhancing function. Myoblast fusion increases myofiber size and diameter and thereby increases contractile strength. Multinucleated osteoclasts have far more bone resorbing activity than their mono-nuclear counterparts. Multinucleated giant cells are much more efficient in the removal of implanted materials and bacteria due to chronic infection than macrophages. Therefore, they are also called foreign-body giant cells. Cell fusion is a complicated process involving cell migration, chemotaxis, cell-cell recognition and attachment, as well as changes into a fusion-competent status. All of these steps are regulated by multiple factors. In this review, we will discuss osteoclast fusion and regulation.
Collapse
|
77
|
Takito J, Nakamura M. Precursors linked via the zipper-like structure or the filopodium during the secondary fusion of osteoclasts. Commun Integr Biol 2012. [PMID: 23181159 PMCID: PMC3502206 DOI: 10.4161/cib.20980] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We previously reported the transient appearance of an actin superstructure, called the zipper-like structure, during the primary fusion (fusion of mononuclear precursors) and the secondary fusion (fusion of multinucleated cells) of osteoclasts. Here, we focus on the actin-based superstructures that link two precursor cells during the secondary fusion event. In one type of secondary fusion, the osteoclasts transformed the podosome belts into the zipper-like structure at the site of cell contact and the apposed plasma membranes in the zipper-like structure attached to each other via a discontinuous interface. In another type of secondary fusion, the osteoclasts used a filopodium-like protrusion that linked the two cells. Both types of cell fusion required a lag period between the adhesion of the cells and the fusion of cell bodies. Thus, the secondary fusion of osteoclasts uses actin-based superstructures for cell-cell interactions before the definitive fusion of the plasma membranes.
Collapse
Affiliation(s)
- Jiro Takito
- Department of Oral Anatomy and Developmental Biology; School of Dentistry; Showa University; Tokyo, Japan ; Research Center of Supercritical Fluid Technology; Graduate School of Engineering; Tohoku University; Sendai, Japan
| | | |
Collapse
|
78
|
Cervero P, Himmel M, Krüger M, Linder S. Proteomic analysis of podosome fractions from macrophages reveals similarities to spreading initiation centres. Eur J Cell Biol 2012; 91:908-22. [DOI: 10.1016/j.ejcb.2012.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/24/2022] Open
|
79
|
García E, Jones GE, Machesky LM, Antón IM. WIP: WASP-interacting proteins at invadopodia and podosomes. Eur J Cell Biol 2012; 91:869-77. [PMID: 22823953 DOI: 10.1016/j.ejcb.2012.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022] Open
Abstract
Regulated cell invasion resulting from migratory and matrix-degrading events is an essential step in physiological processes such as the inflammatory response and tissue repair. Cell invasion is also thought to be a critical parameter in pathological conditions such as cancer metastasis. The migration of normal and cancer cells is largely driven by the actin cytoskeleton, which controls cell shape, adhesion and contractility. Podosomes and invadopodia are actin-rich protrusions that drive invasion in normal and cancer cells. These structures protrude from the basal region of the cell facing the extracellular matrix, where they adhere to and degrade the matrix, thus facilitating invasive migration. WASP (Wiskott-Aldrich syndrome protein) and WIP (WASP-interacting protein) localise to the actin rich core of podosomes and play a critical role in their formation. More recently, studies performed on microarray data sets from cancer patients of several tumour categories show a strong correlation between reduced WIP expression and improved prognosis. In this article, we identify endogenous WIP at the distal tips of cancer cell invasive protrusions and we summarise recent advances in the study of the roles of WIP- and WASP-protein families during migration and invasion of normal and cancer cells related to podosome and invadopodium generation.
Collapse
|
80
|
Blangy A, Touaitahuata H, Cres G, Pawlak G. Cofilin activation during podosome belt formation in osteoclasts. PLoS One 2012; 7:e45909. [PMID: 23049890 PMCID: PMC3457939 DOI: 10.1371/journal.pone.0045909] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/23/2012] [Indexed: 12/02/2022] Open
Abstract
Podosomes are dynamic actin-based structures found constitutively in cells of monocytic origin such as macrophages, dendritic cells and osteoclasts. They have been involved in osteoclast cell adhesion, motility and matrix degradation, and all these functions rely on the ability of podosomes to form supra-molecular structures called podosome belts or sealing zones on mineralized substrates. Podosomes contain two distinct domains, an actin-rich core enriched in actin polymerization regulators, surrounded by a ring of signaling and plaque molecules. The organization of podosome arrays into belts is linked to actin dynamics. Cofilin is an actin-severing protein that is known to regulate cytoskeleton architecture and cell migration. Cofilin is present in lamellipodia and invadopodia where it regulates actin polymerization. In this report, we show that cofilin is a novel component of the podosome belt, the mature osteoclast adhesion structure. Time-course analysis demonstrated that cofilin is activated during primary osteoclast differentiation, at the time of podosome belt assembly. Immunofluorescence studies reveal a localization of active cofilin in the podosome core structure, whereas phosphorylated, inactive cofilin is concentrated in the podosome cloud. Pharmacological studies unraveled the role of a specific cofilin phosphatase to achieve cofilin activation during osteoclast differentiation. We ruled out the implication of PP1/PP2A and PTEN in this process, and rather provided evidence for the involvement of SSH1. In summary, our data involve cofilin as a regulator of podosome organization that is activated during osteoclast differentiation by a RANKL-mediated signaling pathway targeting the SSH1 phosphatase.
Collapse
Affiliation(s)
- Anne Blangy
- Centre de Recherche de Biochimie Macromoleculaire, Montpellier University, CNRS UMR 5237, Montpellier, France.
| | | | | | | |
Collapse
|
81
|
Wenisch S, Cavalcanti-Adam EA, Tryankowski E, Raabe O, Kilian O, Heiss C, Alt V, Arnhold S, Schnettler R. Light- and transmission-electron-microscopic investigations on distribution of CD44, connexin 43 and actin cytoskeleton during the foreign body reaction to a nanoparticular hydroxyapatite in mini-pigs. Acta Biomater 2012; 8:2807-14. [PMID: 22470101 DOI: 10.1016/j.actbio.2012.03.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/07/2012] [Accepted: 03/26/2012] [Indexed: 11/15/2022]
Abstract
Foreign body giant cells (FBGCs) are formed by fusion of mononucleated macrophages during the foreign body response to a nanoparticulate hydroxyapatite (HA) implanted in defects of mini-pig femura. The molecular mechanisms underlying the formation of FBGCs are still largely obscure. Here we propose connexin 43 (cx43) and CD44 as candidate molecules involved in the fusion process. Immunohistochemistry and ultrastructural immunogold labeling indicated that cx43 is present within the ruffled border of FBGCs and is the main component of gap junctions formed between fusing macrophages. CD44 was strongly expressed during clustering and fusion of mononucleated macrophages. FBGCs adhering apically at the implanted HA showed CD44 reactivity only along the basolateral aspects of the plasma membranes, while podosome formation was observed within the sealing zone and ruffled border. Taken together, these findings demonstrate that cx43 and CD44 are part of the fusion machinery responsible for the formation of FBGCs. Furthermore, the results of microfilament and cx43 labeling suggest a functional role for podosomes and hemi-channels in biomaterial degradation.
Collapse
Affiliation(s)
- Sabine Wenisch
- Institute of Veterinary Anatomy, University of Giessen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Brisson L, Reshkin SJ, Goré J, Roger S. pH regulators in invadosomal functioning: proton delivery for matrix tasting. Eur J Cell Biol 2012; 91:847-60. [PMID: 22673002 DOI: 10.1016/j.ejcb.2012.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/20/2022] Open
Abstract
Invadosomes are actin-rich finger-like cellular structures sensing and interacting with the surrounding extracellular matrix (ECM) and involved in its proteolytic remodeling. Invadosomes are structures distinct from other adhesion complexes, and have been identified in normal cells that have to cross tissue barriers to fulfill their function such as leukocytes, osteoclasts and endothelial cells. They also represent features of highly aggressive cancer cells, allowing them to escape from the primary tumor, to invade surrounding tissues and to reach systemic circulation. They are localized to the ventral membrane of cells grown under 2-dimensional conditions and are supposed to be present all around cells grown in 3-dimensional matrices. Indeed invadosomes are key structures in physiological processes such as inflammation and the immune response, bone remodeling, tissue repair, but also in pathological conditions such as osteopetrosis and the development of metastases. Invadosomes are subdivided into podosomes, found in normal cells, and into invadopodia specific for cancer cells. While these two structures exhibit differences in organization, size, number and half-life, they share similarities in molecular composition, participation in cell-matrix adhesion and promoting matrix degradation. A key determinant in invadosomal function is the recruitment and release of proteases, such as matrix metalloproteinases (MMPs), serine proteases and cysteine cathepsins, together with their activation in a tightly controlled and highly acidic microenvironment. Therefore numerous pH regulators such as V-ATPases and Na(+)/H(+) exchangers, are found in invadosomes and are directly involved in their constitution as well as their functioning. This review focuses on the participation of pH regulators in invadosome function in physiological and pathological conditions, with a particular emphasis on ECM remodeling by osteoclasts during bone resorption and by cancer cells.
Collapse
Affiliation(s)
- Lucie Brisson
- Nutrition, Growth and Cancer, Université François-Rabelais de Tours, Inserm U, France
| | | | | | | |
Collapse
|
83
|
Guiet R, Vérollet C, Lamsoul I, Cougoule C, Poincloux R, Labrousse A, Calderwood DA, Glogauer M, Lutz PG, Maridonneau-Parini I. Macrophage mesenchymal migration requires podosome stabilization by filamin A. J Biol Chem 2012; 287:13051-62. [PMID: 22334688 PMCID: PMC3339984 DOI: 10.1074/jbc.m111.307124] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/08/2012] [Indexed: 11/06/2022] Open
Abstract
Filamin A (FLNa) is a cross-linker of actin filaments and serves as a scaffold protein mostly involved in the regulation of actin polymerization. It is distributed ubiquitously, and null mutations have strong consequences on embryonic development in humans, with organ defects which suggest deficiencies in cell migration. We have reported previously that macrophages, the archetypal migratory cells, use the protease- and podosome-dependent mesenchymal migration mode in dense three-dimensional environments, whereas they use the protease- and podosome-independent amoeboid mode in more porous matrices. Because FLNa has been shown to localize to podosomes, we hypothesized that the defects seen in patients carrying FLNa mutations could be related to the capacity of certain cell types to form podosomes. Using strategies based on FLNa knock-out, knockdown, and rescue, we show that FLNa (i) is involved in podosome stability and their organization as rosettes and three-dimensional podosomes, (ii) regulates the proteolysis of the matrix mediated by podosomes in macrophages, (iii) is required for podosome rosette formation triggered by Hck, and (iv) is necessary for mesenchymal migration but dispensable for amoeboid migration. These new functions assigned to FLNa, particularly its role in mesenchymal migration, could be directly related to the defects in cell migration described during the embryonic development in FLNa-defective patients.
Collapse
Affiliation(s)
- Romain Guiet
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - Christel Vérollet
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - Isabelle Lamsoul
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - Céline Cougoule
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - Renaud Poincloux
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - Arnaud Labrousse
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - David A. Calderwood
- the Department of Pharmacology and Cell Biology and Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Michael Glogauer
- the CIHR Group in Matrix Dynamics, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
| | - Pierre G. Lutz
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - Isabelle Maridonneau-Parini
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| |
Collapse
|
84
|
Regenerative potential of glycosaminoglycans for skin and bone. J Mol Med (Berl) 2011; 90:625-35. [DOI: 10.1007/s00109-011-0843-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/30/2022]
|
85
|
Juin A, Billottet C, Moreau V, Destaing O, Albiges-Rizo C, Rosenbaum J, Génot E, Saltel F. Physiological type I collagen organization induces the formation of a novel class of linear invadosomes. Mol Biol Cell 2011; 23:297-309. [PMID: 22114353 PMCID: PMC3258174 DOI: 10.1091/mbc.e11-07-0594] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study shows that fibrillar collagen I is the physiological inducer of a novel class of invadosomes, which we named “linear invadosomes.” They are dependent on the scaffold protein Tks5 and are able to degrade extracellular matrix elements. Moreover, we demonstrate that they are β1- and β3-integrin independent, unlike classical invadosomes. Invadosomes are F-actin structures capable of degrading the matrix through the activation of matrix metalloproteases. As fibrillar type I collagen promotes pro-matrix metalloproteinase 2 activation by membrane type 1 matrix metalloproteinase, we aimed at investigating the functional relationships between collagen I organization and invadosome induction. We found that fibrillar collagen I induced linear F-actin structures, distributed along the fibrils, on endothelial cells, macrophages, fibroblasts, and tumor cells. These structures share features with conventional invadosomes, as they express cortactin and N-WASP and accumulate the scaffold protein Tks5, which proved essential for their formation. On the basis of their ability to degrade extracellular matrix elements and their original architecture, we named these structures “linear invadosomes.” Interestingly, podosomes or invadopodia were replaced by linear invadosomes upon contact of the cells with fibrillar collagen I. However, linear invadosomes clearly differ from classical invadosomes, as they do not contain paxillin, vinculin, and β1/β3 integrins. Using knockout mouse embryonic fibroblasts and RGD peptide, we demonstrate that linear invadosome formation and activity are independent of β1 and β3 integrins. Finally, linear invadosomes also formed in a three-dimensional collagen matrix. This study demonstrates that fibrillar collagen I is the physiological inducer of a novel class of invadosomes.
Collapse
|
86
|
Mellis DJ, Itzstein C, Helfrich MH, Crockett JC. The skeleton: a multi-functional complex organ: the role of key signalling pathways in osteoclast differentiation and in bone resorption. J Endocrinol 2011; 211:131-43. [PMID: 21903860 DOI: 10.1530/joe-11-0212] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Osteoclasts are the specialised cells that resorb bone matrix and are important both for the growth and shaping of bones throughout development as well as during the process of bone remodelling that occurs throughout life to maintain a healthy skeleton. Osteoclast formation, function and survival are tightly regulated by a network of signalling pathways, many of which have been identified through the study of rare monogenic diseases, knockout mouse models and animal strains carrying naturally occurring mutations in key molecules. In this review, we describe the processes of osteoclast formation, activation and function and discuss the major transcription factors and signalling pathways (including those that control the cytoskeletal rearrangements) that are important at each stage.
Collapse
Affiliation(s)
- David J Mellis
- Musculoskeletal Research Programme, University of Aberdeen, Institute of Medical Sciences, Foresterhill, UK
| | | | | | | |
Collapse
|
87
|
Invadosome regulation by adhesion signaling. Curr Opin Cell Biol 2011; 23:597-606. [DOI: 10.1016/j.ceb.2011.04.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 12/16/2022]
|
88
|
Linder S, Wiesner C, Himmel M. Degrading devices: invadosomes in proteolytic cell invasion. Annu Rev Cell Dev Biol 2011; 27:185-211. [PMID: 21801014 DOI: 10.1146/annurev-cellbio-092910-154216] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Podosomes and invadopodia, collectively known as invadosomes, are cell-matrix contacts in a variety of cell types, such as monocytic cells or cancer cells, that have to cross tissue barriers. Both structures share an actin-rich core, which distinguishes them from other matrix contacts, and are regulated by a multitude of signaling pathways including RhoGTPases, kinases, actin-associated proteins, and microtubule-dependent transport. Invadosomes recruit and secrete proteinases and are thus able to lyse extracellular matrix components. They are therefore considered to be potential key structures in proteolytic cell invasion in both physiological and pathological settings. This review provides an overview of the field, with special focus on current developments such as intracellular transport processes, ultrastructural analysis, the possible involvement of invadosomes in disease, and the tentative identification of invadosomes in 3D environments and in vivo.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| | | | | |
Collapse
|
89
|
Van Goethem E, Guiet R, Balor S, Charrière GM, Poincloux R, Labrousse A, Maridonneau-Parini I, Le Cabec V. Macrophage podosomes go 3D. Eur J Cell Biol 2011; 90:224-36. [PMID: 20801545 DOI: 10.1016/j.ejcb.2010.07.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/01/2010] [Accepted: 07/15/2010] [Indexed: 01/05/2023] Open
Abstract
Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work sets the scene for future studies of molecular and cellular processes regulating macrophage trans-migration.
Collapse
Affiliation(s)
- Emeline Van Goethem
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH. Bone remodelling at a glance. J Cell Sci 2011; 124:991-8. [PMID: 21402872 DOI: 10.1242/jcs.063032] [Citation(s) in RCA: 329] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Julie C Crockett
- Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | | | |
Collapse
|
91
|
Schmidt S, Nakchbandi I, Ruppert R, Kawelke N, Hess MW, Pfaller K, Jurdic P, Fässler R, Moser M. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. ACTA ACUST UNITED AC 2011; 192:883-97. [PMID: 21357746 PMCID: PMC3051823 DOI: 10.1083/jcb.201007141] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Loss of kindlin-3 impairs activation of β1, β2, and β3 integrin classes, resulting in osteopetrotic defects in osteoclast adhesion and spreading. The blood cell–specific kindlin-3 protein is required to activate leukocyte and platelet integrins. In line with this function, mutations in the KINDLIN-3 gene in man cause immunodeficiency and severe bleeding. Some patients also suffer from osteopetrosis, but the underlying mechanism leading to abnormal bone turnover is unknown. Here we show that kindlin-3–deficient mice develop severe osteopetrosis because of profound adhesion and spreading defects in bone-resorbing osteoclasts. Mechanistically, loss of kindlin-3 impairs the activation of β1, β2, and β3 integrin classes expressed on osteoclasts, which in turn abrogates the formation of podosomes and sealing zones required for bone resorption. In agreement with these findings, genetic ablation of all integrin classes abolishes the development of podosomes, mimicking kindlin-3 deficiency. Although loss of single integrin classes gives rise to podosomes, their resorptive activity is impaired. These findings show that osteoclasts require their entire integrin repertoire to be regulated by kindlin-3 to orchestrate bone homeostasis.
Collapse
Affiliation(s)
- Sarah Schmidt
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Dovas A, Cox D. Signaling networks regulating leukocyte podosome dynamics and function. Cell Signal 2011; 23:1225-34. [PMID: 21342664 DOI: 10.1016/j.cellsig.2011.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/10/2011] [Indexed: 01/07/2023]
Abstract
Podosomes are ventral adhesion structures prominent in cells of the myeloid lineage. A common aspect of these cells is that they are highly motile and must to traverse multiple tissue barriers in order to perform their functions. Recently podosomes have gathered attention from researchers as important cellular structures that can influence cell adhesion, motility and matrix remodeling. Adhesive and soluble ligands act via transmembrane receptors and propagate signals to the leukocyte cytoskeleton via small G proteins of the Rho family, tyrosine kinases and scaffold proteins and are able to induce podosome formation and rearrangements. Manipulation of the signals that regulate podosome formation and dynamics can therefore be a strategy to interfere with leukocyte functions in a multitude of pathological settings, such as infections, atherosclerosis and arthritis. Here, we review the major signaling molecules that act in the formation and regulation of podosomes.
Collapse
Affiliation(s)
- Athanassios Dovas
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | | |
Collapse
|
93
|
|
94
|
Saltel F, Daubon T, Juin A, Ganuza IE, Veillat V, Génot E. Invadosomes: Intriguing structures with promise. Eur J Cell Biol 2011; 90:100-7. [DOI: 10.1016/j.ejcb.2010.05.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 05/31/2010] [Indexed: 01/21/2023] Open
|
95
|
The cortactin-binding domain of WIP is essential for podosome formation and extracellular matrix degradation by murine dendritic cells. Eur J Cell Biol 2011; 90:213-23. [DOI: 10.1016/j.ejcb.2010.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 08/05/2010] [Accepted: 09/01/2010] [Indexed: 01/10/2023] Open
|
96
|
Novack DV, Faccio R. Osteoclast motility: putting the brakes on bone resorption. Ageing Res Rev 2011; 10:54-61. [PMID: 19788940 PMCID: PMC2888603 DOI: 10.1016/j.arr.2009.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/23/2009] [Accepted: 09/23/2009] [Indexed: 11/28/2022]
Abstract
As the skeleton ages, the balanced formation and resorption of normal bone remodeling is lost, and bone loss predominates. The osteoclast is the specialized cell that is responsible for bone resorption. It is a highly polarized cell that must adhere to the bone surface and migrate along it while resorbing, and cytoskeletal reorganization is critical. Podosomes, highly dynamic actin structures, mediate osteoclast motility. Resorbing osteoclasts form a related actin complex, the sealing zone, which provides the boundary for the resorptive microenvironment. Similar to podosomes, the sealing zone rearranges itself to allow continuous resorption while the cell is moving. The major adhesive protein controlling the cytoskeleton is αvβ3 integrin, which collaborates with the growth factor M-CSF and the ITAM receptor DAP12. In this review, we discuss the signaling complexes assembled by these molecules at the membrane, and their downstream mediators that control OC motility and function via the cytoskeleton.
Collapse
|
97
|
Bonnelye E, Saltel F, Chabadel A, Zirngibl RA, Aubin JE, Jurdic P. Involvement of the orphan nuclear estrogen receptor-related receptor α in osteoclast adhesion and transmigration. J Mol Endocrinol 2010; 45:365-77. [PMID: 20841427 PMCID: PMC2990392 DOI: 10.1677/jme-10-0024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 06/23/2010] [Accepted: 09/14/2010] [Indexed: 12/13/2022]
Abstract
The orphan nuclear receptor, estrogen receptor-related receptor α (ERRα) is expressed in osteoblasts and osteoclasts (OCs) and has been proposed to be a modulator of estrogen signaling. To determine the role of ERRα in OC biology, we knocked down ERRα activity by transient transfection of an siRNA directed against ERRα in the RAW264.7 monocyte-macrophage cell line that differentiates into OCs in the presence of receptor activator of nuclear factor κB-ligands and macrophage colony-stimulating factor. In parallel, stable RAW cell lines expressing a dominant-negative form of ERRα and green fluorescent protein (RAW-GFP-ERRαΔAF2) were used. Expression of OC markers was assessed by real-time PCR, and adhesion and transmigration tests were performed. Actin cytoskeletal organization was visualized using confocal microscopy. We found that RAW264.7 cells expressing siRNA directed against ERRα and RAW-GFP-ERRαΔAF2 OCs displayed abnormal spreading, and decreased osteopontin and β3 integrin subunit expression compared with the corresponding control cells. Decreased adhesion and the absence of podosome belts concomitant with abnormal localization of c-src were also observed in RAW-GFP-ERRαΔAF2-derived OCs. In addition, RAW-GFP-ERRαΔAF2-derived OCs failed to transmigrate through osteoblast cell layers. Our data show that the impairment of ERRα function does not alter OC precursor proliferation and differentiation but does alter the adhesion/spreading and migration capacities of mature OCs.
Collapse
Affiliation(s)
- Edith Bonnelye
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
| | | | | | | | | | | |
Collapse
|
98
|
Cornfine S, Himmel M, Kopp P, El Azzouzi K, Wiesner C, Krüger M, Rudel T, Linder S. The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes. Mol Biol Cell 2010; 22:202-15. [PMID: 21119006 PMCID: PMC3020916 DOI: 10.1091/mbc.e10-05-0394] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Podosomes are actin-based matrix contacts in a variety of cell types. This study identifies the kinesin KIF9 and reggie/flotillin proteins as novel regulators of macrophage podosomes and shows that their interaction through the unique C-terminal domain of KIF9 is critical for the matrix-degrading ability of these structures. Podosomes are actin-based matrix contacts in a variety of cell types, most notably monocytic cells, and are characterized by their ability to lyse extracellular matrix material. Besides their dependence on actin regulation, podosomes are also influenced by microtubules and microtubule-dependent transport processes. Here we describe a novel role for KIF9, a previously little-characterized member of the kinesin motor family, in the regulation of podosomes in primary human macrophages. We find that small interfering RNA (siRNA)/short-hairpin RNA–induced knockdown of KIF9 significantly affects both numbers and matrix degradation of podosomes. Overexpression and microinjection experiments reveal that the unique C-terminal region of KIF9 is crucial for these effects, presumably through binding of specific interactors. Indeed, we further identify reggie-1/flotillin-2, a signaling mediator between intracellular vesicles and the cell periphery, as an interactor of the KIF9 C-terminus. Reggie-1 dynamically colocalizes with KIF9 in living cells, and, consistent with KIF9-mediated effects, siRNA-induced knockdown of reggies/flotillins significantly impairs matrix degradation by podosomes. In sum, we identify the kinesin KIF9 and reggie/flotillin proteins as novel regulators of macrophage podosomes and show that their interaction is critical for the matrix-degrading ability of these structures.
Collapse
Affiliation(s)
- Susanne Cornfine
- Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany Institute for Cardiovascular Diseases, 80336 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Takegahara N, Kang S, Nojima S, Takamatsu H, Okuno T, Kikutani H, Toyofuku T, Kumanogoh A. Integral roles of a guanine nucleotide exchange factor, FARP2, in osteoclast podosome rearrangements. FASEB J 2010. [PMID: 20702777 DOI: 10.1096/fj.10.158212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Podosomes are recently rediscovered highly dynamic actin-rich structural and functional modules that form close contact with the surrounding substrate. They play a role in the control of migration, tissue invasion, and matrix remodeling of highly motile cells, including lymphocytes, macrophages, dendritic cells, and osteoclasts. In osteoclasts, the compaction of podosomes induces the formation of a tight adhesive contact, the sealing zone, which defines a subosteoclastic environment specialized for bone resorption. Integrins and the Rho family small GTPases are key regulators of podosome rearrangements. However, it remains to be determined how the activation of integrins and Rho family GTPases is regulated during osteoclast podosome rearrangements. Here, we demonstrate a crucial role for the FERM domain-containing guanine nucleotide exchange factor (GEF), FARP2, in osteoclast podosome rearrangements and resorbing activity. We determine by live cell imaging and biochemical assays that FARP2 is required for localized activation of GTP-bound Rac1 into podosome-ring like structures. In addition, FARP2 is relevant to integrin β3 activity during osteoclastogenesis. Furthermore, FARP2 deficiency results in reduced formation of multinucleated osteoclasts and resorption pits compared to wild-type osteoclasts (controls). Collectively, our findings reveal an integral role of FARP2 for regulation of Rac1 and integrin β3 throughout podosome rearrangement in osteoclastogenesis.
Collapse
Affiliation(s)
- Noriko Takegahara
- Department of Immunopathology, Research Institute for Microbial Diseases, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Takegahara N, Kang S, Nojima S, Takamatsu H, Okuno T, Kikutani H, Toyofuku T, Kumanogoh A. Integral roles of a guanine nucleotide exchange factor, FARP2, in osteoclast podosome rearrangements. FASEB J 2010; 24:4782-92. [PMID: 20702777 DOI: 10.1096/fj.10-158212] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Podosomes are recently rediscovered highly dynamic actin-rich structural and functional modules that form close contact with the surrounding substrate. They play a role in the control of migration, tissue invasion, and matrix remodeling of highly motile cells, including lymphocytes, macrophages, dendritic cells, and osteoclasts. In osteoclasts, the compaction of podosomes induces the formation of a tight adhesive contact, the sealing zone, which defines a subosteoclastic environment specialized for bone resorption. Integrins and the Rho family small GTPases are key regulators of podosome rearrangements. However, it remains to be determined how the activation of integrins and Rho family GTPases is regulated during osteoclast podosome rearrangements. Here, we demonstrate a crucial role for the FERM domain-containing guanine nucleotide exchange factor (GEF), FARP2, in osteoclast podosome rearrangements and resorbing activity. We determine by live cell imaging and biochemical assays that FARP2 is required for localized activation of GTP-bound Rac1 into podosome-ring like structures. In addition, FARP2 is relevant to integrin β3 activity during osteoclastogenesis. Furthermore, FARP2 deficiency results in reduced formation of multinucleated osteoclasts and resorption pits compared to wild-type osteoclasts (controls). Collectively, our findings reveal an integral role of FARP2 for regulation of Rac1 and integrin β3 throughout podosome rearrangement in osteoclastogenesis.
Collapse
Affiliation(s)
- Noriko Takegahara
- Department of Immunopathology, Research Institute for Microbial Diseases, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|