51
|
Ponte I, Andrés M, Jordan A, Roque A. Towards understanding the Regulation of Histone H1 Somatic Subtypes with OMICs. J Mol Biol 2020; 433:166734. [PMID: 33279581 DOI: 10.1016/j.jmb.2020.166734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Histone H1 is involved in the regulation of chromatin higher-order structure and compaction. In humans, histone H1 is a multigene family with seven subtypes differentially expressed in somatic cells. Which are the regulatory mechanisms that determine the variability of the H1 complement is a long-standing biological question regarding histone H1. We have used a new approach based on the integration of OMICs data to address this issue. We have examined the 3D-chromatin structure, the binding of transcription factors (TFs), and the expression of somatic H1 genes in human cell lines, using data from public repositories, such as ENCODE. Analysis of Hi-C, ChIP-seq, and RNA-seq data, have revealed that transcriptional control has a greater impact on H1 regulation than previously thought. Somatic H1 genes located in topologically associated domains (TADs) show higher expression than in boundary regions. H1 genes are targeted by a variable number of transcription factors including cell cycle-related TFs, and tissue-specific TFs, suggesting a fine-tuned, subtype-specific transcriptional control. We describe, for the first time, that all H1 somatic subtypes are under transcriptional co-regulation. The replication-independent subtypes, which are encoded in different chromosomes isolated from other histone genes, are also co-regulated with the rest of the somatic H1 genes, indicating that transcriptional co-regulation extends beyond the histone cluster. Transcriptional control and transcriptional co-regulation explain, at least in part, the variability of H1 complement, the fluctuations of H1 subtypes during development, and also the compensatory effects observed, in model systems, after perturbation of one or more H1 subtypes.
Collapse
Affiliation(s)
- Inma Ponte
- Biochemistry and Molecular Biology Department, Bioscience Faculty, Autonomous University of Barcelona, Spain
| | - Marta Andrés
- Biochemistry and Molecular Biology Department, Bioscience Faculty, Autonomous University of Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Alicia Roque
- Biochemistry and Molecular Biology Department, Bioscience Faculty, Autonomous University of Barcelona, Spain.
| |
Collapse
|
52
|
Franks JL, Martinez-Chacin RC, Wang X, Tiedemann RL, Bonacci T, Choudhury R, Bolhuis DL, Enrico TP, Mouery RD, Damrauer JS, Yan F, Harrison JS, Major MB, Hoadley KA, Suzuki A, Rothbart SB, Brown NG, Emanuele MJ. In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators. PLoS Biol 2020; 18:e3000975. [PMID: 33306668 PMCID: PMC7758050 DOI: 10.1371/journal.pbio.3000975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/23/2020] [Accepted: 11/05/2020] [Indexed: 01/07/2023] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.
Collapse
Affiliation(s)
- Jennifer L Franks
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raquel C Martinez-Chacin
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xianxi Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rochelle L Tiedemann
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rajarshi Choudhury
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Derek L Bolhuis
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Taylor P Enrico
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ryan D Mouery
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph S Harrison
- Department of Chemistry, University of the Pacific, Stockton, California, United States of America
| | - M Ben Major
- Department of Cell Biology and Physiology, Department of Otolaryngology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Nicholas G Brown
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael J Emanuele
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
53
|
Shibui Y, Kohashi K, Tamaki A, Kinoshita I, Yamada Y, Yamamoto H, Taguchi T, Oda Y. The forkhead box M1 (FOXM1) expression and antitumor effect of FOXM1 inhibition in malignant rhabdoid tumor. J Cancer Res Clin Oncol 2020; 147:1499-1518. [PMID: 33221995 DOI: 10.1007/s00432-020-03438-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Malignant rhabdoid tumor (MRT) is a rare, highly aggressive sarcoma with an uncertain cell of origin. Despite the existing standard of intensive multimodal therapy, the prognosis of patients with MRT is very poor. Novel antitumor agents are needed for MRT patients. Forkhead box transcription factor 1 (FOXM1) is overexpressed and is correlated with the pathogenesis in several human malignancies. In this study, we identified the clinicopathological and prognostic values of the expression of FOXM1 and its roles in the progression of MRT. METHODS We investigated the FOXM1 expression levels and their clinical significance in 23 MRT specimens using immunohistochemistry and performed clinicopathologic and prognostic analyses. We also demonstrated correlations between the downregulation of FOXM1 and oncological characteristics using small interfering RNA (siRNA) and FOXM1 inhibitor in MRT cell lines. RESULTS Histopathological analyses revealed that primary renal MRTs showed significantly low FOXM1 protein expression levels (p = 0.032); however, there were no significant differences in other clinicopathological characteristics or the survival rate. FOXM1 siRNA and FOXM1 inhibitor (thiostrepton) successfully downregulated the mRNA and protein expression of FOXM1 in vitro and the downregulation of FOXM1 inhibited cell proliferation, drug resistance to chemotherapeutic agents, migration, invasion, and caused the cell cycle arrest and apoptosis of MRT cell lines. A cDNA microarray analysis showed that FOXM1 regulated FANCD2 and NBS1, which are key genes for DNA damage repair. CONCLUSION This study demonstrates that FOXM1 may serve as a promising therapeutic target for MRT.
Collapse
Affiliation(s)
- Yuichi Shibui
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akihiko Tamaki
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Izumi Kinoshita
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
54
|
Nguyen HT, Nghia NT, Lien NTH, Dang-Nguyen TQ, Men NT, Viet Linh N, Xuan Nguyen B, Noguchi J, Kaneko H, Kikuchi K. Pluripotency-associated genes reposition during early embryonic developmental stages in pigs. Anim Sci J 2020; 91:e13408. [PMID: 32578338 PMCID: PMC7378944 DOI: 10.1111/asj.13408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
We examined the allelic expression and positioning of two pluripotency‐associated genes, OCT4 and SOX2, and two housekeeping genes, ACTB and TUBA, in 4‐ and 8‐cell porcine embryos utilizing RNA and DNA fluorescence in situ hybridization (FISH) in single blastomeres. The proportion of blastomeres expressing SOX2 bi‐allelically increased from 45% at the 4‐cell stage to 60% at the 8‐cell stage. Moreover, in 8‐cell embryos, SOX2 was expressed bi‐allelically in significantly more blastomeres than was the case for OCT4, and this was associated with a tendency for SOX2 alleles to move toward the nuclear interior during 4‐ to 8‐cell transition. However, the radial location of OCT4 alleles did not change significantly during this transition. The locations of active and inactive alleles based on DNA and RNA FISH signals were also calculated. Inactive OCT4 alleles were located in very close proximity to the nuclear membrane, whereas active OCT4 alleles were more centrally disposed in the nucleus. Nevertheless, the nuclear location of active and inactive SOX2 alleles did not change in either 4‐ or 8‐cell blastomeres. Our RNA and DNA FISH data provide novel information on the allelic expression patterns and positioning of pluripotency‐associated genes, OCT4 and SOX2, during embryonic genome activation in pigs.
Collapse
Affiliation(s)
- Hiep Thi Nguyen
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Trong Nghia
- Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nghiem Thi Ha Lien
- Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thanh Quang Dang-Nguyen
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Nguyen Thi Men
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Nguyen Viet Linh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Bui Xuan Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Junko Noguchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hiroyuki Kaneko
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
55
|
Roci I, Watrous JD, Lagerborg KA, Jain M, Nilsson R. Mapping metabolic oscillations during cell cycle progression. Cell Cycle 2020; 19:2676-2684. [PMID: 33016215 PMCID: PMC7644150 DOI: 10.1080/15384101.2020.1825203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proliferating cells must synthesize a wide variety of macromolecules while progressing through the cell cycle, but the coordination between cell cycle progression and cellular metabolism is still poorly understood. To identify metabolic processes that oscillate over the cell cycle, we performed comprehensive, non-targeted liquid chromatography-high resolution mass spectrometry (LC-HRMS) based metabolomics of HeLa cells isolated in the G1 and SG2M cell cycle phases, capturing thousands of diverse metabolite ions. When accounting for increased total metabolite abundance due to cell growth throughout the cell cycle, 18% of the observed LC-HRMS peaks were at least twofold different between the stages, consistent with broad metabolic remodeling throughout the cell cycle. While most amino acids, phospholipids, and total ribonucleotides were constant across cell cycle phases, consistent with the view that total macromolecule synthesis does not vary across the cell cycle, certain metabolites were oscillating. For example, ribonucleotides were highly phosphorylated in SG2M, indicating an increase in energy charge, and several phosphatidylinositols were more abundant in G1, possibly indicating altered membrane lipid signaling. Within carbohydrate metabolism, pentose phosphates and methylglyoxal metabolites were associated with the cycle. Interestingly, hundreds of yet uncharacterized metabolites similarly oscillated between cell cycle phases, suggesting previously unknown metabolic activities that may be synchronized with cell cycle progression, providing an important resource for future studies.
Collapse
Affiliation(s)
- Irena Roci
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet , Stockholm, Sweden.,Division of Cardiovascular Medicine, Karolinska University Hospital , Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Jeramie D Watrous
- , Department of Medicine & Pharmacology University of California, San Diego , La Jolla, CA, USA
| | - Kim A Lagerborg
- , Department of Medicine & Pharmacology University of California, San Diego , La Jolla, CA, USA
| | - Mohit Jain
- , Department of Medicine & Pharmacology University of California, San Diego , La Jolla, CA, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet , Stockholm, Sweden.,Division of Cardiovascular Medicine, Karolinska University Hospital , Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
56
|
Zheng Y, Dubois W, Benham C, Batchelor E, Levens D. FUBP1 and FUBP2 enforce distinct epigenetic setpoints for MYC expression in primary single murine cells. Commun Biol 2020; 3:545. [PMID: 33005010 PMCID: PMC7530719 DOI: 10.1038/s42003-020-01264-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022] Open
Abstract
Physiologically, MYC levels must be precisely set to faithfully amplify the transcriptome, but in cancer MYC is quantitatively misregulated. Here, we study the variation of MYC amongst single primary cells (B-cells and murine embryonic fibroblasts, MEFs) for the repercussions of variable cellular MYC-levels and setpoints. Because FUBPs have been proposed to be molecular “cruise controls” that constrain MYC expression, their role in determining basal or activated MYC-levels was also examined. Growing cells remember low and high-MYC setpoints through multiple cell divisions and are limited by the same expression ceiling even after modest MYC-activation. High MYC MEFs are enriched for mRNAs regulating inflammation and immunity. After strong stimulation, many cells break through the ceiling and intensify MYC expression. Lacking FUBPs, unstimulated MEFs express levels otherwise attained only with stimulation and sponsor MYC chromatin changes, revealed by chromatin marks. Thus, the FUBPs enforce epigenetic setpoints that restrict MYC expression. Ying Zheng et al. characterize MYC gene and protein expression in single mammalian cells in response to various external signals. They find that individual cells show either high or low basal MYC expression setpoints, and that adherence to these setpoints as well as the magnitude of the response of MYC to stimulation, is controlled by FUBP1 and FUBP2.
Collapse
Affiliation(s)
- Ying Zheng
- Lab of Pathology, National Cancer Institutes, Bethesda, MD, USA
| | - Wendy Dubois
- Lab of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, Bethesda, MD, USA
| | - Craig Benham
- Biomedical Engineering, University of California, Davis, CA, USA
| | - Eric Batchelor
- Masonic Cancer Center and Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - David Levens
- Lab of Pathology, National Cancer Institutes, Bethesda, MD, USA.
| |
Collapse
|
57
|
Kurubanjerdjit N, Ng KL. A database of integrated molecular and phytochemical interactions of the foxm1 pathway for lung cancer. J Biomol Struct Dyn 2020; 40:177-189. [PMID: 32835615 DOI: 10.1080/07391102.2020.1810777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The FoxM1 pathway is an oncogenic signaling pathway involved in essential mechanisms including control cell-cycle progression, apoptosis and cell growth which are the common hallmarks of various cancers. Although its biological functions in the tumor development and progression are known, the mechanism by which it participates in those processes is not understood. The present work reveals images of the oncogenic FoxM1 pathway controlling the cell cycle process with alternative treatment options via phytochemical substances in the lung cancer study. The downstream significant protein modules of the FoxM1 pathway were extracted by the Molecular Complex Detection (MCODE) and the maximal clique (Mclique) algorithms. Furthermore, the effects of post-transcriptional modification by microRNA, transcription factor binding and the phytochemical compounds are observed through their interactions with the lung cancer protein modules. We provided two case studies to demonstrate the usefulness of our database. Our results suggested that the combination of various phytochemicals is effective in the treatment of lung cancer. The ultimate goal of the present work is to partly support the discovery of plant-derived compounds in combination treatment of classical chemotherapeutic agents to increase the efficacy of lung cancer method probably with minor side effects. Furthermore, a web-based system displaying results of the present work is set up for investigators posing queries at http://sit.mfu.ac.th/lcgdb/index_FoxM1.php.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Ka-Lok Ng
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
58
|
Emanuele MJ, Enrico TP, Mouery RD, Wasserman D, Nachum S, Tzur A. Complex Cartography: Regulation of E2F Transcription Factors by Cyclin F and Ubiquitin. Trends Cell Biol 2020; 30:640-652. [PMID: 32513610 PMCID: PMC7859860 DOI: 10.1016/j.tcb.2020.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
The E2F family of transcriptional regulators sits at the center of cell cycle gene expression and plays vital roles in normal and cancer cell cycles. Whereas control of E2Fs by the retinoblastoma family of proteins is well established, much less is known about their regulation by ubiquitin pathways. Recent studies placed the Skp1-Cul1-F-box-protein (SCF) family of E3 ubiquitin ligases with the F-box protein Cyclin F at the center of E2F regulation, demonstrating temporal proteolysis of both activator and atypical repressor E2Fs. Importantly, these E2F members, in particular activator E2F1 and repressors E2F7 and E2F8, form a feedback circuit at the crossroads of cell cycle and cell death. Moreover, Cyclin F functions in a reciprocal circuit with the cell cycle E3 ligase anaphase-promoting complex/cyclosome (APC/C), which also controls E2F7 and E2F8. This review focuses on the complex contours of feedback within this circuit, highlighting the deep crosstalk between E2F, SCF-Cyclin F, and APC/C in regulating the oscillator underlying human cell cycles.
Collapse
Affiliation(s)
- Michael J Emanuele
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Taylor P Enrico
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan D Mouery
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Genetics and Molecular Biology Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Danit Wasserman
- Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sapir Nachum
- Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Amit Tzur
- Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
59
|
Wong ZS, Sokol-Borrelli SL, Olias P, Dubey JP, Boyle JP. Head-to-head comparisons of Toxoplasma gondii and its near relative Hammondia hammondi reveal dramatic differences in the host response and effectors with species-specific functions. PLoS Pathog 2020; 16:e1008528. [PMID: 32574210 PMCID: PMC7360062 DOI: 10.1371/journal.ppat.1008528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii and Hammondia hammondi are closely-related coccidian intracellular parasites that differ in their ability to cause disease in animal and (likely) humans. The role of the host response in these phenotypic differences is not known and to address this we performed a transcriptomic analysis of a monocyte cell line (THP-1) infected with these two parasite species. The pathways altered by infection were shared between species ~95% the time, but the magnitude of the host response to H. hammondi was significantly higher compared to T. gondii. Accompanying this divergent host response was an equally divergent impact on the cell cycle of the host cell. In contrast to T. gondii, H. hammondi infection induces cell cycle arrest via pathways linked to DNA-damage responses and cellular senescence and robust secretion of multiple chemokines that are known to be a part of the senescence associated secretory phenotype (SASP). Remarkably, prior T. gondii infection or treatment with T. gondii-conditioned media suppressed responses to H. hammondi infection, and promoted the replication of H. hammondi in recipient cells. Suppression of inflammatory responses to H. hammondi was found to be mediated by the T. gondii effector IST, and this finding was consistent with reduced functionality of the H. hammondi IST ortholog compared to its T. gondii counterpart. Taken together our data suggest that T. gondii manipulation of the host cell is capable of suppressing previously unknown stress and/or DNA-damage induced responses that occur during infection with H. hammondi, and that one important impact of this T. gondii mediated suppression is to promote parasite replication.
Collapse
Affiliation(s)
- Zhee Sheen Wong
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah L. Sokol-Borrelli
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - J. P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | - Jon P. Boyle
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
60
|
Yildirim O, Izgu EC, Damle M, Chalei V, Ji F, Sadreyev RI, Szostak JW, Kingston RE. S-phase Enriched Non-coding RNAs Regulate Gene Expression and Cell Cycle Progression. Cell Rep 2020; 31:107629. [PMID: 32402276 PMCID: PMC7954657 DOI: 10.1016/j.celrep.2020.107629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/20/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Many proteins that are needed for progression through S-phase are produced from transcripts that peak in the S-phase, linking temporal expression of those proteins to the time that they are required in cell cycle. Here, we explore the potential roles of long non-coding RNAs in cell cycle progression. We use a sensitive click-chemistry approach to isolate nascent RNAs in a human cell line, and we identify more than 900 long non-coding RNAs (lncRNAs) whose synthesis peaks during the S-phase. More than 200 of these are long intergenic non-coding RNAs (lincRNAs) with S-phase-specific expression. We characterize three of these lincRNAs by knockdown and find that all three lincRNAs are required for appropriate S-phase progression. We infer that non-coding RNAs are key regulatory effectors during the cell cycle, acting on distinct regulatory networks, and herein, we provide a large catalog of candidate cell-cycle regulatory RNAs.
Collapse
Affiliation(s)
- Ozlem Yildirim
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Enver C Izgu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Manashree Damle
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vladislava Chalei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jack W Szostak
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
61
|
Bhattacharyya R, Ha MJ, Liu Q, Akbani R, Liang H, Baladandayuthapani V. Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome. JCO Clin Cancer Inform 2020; 4:399-411. [PMID: 32374631 PMCID: PMC7265783 DOI: 10.1200/cci.19.00140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Personalized network inference on diverse clinical and in vitro model systems across cancer types can be used to delineate specific regulatory mechanisms, uncover drug targets and pathways, and develop individualized predictive models in cancer. METHODS We developed TransPRECISE (personalized cancer-specific integrated network estimation model), a multiscale Bayesian network modeling framework, to analyze the pan-cancer patient and cell line interactome to identify differential and conserved intrapathway activities, to globally assess cell lines as representative models for patients, and to develop drug sensitivity prediction models. We assessed pan-cancer pathway activities for a large cohort of patient samples (> 7,700) from the Cancer Proteome Atlas across ≥ 30 tumor types, a set of 640 cancer cell lines from the MD Anderson Cell Lines Project spanning 16 lineages, and ≥ 250 cell lines' response to > 400 drugs. RESULTS TransPRECISE captured differential and conserved proteomic network topologies and pathway circuitry between multiple patient and cell line lineages: ovarian and kidney cancers shared high levels of connectivity in the hormone receptor and receptor tyrosine kinase pathways, respectively, between the two model systems. Our tumor stratification approach found distinct clinical subtypes of the patients represented by different sets of cell lines: patients with head and neck tumors were classified into two different subtypes that are represented by head and neck and esophagus cell lines and had different prognostic patterns (456 v 654 days of median overall survival; P = .02). High predictive accuracy was observed for drug sensitivities in cell lines across multiple drugs (median area under the receiver operating characteristic curve > 0.8) using Bayesian additive regression tree models with TransPRECISE pathway scores. CONCLUSION Our study provides a generalizable analytic framework to assess the translational potential of preclinical model systems and to guide pathway-based personalized medical decision making, integrating genomic and molecular data across model systems.
Collapse
Affiliation(s)
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Qingzhi Liu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
62
|
McDonald IM, Graves LM. Enigmatic MELK: The controversy surrounding its complex role in cancer. J Biol Chem 2020; 295:8195-8203. [PMID: 32350113 DOI: 10.1074/jbc.rev120.013433] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Ser/Thr protein kinase MELK (maternal embryonic leucine zipper kinase) has been considered an attractive therapeutic target for managing cancer since 2005. Studies using expression analysis have indicated that MELK expression is higher in numerous cancer cells and tissues than in their normal, nonneoplastic counterparts. Further, RNAi-mediated MELK depletion impairs proliferation of multiple cancers, including triple-negative breast cancer (TNBC), and these growth defects can be rescued with exogenous WT MELK, but not kinase-dead MELK complementation. Pharmacological MELK inhibition with OTS167 (alternatively called OTSSP167) and NVS-MELK8a, among other small molecules, also impairs cancer cell growth. These collective results led to MELK being classified as essential for cancer proliferation. More recently, in 2017, the proliferation of TNBC and other cancer cell lines was reported to be unaffected by genetic CRISPR/Cas9-mediated MELK deletion, calling into question the essentiality of this kinase in cancer. To date, the requirement of MELK in cancer remains controversial, and mechanisms underlying the disparate growth effects observed with RNAi, pharmacological inhibition, and CRISPR remain unclear. Our objective with this review is to highlight the evidence on both sides of this controversy, to provide commentary on the purported requirement of MELK in cancer, and to emphasize the need for continued elucidation of the functions of MELK.
Collapse
Affiliation(s)
- Ian M McDonald
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.,UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
63
|
FOXM1 Deubiquitination by USP21 Regulates Cell Cycle Progression and Paclitaxel Sensitivity in Basal-like Breast Cancer. Cell Rep 2020; 26:3076-3086.e6. [PMID: 30865895 PMCID: PMC6425951 DOI: 10.1016/j.celrep.2019.02.054] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/17/2018] [Accepted: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
The transcription factor FOXM1 contributes to cell cycle progression and is significantly upregulated in basal-like breast cancer (BLBC). Despite its importance in normal and cancer cell cycles, we lack a complete understanding of mechanisms that regulate FOXM1. We identified USP21 in an RNAi-based screen for deubiquitinases that control FOXM1 abundance. USP21 increases the stability of FOXM1, and USP21 binds and deubiquitinates FOXM1 in vivo and in vitro, indicating a direct enzyme-substrate relationship. Depleting USP21 downregulates the FOXM1 transcriptional network and causes a signifi-cant delay in cell cycle progression. Significantly, USP21 depletion sensitized BLBC cell lines and mouse xenograft tumors to paclitaxel, an anti-mitotic, frontline therapy in BLBC treatment. USP21 is the most frequently amplified deubiquitinase in BLBC patient tumors, and its amplification co-occurs with the upregulation of FOXM1 protein. Altogether, these data suggest a role for USP21 in the proliferation and potentially treatment of FOXM1-high, USP21-high BLBC. The cell cycle transcription factor FOXM1 is activated in basal-like breast cancer (BLBC) and associated with therapeutic resistance and poor patient outcomes. Arceci et al. show USP21 antagonizes FOXM1 degradation, thereby promoting proliferation and paclitaxel resistance. USP21 is catalytically active and recurrently overexpressed in BLBC, representing a potential therapeutic target.
Collapse
|
64
|
Ehsani R, Drabløs F. Enhanced identification of significant regulators of gene expression. BMC Bioinformatics 2020; 21:134. [PMID: 32252623 PMCID: PMC7132893 DOI: 10.1186/s12859-020-3468-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/24/2020] [Indexed: 12/29/2022] Open
Abstract
Background Diseases like cancer will lead to changes in gene expression, and it is relevant to identify key regulatory genes that can be linked directly to these changes. This can be done by computing a Regulatory Impact Factor (RIF) score for relevant regulators. However, this computation is based on estimating correlated patterns of gene expression, often Pearson correlation, and an assumption about a set of specific regulators, normally transcription factors. This study explores alternative measures of correlation, using the Fisher and Sobolev metrics, and an extended set of regulators, including epigenetic regulators and long non-coding RNAs (lncRNAs). Data on prostate cancer have been used to explore the effect of these modifications. Results A tool for computation of RIF scores with alternative correlation measures and extended sets of regulators was developed and tested on gene expression data for prostate cancer. The study showed that the Fisher and Sobolev metrics lead to improved identification of well-documented regulators of gene expression in prostate cancer, and the sets of identified key regulators showed improved overlap with previously defined gene sets of relevance to cancer. The extended set of regulators lead to identification of several interesting candidates for further studies, including lncRNAs. Several key processes were identified as important, including spindle assembly and the epithelial-mesenchymal transition (EMT). Conclusions The study has shown that using alternative metrics of correlation can improve the performance of tools based on correlation of gene expression in genomic data. The Fisher and Sobolev metrics should be considered also in other correlation-based applications.
Collapse
Affiliation(s)
- Rezvan Ehsani
- Department of Mathematics, University of Zabol, Zabol, Iran. .,Department of Bioinformatics, University of Zabol, Zabol, Iran.
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.
| |
Collapse
|
65
|
Pérez-Posada A, Dudin O, Ocaña-Pallarès E, Ruiz-Trillo I, Ondracka A. Cell cycle transcriptomics of Capsaspora provides insights into the evolution of cyclin-CDK machinery. PLoS Genet 2020; 16:e1008584. [PMID: 32176685 PMCID: PMC7098662 DOI: 10.1371/journal.pgen.1008584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/26/2020] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Progression through the cell cycle in eukaryotes is regulated on multiple levels. The main driver of the cell cycle progression is the periodic activity of cyclin-dependent kinase (CDK) complexes. In parallel, transcription during the cell cycle is regulated by a transcriptional program that ensures the just-in-time gene expression. Many core cell cycle regulators are widely conserved in eukaryotes, among them cyclins and CDKs; however, periodic transcriptional programs are divergent between distantly related species. In addition, many otherwise conserved cell cycle regulators have been lost and independently evolved in yeast, a widely used model organism for cell cycle research. For a better understanding of the evolution of the cell cycle regulation in opisthokonts, we investigated the transcriptional program during the cell cycle of the filasterean Capsaspora owczarzaki, a unicellular species closely related to animals. We developed a protocol for cell cycle synchronization in Capsaspora cultures and assessed gene expression over time across the entire cell cycle. We identified a set of 801 periodic genes that grouped into five clusters of expression over time. Comparison with datasets from other eukaryotes revealed that the periodic transcriptional program of Capsaspora is most similar to that of animal cells. We found that orthologues of cyclin A, B and E are expressed at the same cell cycle stages as in human cells and in the same temporal order. However, in contrast to human cells where these cyclins interact with multiple CDKs, Capsaspora cyclins likely interact with a single ancestral CDK1-3. Thus, the Capsaspora cyclin-CDK system could represent an intermediate state in the evolution of animal-like cyclin-CDK regulation. Overall, our results demonstrate that Capsaspora could be a useful unicellular model system for animal cell cycle regulation.
Collapse
Affiliation(s)
- Alberto Pérez-Posada
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Eduard Ocaña-Pallarès
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- ICREA, Barcelona, Catalonia, Spain
| | - Andrej Ondracka
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| |
Collapse
|
66
|
McDonald IM, Grant GD, East MP, Gilbert TSK, Wilkerson EM, Goldfarb D, Beri J, Herring LE, Vaziri C, Cook JG, Emanuele MJ, Graves LM. Mass spectrometry-based selectivity profiling identifies a highly selective inhibitor of the kinase MELK that delays mitotic entry in cancer cells. J Biol Chem 2020; 295:2359-2374. [PMID: 31896573 PMCID: PMC7039562 DOI: 10.1074/jbc.ra119.011083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
The maternal embryonic leucine zipper kinase (MELK) has been implicated in the regulation of cancer cell proliferation. RNAi-mediated MELK depletion impairs growth and causes G2/M arrest in numerous cancers, but the mechanisms underlying these effects are poorly understood. Furthermore, the MELK inhibitor OTSSP167 has recently been shown to have poor selectivity for MELK, complicating the use of this inhibitor as a tool compound to investigate MELK function. Here, using a cell-based proteomics technique called multiplexed kinase inhibitor beads/mass spectrometry (MIB/MS), we profiled the selectivity of two additional MELK inhibitors, NVS-MELK8a (8a) and HTH-01-091. Our results revealed that 8a is a highly selective MELK inhibitor, which we further used for functional studies. Resazurin and crystal violet assays indicated that 8a decreases triple-negative breast cancer cell viability, and immunoblotting revealed that impaired growth is due to perturbation of cell cycle progression rather than induction of apoptosis. Using double-thymidine synchronization and immunoblotting, we observed that MELK inhibition delays mitotic entry, which was associated with delayed activation of Aurora A, Aurora B, and cyclin-dependent kinase 1 (CDK1). Following this delay, cells entered and completed mitosis. Using live-cell microscopy of cells harboring fluorescent proliferating cell nuclear antigen, we confirmed that 8a significantly and dose-dependently lengthens G2 phase. Collectively, our results provide a rationale for using 8a as a tool compound for functional studies of MELK and indicate that MELK inhibition delays mitotic entry, likely via transient G2/M checkpoint activation.
Collapse
Affiliation(s)
- Ian M McDonald
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gavin D Grant
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael P East
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Thomas S K Gilbert
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Emily M Wilkerson
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110; Institute for Informatics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Joshua Beri
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Cyrus Vaziri
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jeanette Gowen Cook
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael J Emanuele
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
67
|
Panchy NL, Lloyd JP, Shiu SH. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data. BMC Genomics 2020; 21:159. [PMID: 32054475 PMCID: PMC7020519 DOI: 10.1186/s12864-020-6554-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Gene expression is regulated by DNA-binding transcription factors (TFs). Together with their target genes, these factors and their interactions collectively form a gene regulatory network (GRN), which is responsible for producing patterns of transcription, including cyclical processes such as genome replication and cell division. However, identifying how this network regulates the timing of these patterns, including important interactions and regulatory motifs, remains a challenging task. RESULTS We employed four in vivo and in vitro regulatory data sets to investigate the regulatory basis of expression timing and phase-specific patterns cell-cycle expression in Saccharomyces cerevisiae. Specifically, we considered interactions based on direct binding between TF and target gene, indirect effects of TF deletion on gene expression, and computational inference. We found that the source of regulatory information significantly impacts the accuracy and completeness of recovering known cell-cycle expressed genes. The best approach involved combining TF-target and TF-TF interactions features from multiple datasets in a single model. In addition, TFs important to multiple phases of cell-cycle expression also have the greatest impact on individual phases. Important TFs regulating a cell-cycle phase also tend to form modules in the GRN, including two sub-modules composed entirely of unannotated cell-cycle regulators (STE12-TEC1 and RAP1-HAP1-MSN4). CONCLUSION Our findings illustrate the importance of integrating both multiple omics data and regulatory motifs in order to understand the significance regulatory interactions involved in timing gene expression. This integrated approached allowed us to recover both known cell-cycles interactions and the overall pattern of phase-specific expression across the cell-cycle better than any single data set. Likewise, by looking at regulatory motifs in the form of TF-TF interactions, we identified sets of TFs whose co-regulation of target genes was important for cell-cycle expression, even when regulation by individual TFs was not. Overall, this demonstrates the power of integrating multiple data sets and models of interaction in order to understand the regulatory basis of established biological processes and their associated gene regulatory networks.
Collapse
Affiliation(s)
- Nicholas L Panchy
- Genetics Graduate Program, Michigan State University, East Lansing, MI, 48824, USA.,Present address: National Institute for Mathematical and Biological Synthesis, University of Tennessee, 1122 Volunteer Blvd., Suite 106, Knoxville, TN, 37996-3410, USA
| | - John P Lloyd
- Department of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shin-Han Shiu
- Genetics Graduate Program, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA. .,Michigan State University, Plant Biology Laboratories, 612 Wilson Road, Room 166, East Lansing, MI, 48824-1312, USA.
| |
Collapse
|
68
|
Deng L, Lou H, Zhang X, Thiruvahindrapuram B, Lu D, Marshall CR, Liu C, Xie B, Xu W, Wong LP, Yew CW, Farhang A, Ong RTH, Hoque MZ, Thuhairah AR, Jong B, Phipps ME, Scherer SW, Teo YY, Kumar SV, Hoh BP, Xu S. Analysis of five deep-sequenced trio-genomes of the Peninsular Malaysia Orang Asli and North Borneo populations. BMC Genomics 2019; 20:842. [PMID: 31718558 PMCID: PMC6852992 DOI: 10.1186/s12864-019-6226-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Background Recent advances in genomic technologies have facilitated genome-wide investigation of human genetic variations. However, most efforts have focused on the major populations, yet trio genomes of indigenous populations from Southeast Asia have been under-investigated. Results We analyzed the whole-genome deep sequencing data (~ 30×) of five native trios from Peninsular Malaysia and North Borneo, and characterized the genomic variants, including single nucleotide variants (SNVs), small insertions and deletions (indels) and copy number variants (CNVs). We discovered approximately 6.9 million SNVs, 1.2 million indels, and 9000 CNVs in the 15 samples, of which 2.7% SNVs, 2.3% indels and 22% CNVs were novel, implying the insufficient coverage of population diversity in existing databases. We identified a higher proportion of novel variants in the Orang Asli (OA) samples, i.e., the indigenous people from Peninsular Malaysia, than that of the North Bornean (NB) samples, likely due to more complex demographic history and long-time isolation of the OA groups. We used the pedigree information to identify de novo variants and estimated the autosomal mutation rates to be 0.81 × 10− 8 – 1.33 × 10− 8, 1.0 × 10− 9 – 2.9 × 10− 9, and ~ 0.001 per site per generation for SNVs, indels, and CNVs, respectively. The trio-genomes also allowed for haplotype phasing with high accuracy, which serves as references to the future genomic studies of OA and NB populations. In addition, high-frequency inherited CNVs specific to OA or NB were identified. One example is a 50-kb duplication in DEFA1B detected only in the Negrito trios, implying plausible effects on host defense against the exposure of diverse microbial in tropical rainforest environment of these hunter-gatherers. The CNVs shared between OA and NB groups were much fewer than those specific to each group. Nevertheless, we identified a 142-kb duplication in AMY1A in all the 15 samples, and this gene is associated with the high-starch diet. Moreover, novel insertions shared with archaic hominids were identified in our samples. Conclusion Our study presents a full catalogue of the genome variants of the native Malaysian populations, which is a complement of the genome diversity in Southeast Asians. It implies specific population history of the native inhabitants, and demonstrated the necessity of more genome sequencing efforts on the multi-ethnic native groups of Malaysia and Southeast Asia.
Collapse
Affiliation(s)
- Lian Deng
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haiyi Lou
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxi Zhang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | | | - Dongsheng Lu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Christian R Marshall
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Chang Liu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bo Xie
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanxing Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lai-Ping Wong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117597, Singapore
| | - Chee-Wei Yew
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Aghakhanian Farhang
- Jefrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Sunway, 46150, Subang Jaya, Selangor, Malaysia.,Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Sunway, Subang Jaya, Selangor, Malaysia
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117597, Singapore
| | - Mohammad Zahirul Hoque
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Abdul Rahman Thuhairah
- Clinical Pathology Diagnostic Centre Research Laboratory, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000 Sg Buloh, Subang Jaya, Selangor, Malaysia
| | - Bhak Jong
- Personal Genomics Institute, Genome Research Foundation, Suwon, Republic of Korea.,Geromics, Ulsan, 44919, Republic of Korea.,Biomedical Engineering Department, The Genomics Institute, UNIST, Ulsan, Republic of Korea
| | - Maude E Phipps
- Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Sunway, Subang Jaya, Selangor, Malaysia
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117597, Singapore.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Subbiah Vijay Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Boon-Peng Hoh
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Faculty of Medicine and Health Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia.
| | - Shuhua Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,Collaborative Innovation Center of Genetics and Development, Shanghai, 200438, China. .,Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
69
|
Zhou DM, Liu J, Liu F, Luo GW, Li HT, Zhang R, Chen BL, Hua W. A novel FoxM1-PSMB4 axis contributes to proliferation and progression of cervical cancer. Biochem Biophys Res Commun 2019; 521:746-752. [PMID: 31699366 DOI: 10.1016/j.bbrc.2019.10.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/27/2019] [Indexed: 12/31/2022]
Abstract
The abnormally high activity of the proteasome system is closely related to the occurrence and development of various tumors. PSMB4 is a non-catalytic subunit for the proteasome assembly. Although the reports from genetic screening have demonstrated it's a driver gene for cell growth in several types of solid tumor, its expression pattern and regulatory mechanisms in malignant diseases are still elusive. Here, we found that PSMB4 is overexpressed in cervical cancer tissues. And knockdown of PSMB4 significantly inhibited cervical cancer cell proliferation. The mechanistic study revealed that FoxM1, a master regulator of cell division, binds directly to the promoter region of PSMB4 and regulates the PSMB4 expression in the mRNA level. In addition, the data analysis from TCGA showed a positive correlation between FxoM1 and PSMB4 in cervical cancer. Furthermore, the loss of functional and rescue experiments confirmed that PSMB4 is required for FoxM1-driven cervical cancer cell proliferation. Collectively, our study explains the phenomenon of dysregulated expression of PSMB4 in cervical cancer tissues and verifies its driver effect on cancer cell proliferation. More importantly, it highlights a FoxM1-PSMB4 axis could be a potential target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Dong-Mei Zhou
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Jun Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Fang Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Guang-Wei Luo
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, 710032, Xi'an, China
| | - Hai-Tong Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, 710032, Xi'an, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, China; Department of Immunology, Fourth Military Medical University, 710032, Xi'an, China.
| | - Bi-Liang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| | - Wei Hua
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| |
Collapse
|
70
|
Limas JC, Cook JG. Preparation for DNA replication: the key to a successful S phase. FEBS Lett 2019; 593:2853-2867. [PMID: 31556113 PMCID: PMC6817399 DOI: 10.1002/1873-3468.13619] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Successful genome duplication is required for cell proliferation and demands extraordinary precision and accuracy. The mechanisms by which cells enter, progress through, and exit S phase are intense areas of focus in the cell cycle and genome stability fields. Key molecular events in the G1 phase of the cell division cycle, especially origin licensing, are essential for pre-establishing conditions for efficient DNA replication during the subsequent S phase. If G1 events are poorly regulated or disordered, then DNA replication can be compromised leading to genome instability, a hallmark of tumorigenesis. Upon entry into S phase, coordinated origin firing and replication progression ensure complete, timely, and precise chromosome replication. Both G1 and S phase progressions are controlled by master cell cycle protein kinases and ubiquitin ligases that govern the activity and abundance of DNA replication factors. In this short review, we describe current understanding and recent developments related to G1 progression and S phase entrance and exit with a particular focus on origin licensing regulation in vertebrates.
Collapse
Affiliation(s)
- Juanita C Limas
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Jeanette Gowen Cook
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
71
|
Giotti B, Chen SH, Barnett MW, Regan T, Ly T, Wiemann S, Hume DA, Freeman TC. Assembly of a parts list of the human mitotic cell cycle machinery. J Mol Cell Biol 2019; 11:703-718. [PMID: 30452682 PMCID: PMC6788831 DOI: 10.1093/jmcb/mjy063] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022] Open
Abstract
The set of proteins required for mitotic division remains poorly characterized. Here, an extensive series of correlation analyses of human and mouse transcriptomics data were performed to identify genes strongly and reproducibly associated with cells undergoing S/G2-M phases of the cell cycle. In so doing, 701 cell cycle-associated genes were defined and while it was shown that many are only expressed during these phases, the expression of others is also driven by alternative promoters. Of this list, 496 genes have known cell cycle functions, whereas 205 were assigned as putative cell cycle genes, 53 of which are functionally uncharacterized. Among these, 27 were screened for subcellular localization revealing many to be nuclear localized and at least three to be novel centrosomal proteins. Furthermore, 10 others inhibited cell proliferation upon siRNA knockdown. This study presents the first comprehensive list of human cell cycle proteins, identifying many new candidate proteins.
Collapse
Affiliation(s)
- Bruno Giotti
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
- Biosciences and Biotechnology Institute, EDyP Department, CEA Grenoble, 17 rue des Martyrs, Grenoble, France
| | - Sz-Hau Chen
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Mark W Barnett
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Tim Regan
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Tony Ly
- Wellcome Centre for Cell Biology, University of Edinburgh, Swann Building, Edinburgh EH9 3BF, Scotland, UK
| | - Stefan Wiemann
- Molecular Genome Analysis (B050), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, Heidelberg, Germany
| | - David A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
- Mater Research Institute, University of Queensland, Level 3, Aubigny Place, Raymond Terrace, South Brisbane, Qld,Australia
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| |
Collapse
|
72
|
Zheng L, Chen Z, Kawakami M, Chen Y, Roszik J, Mustachio LM, Kurie JM, Villalobos P, Lu W, Behrens C, Mino B, Solis LM, Silvester J, Thu KL, Cescon DW, Rodriguez-Canales J, Wistuba II, Mak TW, Liu X, Dmitrovsky E. Tyrosine Threonine Kinase Inhibition Eliminates Lung Cancers by Augmenting Apoptosis and Polyploidy. Mol Cancer Ther 2019; 18:1775-1786. [PMID: 31358662 DOI: 10.1158/1535-7163.mct-18-0864] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/18/2018] [Accepted: 07/24/2019] [Indexed: 01/11/2023]
Abstract
The spindle assembly checkpoint maintains genomic integrity. A key component is tyrosine threonine kinase (TTK, also known as Mps1). TTK antagonism is hypothesized to cause genomic instability and cell death. Interrogating The Cancer Genome Atlas revealed high TTK expression in lung adenocarcinomas and squamous cell cancers versus the normal lung (P < 0.001). This correlated with an unfavorable prognosis in examined lung adenocarcinoma cases (P = 0.007). TTK expression profiles in lung tumors were independently assessed by RNA in situ hybridization. CFI-402257 is a highly selective TTK inhibitor. Its potent antineoplastic effects are reported here against a panel of well-characterized murine and human lung cancer cell lines. Significant antitumorigenic activity followed independent treatments of athymic mice bearing human lung cancer xenografts (6.5 mg/kg, P < 0.05; 8.5 mg/kg, P < 0.01) and immunocompetent mice with syngeneic lung cancers (P < 0.001). CFI-402257 antineoplastic mechanisms were explored. CFI-402257 triggered aneuploidy and apoptotic death of lung cancer cells without changing centrosome number. Reverse phase protein arrays (RPPA) of vehicle versus CFI-402257-treated lung cancers were examined using more than 300 critical growth-regulatory proteins. RPPA bioinformatic analyses discovered CFI-402257 enhanced MAPK signaling, implicating MAPK antagonism in augmenting TTK inhibitory effects. This was independently confirmed using genetic and pharmacologic repression of MAPK that promoted CFI-402257 anticancer actions. TTK antagonism exerted marked antineoplastic effects against lung cancers and MAPK inhibition cooperated. Future work should determine whether CFI-402257 treatment alone or with a MAPK inhibitor is active in the lung cancer clinic.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zibo Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Masanori Kawakami
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Yulong Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa Maria Mustachio
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pamela Villalobos
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carmen Behrens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer Silvester
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kelsie L Thu
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David W Cescon
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Frederick National Laboratory for Cancer Research, Frederick, Maryland.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
73
|
Bala Bhaskara Rao K, Katragunta K, Sarma UM, Jain N. Abundance of
d
‐2‐hydroxyglutarate in G2/M is determined by FOXM1 in mutant IDH1‐expressing cells. FEBS Lett 2019; 593:2177-2193. [DOI: 10.1002/1873-3468.13500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/22/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Kancharana Bala Bhaskara Rao
- Department of Applied Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi India
| | - Kumar Katragunta
- Organic Synthesis and Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Uma Maheswara Sarma
- Organic Synthesis and Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Nishant Jain
- Department of Applied Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi India
| |
Collapse
|
74
|
Froese DS, Fowler B, Baumgartner MR. Vitamin B 12 , folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J Inherit Metab Dis 2019; 42:673-685. [PMID: 30693532 DOI: 10.1002/jimd.12009] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
Vitamin B12 (cobalamin, Cbl) is a nutrient essential to human health. Due to its complex structure and dual cofactor forms, Cbl undergoes a complicated series of absorptive and processing steps before serving as cofactor for the enzymes methylmalonyl-CoA mutase and methionine synthase. Methylmalonyl-CoA mutase is required for the catabolism of certain (branched-chain) amino acids into an anaplerotic substrate in the mitochondrion, and dysfunction of the enzyme itself or in production of its cofactor adenosyl-Cbl result in an inability to successfully undergo protein catabolism with concomitant mitochondrial energy disruption. Methionine synthase catalyzes the methyl-Cbl dependent (re)methylation of homocysteine to methionine within the methionine cycle; a reaction required to produce this essential amino acid and generate S-adenosylmethionine, the most important cellular methyl-donor. Disruption of methionine synthase has wide-ranging implications for all methylation-dependent reactions, including epigenetic modification, but also for the intracellular folate pathway, since methionine synthase uses 5-methyltetrahydrofolate as a one-carbon donor. Folate-bound one-carbon units are also required for deoxythymidine monophosphate and de novo purine synthesis; therefore, the flow of single carbon units to each of these pathways must be regulated based on cellular needs. This review provides an overview on Cbl metabolism with a brief description of absorption and intracellular metabolic pathways. It also provides a description of folate-mediated one-carbon metabolism and its intersection with Cbl at the methionine cycle. Finally, a summary of recent advances in understanding of how both pathways are regulated is presented.
Collapse
Affiliation(s)
- D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Brian Fowler
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
75
|
Dabydeen SA, Desai A, Sahoo D. Unbiased Boolean analysis of public gene expression data for cell cycle gene identification. Mol Biol Cell 2019; 30:1770-1779. [PMID: 31091168 PMCID: PMC6727750 DOI: 10.1091/mbc.e19-01-0013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/04/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Cell proliferation is essential for the development and maintenance of all organisms and is dysregulated in cancer. Using synchronized cells progressing through the cell cycle, pioneering microarray studies defined cell cycle genes based on cyclic variation in their expression. However, the concordance of the small number of synchronized cell studies has been limited, leading to discrepancies in definition of the transcriptionally regulated set of cell cycle genes within and between species. Here we present an informatics approach based on Boolean logic to identify cell cycle genes. This approach used the vast array of publicly available gene expression data sets to query similarity to CCNB1, which encodes the cyclin subunit of the Cdk1-cyclin B complex that triggers the G2-to-M transition. In addition to highlighting conservation of cell cycle genes across large evolutionary distances, this approach identified contexts where well-studied genes known to act during the cell cycle are expressed and potentially acting in nondivision contexts. An accessible web platform enables a detailed exploration of the cell cycle gene lists generated using the Boolean logic approach. The methods employed are straightforward to extend to processes other than the cell cycle.
Collapse
Affiliation(s)
- Sarah A. Dabydeen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Arshad Desai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093
| | - Debashis Sahoo
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
76
|
Chibon F, Lesluyes T, Valentin T, Le Guellec S. CINSARC signature as a prognostic marker for clinical outcome in sarcomas and beyond. Genes Chromosomes Cancer 2019; 58:124-129. [PMID: 30387235 DOI: 10.1002/gcc.22703] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022] Open
Abstract
Prognostication is a key issue for sarcoma patients' care as it triggers the therapeutic approach including chemotherapy, which is still not standard for localized patients. Current prognostic evaluation, based on the FNCLCC grading system, has recently been improved by the CINSARC signature outperforming histology-based grading system by identifying high-risk patients in every grade, even in those considered as low. CINSARC is an expression-based signature related to mitosis and chromosome integrity with prognostic value in a wide range of cancers additional to sarcoma. First developed with frozen material, CINSARC is now coupled with NanoString technology allowing evaluation from FFPE blocks used in clinical practice. Consequently, CINSARC is currently evaluated in clinical trials with a dual objective of demonstrating the benefit of chemotherapy in sarcoma patients and testing its response prediction. Considering its overarching value in oncology, its development is welcome in any cancers where the prognostication needs to be improved.
Collapse
Affiliation(s)
- Frederic Chibon
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Department of Pathology, Institut Claudius Regaud, Toulouse, France
| | - Tom Lesluyes
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,University of Bordeaux, Bordeaux, France.,Institut Claudius Regaud, Toulouse, France
| | - Thibaud Valentin
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Department of Medical Oncology, Institut Claudius Regaud, Toulouse, France
| | - Sophie Le Guellec
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Department of Pathology, Institut Claudius Regaud, Toulouse, France
| |
Collapse
|
77
|
Roci I, Watrous JD, Lagerborg KA, Lafranchi L, Lindqvist A, Jain M, Nilsson R. Mapping Metabolic Events in the Cancer Cell Cycle Reveals Arginine Catabolism in the Committed SG 2M Phase. Cell Rep 2019; 26:1691-1700.e5. [PMID: 30759381 PMCID: PMC6663478 DOI: 10.1016/j.celrep.2019.01.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/10/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Alterations in cell-cycle regulation and cellular metabolism are associated with cancer transformation, and enzymes active in the committed cell-cycle phase may represent vulnerabilities of cancer cells. Here, we map metabolic events in the G1 and SG2M phases by combining cell sorting with mass spectrometry-based isotope tracing, revealing hundreds of cell-cycle-associated metabolites. In particular, arginine uptake and ornithine synthesis are active during SG2M in transformed but not in normal cells, with the mitochondrial arginase 2 (ARG2) enzyme as a potential mechanism. While cancer cells exclusively use ARG2, normal epithelial cells synthesize ornithine via ornithine aminotransferase (OAT). Knockdown of ARG2 markedly reduces cancer cell growth and causes G2M arrest, while not inducing compensation via OAT. In human tumors, ARG2 is highly expressed in specific tumor types, including basal-like breast tumors. This study sheds light on the interplay between metabolism and cell cycle and identifies ARG2 as a potential metabolic target.
Collapse
Affiliation(s)
- Irena Roci
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Division of Cardiovascular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Jeramie D Watrous
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA 92093, USA
| | - Kim A Lagerborg
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA 92093, USA
| | - Lorenzo Lafranchi
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA 92093, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Division of Cardiovascular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
78
|
Cell Cycle-Regulated Transcription of CENP-A by the MBF Complex Ensures Optimal Level of CENP-A for Centromere Formation. Genetics 2019; 211:861-875. [PMID: 30635289 DOI: 10.1534/genetics.118.301745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/04/2019] [Indexed: 11/18/2022] Open
Abstract
The centromere plays an essential role in chromosome segregation. In most eukaryotes, centromeres are epigenetically defined by the conserved histone H3 variant CENP-A. Proper centromere assembly is dependent upon the tight regulation of CENP-A level. Cell cycle regulation of CENP-A transcription appears to be a universal feature across eukaryotes, but the molecular mechanism underlying the temporal control of CENP-A transcription and how such regulation contributes to centromere function remains elusive. CENP-A in fission yeast has been shown to be transcribed before S phase. Using various synchronization methods, we confirmed that CENP-A transcription occurs at G1, leading to an almost twofold increase of the protein during S phase. Through a genetic screen, we identified the MBF (MluI box-binding factors) complex as a key regulator of temporal control of CENP-A transcription. The periodic transcription of CENP-A is lost in MBF mutants, resulting in CENP-A mislocalization and chromosome segregation defects. We identified the MCB (MluI cell cycle box) motif in the CENP-A promoter, and further showed that the MBF complex binds to the motif to restrict CENP-A transcription to G1. Mutations of the MCB motif cause constitutive CENP-A expression and deleterious effects on cell survival. Using promoters driving transcription to different cell cycle stages, we found that timing of CENP-A transcription is dispensable for its centromeric localization. Our data instead indicate that cell cycle-regulated CENP-A transcription is a key step to ensure that a proper amount of CENP-A is generated across generations. This study provides mechanistic insights into the regulation of cell cycle-dependent CENP-A transcription, as well as its importance on centromere function.
Collapse
|
79
|
Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J, Gulati G, Bennett ML, Sun LO, Clarke LE, Marschallinger J, Yu G, Quake SR, Wyss-Coray T, Barres BA. Developmental Heterogeneity of Microglia and Brain Myeloid Cells Revealed by Deep Single-Cell RNA Sequencing. Neuron 2018; 101:207-223.e10. [PMID: 30606613 DOI: 10.1016/j.neuron.2018.12.006] [Citation(s) in RCA: 718] [Impact Index Per Article: 102.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/09/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022]
Abstract
Microglia are increasingly recognized for their major contributions during brain development and neurodegenerative disease. It is currently unknown whether these functions are carried out by subsets of microglia during different stages of development and adulthood or within specific brain regions. Here, we performed deep single-cell RNA sequencing (scRNA-seq) of microglia and related myeloid cells sorted from various regions of embryonic, early postnatal, and adult mouse brains. We found that the majority of adult microglia expressing homeostatic genes are remarkably similar in transcriptomes, regardless of brain region. By contrast, early postnatal microglia are more heterogeneous. We discovered a proliferative-region-associated microglia (PAM) subset, mainly found in developing white matter, that shares a characteristic gene signature with degenerative disease-associated microglia (DAM). Such PAM have amoeboid morphology, are metabolically active, and phagocytose newly formed oligodendrocytes. This scRNA-seq atlas will be a valuable resource for dissecting innate immune functions in health and disease.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Zuolin Cheng
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Lu Zhou
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Spyros Darmanis
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Norma F Neff
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Jennifer Okamoto
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Gunsagar Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mariko L Bennett
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lu O Sun
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura E Clarke
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia Marschallinger
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
80
|
Intuyod K, Saavedra-García P, Zona S, Lai CF, Jiramongkol Y, Vaeteewoottacharn K, Pairojkul C, Yao S, Yong JS, Trakansuebkul S, Waraasawapati S, Luvira V, Wongkham S, Pinlaor S, Lam EWF. FOXM1 modulates 5-fluorouracil sensitivity in cholangiocarcinoma through thymidylate synthase (TYMS): implications of FOXM1-TYMS axis uncoupling in 5-FU resistance. Cell Death Dis 2018; 9:1185. [PMID: 30538221 PMCID: PMC6290025 DOI: 10.1038/s41419-018-1235-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/01/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022]
Abstract
Fluorouracil (5-FU) is the first-line chemotherapeutic drug for cholangiocarcinoma (CCA), but its efficacy has been compromised by the development of resistance. Development of 5-FU resistance is associated with elevated expression of its cellular target, thymidylate synthase (TYMS). E2F1 transcription factor has previously been shown to modulate the expression of FOXM1 and TYMS. Immunohistochemical (IHC) analysis revealed a strong correlated upregulation of FOXM1 (78%) and TYMS (48%) expression at the protein levels in CCA tissues. In agreement, RT-qPCR and western blot analyses of four human CCA cell lines at the baseline level and in response to high doses of 5-FU revealed good correlations between FOXM1 and TYMS expression in the CCA cell lines tested, except for the highly 5-FU-resistant HuCCA cells. Consistently, siRNA-mediated knockdown of FOXM1 reduced the clonogenicity and TYMS expression in the relatively sensitive KKU-D131 but not in the highly resistant HuCCA cells. Interestingly, silencing of TYMS sensitized both KKU-D131 and HuCCA to 5-FU treatment, suggesting that resistance to very high levels of 5-FU is due to the inability of the genotoxic sensor FOXM1 to modulate TYMS expression. Consistently, ChIP analysis revealed that FOXM1 binds efficiently to the TYMS promoter and modulates TYMS expression at the promoter level upon 5-FU treatment in KKU-D131 but not in HuCCA cells. In addition, E2F1 expression did not correlate with either FOXM1 or TYMS expression and E2F1 depletion has no effects on the clonogenicity and TYMS expression in the CCA cells. In conclusion, our data show that FOXM1 regulates TYMS expression to modulate 5-FU resistance in CCA and that severe 5-FU resistance can be caused by the uncoupling of the regulation of TYMS by FOXM1. Our findings suggest that the FOXM1–TYMS axis can be a novel diagnostic, predictive and prognostic marker as well as a therapeutic target for CCA.
Collapse
Affiliation(s)
- Kitti Intuyod
- Department of Surgery and Cancer, Imperial College London, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.,Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Paula Saavedra-García
- Department of Surgery and Cancer, Imperial College London, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial College London, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Chun-Fui Lai
- Department of Surgery and Cancer, Imperial College London, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Yannasittha Jiramongkol
- Department of Surgery and Cancer, Imperial College London, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Kulthida Vaeteewoottacharn
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Shang Yao
- Department of Surgery and Cancer, Imperial College London, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Jay-Sze Yong
- Department of Surgery and Cancer, Imperial College London, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Sasanan Trakansuebkul
- Department of Surgery and Cancer, Imperial College London, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Sakda Waraasawapati
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Vor Luvira
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| |
Collapse
|
81
|
Kelliher CM, Foster MW, Motta FC, Deckard A, Soderblom EJ, Moseley MA, Haase SB. Layers of regulation of cell-cycle gene expression in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 2018; 29:2644-2655. [PMID: 30207828 PMCID: PMC6249835 DOI: 10.1091/mbc.e18-04-0255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 11/11/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, transcription factors (TFs) regulate the periodic expression of many genes during the cell cycle, including gene products required for progression through cell-cycle events. Experimental evidence coupled with quantitative models suggests that a network of interconnected TFs is capable of regulating periodic genes over the cell cycle. Importantly, these dynamical models were built on transcriptomics data and assumed that TF protein levels and activity are directly correlated with mRNA abundance. To ask whether TF transcripts match protein expression levels as cells progress through the cell cycle, we applied a multiplexed targeted mass spectrometry approach (parallel reaction monitoring) to synchronized populations of cells. We found that protein expression of many TFs and cell-cycle regulators closely followed their respective mRNA transcript dynamics in cycling wild-type cells. Discordant mRNA/protein expression dynamics was also observed for a subset of cell-cycle TFs and for proteins targeted for degradation by E3 ubiquitin ligase complexes such as SCF (Skp1/Cul1/F-box) and APC/C (anaphase-promoting complex/cyclosome). We further profiled mutant cells lacking B-type cyclin/CDK activity ( clb1-6) where oscillations in ubiquitin ligase activity, cyclin/CDKs, and cell-cycle progression are halted. We found that a number of proteins were no longer periodically degraded in clb1-6 mutants compared with wild type, highlighting the importance of posttranscriptional regulation. Finally, the TF complexes responsible for activating G1/S transcription (SBF and MBF) were more constitutively expressed at the protein level than at periodic mRNA expression levels in both wild-type and mutant cells. This comprehensive investigation of cell-cycle regulators reveals that multiple layers of regulation (transcription, protein stability, and proteasome targeting) affect protein expression dynamics during the cell cycle.
Collapse
Affiliation(s)
| | - Matthew W. Foster
- Duke Center for Genomic and Computational Biology, Proteomics and Metabolomics Shared Resource, Durham, NC 27701
| | | | | | - Erik J. Soderblom
- Duke Center for Genomic and Computational Biology, Proteomics and Metabolomics Shared Resource, Durham, NC 27701
| | - M. Arthur Moseley
- Duke Center for Genomic and Computational Biology, Proteomics and Metabolomics Shared Resource, Durham, NC 27701
| | | |
Collapse
|
82
|
Lan X, Field MS, Stover PJ. Cell cycle regulation of folate-mediated one-carbon metabolism. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1426. [PMID: 29889360 PMCID: PMC11875019 DOI: 10.1002/wsbm.1426] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/25/2022]
Abstract
Folate-mediated one-carbon metabolism (FOCM) comprises a network of interconnected folate-dependent metabolic pathways responsible for serine and glycine interconversion, de novo purine synthesis, de novo thymidylate synthesis and homocysteine remethylation to methionine. These pathways are compartmentalized in the cytosol, nucleus and mitochondria. Individual enzymes within the FOCM network compete for folate cofactors because intracellular folate concentrations are limiting. Although there are feedback mechanisms that regulate the partitioning of folate cofactors among the folate-dependent pathways, less recognized is the impact of cell cycle regulation on FOCM. This review summarizes the evidence for temporal regulation of expression, activity and cellular localization of enzymes and pathways in the FOCM network in mammalian cells through the cell cycle. This article is categorized under: Biological Mechanisms > Metabolism Physiology > Mammalian Physiology in Health and Disease.
Collapse
Affiliation(s)
- Xu Lan
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
83
|
Kernan J, Bonacci T, Emanuele MJ. Who guards the guardian? Mechanisms that restrain APC/C during the cell cycle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1924-1933. [PMID: 30290241 DOI: 10.1016/j.bbamcr.2018.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 11/25/2022]
Abstract
The cell cycle is principally controlled by Cyclin Dependent Kinases (CDKs), whose oscillating activities are determined by binding to Cyclin coactivators. Cyclins exhibit dynamic changes in abundance as cells pass through the cell cycle. The sequential, timed accumulation and degradation of Cyclins, as well as many other proteins, imposes order on the cell cycle and contributes to genome maintenance. The destruction of many cell cycle regulated proteins, including Cyclins A and B, is controlled by a large, multi-subunit E3 ubiquitin ligase termed the Anaphase Promoting Complex/Cyclosome (APC/C). APC/C activity is tightly regulated during the cell cycle. Its activation state increases dramatically in mid-mitosis and it remains active until the end of G1 phase. Following its mandatory inactivation at the G1/S boundary, APC/C activity remains low until the subsequent mitosis. Due to its role in guarding against the inappropriate or untimely accumulation of Cyclins, the APC/C is a core component of the cell cycle oscillator. In addition to the regulation of Cyclins, APC/C controls the degradation of many other substrates. Therefore, it is vital that the activity of APC/C itself be tightly guarded. The APC/C is most well studied for its role and regulation during mitosis. However, the APC/C also plays a similarly important and conserved role in the maintenance of G1 phase. Here we review the diverse mechanisms counteracting APC/C activity throughout the cell cycle and the importance of their coordinated actions on cell growth, proliferation, and disease.
Collapse
Affiliation(s)
- Jennifer Kernan
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
84
|
GABPA inhibits invasion/metastasis in papillary thyroid carcinoma by regulating DICER1 expression. Oncogene 2018; 38:965-979. [PMID: 30181547 DOI: 10.1038/s41388-018-0483-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
The ETS family transcription factor GABPA is suggested as an oncogenic element, which is further supported by the recent reporting of it as the sole ETS member to activate the mutant TERT promoter in thyroid carcinomas (TC). However, it remains unclear how GABPA contributes to TC pathogenesis. The present study is designed to address this issue. TERT expression was significantly diminished in TERT promoter-mutated TC cells upon GABPA inhibition. Surprisingly, GABPA depletion led to robustly increased cellular invasion independently of TERT promoter mutations and TERT expression. DICER1, a component of the microRNA machinery, was identified as a downstream effector of GABPA. GABPA facilitated Dicer1 transcription while its depletion reduced Dicer1 expression. The mutation of the GABPA binding site in the DICER1 promoter led to diminished basal levels of DICER1 promoter activity and abolishment of GABPA-stimulated promoter activity as well. The forced DICER1 expression abrogated the invasiveness of GABPA-depleted TC cells. Consistently, the analyses of 93 patients with papillary thyroid carcinoma (PTC) revealed a positive correlation between GABPA and DICER1 expression. GABPA expression was negatively associated with TERT expression and promoter mutations, in contrast to published observations in cancer cell lines. Lower GABPA expression was associated with distant metastasis and shorter overall/disease-free survival in PTC patients. Similar results were obtained for PTC cases in the TCGA dataset. In addition, a positive correlation between GABPA and DICER1 expression was seen in multiple types of malignancies. Taken together, despite its stimulatory effect on the mutant TERT promoter and telomerase activation, GABPA may itself act as a tumor suppressor rather than an oncogenic factor to inhibit invasion/metastasis in TCs and be a useful predictor for patient outcomes.
Collapse
|
85
|
Bonacci T, Suzuki A, Grant GD, Stanley N, Cook JG, Brown NG, Emanuele MJ. Cezanne/OTUD7B is a cell cycle-regulated deubiquitinase that antagonizes the degradation of APC/C substrates. EMBO J 2018; 37:e98701. [PMID: 29973362 PMCID: PMC6092620 DOI: 10.15252/embj.201798701] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/09/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and key regulator of cell cycle progression. Since APC/C promotes the degradation of mitotic cyclins, it controls cell cycle-dependent oscillations in cyclin-dependent kinase (CDK) activity. Both CDKs and APC/C control a large number of substrates and are regulated by analogous mechanisms, including cofactor-dependent activation. However, whereas substrate dephosphorylation is known to counteract CDK, it remains largely unknown whether deubiquitinating enzymes (DUBs) antagonize APC/C substrate ubiquitination during mitosis. Here, we demonstrate that Cezanne/OTUD7B is a cell cycle-regulated DUB that opposes the ubiquitination of APC/C targets. Cezanne is remarkably specific for K11-linked ubiquitin chains, which are formed by APC/C in mitosis. Accordingly, Cezanne binds established APC/C substrates and reverses their APC/C-mediated ubiquitination. Cezanne depletion accelerates APC/C substrate degradation and causes errors in mitotic progression and formation of micronuclei. These data highlight the importance of tempered APC/C substrate destruction in maintaining chromosome stability. Furthermore, Cezanne is recurrently amplified and overexpressed in numerous malignancies, suggesting a potential role in genome maintenance and cancer cell proliferation.
Collapse
Affiliation(s)
- Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aussie Suzuki
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gavin D Grant
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Stanley
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeanette G Cook
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
86
|
The Temporal Regulation of S Phase Proteins During G 1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:335-369. [PMID: 29357066 DOI: 10.1007/978-981-10-6955-0_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Successful DNA replication requires intimate coordination with cell-cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell-cycle entry and cell-cycle progression.
Collapse
|
87
|
Pfister K, Pipka JL, Chiang C, Liu Y, Clark RA, Keller R, Skoglund P, Guertin MJ, Hall IM, Stukenberg PT. Identification of Drivers of Aneuploidy in Breast Tumors. Cell Rep 2018; 23:2758-2769. [PMID: 29847804 PMCID: PMC5997284 DOI: 10.1016/j.celrep.2018.04.102] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/04/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
Although aneuploidy is found in the majority of tumors, the degree of aneuploidy varies widely. It is unclear how cancer cells become aneuploid or how highly aneuploid tumors are different from those of more normal ploidy. We developed a simple computational method that measures the degree of aneuploidy or structural rearrangements of large chromosome regions of 522 human breast tumors from The Cancer Genome Atlas (TCGA). Highly aneuploid tumors overexpress activators of mitotic transcription and the genes encoding proteins that segregate chromosomes. Overexpression of three mitotic transcriptional regulators, E2F1, MYBL2, and FOXM1, is sufficient to increase the rate of lagging anaphase chromosomes in a non-transformed vertebrate tissue, demonstrating that this event can initiate aneuploidy. Highly aneuploid human breast tumors are also enriched in TP53 mutations. TP53 mutations co-associate with the overexpression of mitotic transcriptional activators, suggesting that these events work together to provide fitness to breast tumors.
Collapse
Affiliation(s)
- Katherine Pfister
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Justyna L Pipka
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Colby Chiang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Yunxian Liu
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Royden A Clark
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Paul Skoglund
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Michael J Guertin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Ira M Hall
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
88
|
Computational analysis of the oscillatory behavior at the translation level induced by mRNA levels oscillations due to finite intracellular resources. PLoS Comput Biol 2018; 14:e1006055. [PMID: 29614119 PMCID: PMC5898785 DOI: 10.1371/journal.pcbi.1006055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 04/13/2018] [Accepted: 02/15/2018] [Indexed: 11/22/2022] Open
Abstract
Recent studies have demonstrated how the competition for the finite pool of available gene expression factors has important effect on fundamental gene expression aspects. In this study, based on a whole-cell model simulation of translation in S. cerevisiae, we evaluate for the first time the expected effect of mRNA levels fluctuations on translation due to the finite pool of ribosomes. We show that fluctuations of a single gene or a group of genes mRNA levels induce periodic behavior in all S. cerevisiae translation factors and aspects: the ribosomal densities and the translation rates of all S. cerevisiae mRNAs oscillate. We numerically measure the oscillation amplitudes demonstrating that fluctuations of endogenous and heterologous genes can cause a significant fluctuation of up to 50% in the steady-state translation rates of the rest of the genes. Furthermore, we demonstrate by synonymous mutations that oscillating the levels of mRNAs that experience high ribosomal occupancy (e.g. ribosomal “traffic jam”) induces the largest impact on the translation of the S. cerevisiae genome. The results reported here should provide novel insights and principles related to the design of synthetic gene expression circuits and related to the evolutionary constraints shaping gene expression of endogenous genes. Each cell contains a limited number of macromolecules and factors that participate in the gene expression process. These expression resources are shared between the different molecules that encode the genetic code, resulting in non-trivial couplings and competitions between the different gene expression stages. Such competitions should be considered when analyzing the cellular economy of the cell, the genome evolution, and the design of synthetic expression circuits. Here we study the effect of couplings and competitions for ribosomes by performing a whole-cell simulation of translation of S. cerevisiae, with parameters estimated from experimental data. We demonstrate that by periodically changing the mRNA levels of a single gene (endogenous or heterologous) or a set of genes, the translation of all S. cerevisiae genes are affected in a periodic manner. We numerically estimate the exact impact of the mRNA levels periodicity on the translation process dynamics, as well as on the dynamics of the free ribosomal pool and the way it is affected by parameters such as the codon composition of the oscillating gene, its initiation rate and mRNA levels. Furthermore, we show that the codon compositions of synthetically highly expressed heterologous genes that are expected to oscillate must be carefully considered. For example, synonymous mutations resulting in “traffic jams” of ribosomes along the fluctuated mRNAs may cause significant fluctuations of up to 50% in the steady-state translation rates of all genes.
Collapse
|
89
|
Zhang N, Pati D. Separase Inhibitor Sepin-1 Inhibits Foxm1 Expression and Breast Cancer Cell Growth. JOURNAL OF CANCER SCIENCE & THERAPY 2018; 10:517. [PMID: 29780443 PMCID: PMC5959057 DOI: 10.4172/1948-5956.1000517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sepin-1, a potent non-competitive inhibitor of separase, inhibits cancer cell growth, but the mechanisms of Sepin-1-mediated growth inhibition are not fully understood. Here we report that Sepin-1 hinders growth of breast cancer cells, cell migration, and wound healing. Inhibition of cell growth induced by Sepin-1 in vitro doesn't appear to be through apoptosis but rather due to growth inhibition. Following Sepin-1 treatment caspases 3 and 7 are not activated and Poly (ADP-ribose) polymerase (Parp) is not cleaved. The expression of Forkhead box protein M1 (FoxM1), a transcription factor, and its target genes in the cell cycle, including Plk1, Cdk1, Aurora A, and Lamin B1, are reduced in a Sepin-1-dependent manner. Expressions of Raf kinase family members A-Raf, B-Raf, and C-Raf also are inhibited following treatment with Sepin-1. Raf is an intermediator in the Raf-Mek-Erk signaling pathway that phosphorylates FoxM1. Activated FoxM1 can promote its own transcription via a positive feedback loop. Sepin-1-induced downregulation of Raf and FoxM1 may inhibit expression of cell cycle-driving genes, resulting in inhibition of cell growth.
Collapse
Affiliation(s)
- Nenggang Zhang
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Debananda Pati
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
90
|
Treatment with docetaxel in combination with Aneustat leads to potent inhibition of metastasis in a patient-derived xenograft model of advanced prostate cancer. Br J Cancer 2018; 118:802-812. [PMID: 29381682 PMCID: PMC5877435 DOI: 10.1038/bjc.2017.474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023] Open
Abstract
Background: Docetaxel used for first-line treatment of advanced prostate cancer (PCa) is only marginally effective. We previously showed, using the LTL-313H subrenal capsule patient-derived metastatic PCa xenograft model, that docetaxel combined with Aneustat (OMN54), a multivalent plant-derived therapeutic, led to marked synergistic tumour growth inhibition. Here, we investigated the effect of docetaxel+Aneustat on metastasis. Methods: C4-2 cells were incubated with docetaxel, Aneustat and docetaxel+Aneustat to assess effects on cell migration. The LTL-313H model, similarly treated, was analysed for effects on lung micro-metastasis and kidney invasion. The LTL-313H gene expression profile was compared with profiles of PCa patients (obtained from Oncomine) and subjected to IPA to determine involvement of cancer driver genes. Results: Docetaxel+Aneustat markedly inhibited C4-2 cell migration and LTL-313H lung micro-metastasis/kidney invasion. Oncomine analysis indicated that treatment with docetaxel+Aneustat was associated with improved patient outcome. The drug combination markedly downregulated expression of cancer driver genes such as FOXM1 (and FOXM1-target genes). FOXM1 overexpression reduced the anti-metastatic activity of docetaxel+Aneustat. Conclusions: Docetaxel+Aneustat can inhibit PCa tissue invasion and metastasis. This activity appears to be based on reduced expression of cancer driver genes such as FOXM1. Use of docetaxel+Aneustat may provide a new, more effective regimen for therapy of metastatic PCa.
Collapse
|
91
|
Chávez S, Eastman G, Smircich P, Becco LL, Oliveira-Rizzo C, Fort R, Potenza M, Garat B, Sotelo-Silveira JR, Duhagon MA. Transcriptome-wide analysis of the Trypanosoma cruzi proliferative cycle identifies the periodically expressed mRNAs and their multiple levels of control. PLoS One 2017; 12:e0188441. [PMID: 29182646 PMCID: PMC5705152 DOI: 10.1371/journal.pone.0188441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/07/2017] [Indexed: 12/02/2022] Open
Abstract
Trypanosoma cruzi is the protozoan parasite causing American trypanosomiasis or Chagas disease, a neglected parasitosis with important human health impact in Latin America. The efficacy of current therapy is limited, and its toxicity is high. Since parasite proliferation is a fundamental target for rational drug design, we sought to progress into its understanding by applying a genome-wide approach. Treating a TcI linage strain with hydroxyurea, we isolated epimastigotes in late G1, S and G2/M cell cycle stages at 70% purity. The sequencing of each phase identified 305 stage-specific transcripts (1.5-fold change, p≤0.01), coding for conserved cell cycle regulated proteins and numerous proteins whose cell cycle dependence has not been recognized before. Comparisons with the parasite T. brucei and the human host reveal important differences. The meta-analysis of T. cruzi transcriptomic and ribonomic data indicates that cell cycle regulated mRNAs are subject to sub-cellular compartmentalization. Compositional and structural biases of these genes- including CAI, GC content, UTR length, and polycistron position- may contribute to their regulation. To discover nucleotide motifs responsible for the co-regulation of cell cycle regulated genes, we looked for overrepresented motifs at their UTRs and found a variant of the cell cycle sequence motif at the 3' UTR of most of the S and G2 stage genes. We additionally identified hairpin structures at the 5' UTRs of a high proportion of the transcripts, suggesting that periodic gene expression might also rely on translation initiation in T. cruzi. In summary, we report a comprehensive list of T. cruzi cell cycle regulated genes, including many previously unstudied proteins, we show evidence favoring a multi-step control of their expression, and we identify mRNA motifs that may mediate their regulation. Our results provide novel information of the T. cruzi proliferative proteins and the integrated levels of their gene expression control.
Collapse
Affiliation(s)
- Santiago Chávez
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Guillermo Eastman
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pablo Smircich
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Lorena Lourdes Becco
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Carolina Oliveira-Rizzo
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Rafael Fort
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Mariana Potenza
- Institute for Research in Genetic Engineering and Molecular Biology 'Dr. N.H. Torres', Buenos Aires, Argentina
| | - Beatriz Garat
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - José Roberto Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Department of Cell and Molecular Biology, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
92
|
Pease LI, Clegg PD, Proctor CJ, Shanley DJ, Cockell SJ, Peffers MJ. Cross platform analysis of transcriptomic data identifies ageing has distinct and opposite effects on tendon in males and females. Sci Rep 2017; 7:14443. [PMID: 29089527 PMCID: PMC5663855 DOI: 10.1038/s41598-017-14650-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/13/2017] [Indexed: 01/21/2023] Open
Abstract
The development of tendinopathy is influenced by a variety of factors including age, gender, sex hormones and diabetes status. Cross platform comparative analysis of transcriptomic data elucidated the connections between these entities in the context of ageing. Tissue-engineered tendons differentiated from bone marrow derived mesenchymal stem cells from young (20-24 years) and old (54-70 years) donors were assayed using ribonucleic acid sequencing (RNA-seq). Extension of the experiment to microarray and RNA-seq data from tendon identified gender specific gene expression changes highlighting disparity with existing literature and published pathways. Separation of RNA-seq data by sex revealed underlying negative binomial distributions which increased statistical power. Sex specific de novo transcriptome assemblies generated fewer larger transcripts that contained miRNAs, lincRNAs and snoRNAs. The results identify that in old males decreased expression of CRABP2 leads to cell proliferation, whereas in old females it leads to cellular senescence. In conjunction with existing literature the results explain gender disparity in the development and types of degenerative diseases as well as highlighting a wide range of considerations for the analysis of transcriptomic data. Wider implications are that degenerative diseases may need to be treated differently in males and females because alternative mechanisms may be involved.
Collapse
Affiliation(s)
- Louise I Pease
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - Peter D Clegg
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, The University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Carole J Proctor
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK
| | - Daryl J Shanley
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Simon J Cockell
- Faculty of Medical Sciences, Bioinformatics Support Unit, Framlington Place, Newcastle University, Newcastle, NE2 4HH, UK
| | - Mandy J Peffers
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK.
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, The University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK.
| |
Collapse
|
93
|
Transcriptomic Characterization of the Human Cell Cycle in Individual Unsynchronized Cells. J Mol Biol 2017; 429:3909-3924. [PMID: 29045817 DOI: 10.1016/j.jmb.2017.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 12/14/2022]
Abstract
The highly fine-tuned dynamics of cell cycle gene expression have been intensely studied for several decades. However, some previous observations may be difficult to fully decouple from artifacts induced by traditional cell synchronization procedures. In addition, bulk cell measurements may have disguised intricate details. Here, we address this by sorting and transcriptomic sequencing of single cells progressing through the cell cycle without prior synchronization. Genes and pathways with known cell cycle roles are confirmed, associated regulatory sequence motifs are determined, and we also establish ties between other biological processes and the unsynchronized cell cycle. Importantly, we find the G1 phase to be surprisingly heterogeneous, with transcriptionally distinct early and late time points. We additionally note that mRNAs accumulate to reach maximum total levels at mitosis and find that stable transcripts show reduced cell-to-cell variability, consistent with the transcriptional burst model of gene expression. Our study provides the first detailed transcriptional profiling of an unsynchronized human cell cycle.
Collapse
|
94
|
He J, Zhou Z, Reed M, Califano A. Accelerated parallel algorithm for gene network reverse engineering. BMC SYSTEMS BIOLOGY 2017; 11:83. [PMID: 28950860 PMCID: PMC5615246 DOI: 10.1186/s12918-017-0458-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background The Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) represents one of the most effective tools to reconstruct gene regulatory networks from large-scale molecular profile datasets. However, previous implementations require intensive computing resources and, in some cases, restrict the number of samples that can be used. These issues can be addressed elegantly in a GPU computing framework, where repeated mathematical computation can be done efficiently, but requires extensive redesign to apply parallel computing techniques to the original serial algorithm, involving detailed optimization efforts based on a deep understanding of both hardware and software architecture. Result Here, we present an accelerated parallel implementation of ARACNE (GPU-ARACNE). By taking advantage of multi-level parallelism and the Compute Unified Device Architecture (CUDA) parallel kernel-call library, GPU-ARACNE successfully parallelizes a serial algorithm and simplifies the user experience from multi-step operations to one step. Using public datasets on comparable hardware configurations, we showed that GPU-ARACNE is faster than previous implementations and is able to reconstruct equally valid gene regulatory networks. Conclusion Given that previous versions of ARACNE are extremely resource demanding, either in computational time or in hardware investment, GPU-ARACNE is remarkably valuable for researchers who need to build complex regulatory networks from large expression datasets, but with limited budget on computational resources. In addition, our GPU-centered optimization of adaptive partitioning for Mutual Information (MI) estimation provides lessons that are applicable to other domains. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0458-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing He
- Department of Biomedical Informatics, Columbia University, 168th Street, New York, 10032, NY, USA.,Department of Systems Biology, 1130 St Nicholas Street, New York, 10032, NY, USA
| | - Zhou Zhou
- Department of Computer Science, New York, 10027, NY, USA
| | - Michael Reed
- Department of Computer Science, New York, 10027, NY, USA
| | - Andrea Califano
- Department of Systems Biology, 1130 St Nicholas Street, New York, 10032, NY, USA.
| |
Collapse
|
95
|
Gookin S, Min M, Phadke H, Chung M, Moser J, Miller I, Carter D, Spencer SL. A map of protein dynamics during cell-cycle progression and cell-cycle exit. PLoS Biol 2017; 15:e2003268. [PMID: 28892491 PMCID: PMC5608403 DOI: 10.1371/journal.pbio.2003268] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/21/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
Abstract
The cell-cycle field has identified the core regulators that drive the cell cycle, but we do not have a clear map of the dynamics of these regulators during cell-cycle progression versus cell-cycle exit. Here we use single-cell time-lapse microscopy of Cyclin-Dependent Kinase 2 (CDK2) activity followed by endpoint immunofluorescence and computational cell synchronization to determine the temporal dynamics of key cell-cycle proteins in asynchronously cycling human cells. We identify several unexpected patterns for core cell-cycle proteins in actively proliferating (CDK2-increasing) versus spontaneously quiescent (CDK2-low) cells, including Cyclin D1, the levels of which we find to be higher in spontaneously quiescent versus proliferating cells. We also identify proteins with concentrations that steadily increase or decrease the longer cells are in quiescence, suggesting the existence of a continuum of quiescence depths. Our single-cell measurements thus provide a rich resource for the field by characterizing protein dynamics during proliferation versus quiescence.
Collapse
Affiliation(s)
- Sara Gookin
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Mingwei Min
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Harsha Phadke
- Department of Electrical, Computer & Energy Engineering, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Justin Moser
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Iain Miller
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Dylan Carter
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Sabrina L. Spencer
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
96
|
Wang Y, Ung MH, Xia T, Cheng W, Cheng C. Cancer cell line specific co-factors modulate the FOXM1 cistrome. Oncotarget 2017; 8:76498-76515. [PMID: 29100329 PMCID: PMC5652723 DOI: 10.18632/oncotarget.20405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
ChIP-seq has been commonly applied to identify genomic occupation of transcription factors (TFs) in a context-specific manner. It is generally assumed that a TF should have similar binding patterns in cells from the same or closely related tissues. Surprisingly, this assumption has not been carefully examined. To this end, we systematically compared the genomic binding of the cell cycle regulator FOXM1 in eight cell lines from seven different human tissues at binding signal, peaks and target genes levels. We found that FOXM1 binding in ER-positive breast cancer cell line MCF-7 are distinct comparing to those in not only other non-breast cell lines, but also MDA-MB-231, ER-negative breast cancer cell line. However, binding sites in MDA-MB-231 and non-breast cell lines were highly consistent. The recruitment of estrogen receptor alpha (ERα) caused the unique FOXM1 binding patterns in MCF-7. Moreover, the activity of FOXM1 in MCF-7 reflects the regulatory functions of ERα, while in MDA-MB-231 and non-breast cell lines, FOXM1 activities regulate cell proliferation. Our results suggest that tissue similarity, in some specific contexts, does not hold precedence over TF-cofactors interactions in determining transcriptional states and that the genomic binding of a TF can be dramatically affected by a particular co-factor under certain conditions.
Collapse
Affiliation(s)
- Yue Wang
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Matthew H Ung
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Tian Xia
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wenqing Cheng
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chao Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03766, USA.,Department of Biomedical Data Sciences, Geisel School of Medicine at Dartmouth, Lebanon, NH 03766, USA
| |
Collapse
|
97
|
Fischer M, Müller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol 2017; 52:638-662. [PMID: 28799433 DOI: 10.1080/10409238.2017.1360836] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise timing of cell cycle gene expression is critical for the control of cell proliferation; de-regulation of this timing promotes the formation of cancer and leads to defects during differentiation and development. Entry into and progression through S phase requires expression of genes coding for proteins that function in DNA replication. Expression of a distinct set of genes is essential to pass through mitosis and cytokinesis. Expression of these groups of cell cycle-dependent genes is regulated by the RB pocket protein family, the E2F transcription factor family, and MuvB complexes together with B-MYB and FOXM1. Distinct combinations of these transcription factors promote the transcription of the two major groups of cell cycle genes that are maximally expressed either in S phase (G1/S) or in mitosis (G2/M). In this review, we discuss recent work that has started to uncover the molecular mechanisms controlling the precisely timed expression of these genes at specific cell cycle phases, as well as the repression of the genes when a cell exits the cell cycle.
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany.,b Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA.,c Department of Medicine, Brigham and Women's Hospital , Harvard Medical School , Boston , MA , USA
| | - Gerd A Müller
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany
| |
Collapse
|
98
|
Park JE, Yi H, Kim Y, Chang H, Kim VN. Regulation of Poly(A) Tail and Translation during the Somatic Cell Cycle. Mol Cell 2017; 62:462-471. [PMID: 27153541 DOI: 10.1016/j.molcel.2016.04.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/07/2016] [Accepted: 04/04/2016] [Indexed: 12/15/2022]
Abstract
Poly(A) tails are critical for mRNA stability and translation. However, recent studies have challenged this view, showing that poly(A) tail length and translation efficiency are decoupled in non-embryonic cells. Using TAIL-seq and ribosome profiling, we investigate poly(A) tail dynamics and translational control in the somatic cell cycle. We find dramatic changes in poly(A) tail lengths of cell-cycle regulatory genes like CDK1, TOP2A, and FBXO5, explaining their translational repression in M phase. We also find that poly(A) tail length is coupled to translation when the poly(A) tail is <20 nucleotides. However, as most genes have >20 nucleotide poly(A) tails, their translation is regulated mainly via poly(A) tail length-independent mechanisms during the cell cycle. Specifically, we find that terminal oligopyrimidine (TOP) tract-containing transcripts escape global translational suppression in M phase and are actively translated. Our quantitative and comprehensive data provide a revised view of translational control in the somatic cell cycle.
Collapse
Affiliation(s)
- Jong-Eun Park
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyerim Yi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoosik Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hyeshik Chang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
99
|
Shen Y, Nar R, Fan AX, Aryan M, Hossain MA, Gurumurthy A, Wassel PC, Tang M, Lu J, Strouboulis J, Bungert J. Functional interrelationship between TFII-I and E2F transcription factors at specific cell cycle gene loci. J Cell Biochem 2017; 119:712-722. [PMID: 28657656 DOI: 10.1002/jcb.26235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022]
Abstract
Transcription factor TFII-I is a multifunctional protein implicated in the regulation of cell cycle and stress-response genes. Previous studies have shown that a subset of TFII-I associated genomic sites contained DNA-binding motifs for E2F family transcription factors. We analyzed the co-association of TFII-I and E2Fs in more detail using bioinformatics, chromatin immunoprecipitation, and co-immunoprecipitation experiments. The data show that TFII-I interacts with E2F transcription factors. Furthermore, TFII-I, E2F4, and E2F6 interact with DNA-regulatory elements of several genes implicated in the regulation of the cell cycle, including DNMT1, HDAC1, CDKN1C, and CDC27. Inhibition of TFII-I expression led to a decrease in gene expression and in the association of E2F4 and E2F6 with these gene loci in human erythroleukemia K562 cells. Finally, TFII-I deficiency reduced the proliferation of K562 cells and increased the sensitivity toward doxorubicin toxicity. The results uncover novel interactions between TFII-I and E2Fs and suggest that TFII-I mediates E2F function at specific cell cycle genes.
Collapse
Affiliation(s)
- Yong Shen
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Rukiye Nar
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Alex X Fan
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Mahmoud Aryan
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Mir A Hossain
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Aishwarya Gurumurthy
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Paul C Wassel
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Ming Tang
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - John Strouboulis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| |
Collapse
|
100
|
Chen F, Bai G, Li Y, Feng Y, Wang L. A positive feedback loop of long noncoding RNA CCAT2 and FOXM1 promotes hepatocellular carcinoma growth. Am J Cancer Res 2017; 7:1423-1434. [PMID: 28744394 PMCID: PMC5523025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies around the world. Long noncoding RNAs (lncRNAs) are greater than 200 nucleotides without protein-coding potential and play critical roles in tumorigenesis, cell differentiation, and cancer metastasis. Colon cancer-associated transcript 2 (CCAT2), a newly identified lncRNA, was shown to be dysregulated in cancers. However, the functional role of CCAT2 in HCC remains questionable. In the present study, we found a significant upregulation of CCAT2 in HCC tissues as compared to non-tumor tissues. Functional assays showed that CCAT2 promotes cell growth in vivo and in vitro. In addition, we found a positive feedback loop between CCAT2 and FOXM1. CCAT2 upregulates FOXM1 expression through interaction with, and suppression of, miR-34a, and FOXM1 activates CCAT2 transcription. We evaluated the therapeutic potential of ultrasound-targeted microbubble destruction (UTMD)-mediated siRNA delivery to specifically target CCAT2. UTMD-mediated siCCAT2 delivery significantly suppressed tumor growth in vivo. Thus, CCAT2-FOXM1 may be a novel target for the treatment of HCC.
Collapse
Affiliation(s)
- Fei Chen
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou, Liaoning Province, China
| | - Guang Bai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou, Liaoning Province, China
| | - Yuhong Li
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou, Liaoning Province, China
| | - Yanhong Feng
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou, Liaoning Province, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou, Liaoning Province, China
| |
Collapse
|