51
|
Zhang J, Donahue G, Gilbert MB, Lapidot T, Nicetto D, Zaret KS. Distinct H3K9me3 heterochromatin maintenance dynamics govern different gene programmes and repeats in pluripotent cells. Nat Cell Biol 2024; 26:2115-2128. [PMID: 39482359 DOI: 10.1038/s41556-024-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
H3K9me3 heterochromatin, established by lysine methyltransferases (KMTs) and compacted by heterochromatin protein 1 (HP1) isoforms, represses alternative lineage genes and DNA repeats. Our understanding of H3K9me3 heterochromatin stability is presently limited to individual domains and DNA repeats. Here we engineered Suv39h2-knockout mouse embryonic stem cells to degrade remaining two H3K9me3 KMTs within 1 hour and found that both passive dilution and active removal contribute to H3K9me3 decay within 12-24 hours. We discovered four different H3K9me3 decay rates across the genome and chromatin features and transcription factor binding patterns that predict the stability classes. A 'binary switch' governs heterochromatin compaction, with HP1 rapidly dissociating from heterochromatin upon KMT depletion and a particular threshold level of HP1 limiting pioneer factor binding, chromatin opening and exit from pluripotency within 12 h. Unexpectedly, receding H3K9me3 domains unearth residual HP1β peaks enriched with heterochromatin-inducing proteins. Our findings reveal distinct H3K9me3 heterochromatin maintenance dynamics governing gene networks and repeats that together safeguard pluripotency.
Collapse
Affiliation(s)
- Jingchao Zhang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael B Gilbert
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomer Lapidot
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
52
|
Smith ME, Wahl D, Cavalier AN, McWilliams GT, Rossman MJ, Giordano GR, Bryan AD, Seals DR, LaRocca TJ. Repetitive element transcript accumulation is associated with inflammaging in humans. GeroScience 2024; 46:5663-5679. [PMID: 38641753 PMCID: PMC11493880 DOI: 10.1007/s11357-024-01126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/08/2024] [Indexed: 04/21/2024] Open
Abstract
Chronic, low-grade inflammation increases with aging, contributing to functional declines and diseases that reduce healthspan. Growing evidence suggests that transcripts from repetitive elements (RE) in the genome contribute to this "inflammaging" by stimulating innate immune activation, but evidence of RE-associated inflammation with aging in humans is limited. Here, we present transcriptomic and clinical data showing that RE transcript levels are positively related to gene expression of innate immune sensors, and to serum interleukin 6 (a marker of systemic inflammation), in a large group of middle-aged and older adults. We also: (1) use transcriptomics and whole-genome bisulfite (methylation) sequencing to show that many RE may be hypomethylated with aging, and that aerobic exercise, a healthspan-extending intervention, reduces RE transcript levels and increases RE methylation in older adults; and (2) extend our findings in a secondary dataset demonstrating age-related changes in RE chromatin accessibility. Collectively, our data support the idea that age-related RE transcript accumulation may play a role in inflammaging in humans, and that RE dysregulation with aging may be due in part to upstream epigenetic changes.
Collapse
Affiliation(s)
- Meghan E Smith
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Alyssa N Cavalier
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Gabriella T McWilliams
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Gregory R Giordano
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
53
|
Ma S, Ji Z, Zhang B, Geng L, Cai Y, Nie C, Li J, Zuo Y, Sun Y, Xu G, Liu B, Ai J, Liu F, Zhao L, Zhang J, Zhang H, Sun S, Huang H, Zhang Y, Ye Y, Fan Y, Zheng F, Hu J, Zhang B, Li J, Feng X, Zhang F, Zhuang Y, Li T, Yu Y, Bao Z, Pan S, Rodriguez Esteban C, Liu Z, Deng H, Wen F, Song M, Wang S, Zhu G, Yang J, Jiang T, Song W, Izpisua Belmonte JC, Qu J, Zhang W, Gu Y, Liu GH. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell 2024; 187:7025-7044.e34. [PMID: 39500323 DOI: 10.1016/j.cell.2024.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/29/2024] [Accepted: 10/12/2024] [Indexed: 11/30/2024]
Abstract
To systematically characterize the loss of tissue integrity and organ dysfunction resulting from aging, we produced an in-depth spatial transcriptomic profile of nine tissues in male mice during aging. We showed that senescence-sensitive spots (SSSs) colocalized with elevated entropy in organizational structure and that the aggregation of immunoglobulin-expressing cells is a characteristic feature of the microenvironment surrounding SSSs. Immunoglobulin G (IgG) accumulated across the aged tissues in both male and female mice, and a similar phenomenon was observed in human tissues, suggesting the potential of the abnormal elevation of immunoglobulins as an evolutionarily conserved feature in aging. Furthermore, we observed that IgG could induce a pro-senescent state in macrophages and microglia, thereby exacerbating tissue aging, and that targeted reduction of IgG mitigated aging across various tissues in male mice. This study provides a high-resolution spatial depiction of aging and indicates the pivotal role of immunoglobulin-associated senescence during the aging process.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Zhejun Ji
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bin Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Geng
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chao Nie
- BGI Research, Shenzhen 518083, China
| | - Jiaming Li
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuesheng Zuo
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Beibei Liu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Ai
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Feifei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Liyun Zhao
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jiachen Zhang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Hui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Shuhui Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Haoyan Huang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yiyuan Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanxia Ye
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanling Fan
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fangshuo Zheng
- The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Jinghao Hu
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Baohu Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Zhang
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Tianjie Li
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Clinical Stem Cell Research Center, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Sipei Pan
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | | - Zhili Liu
- BGI Research, Shenzhen 518083, China
| | | | - Feng Wen
- BGI Research, Beijing 102601, China
| | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Weihong Song
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | | - Jing Qu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Ying Gu
- BGI Research, Shenzhen 518083, China; BGI Research, Beijing 102601, China; BGI Research, Hangzhou 310030, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| |
Collapse
|
54
|
Saha K, Nielsen G, Nandani R, Zhang Y, Kong L, Ye P, An W. YY1 is a transcriptional activator of the mouse LINE-1 Tf subfamily. Nucleic Acids Res 2024; 52:12878-12894. [PMID: 39460630 PMCID: PMC11602158 DOI: 10.1093/nar/gkae949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 09/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Long interspersed element type 1 (LINE-1, L1) is an active autonomous transposable element in human and mouse genomes. L1 transcription is controlled by an internal RNA polymerase II promoter in the 5' untranslated region (5'UTR) of a full-length L1. It has been shown that transcription factor YY1 binds to a conserved sequence at the 5' end of the human L1 5'UTR and primarily dictates where transcription initiates. Putative YY1-binding motifs have been predicted in the 5'UTRs of two distinct mouse L1 subfamilies, Tf and Gf. Using site-directed mutagenesis, in vitro binding and gene knockdown assays, we experimentally tested the role of YY1 in mouse L1 transcription. Our results indicate that Tf, but not Gf subfamily, harbors functional YY1-binding sites in 5'UTR monomers and YY1 functions as a transcriptional activator for the mouse Tf subfamily. Activation of Tf transcription by YY1 during early embryogenesis is also supported by a reanalysis of published zygotic knockdown data. Furthermore, YY1-binding motifs are solely responsible for the synergistic interaction between Tf monomers, consistent with a model wherein distant monomers act as enhancers for mouse L1 transcription. The abundance of YY1-binding sites in Tf elements also raise important implications for gene regulation across the genome.
Collapse
Affiliation(s)
- Karabi Saha
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Grace I Nielsen
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Raj Nandani
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Yizi Zhang
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Lingqi Kong
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Ping Ye
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| |
Collapse
|
55
|
Hidaoui D, Porquet A, Chelbi R, Bohm M, Polyzou A, Alcazer V, Depil S, Imanci A, Morabito M, Renneville A, Selimoglu-Buet D, Thépot S, Itzykson R, Laplane L, Droin N, Trompouki E, Elvira-Matelot E, Solary E, Porteu F. Targeting heterochromatin eliminates chronic myelomonocytic leukemia malignant stem cells through reactivation of retroelements and immune pathways. Commun Biol 2024; 7:1555. [PMID: 39578583 PMCID: PMC11584673 DOI: 10.1038/s42003-024-07214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a severe myeloid malignancy affecting the elderly, for which therapeutic options are limited. DNA hypomethylating agents (HMAs) provide transient responses, failing to eradicate the malignant clone. Hematopoietic stem cell (HSC) aging involves heterochromatin reorganization, evidenced by alterations in histone marks H3K9me2 and H3K9me3. These repressive marks together with DNA methylation are essential for suppressing transposable elements (TEs). In solid cancers, the antitumor efficacy of HMAs involves the derepression of TEs, mimicking a state of viral infection. In this study, we demonstrate a significant disorganization of heterochromatin in CMML HSCs and progenitors (HSPCs) characterized by an increase in the repressive mark H3K9me2, mainly at the level of TEs, and a repression of immune and age-associated transcripts. Combining HMAs with G9A/GLP H3K9me2 methyltransferase inhibitors reactivates these pathways, selectively targeting mutated cells while preserving wild-type HSCs, thus offering new therapeutic avenues for this severe myeloid malignancy.
Collapse
MESH Headings
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/immunology
- Leukemia, Myelomonocytic, Chronic/pathology
- Heterochromatin/metabolism
- Heterochromatin/genetics
- Humans
- Neoplastic Stem Cells/metabolism
- Retroelements/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Hematopoietic Stem Cells/metabolism
- DNA Methylation
- Animals
- Mice
- Male
- Histones/metabolism
Collapse
Affiliation(s)
- Donia Hidaoui
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Audrey Porquet
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Rabie Chelbi
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Inovarion, 75005, Paris, France
| | - Mathieu Bohm
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Inovarion, 75005, Paris, France
| | - Aikaterini Polyzou
- IRCAN Institute for Research on Cancer and Aging, INSERM U1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Vincent Alcazer
- Centre International de Recherche en Infectiologie, INSERM U1111 CNRS UMR530, Lyon, France
- Service d'hématologie Clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286 Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Aygun Imanci
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Margot Morabito
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Aline Renneville
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Dorothée Selimoglu-Buet
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Sylvain Thépot
- Clinical Hematology Department, University Hospital, Angers, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Lucie Laplane
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Nathalie Droin
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Eirini Trompouki
- IRCAN Institute for Research on Cancer and Aging, INSERM U1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Emilie Elvira-Matelot
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Eric Solary
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Clinical Hematology Department, Gustave Roussy Cancer Center, Villejuif, France
| | - Françoise Porteu
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France.
| |
Collapse
|
56
|
Phan J, Chen B, Zhao Z, Allies G, Iannaccone A, Paul A, Cansiz F, Spina A, Leven AS, Gellhaus A, Schadendorf D, Kimmig R, Mettlen M, Tasdogan A, Morrison SJ. Retrotransposons are co-opted to activate hematopoietic stem cells and erythropoiesis. Science 2024; 386:eado6836. [PMID: 39446896 PMCID: PMC11709122 DOI: 10.1126/science.ado6836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/21/2024] [Accepted: 08/30/2024] [Indexed: 10/26/2024]
Abstract
Hematopoietic stem cells (HSCs) and erythropoiesis are activated during pregnancy and after bleeding by the derepression of retrotransposons, including endogenous retroviruses and long interspersed nuclear elements. Retrotransposon transcription activates the innate immune sensors cyclic guanosine 3',5'-monophosphate-adenosine 5'-monophosphate synthase (cGAS) and stimulator of interferon (IFN) genes (STING), which induce IFN and IFN-regulated genes in HSCs, increasing HSC division and erythropoiesis. Inhibition of reverse transcriptase or deficiency for cGAS or STING had little or no effect on hematopoiesis in nonpregnant mice but depleted HSCs and erythroid progenitors in pregnant mice, reducing red blood cell counts. Retrotransposons and IFN-regulated genes were also induced in mouse HSCs after serial bleeding and, in human HSCs, during pregnancy. Reverse transcriptase inhibitor use was associated with anemia in pregnant but not in nonpregnant people, suggesting conservation of these mechanisms from mice to humans.
Collapse
Affiliation(s)
- Julia Phan
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Brandon Chen
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Gabriele Allies
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Antonella Iannaccone
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Animesh Paul
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Feyza Cansiz
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Alberto Spina
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Anna-Sophia Leven
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center; Dallas, Texas 75235-9039
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Sean J. Morrison
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| |
Collapse
|
57
|
Feng Y, Yang X, Hou Y, Zhou Y, Leverenz JB, Eng C, Pieper AA, Goate A, Shen Y, Cheng F. Widespread transposable element dysregulation in human aging brains with Alzheimer's disease. Alzheimers Dement 2024; 20:7495-7517. [PMID: 39356058 PMCID: PMC11567813 DOI: 10.1002/alz.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION Transposable element (TE) dysregulation is associated with neuroinflammation in Alzheimer's disease (AD) brains. Yet, TE quantitative trait loci (teQTL) have not been well characterized in human aged brains with AD. METHODS We leveraged large-scale bulk and single-cell RNA sequencing, whole-genome sequencing (WGS), and xQTL from three human AD brain biobanks to characterize TE expression dysregulation and experimentally validate AD-associated TEs using CRISPR interference (CRISPRi) assays in human induced pluripotent stem cell (iPSC)-derived neurons. RESULTS We identified 26,188 genome-wide significant TE expression QTLs (teQTLs) in human aged brains. Subsequent colocalization analysis of teQTLs with AD genetic loci identified AD-associated teQTLs and linked locus TEs. Using CRISPRi assays, we pinpointed a neuron-specific suppressive role of the activated short interspersed nuclear element (SINE; chr11:47608036-47608220) on expression of C1QTNF4 via reducing neuroinflammation in human iPSC-derived neurons. DISCUSSION We identified widespread TE dysregulation in human AD brains and teQTLs offer a complementary analytic approach to identify likely AD risk genes. HIGHLIGHTS Widespread transposable element (TE) dysregulations are observed in human aging brains with degrees of neuropathology, apolipoprotein E (APOE) genotypes, and neuroinflammation in Alzheimer's disease (AD). A catalog of TE quantitative trait loci (teQTLs) in human aging brains was created using matched RNA sequencing and whole-genome sequencing data. CRISPR interference assays reveal that an upregulated intergenic TE from the MIR family (chr11: 47608036-47608220) suppresses expression of its nearest anti-inflammatory gene C1QTNF4 in human induced pluripotent stem cell-derived neurons.
Collapse
Affiliation(s)
- Yayan Feng
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Xiaoyu Yang
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Yuan Hou
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Yadi Zhou
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - James B. Leverenz
- Lou Ruvo Center for Brain HealthNeurological InstituteCleveland ClinicClevelandOhioUSA
| | - Charis Eng
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Andrew A. Pieper
- Department of PsychiatryCase Western Reserve UniversityClevelandOhioUSA
- Brain Health Medicines CenterHarrington Discovery InstituteUniversity Hospitals Cleveland Medical CenterClevelandOhioUSA
- Geriatric PsychiatryGRECCLouis Stokes Cleveland VA Medical CenterClevelandOhioUSA
- Institute for Transformative Molecular MedicineSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Department of NeurosciencesCase Western Reserve UniversitySchool of MedicineClevelandOhioUSA
- Department of PathologyCase Western Reserve UniversitySchool of MedicineClevelandOhioUSA
| | - Alison Goate
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yin Shen
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Feixiong Cheng
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
58
|
Tsue AF, Kania EE, Lei DQ, Fields R, McGann CD, Marciniak DM, Hershberg EA, Deng X, Kihiu M, Ong SE, Disteche CM, Kugel S, Beliveau BJ, Schweppe DK, Shechner DM. Multiomic characterization of RNA microenvironments by oligonucleotide-mediated proximity-interactome mapping. Nat Methods 2024; 21:2058-2071. [PMID: 39468212 DOI: 10.1038/s41592-024-02457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 09/09/2024] [Indexed: 10/30/2024]
Abstract
RNA molecules form complex networks of molecular interactions that are central to their function and to cellular architecture. But these interaction networks are difficult to probe in situ. Here, we introduce Oligonucleotide-mediated proximity-interactome MAPping (O-MAP), a method for elucidating the biomolecules near an RNA of interest, within its native context. O-MAP uses RNA-fluorescence in situ hybridization-like oligonucleotide probes to deliver proximity-biotinylating enzymes to a target RNA in situ, enabling nearby molecules to be enriched by streptavidin pulldown. This induces exceptionally precise biotinylation that can be easily optimized and ported to new targets or sample types. Using the noncoding RNAs 47S, 7SK and Xist as models, we develop O-MAP workflows for discovering RNA-proximal proteins, transcripts and genomic loci, yielding a multiomic characterization of these RNAs' subcellular compartments and new regulatory interactions. O-MAP requires no genetic manipulation, uses exclusively off-the-shelf parts and requires orders of magnitude fewer cells than established methods, making it accessible to most laboratories.
Collapse
Affiliation(s)
- Ashley F Tsue
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Evan E Kania
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Shape Therapeutics, Seattle, WA, USA
| | - Diana Q Lei
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Elliot A Hershberg
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maryanne Kihiu
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sita Kugel
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brian J Beliveau
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Devin K Schweppe
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David M Shechner
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
59
|
Chen YY, Wang YH, Chen CC, Huang CE, Hsu CC, Hsiao SH, Leu YW. Exogenous Janus Kinase 617 Codon Influences Small Noncoding RNAs and Gene Expression in Ba/F3 Cells. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:344-354. [PMID: 39324984 DOI: 10.4103/ejpi.ejpi-d-24-00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/09/2024] [Indexed: 09/27/2024]
Abstract
ABSTRACT Myeloproliferative neoplasms (MPNs) are blood cancers caused by mutations that originate from hematopoietic stem cells. More than 50%-90% of MPN patients had a dominant negative valine (V) to phenylalanine (F) mutation at the Janus kinase 617 codon (JAK2V617F) within the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway; however, this mutation was also found in a high percentage of the general population, its penetrance varied, and its onset was shown to be polygenic. Consequently, it is still unknown what molecular mechanism underlies the MPN transformation produced by JAK2V617F. Patients with MPN have been shown to have dysregulation of noncoding RNAs, such as microRNA (miRNA) and PIWI-interacting RNA (piRNA), although there is not any concrete proof that JAK2V617F alone is responsible for the aberrant regulation of miRNA and piRNA. Human wild type versus V617F-mutated JAK2 are expressed in mouse Ba/F3 cells, and the expressed small and total RNAs were subjected to next generation sequencing analysis to determine the direct induction. Differentially expressed miRNAs, gene expression, and transcript and gene variations were found between exogenously expressed JAK2 and JAK2V617F in Ba/F3 cells. The differently expressed variations contained enriched transposable elements and piRNAs, indicating a rearranged epigenome. The results of the pathway analysis show that the transformation that self-validated the chosen sequencing target genes is impacted by the JAK-STAT pathway. The induction route is functionally conserved, according to exogenously produced miRNA and gene expression. These results may clarify how the JAK2V617F induces transformation.
Collapse
Affiliation(s)
- Yi-Yang Chen
- Division of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ying-Hsuan Wang
- Division of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Cheng Chen
- Division of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cih-En Huang
- Division of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chen Hsu
- Division of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Shu-Huei Hsiao
- Department of Biomedical Sciences, Institute of Molecular Biology and Institute of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Yu-Wei Leu
- Department of Biomedical Sciences, Institute of Molecular Biology and Institute of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
60
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and Developmental Divergence in the Neural Crest Program between Cichlid Fish Species. Mol Biol Evol 2024; 41:msae217. [PMID: 39412298 PMCID: PMC11558072 DOI: 10.1093/molbev/msae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic program in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to interspecific morphological differences, such as craniofacial structures and pigmentation. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared with teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes-particularly those controlled by sox10s-are involved in generating morphological diversification between species and lays the groundwork for further investigations into the mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | - Grégoire Vernaz
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Maxon J Ngochera
- Malawi Fisheries Department, Senga Bay Fisheries Research Center, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
61
|
Xu W, Thieme M, Roulin AC. Natural Diversity of Heat-Induced Transcription of Retrotransposons in Arabidopsis thaliana. Genome Biol Evol 2024; 16:evae242. [PMID: 39523776 PMCID: PMC11580521 DOI: 10.1093/gbe/evae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes, profoundly impacting the fitness of their hosts. However, technical bottlenecks have long hindered our mechanistic understanding of TEs. Using RNA-Seq and long-read sequencing with Oxford Nanopore Technologies' (ONT) direct cDNA sequencing, we analyzed the heat-induced transcription of TEs in three natural accessions of Arabidopsis thaliana (Cvi-0, Col-0, and Ler-1). In addition to the well-studied ONSEN retrotransposon family, we confirmed Copia-35 as a second heat-responsive retrotransposon family with particularly high activity in the relict accession Cvi-0. Our analysis revealed distinct expression patterns of individual TE copies and suggest different mechanisms regulating the GAG protein production in the ONSEN versus Copia-35 families. In addition, analogously to ONSEN, Copia-35 activation led to the upregulation of flanking genes such as APUM9 and potentially to the quantitative modulation of flowering time. ONT data allowed us to test the extent to which read-through formation is important in the regulation of adjacent genes. Unexpectedly, our results indicate that for both families, the upregulation of flanking genes is not predominantly directly initiated by transcription from their 3' long terminal repeats. These findings highlight the intraspecific expressional diversity linked to retrotransposon activation under stress.
Collapse
Affiliation(s)
- Wenbo Xu
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Michael Thieme
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
- Agroscope, 8820 Wädenswil, Switzerland
| |
Collapse
|
62
|
Polimeni B, Marasca F, Ranzani V, Bodega B. IRescue: uncertainty-aware quantification of transposable elements expression at single cell level. Nucleic Acids Res 2024; 52:e93. [PMID: 39271103 PMCID: PMC11514465 DOI: 10.1093/nar/gkae793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Transposable elements (TEs) are mobile DNA repeats known to shape the evolution of eukaryotic genomes. In complex organisms, they exhibit tissue-specific transcription. However, understanding their role in cellular diversity across most tissues remains a challenge, when employing single-cell RNA sequencing (scRNA-seq), due to their widespread presence and genetic similarity. To address this, we present IRescue (Interspersed Repeats single-cell quantifier), a software capable of estimating the expression of TE subfamilies at the single-cell level. IRescue incorporates a unique UMI deduplication algorithm to rectify sequencing errors and employs an Expectation-Maximization procedure to effectively redistribute the counts of multi-mapping reads. Our study showcases the precision of IRescue through analysis of both simulated and real single cell and nuclei RNA-seq data from human colorectal cancer, brain, skin aging, and PBMCs during SARS-CoV-2 infection and recovery. By linking the expression patterns of TE signatures to specific conditions and biological contexts, we unveil insights into their potential roles in cellular heterogeneity and disease progression.
Collapse
Affiliation(s)
- Benedetto Polimeni
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Federica Marasca
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Valeria Ranzani
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Beatrice Bodega
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
63
|
Dayama G, Gupta S, Connizzo BK, Labadorf AT, Myers RH, Lau NC. Transposable element small and long RNAs in aging brains and implications in Huntington's and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619758. [PMID: 39484439 PMCID: PMC11526979 DOI: 10.1101/2024.10.22.619758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Transposable Elements (TEs) are implicated in aging and neurodegenerative disorders, but the impact of brain TE RNA dynamics on these phenomena is not fully understood. Therefore, we quantified TE RNA changes in aging post-mortem human and mouse brains and in the neurodegenerative disorders Huntington's Disease (HD) and Parkinson's Disease (PD). We tracked TE small RNAs (smRNAs) expression landscape to assess the relationship to the active processing from TE long RNAs (lnRNAs). Human brain transcriptomes from the BrainSpan Atlas displayed a significant shift of TE smRNA patterns at age 20 years, whereas aging mouse brains lacked any such marked change, despite clear shift in aging-associated mRNA levels. Human frontal cortex displayed pronounced sense TE smRNAs during aging with a negative relationship between the TE smRNAs and lnRNAs indicative of age associated regulatory effects. Our analysis revealed TE smRNAs dysregulation in HD, while PD showed a stronger impact on TE lnRNAs, potentially correlating with the early average age of death for HD relative to PD. Furthermore, TE-silencing factor TRIM28 was down-regulated only in aging human brains, possibly explaining the lack of substantial TE RNA changes in aging mouse brains. Our study suggests brain TE RNAs may serve as novel biomarkers of human brain aging and neurodegenerative disorders.
Collapse
|
64
|
Seetharam D, Chandar J, Ramsoomair CK, Desgraves JF, Medina AA, Hudson AJ, Amidei A, Castro JR, Govindarajan V, Wang S, Zhang Y, Sonabend AM, Valdez MJM, Maric D, Govindarajan V, Rivas SR, Lu VM, Tiwari R, Sharifi N, Thomas E, Alexander M, DeMarino C, Johnson K, De La Fuente MI, Nasany RA, Noviello TMR, Ivan ME, Komotar RJ, Iavarone A, Nath A, Heiss J, Ceccarelli M, Chiappinelli KB, Figueroa ME, Bayik D, Shah AH. Targeting ZNF638 activates antiviral immune responses and potentiates immune checkpoint inhibition in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618076. [PMID: 39464150 PMCID: PMC11507686 DOI: 10.1101/2024.10.13.618076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Viral mimicry refers to the activation of innate anti-viral immune responses due to the induction of endogenous retroelement (RE) expression. Viral mimicry has been previously described to augment anti-tumor immune responses and sensitize solid tumors to immunotherapy including colorectal cancer, melanoma, and clear renal cell carcinoma. Here, we found that targeting a novel, master epigenetic regulator, Zinc Finger Protein 638 (ZNF638), induces viral mimicry in glioblastoma (GBM) preclinical models and potentiates immune checkpoint inhibition (ICI). ZNF638 recruits the HUSH complex, which precipitates repressive H3K9me3 marks on endogenous REs. In GBM, ZNF638 is associated with marked locoregional immunosuppressive transcriptional signatures, reduced endogenous RE expression and poor immune cell infiltration (CD8 + T-cells, dendritic cells). ZNF638 knockdown decreased H3K9-trimethylation, increased cytosolic dsRNA and activated intracellular dsRNA-signaling cascades (RIG-I, MDA5 and IRF3). Furthermore, ZNF638 knockdown upregulated antiviral immune programs and significantly increased PD-L1 immune checkpoint expression in patient-derived GBM neurospheres and diverse murine models. Importantly, targeting ZNF638 sensitized mice to ICI in syngeneic murine orthotopic models through innate interferon signaling. This response was recapitulated in recurrent GBM (rGBM) samples with radiographic responses to checkpoint inhibition with widely increased expression of dsRNA, PD-L1 and perivascular CD8 cell infiltration, suggesting dsRNA-signaling may mediate response to immunotherapy. Finally, we showed that low ZNF638 expression was a biomarker of clinical response to ICI and improved survival in rGBM patients and melanoma patients. Our findings suggest that ZNF638 could serve as a target to potentiate immunotherapy in gliomas.
Collapse
|
65
|
Wang R, Zheng Y, Zhang Z, Song K, Wu E, Zhu X, Wu TP, Ding J. MATES: a deep learning-based model for locus-specific quantification of transposable elements in single cell. Nat Commun 2024; 15:8798. [PMID: 39394211 PMCID: PMC11470080 DOI: 10.1038/s41467-024-53114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
Transposable elements (TEs) are crucial for genetic diversity and gene regulation. Current single-cell quantification methods often align multi-mapping reads to either 'best-mapped' or 'random-mapped' locations and categorize them at the subfamily levels, overlooking the biological necessity for accurate, locus-specific TE quantification. Moreover, these existing methods are primarily designed for and focused on transcriptomics data, which restricts their adaptability to single-cell data of other modalities. To address these challenges, here we introduce MATES, a deep-learning approach that accurately allocates multi-mapping reads to specific loci of TEs, utilizing context from adjacent read alignments flanking the TE locus. When applied to diverse single-cell omics datasets, MATES shows improved performance over existing methods, enhancing the accuracy of TE quantification and aiding in the identification of marker TEs for identified cell populations. This development facilitates the exploration of single-cell heterogeneity and gene regulation through the lens of TEs, offering an effective transposon quantification tool for the single-cell genomics community.
Collapse
Affiliation(s)
- Ruohan Wang
- School of Computer Science, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Yumin Zheng
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Zijian Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kailu Song
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Erxi Wu
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, USA
- College of Medicine and Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA
- LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA
| | | | - Tao P Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Jun Ding
- School of Computer Science, McGill University, Montreal, Quebec, Canada.
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Department of Medicine, McGill University, Montreal, Quebec, Canada.
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada.
- Mila-Quebec AI Institue, Montreal, Quebec, Canada.
| |
Collapse
|
66
|
Martinez JC, Morandini F, Fitzgibbons L, Sieczkiewicz N, Bae SJ, Meadow ME, Hillpot E, Cutting J, Paige V, Biashad SA, Simon M, Sedivy J, Seluanov A, Gorbunova V. cGAS deficient mice display premature aging associated with de-repression of LINE1 elements and inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617645. [PMID: 39416083 PMCID: PMC11482887 DOI: 10.1101/2024.10.10.617645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Aging-associated inflammation, or 'inflammaging" is a driver of multiple age-associated diseases. Cyclic GMP-AMP Synthase (cGAS) is a cytosolic DNA sensor that functions to activate interferon response upon detecting viral DNA in the cytoplasm. cGAS contributes to inflammaging by responding to endogenous signals such as damaged DNA or LINE1 (L1) cDNA which forms in aged cells. While cGAS knockout mice are viable their aging has not been examined. Unexpectedly, we found that cGAS knockout mice exhibit accelerated aging phenotype associated with induction of inflammation. Transcription of L1 elements was increased in both cGAS knockout mice and in cGAS siRNA knockdown cells associated with high levels of cytoplasmic L1 DNA and expression of ORF1 protein. Cells from cGAS knockout mice showed increased chromatin accessibility and decreased DNA methylation on L1 transposons. Stimulated emission depletion microscopy (STED) showed that cGAS forms nuclear condensates that co-localize with H3K9me3 heterochromatin marks, and H3K9me3 pattern is disrupted in cGAS knockout cells. Taken together these results suggest a previously undescribed role for cGAS in maintaining heterochromatin on transposable elements. We propose that loss of cGAS leads to loss of chromatin organization, de-repression of transposable elements and induction of inflammation resulting in accelerated aging.
Collapse
Affiliation(s)
- John C Martinez
- Translational Biomedical Sciences Program, University of Rochester, NY, 14627, USA
- Department of Biology, University of Rochester, NY, 14627, USA
| | | | | | | | - Sung Jae Bae
- Department of Biology, University of Rochester, NY, 14627, USA
| | | | - Eric Hillpot
- Department of Biology, University of Rochester, NY, 14627, USA
| | - Joseph Cutting
- Department of Biology, University of Rochester, NY, 14627, USA
| | - Victoria Paige
- Department of Biology, University of Rochester, NY, 14627, USA
| | | | - Matthew Simon
- Department of Biology, University of Rochester, NY, 14627, USA
| | - John Sedivy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, RI, 02912, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, NY, 14627, USA
- Department of Medicine, University of Rochester, NY, 14627, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, NY, 14627, USA
- Department of Medicine, University of Rochester, NY, 14627, USA
| |
Collapse
|
67
|
Hossain I, Priam P, Reynoso SC, Sahni S, Zhang XX, Côté L, Doumat J, Chik C, Fu T, Lessard JA, Pastor WA. ZIC2 and ZIC3 promote SWI/SNF recruitment to safeguard progression towards human primed pluripotency. Nat Commun 2024; 15:8539. [PMID: 39358345 PMCID: PMC11447223 DOI: 10.1038/s41467-024-52431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The primed epiblast acts as a transitional stage between the relatively homogeneous naïve epiblast and the gastrulating embryo. Its formation entails coordinated changes in regulatory circuits driven by transcription factors and epigenetic modifications. Using a multi-omic approach in human embryonic stem cell models across the spectrum of peri-implantation development, we demonstrate that the transcription factors ZIC2 and ZIC3 have overlapping but essential roles in opening primed-specific enhancers. Together, they are essential to facilitate progression to and maintain primed pluripotency. ZIC2/3 accomplish this by recruiting SWI/SNF to chromatin and loss of ZIC2/3 or degradation of SWI/SNF both prevent enhancer activation. Loss of ZIC2/3 also results in transcriptome changes consistent with perturbed Polycomb activity and a shift towards the expression of genes linked to differentiation towards the mesendoderm. Additionally, we find an intriguing dependency on the transcriptional machinery for sustained recruitment of ZIC2/3 over a subset of primed-hESC specific enhancers. Taken together, ZIC2 and ZIC3 regulate highly dynamic lineage-specific enhancers and collectively act as key regulators of human primed pluripotency.
Collapse
Affiliation(s)
| | - Pierre Priam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Sofia C Reynoso
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Sahil Sahni
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Xiao X Zhang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Laurence Côté
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Joelle Doumat
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Candus Chik
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Tianxin Fu
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Julie A Lessard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
68
|
He MY, Tong KI, Liu T, Whittaker Hawkins R, Shelton V, Zeng Y, Bakhtiari M, Xiao Y, Zheng G, Sakhdari A, Yang L, Xu W, Brooks DG, Laister RC, He HH, Kridel R. GNAS knockout potentiates HDAC3 inhibition through viral mimicry-related interferon responses in lymphoma. Leukemia 2024; 38:2210-2224. [PMID: 39117798 PMCID: PMC11436380 DOI: 10.1038/s41375-024-02325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024]
Abstract
Despite selective HDAC3 inhibition showing promise in a subset of lymphomas with CREBBP mutations, wild-type tumors generally exhibit resistance. Here, using unbiased genome-wide CRISPR screening, we identify GNAS knockout (KO) as a sensitizer of resistant lymphoma cells to HDAC3 inhibition. Mechanistically, GNAS KO-induced sensitization is independent of the canonical G-protein activities but unexpectedly mediated by viral mimicry-related interferon (IFN) responses, characterized by TBK1 and IRF3 activation, double-stranded RNA formation, and transposable element (TE) expression. GNAS KO additionally synergizes with HDAC3 inhibition to enhance CD8+ T cell-induced cytotoxicity. Moreover, we observe in human lymphoma patients that low GNAS expression is associated with high baseline TE expression and upregulated IFN signaling and shares common disrupted biological activities with GNAS KO in histone modification, mRNA processing, and transcriptional regulation. Collectively, our findings establish an unprecedented link between HDAC3 inhibition and viral mimicry in lymphoma. We suggest low GNAS expression as a potential biomarker that reflects viral mimicry priming for enhanced response to HDAC3 inhibition in the clinical treatment of lymphoma, especially the CREBBP wild-type cases.
Collapse
Affiliation(s)
- Michael Y He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kit I Tong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ting Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ryder Whittaker Hawkins
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Victoria Shelton
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mehran Bakhtiari
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yufeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ali Sakhdari
- Laboratory Medicine and Pathobiology, University Health Network, Toronto, ON, Canada
| | - Lin Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wenxi Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Rob C Laister
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Robert Kridel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
69
|
Li W, Zhang X, Zhang Q, Li Q, Li Y, Lv Y, Liu Y, Cao Y, Wang H, Chen X, Yang H. PICKLE and HISTONE DEACETYLASE6 coordinately regulate genes and transposable elements in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1080-1094. [PMID: 38976580 DOI: 10.1093/plphys/kiae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
Chromatin dynamics play essential roles in transcriptional regulation. The chromodomain helicase DNA-binding domain 3 chromatin remodeler PICKLE (PKL) and HISTONE DEACETYLASE6 (HDA6) are required for transcriptional gene silencing, but their coordinated function in gene repression requires further study. Through a genetic suppressor screen, we found that a point mutation at PKL could partially restore the developmental defects of a weak Polycomb repressive complex 1 (PRC1) mutant (ring1a-2 ring1b-3), in which RING1A expression is suppressed by a T-DNA insertion at the promoter. Compared to ring1a-2 ring1b-3, the expression of RING1A is increased, nucleosome occupancy is reduced, and the histone 3 lysine 9 acetylation (H3K9ac) level is increased at the RING1A locus in the pkl ring1a-2 ring1b-3 triple mutant. HDA6 interacts with PKL and represses RING1A expression similarly to PKL genetically and molecularly in the ring1a-2 ring1b-3 background. Furthermore, we show that PKL and HDA6 suppress the expression of a set of genes and transposable elements (TEs) by increasing nucleosome density and reducing H3K9ac. Genome-wide analysis indicated they possibly coordinately maintain DNA methylation as well. Our findings suggest that PKL and HDA6 function together to reduce H3K9ac and increase nucleosome occupancy, thereby facilitating gene/TE regulation in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Xiaoling Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China
| | - Qingche Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Qingzhu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yanfang Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Ying Cao
- College of Life Sciences, RNA Center, Capital Normal University, Beijing 100048, China
| | - Huamei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
70
|
Horváth V, Garza R, Jönsson ME, Johansson PA, Adami A, Christoforidou G, Karlsson O, Castilla Vallmanya L, Koutounidou S, Gerdes P, Pandiloski N, Douse CH, Jakobsson J. Mini-heterochromatin domains constrain the cis-regulatory impact of SVA transposons in human brain development and disease. Nat Struct Mol Biol 2024; 31:1543-1556. [PMID: 38834915 PMCID: PMC11479940 DOI: 10.1038/s41594-024-01320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
SVA (SINE (short interspersed nuclear element)-VNTR (variable number of tandem repeats)-Alu) retrotransposons remain active in humans and contribute to individual genetic variation. Polymorphic SVA alleles harbor gene regulatory potential and can cause genetic disease. However, how SVA insertions are controlled and functionally impact human disease is unknown. Here we dissect the epigenetic regulation and influence of SVAs in cellular models of X-linked dystonia parkinsonism (XDP), a neurodegenerative disorder caused by an SVA insertion at the TAF1 locus. We demonstrate that the KRAB zinc finger protein ZNF91 establishes H3K9me3 and DNA methylation over SVAs, including polymorphic alleles, in human neural progenitor cells. The resulting mini-heterochromatin domains attenuate the cis-regulatory impact of SVAs. This is critical for XDP pathology; removal of local heterochromatin severely aggravates the XDP molecular phenotype, resulting in increased TAF1 intron retention and reduced expression. Our results provide unique mechanistic insights into how human polymorphic transposon insertions are recognized and how their regulatory impact is constrained by an innate epigenetic defense system.
Collapse
Affiliation(s)
- Vivien Horváth
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marie E Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Pia A Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Georgia Christoforidou
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ofelia Karlsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Laura Castilla Vallmanya
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Symela Koutounidou
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Patricia Gerdes
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ninoslav Pandiloski
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Christopher H Douse
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
71
|
Tabaro F, Boulard M. 3t-seq: automatic gene expression analysis of single-copy genes, transposable elements, and tRNAs from RNA-seq data. Brief Bioinform 2024; 25:bbae467. [PMID: 39322626 PMCID: PMC11424182 DOI: 10.1093/bib/bbae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/16/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
RNA sequencing is the gold-standard method to quantify transcriptomic changes between two conditions. The overwhelming majority of data analysis methods available are focused on polyadenylated RNA transcribed from single-copy genes and overlook transcripts from repeated sequences such as transposable elements (TEs). These self-autonomous genetic elements are increasingly studied, and specialized tools designed to handle multimapping sequencing reads are available. Transfer RNAs are transcribed by RNA polymerase III and are essential for protein translation. There is a need for integrated software that is able to analyze multiple types of RNA. Here, we present 3t-seq, a Snakemake pipeline for integrated differential expression analysis of transcripts from single-copy genes, TEs, and tRNA. 3t-seq produces an accessible report and easy-to-use results for downstream analysis starting from raw sequencing data and performing quality control, genome mapping, gene expression quantification, and statistical testing. It implements three methods to quantify TEs expression and one for tRNA genes. It provides an easy-to-configure method to manage software dependencies that lets the user focus on results. 3t-seq is released under MIT license and is available at https://github.com/boulardlab/3t-seq.
Collapse
Affiliation(s)
- Francesco Tabaro
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ercole Ramarini 32, Monterotondo 00015, Italy
| | - Matthieu Boulard
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ercole Ramarini 32, Monterotondo 00015, Italy
| |
Collapse
|
72
|
He X, Dias Lopes C, Pereyra-Bistrain L, Huang Y, An J, Chaouche R, Zalzalé H, Wang Q, Ma X, Antunez-Sanchez J, Bergounioux C, Piquerez S, Fragkostefanakis S, Zhang Y, Zheng S, Crespi M, Mahfouz M, Mathieu O, Ariel F, Gutierrez-Marcos J, Li X, Bouché N, Raynaud C, Latrasse D, Benhamed M. Genetic-epigenetic interplay in the determination of plant 3D genome organization. Nucleic Acids Res 2024; 52:10220-10234. [PMID: 39149894 PMCID: PMC11417408 DOI: 10.1093/nar/gkae690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/25/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
The 3D chromatin organization plays a major role in the control of gene expression. However, our comprehension of the governing principles behind nuclear organization remains incomplete. Particularly, the spatial segregation of loci with similar repressive transcriptional states in plants poses a significant yet poorly understood puzzle. In this study, employing a combination of genetics and advanced 3D genomics approaches, we demonstrated that a redistribution of facultative heterochromatin marks in regions usually occupied by constitutive heterochromatin marks disrupts the 3D genome compartmentalisation. This disturbance, in turn, triggers novel chromatin interactions between genic and transposable element (TE) regions. Interestingly, our results imply that epigenetic features, constrained by genetic factors, intricately mold the landscape of 3D genome organisation. This study sheds light on the profound genetic-epigenetic interplay that underlies the regulation of gene expression within the intricate framework of the 3D genome. Our findings highlight the complexity of the relationships between genetic determinants and epigenetic features in shaping the dynamic configuration of the 3D genome.
Collapse
Affiliation(s)
- Xiaoning He
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Chloé Dias Lopes
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Leonardo I Pereyra-Bistrain
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Jing An
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Rim Brik Chaouche
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Hugo Zalzalé
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Qingyi Wang
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Xing Ma
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | | | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Sophie Piquerez
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zheijang University, Hangzhou 310058, China
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Magdy M Mahfouz
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Olivier Mathieu
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, Clermont-Ferrand, F-63000, France
| | - Federico Ariel
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| | | | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvment, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070 Hubei, China
| | - Nicolas Bouché
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Institut Universitaire de France (IUF), Orsay, France
| |
Collapse
|
73
|
Saeliw T, Kanlayaprasit S, Thongkorn S, Songsritaya K, Sanannam B, Jindatip D, Hu VW, Sarachana T. Investigation of chimeric transcripts derived from LINE-1 and Alu retrotransposons in cerebellar tissues of individuals with autism spectrum disorder (ASD). Sci Rep 2024; 14:21889. [PMID: 39300110 DOI: 10.1038/s41598-024-72334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
LINE-1 and Alu retrotransposons are components of the human genome and have been implicated in many human diseases. These elements can influence human transcriptome plasticity in various mechanisms. Chimeric transcripts derived from LINE-1 and Alu can also impact the human transcriptome, such as exonization and post-transcriptional modification. However, its specific role in ASD neuropathology remains unclear, particularly in the cerebellum tissues. We performed RNA-sequencing of post-mortem cerebellum tissues from ASD and unaffected individuals for transposable elements profiling and chimeric transcript identification. The majority of free transcripts of transposable elements were not changed in the cerebellum tissues of ASD compared with unaffected individuals. Nevertheless, we observed that chimeric transcripts derived from LINE-1 and Alu were embedded in the transcripts of differentially expressed genes in the cerebellum of ASD, and these genes were related to developments and abnormalities of the cerebellum. In addition, the expression levels of these genes were correlated with the significantly decreased thickness of the molecular layer in the cerebellum of ASD. We also found that global methylation and expression of LINE-1 and Alu elements were not changed in ASD, but observed in the ASD sub-phenotypes. Our findings showed associations between transposable elements and cerebellar abnormalities in ASD, particularly in distinct phenotypic subgroups. Further investigations using appropriate models are warranted to elucidate the structural and functional implications of LINE-1 and Alu elements in ASD neuropathology.
Collapse
Affiliation(s)
- Thanit Saeliw
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Songphon Kanlayaprasit
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Surangrat Thongkorn
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Kwanjira Songsritaya
- The M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bumpenporn Sanannam
- Division of Anatomy, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Depicha Jindatip
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Tewarit Sarachana
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
74
|
Zhang J, Donahue G, Gilbert MB, Lapidot T, Nicetto D, Zaret KS. Distinct H3K9me3 heterochromatin maintenance dynamics govern different gene programs and repeats in pluripotent cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613328. [PMID: 39345615 PMCID: PMC11429881 DOI: 10.1101/2024.09.16.613328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
H3K9me3-heterochromatin, established by lysine methyltransferases (KMTs) and compacted by HP1 isoforms, represses alternative lineage genes and DNA repeats. Our understanding of H3K9me3-heterochromatin stability is presently limited to individual domains and DNA repeats. We engineered Suv39h2 KO mouse embryonic stem cells to degrade remaining two H3K9me3-KMTs within one hour and found that both passive dilution and active removal contribute to H3K9me3 decay within 12-24 hours. We discovered four different H3K9me3 decay rates across the genome and chromatin features and transcription factor binding patterns that predict the stability classes. A "binary switch" governs heterochromatin compaction, with HP1 rapidly dissociating from heterochromatin upon KMTs' depletion and a particular threshold level of HP1 limiting pioneer factor binding, chromatin opening, and exit from pluripotency within 12 hr. Unexpectedly, receding H3K9me3 domains unearth residual HP1β peaks enriched with heterochromatin-inducing proteins. Our findings reveal distinct H3K9me3-heterochromatin maintenance dynamics governing gene networks and repeats that together safeguard pluripotency.
Collapse
Affiliation(s)
- Jingchao Zhang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael B. Gilbert
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tomer Lapidot
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
75
|
Rodrigues CP, Collins JM, Yang S, Martinez C, Kim JW, Lama C, Nam AS, Alt C, Lin C, Zon LI. Transcripts of repetitive DNA elements signal to block phagocytosis of hematopoietic stem cells. Science 2024; 385:eadn1629. [PMID: 39264994 PMCID: PMC12012832 DOI: 10.1126/science.adn1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 09/14/2024]
Abstract
Macrophages maintain hematopoietic stem cell (HSC) quality by assessing cell surface Calreticulin (Calr), an "eat-me" signal induced by reactive oxygen species (ROS). Using zebrafish genetics, we identified Beta-2-microglobulin (B2m) as a crucial "don't eat-me" signal on blood stem cells. A chemical screen revealed inducers of surface Calr that promoted HSC proliferation without triggering ROS or macrophage clearance. Whole-genome CRISPR-Cas9 screening showed that Toll-like receptor 3 (Tlr3) signaling regulated b2m expression. Targeting b2m or tlr3 reduced the HSC clonality. Elevated B2m levels correlated with high expression of repetitive element (RE) transcripts. Overall, our data suggest that RE-associated double-stranded RNA could interact with TLR3 to stimulate surface expression of B2m on hematopoietic stem and progenitor cells. These findings suggest that the balance of Calr and B2m regulates macrophage-HSC interactions and defines hematopoietic clonality.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Joseph M. Collins
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Song Yang
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, MA, USA
| | - Catherine Martinez
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Ji Wook Kim
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Chhiring Lama
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anna S. Nam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Clemens Alt
- Wellman Center for Photomedicine, Mass General Research Institute, Boston, MA, USA
| | - Charles Lin
- Wellman Center for Photomedicine, Mass General Research Institute, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, MA, USA
| | - Leonard I. Zon
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| |
Collapse
|
76
|
Wang M, Li Z, Wang H, Zhao J, Zhang Y, Lin K, Zheng S, Feng Y, Zhang Y, Teng W, Tong Y, Zhang W, Xue Y, Mao H, Li H, Zhang B, Rasheed A, Bhavani S, Liu C, Ling HQ, Hu YQ, Zhang Y. A Quantitative Computational Framework for Allopolyploid Single-Cell Data Integration and Core Gene Ranking in Development. Mol Biol Evol 2024; 41:msae178. [PMID: 39213378 PMCID: PMC11421573 DOI: 10.1093/molbev/msae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/20/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Polyploidization drives regulatory and phenotypic innovation. How the merger of different genomes contributes to polyploid development is a fundamental issue in evolutionary developmental biology and breeding research. Clarifying this issue is challenging because of genome complexity and the difficulty in tracking stochastic subgenome divergence during development. Recent single-cell sequencing techniques enabled probing subgenome-divergent regulation in the context of cellular differentiation. However, analyzing single-cell data suffers from high error rates due to high dimensionality, noise, and sparsity, and the errors stack up in polyploid analysis due to the increased dimensionality of comparisons between subgenomes of each cell, hindering deeper mechanistic understandings. In this study, we develop a quantitative computational framework, called "pseudo-genome divergence quantification" (pgDQ), for quantifying and tracking subgenome divergence directly at the cellular level. Further comparing with cellular differentiation trajectories derived from single-cell RNA sequencing data allows for an examination of the relationship between subgenome divergence and the progression of development. pgDQ produces robust results and is insensitive to data dropout and noise, avoiding high error rates due to multiple comparisons of genes, cells, and subgenomes. A statistical diagnostic approach is proposed to identify genes that are central to subgenome divergence during development, which facilitates the integration of different data modalities, enabling the identification of factors and pathways that mediate subgenome-divergent activity during development. Case studies have demonstrated that applying pgDQ to single-cell and bulk tissue transcriptomic data promotes a systematic and deeper understanding of how dynamic subgenome divergence contributes to developmental trajectories in polyploid evolution.
Collapse
Affiliation(s)
- Meiyue Wang
- Beijing Life Science Academy, Beijing, China
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200438, China
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences\Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haoyu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, Henan 457004, China
| | - Junwei Zhao
- Beijing Life Science Academy, Beijing, China
| | - Yuyun Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kande Lin
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yilong Feng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu'e Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan Teng
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Tong
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenli Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hude Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, Henan 457004, China
| | - Bo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 81008, China
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- International Maize and Wheat Improvement Center (CIMMYT), China Office, c/o CAAS, Beijing, 100081, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do. de México, Mexico
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences\Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Yazhouwan National Laboratory, Sanya, Hainan 572025, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200438, China
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200438, China
| |
Collapse
|
77
|
Mostoufi SL, Singh ND. Pathogen infection alters the gene expression landscape of transposable elements in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae171. [PMID: 39129654 PMCID: PMC11373657 DOI: 10.1093/g3journal/jkae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/09/2024] [Indexed: 08/13/2024]
Abstract
Transposable elements make up substantial proportions of eukaryotic genomes and many are thought to be remnants of ancient viral infections. Current research has begun to highlight the role transposable elements can play in the immune system response to infections. However, most of our knowledge about transposable element expression during infection is limited by the specific host and pathogen factors from each study, making it difficult to compare studies and develop broader patterns regarding the role of transposable elements during infection. Here, we use the tools and resources available in the model, Drosophila melanogaster, to analyze multiple gene expression datasets of flies subject to bacterial, fungal, and viral infections. We analyzed differences in pathogen species, host genotype, host tissue, and sex to understand how these factors impact transposable element expression during infection. Our results highlight both shared and unique transposable element expression patterns between pathogens and suggest a larger effect of pathogen factors over host factors for influencing transposable element expression.
Collapse
Affiliation(s)
- Sabrina L Mostoufi
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
78
|
Hwang SY, Kim H, Denisko D, Zhao B, Lee D, Jeong J, Kim J, Park K, Park J, Jeong D, Park S, Choi HJ, Kim S, Lee EA, Ahn K. Human cytomegalovirus harnesses host L1 retrotransposon for efficient replication. Nat Commun 2024; 15:7640. [PMID: 39223139 PMCID: PMC11369119 DOI: 10.1038/s41467-024-51961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Genetic parasites, including viruses and transposons, exploit components from the host for their own replication. However, little is known about virus-transposon interactions within host cells. Here, we discover a strategy where human cytomegalovirus (HCMV) hijacks L1 retrotransposon encoded protein during its replication cycle. HCMV infection upregulates L1 expression by enhancing both the expression of L1-activating transcription factors, YY1 and RUNX3, and the chromatin accessibility of L1 promoter regions. Increased L1 expression, in turn, promotes HCMV replicative fitness. Affinity proteomics reveals UL44, HCMV DNA polymerase subunit, as the most abundant viral binding protein of the L1 ribonucleoprotein (RNP) complex. UL44 directly interacts with L1 ORF2p, inducing DNA damage responses in replicating HCMV compartments. While increased L1-induced mutagenesis is not observed in HCMV for genetic adaptation, the interplay between UL44 and ORF2p accelerates viral DNA replication by alleviating replication stress. Our findings shed light on how HCMV exploits host retrotransposons for enhanced viral fitness.
Collapse
Affiliation(s)
- Sung-Yeon Hwang
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyewon Kim
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Danielle Denisko
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Dohoon Lee
- Bioinformatics Institute, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 FOUR Intelligence Computing, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiseok Jeong
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinuk Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kiwon Park
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junhyun Park
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongjoon Jeong
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sehong Park
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Jung Choi
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- SNU Institute for Virus Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
79
|
Pandiloski N, Horváth V, Karlsson O, Koutounidou S, Dorazehi F, Christoforidou G, Matas-Fuentes J, Gerdes P, Garza R, Jönsson ME, Adami A, Atacho DAM, Johansson JG, Englund E, Kokaia Z, Jakobsson J, Douse CH. DNA methylation governs the sensitivity of repeats to restriction by the HUSH-MORC2 corepressor. Nat Commun 2024; 15:7534. [PMID: 39214989 PMCID: PMC11364546 DOI: 10.1038/s41467-024-50765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
The human silencing hub (HUSH) complex binds to transcripts of LINE-1 retrotransposons (L1s) and other genomic repeats, recruiting MORC2 and other effectors to remodel chromatin. How HUSH and MORC2 operate alongside DNA methylation, a central epigenetic regulator of repeat transcription, remains largely unknown. Here we interrogate this relationship in human neural progenitor cells (hNPCs), a somatic model of brain development that tolerates removal of DNA methyltransferase DNMT1. Upon loss of MORC2 or HUSH subunit TASOR in hNPCs, L1s remain silenced by robust promoter methylation. However, genome demethylation and activation of evolutionarily-young L1s attracts MORC2 binding, and simultaneous depletion of DNMT1 and MORC2 causes massive accumulation of L1 transcripts. We identify the same mechanistic hierarchy at pericentromeric α-satellites and clustered protocadherin genes, repetitive elements important for chromosome structure and neurodevelopment respectively. Our data delineate the epigenetic control of repeats in somatic cells, with implications for understanding the vital functions of HUSH-MORC2 in hypomethylated contexts throughout human development.
Collapse
Affiliation(s)
- Ninoslav Pandiloski
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Vivien Horváth
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ofelia Karlsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Symela Koutounidou
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Fereshteh Dorazehi
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Georgia Christoforidou
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jon Matas-Fuentes
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
| | - Patricia Gerdes
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Diahann A M Atacho
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jenny G Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Stem Cells and Restorative Neurology, Department of Clinical Sciences, BMC B10, Lund University, Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Christopher H Douse
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
80
|
Chialastri A, Sarkar S, Schauer EE, Lamba S, Dey SS. Combinatorial quantification of 5mC and 5hmC at individual CpG dyads and the transcriptome in single cells reveals modulators of DNA methylation maintenance fidelity. Nat Struct Mol Biol 2024; 31:1296-1308. [PMID: 38671229 DOI: 10.1038/s41594-024-01291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Inheritance of 5-methylcytosine from one cell generation to the next by DNA methyltransferase 1 (DNMT1) plays a key role in regulating cellular identity. While recent work has shown that the activity of DNMT1 is imprecise, it remains unclear how the fidelity of DNMT1 is tuned in different genomic and cell state contexts. Here we describe Dyad-seq, a method to quantify the genome-wide methylation status of cytosines at the resolution of individual CpG dinucleotides to find that the fidelity of DNMT1-mediated maintenance methylation is related to the local density of DNA methylation and the landscape of histone modifications. To gain deeper insights into methylation/demethylation turnover dynamics, we first extended Dyad-seq to quantify all combinations of 5-methylcytosine and 5-hydroxymethylcytosine at individual CpG dyads. Next, to understand how cell state transitions impact maintenance methylation, we scaled the method down to jointly profile genome-wide methylation levels, maintenance methylation fidelity and the transcriptome from single cells (scDyad&T-seq). Using scDyad&T-seq, we demonstrate that, while distinct cell states can substantially impact the activity of the maintenance methylation machinery, locally there exists an intrinsic relationship between DNA methylation density, histone modifications and DNMT1-mediated maintenance methylation fidelity that is independent of cell state.
Collapse
Affiliation(s)
- Alex Chialastri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Saumya Sarkar
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Elizabeth E Schauer
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Shyl Lamba
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA, USA
| | - Siddharth S Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
81
|
Aguirre S, Pappa S, Serna-Pujol N, Padilla N, Iacobucci S, Nacht AS, Vicent GP, Jordan A, de la Cruz X, Martínez-Balbás MA. PHF2-mediated H3K9me balance orchestrates heterochromatin stability and neural progenitor proliferation. EMBO Rep 2024; 25:3486-3505. [PMID: 38890452 PMCID: PMC11315909 DOI: 10.1038/s44319-024-00178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Heterochromatin stability is crucial for progenitor proliferation during early neurogenesis. It relays on the maintenance of local hubs of H3K9me. However, understanding the formation of efficient localized levels of H3K9me remains limited. To address this question, we used neural stem cells to analyze the function of the H3K9me2 demethylase PHF2, which is crucial for progenitor proliferation. Through mass-spectroscopy and genome-wide assays, we show that PHF2 interacts with heterochromatin components and is enriched at pericentromeric heterochromatin (PcH) boundaries where it maintains transcriptional activity. This binding is essential for silencing the satellite repeats, preventing DNA damage and genome instability. PHF2's depletion increases the transcription of heterochromatic repeats, accompanied by a decrease in H3K9me3 levels and alterations in PcH organization. We further show that PHF2's PHD and catalytic domains are crucial for maintaining PcH stability, thereby safeguarding genome integrity. These results highlight the multifaceted nature of PHF2's functions in maintaining heterochromatin stability and regulating gene expression during neural development. Our study unravels the intricate relationship between heterochromatin stability and progenitor proliferation during mammalian neurogenesis.
Collapse
Affiliation(s)
- Samuel Aguirre
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Stella Pappa
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Núria Serna-Pujol
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Natalia Padilla
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119, E-08035, Barcelona, Spain
| | - Simona Iacobucci
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - A Silvina Nacht
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guillermo P Vicent
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Albert Jordan
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Xavier de la Cruz
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119, E-08035, Barcelona, Spain
- Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona, 08018, Spain
| | - Marian A Martínez-Balbás
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain.
| |
Collapse
|
82
|
Yu VZ, So SS, Lung BCC, Hou GZ, Wong CWY, Chow LKY, Chung MKY, Wong IYH, Wong CLY, Chan DKK, Chan FSY, Law BTT, Xu K, Tan ZZ, Lam KO, Lo AWI, Lam AKY, Kwong DLW, Ko JMY, Dai W, Law S, Lung ML. ΔNp63-restricted viral mimicry response impedes cancer cell viability and remodels tumor microenvironment in esophageal squamous cell carcinoma. Cancer Lett 2024; 595:216999. [PMID: 38823762 DOI: 10.1016/j.canlet.2024.216999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Tumor protein p63 isoform ΔNp63 plays roles in the squamous epithelium and squamous cell carcinomas (SCCs), including esophageal SCC (ESCC). By integrating data from cell lines and our latest patient-derived organoid cultures, derived xenograft models, and clinical sample transcriptomic analyses, we identified a novel and robust oncogenic role of ΔNp63 in ESCC. We showed that ΔNp63 maintains the repression of cancer cell endogenous retrotransposon expression and cellular double-stranded RNA sensing. These subsequently lead to a restricted cancer cell viral mimicry response and suppressed induction of tumor-suppressive type I interferon (IFN-I) signaling through the regulations of Signal transducer and activator of transcription 1, Interferon regulatory factor 1, and cGAS-STING pathway. The cancer cell ΔNp63/IFN-I signaling axis affects both the cancer cell and tumor-infiltrating immune cell (TIIC) compartments. In cancer cells, depletion of ΔNp63 resulted in reduced cell viability. ΔNp63 expression is negatively associated with the anticancer responses to viral mimicry booster treatments targeting cancer cells. In the tumor microenvironment, cancer cell TP63 expression negatively correlates with multiple TIIC signatures in ESCC clinical samples. ΔNp63 depletion leads to increased cancer cell antigen presentation molecule expression and enhanced recruitment and reprogramming of tumor-infiltrating myeloid cells. Similar IFN-I signaling and TIIC signature association with ΔNp63 were also observed in lung SCC. These results support the potential application of ΔNp63 as a therapeutic target and a biomarker to guide candidate anticancer treatments exploring viral mimicry responses.
Collapse
Affiliation(s)
- Valen Zhuoyou Yu
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shan Shan So
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Bryan Chee-Chad Lung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - George Zhaozheng Hou
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Carissa Wing-Yan Wong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Michael King-Yung Chung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ian Yu-Hong Wong
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Claudia Lai-Yin Wong
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Desmond Kwan-Kit Chan
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Fion Siu-Yin Chan
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Betty Tsz-Ting Law
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kaiyan Xu
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zack Zhen Tan
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ka-On Lam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Anthony Wing-Ip Lo
- Division of Anatomical Pathology, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Alfred King-Yin Lam
- Divsion of Cancer Molecular Pathology, School of Medicine and Dentistry and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Simon Law
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Maria Li Lung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
83
|
Mehta P, Sethi S, Yadav SK, Gupta G, Singh R. Heat stress induced piRNA alterations in pachytene spermatocytes and round spermatids. Reprod Biol Endocrinol 2024; 22:87. [PMID: 39049033 PMCID: PMC11267754 DOI: 10.1186/s12958-024-01249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Spermatogenesis is a temperature-sensitive process, and elevation in temperature hampers this process quickly and significantly. We studied the molecular effects of testicular heating on piRNAs and gene expression in rat testicular germ cells. METHODS We generated a cryptorchid rat model by displacing the testis from the scrotal sac (34 °C) to the abdominal area (37 °C) and sacrificed animals after 1 day, 3 days, and 5 days. Pachytene spermatocytes and round spermatids were purified using elutriation centrifugation and percoll gradient methods. We performed transcriptome sequencing in pachytene spermatocytes and round spermatids to identify differentially expressed piRNAs and their probable targets, i.e., TE transcripts and mRNAs. RESULTS As a result of heat stress, we observed significant upregulation of piRNAs and TE transcripts in testicular germ cells. In addition to this, piRNA biogenesis machinery and heat shock proteins (Hsp70 and Hsp90 family members) were upregulated. mRNAs have also been proposed as targets for piRNAs; therefore, we shortlisted certain piRNA-mRNA pairs with an inverse relationship of expression. We observed that in testicular heat stress, the heat shock proteins go hand-in-hand with the upregulation of piRNA biogenesis machinery. The dysregulation of piRNAs in heat-stressed germ cells, increased ping-pong activity, and disturbed expression of piRNA target transcripts suggest a connection between piRNAs, mRNAs, and TE transcripts. CONCLUSIONS In heat stress, piRNAs, piRNA machinery, and heat shock proteins are activated to deal with low levels of stress, which is followed by a rescue approach in prolonged stressaccompained by high TE activity to allow genetic mutations, perhaps for survival and adaptability.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shruti Sethi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Santosh Kumar Yadav
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Gopal Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
84
|
Morrissey A, Shi J, James DQ, Mahony S. Accurate allocation of multimapped reads enables regulatory element analysis at repeats. Genome Res 2024; 34:937-951. [PMID: 38986578 PMCID: PMC11293539 DOI: 10.1101/gr.278638.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
Transposable elements (TEs) and other repetitive regions have been shown to contain gene regulatory elements, including transcription factor binding sites. However, regulatory elements harbored by repeats have proven difficult to characterize using short-read sequencing assays such as ChIP-seq or ATAC-seq. Most regulatory genomics analysis pipelines discard "multimapped" reads that align equally well to multiple genomic locations. Because multimapped reads arise predominantly from repeats, current analysis pipelines fail to detect a substantial portion of regulatory events that occur in repetitive regions. To address this shortcoming, we developed Allo, a new approach to allocate multimapped reads in an efficient, accurate, and user-friendly manner. Allo combines probabilistic mapping of multimapped reads with a convolutional neural network that recognizes the read distribution features of potential peaks, offering enhanced accuracy in multimapping read assignment. Allo also provides read-level output in the form of a corrected alignment file, making it compatible with existing regulatory genomics analysis pipelines and downstream peak-finders. In a demonstration application on CTCF ChIP-seq data, we show that Allo results in the discovery of thousands of new CTCF peaks. Many of these peaks contain the expected cognate motif and/or serve as TAD boundaries. We additionally apply Allo to a diverse collection of ENCODE ChIP-seq data sets, resulting in multiple previously unidentified interactions between transcription factors and repetitive element families. Finally, we show that Allo may be particularly beneficial in identifying ChIP-seq peaks at centromeres, near segmentally duplicated genes, and in younger TEs, enabling new regulatory analyses in these regions.
Collapse
Affiliation(s)
- Alexis Morrissey
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jeffrey Shi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Daniela Q James
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
85
|
O'Neill K, Shaw R, Bolger I, Tam O, Phatnani H, Hammell MG. ALS molecular subtypes are a combination of cellular, genetic, and pathological features learned by deep multiomics classifiers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.603731. [PMID: 39651269 PMCID: PMC11623686 DOI: 10.1101/2024.07.19.603731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex syndrome with multiple genetic causes and wide variation in disease presentation. Despite this general heterogeneity, several common factors have been identified. For example, nearly all patients show pathological accumulations of phosphorylated TDP-43 protein in affected regions of the motor cortex and spinal cord. Moreover, large patient cohort studies have revealed that most patient samples can be grouped into a small number of ALS subtypes, as defined by their transcriptomic profiles. These ALS molecular subtypes can be grouped by whether postmortem motor cortex samples display signatures of: mitochondrial dysfunction and oxidative stress (ALS-Ox), microglial activation and neuroinflammation (ALS-Glia), or dense TDP-43 pathology and associated transposable element de-silencing (ALS-TE). In this study, we have built a deep layer ALS neural network classifier (DANcer) that has learned to accurately assign patient samples to these ALS subtypes, and which can be run on either bulk or single-cell datasets. Upon applying this classifier to an expanded ALS patient cohort from the NYGC ALS Consortium, we show that ALS Molecular Subtypes are robust across clinical centers, with no new subtypes appearing in a cohort that has quadrupled in size. Signatures from two of these molecular subtypes strongly correlate with disease duration: ALS-TE signatures in cortex and ALS-Glia signatures in spinal cord, revealing molecular correlates of clinical features. Finally, we use single nucleus RNA sequencing to reveal the cell type-specific contributions to ALS subtype, as determined by our single-cell classifier (scDANCer). Single-cell transcriptomes reveal that ALS molecular subtypes are recapitulated in neurons and glia, with both ALS-wide shared alterations in each cell type as well as ALS subtype-specific alterations. In summary, ALS molecular subtypes: (1) are robust across large cohorts of sporadic and familial ALS patient samples, (2) represent a combination of cellular, genetic, and pathological features, and (3) correlate with clinical features of ALS. Abstract Figure
Collapse
|
86
|
Pasternack N, Doucet-O'Hare T, Johnson K, Paulsen O, Nath A. Endogenous retroviruses are dysregulated in ALS. iScience 2024; 27:110147. [PMID: 38989463 PMCID: PMC11233923 DOI: 10.1016/j.isci.2024.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a universally fatal neurodegenerative disease with no cure. Human endogenous retroviruses (HERVs) have been implicated in its pathogenesis but their relevance to ALS is not fully understood. We examined bulk RNA-seq data from almost 2,000 ALS and unaffected control samples derived from the cortex and spinal cord. Using different methods of feature selection, including differential expression analysis and machine learning, we discovered that transcription of HERV-K loci 1q22 and 8p23.1 were significantly upregulated in the spinal cord of individuals with ALS. Additionally, we identified a subset of ALS patients with upregulated HERV-K expression in the cortex and spinal cord. We also found the expression of HERV-K loci 19q11 and 8p23.1 was correlated with protein coding genes previously implicated in ALS and dysregulated in ALS patients in this study. These results clarify the association of HERV-K and ALS and highlight specific genes in the pathobiology of late-stage ALS.
Collapse
Affiliation(s)
- Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tara Doucet-O'Hare
- Neuro-Oncology Branch Stem Cell Team, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kory Johnson
- Bioinformatics Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
87
|
Ahel J, Pandey A, Schwaiger M, Mohn F, Basters A, Kempf G, Andriollo A, Kaaij L, Hess D, Bühler M. ChAHP2 and ChAHP control diverse retrotransposons by complementary activities. Genes Dev 2024; 38:554-568. [PMID: 38960717 PMCID: PMC11293393 DOI: 10.1101/gad.351769.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Retrotransposon control in mammals is an intricate process that is effectuated by a broad network of chromatin regulatory pathways. We previously discovered ChAHP, a protein complex with repressive activity against short interspersed element (SINE) retrotransposons that is composed of the transcription factor ADNP, chromatin remodeler CHD4, and HP1 proteins. Here we identify ChAHP2, a protein complex homologous to ChAHP, in which ADNP is replaced by ADNP2. ChAHP2 is predominantly targeted to endogenous retroviruses (ERVs) and long interspersed elements (LINEs) via HP1β-mediated binding of H3K9 trimethylated histones. We further demonstrate that ChAHP also binds these elements in a manner mechanistically equivalent to that of ChAHP2 and distinct from DNA sequence-specific recruitment at SINEs. Genetic ablation of ADNP2 alleviates ERV and LINE1 repression, which is synthetically exacerbated by additional depletion of ADNP. Together, our results reveal that the ChAHP and ChAHP2 complexes function to control both nonautonomous and autonomous retrotransposons by complementary activities, further adding to the complexity of mammalian transposon control.
Collapse
Affiliation(s)
- Josip Ahel
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Aparna Pandey
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
- Swiss Institute of Bioinformatics, Basel 4056, Switzerland
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Anja Basters
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Aude Andriollo
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
- University of Basel, Basel 4003, Switzerland
| | - Lucas Kaaij
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland;
- University of Basel, Basel 4003, Switzerland
| |
Collapse
|
88
|
Ivancevic A, Simpson DM, Joyner OM, Bagby SM, Nguyen LL, Bitler BG, Pitts TM, Chuong EB. Endogenous retroviruses mediate transcriptional rewiring in response to oncogenic signaling in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1218. [PMID: 39018396 PMCID: PMC466953 DOI: 10.1126/sciadv.ado1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Cancer cells exhibit rewired transcriptional regulatory networks that promote tumor growth and survival. However, the mechanisms underlying the formation of these pathological networks remain poorly understood. Through a pan-cancer epigenomic analysis, we found that primate-specific endogenous retroviruses (ERVs) are a rich source of enhancers displaying cancer-specific activity. In colorectal cancer and other epithelial tumors, oncogenic MAPK/AP1 signaling drives the activation of enhancers derived from the primate-specific ERV family LTR10. Functional studies in colorectal cancer cells revealed that LTR10 elements regulate tumor-specific expression of multiple genes associated with tumorigenesis, such as ATG12 and XRCC4. Within the human population, individual LTR10 elements exhibit germline and somatic structural variation resulting from a highly mutable internal tandem repeat region, which affects AP1 binding activity. Our findings reveal that ERV-derived enhancers contribute to transcriptional dysregulation in response to oncogenic signaling and shape the evolution of cancer-specific regulatory networks.
Collapse
Affiliation(s)
- Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Olivia M. Joyner
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lily L. Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ben G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
89
|
Wodrich APK, Harris BT, Giniger E. Manipulating mitochondrial reactive oxygen species alters survival in unexpected ways in a Drosophila Cdk5 model of neurodegeneration. Biol Open 2024; 13:bio060515. [PMID: 39292114 PMCID: PMC11552616 DOI: 10.1242/bio.060515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Reactive oxygen species (ROS) are associated with aging and neurodegeneration, but the significance of this association remains obscure. Here, using a Drosophila Cdk5 model of age-related neurodegeneration, we probe this relationship in the pathologically relevant tissue, the brain, by quantifying three specific mitochondrial ROS and manipulating these redox species pharmacologically. Our goal is to ask whether pathology-associated changes in redox state are detrimental for survival, whether they may be beneficial responses to pathology, or whether they are covariates of pathology that do not alter viability. We find, surprisingly, that increasing mitochondrial H2O2 correlates with improved survival. We also find evidence that drugs that alter the mitochondrial glutathione redox potential modulate survival primarily through the compensatory effects they induce rather than through their direct effects on the final mitochondrial glutathione redox potential. We also find that the response to treatment with a redox-altering drug varies depending on the age and genotype of the individual receiving the drug as well as the duration of the treatment. These data have important implications for the design and interpretation of studies investigating the effect of redox state on health and disease as well as on efforts to modify the redox state to achieve therapeutic goals.
Collapse
Affiliation(s)
- Andrew P. K. Wodrich
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892,USA
- Georgetown University, Interdisciplinary Program in Neuroscience, Washington, DC 20057, USA
- University of Kentucky school of Medicine, Lexington, KY 40536,USA
| | - Brent T. Harris
- Georgetown University, Interdisciplinary Program in Neuroscience, Washington, DC 20057, USA
- Georgetown University, Department of Pathology, Washington, DC 20057,USA
- Georgetown University, Department of Neurology, Washington, DC 20057,USA
| | - Edward Giniger
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892,USA
| |
Collapse
|
90
|
Sarre LA, Kim IV, Ovchinnikov V, Olivetta M, Suga H, Dudin O, Sebé-Pedrós A, de Mendoza A. DNA methylation enables recurrent endogenization of giant viruses in an animal relative. SCIENCE ADVANCES 2024; 10:eado6406. [PMID: 38996012 PMCID: PMC11244446 DOI: 10.1126/sciadv.ado6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
5-Methylcytosine (5mC) is a widespread silencing mechanism that controls genomic parasites. In eukaryotes, 5mC has gained complex roles in gene regulation beyond parasite control, yet 5mC has also been lost in many lineages. The causes for 5mC retention and its genomic consequences are still poorly understood. Here, we show that the protist closely related to animals Amoebidium appalachense features both transposon and gene body methylation, a pattern reminiscent of invertebrates and plants. Unexpectedly, hypermethylated genomic regions in Amoebidium derive from viral insertions, including hundreds of endogenized giant viruses, contributing 14% of the proteome. Using a combination of inhibitors and genomic assays, we demonstrate that 5mC silences these giant virus insertions. Moreover, alternative Amoebidium isolates show polymorphic giant virus insertions, highlighting a dynamic process of infection, endogenization, and purging. Our results indicate that 5mC is critical for the controlled coexistence of newly acquired viral DNA into eukaryotic genomes, making Amoebidium a unique model to understand the hybrid origins of eukaryotic DNA.
Collapse
Affiliation(s)
- Luke A. Sarre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Iana V. Kim
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Vladimir Ovchinnikov
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arnau Sebé-Pedrós
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- ICREA, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
91
|
Wu MJ, Kondo H, Kammula AV, Shi L, Xiao Y, Dhiab S, Xu Q, Slater CJ, Avila OI, Merritt J, Kato H, Kattel P, Sussman J, Gritti I, Eccleston J, Sun Y, Cho HM, Olander K, Katsuda T, Shi DD, Savani MR, Smith BC, Cleary JM, Mostoslavsky R, Vijay V, Kitagawa Y, Wakimoto H, Jenkins RW, Yates KB, Paik J, Tassinari A, Saatcioglu DH, Tron AE, Haas W, Cahill D, McBrayer SK, Manguso RT, Bardeesy N. Mutant IDH1 inhibition induces dsDNA sensing to activate tumor immunity. Science 2024; 385:eadl6173. [PMID: 38991060 PMCID: PMC11602233 DOI: 10.1126/science.adl6173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/09/2024] [Indexed: 07/13/2024]
Abstract
Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated metabolic gene across human cancers. Mutant IDH1 (mIDH1) generates the oncometabolite (R)-2-hydroxyglutarate, disrupting enzymes involved in epigenetics and other processes. A hallmark of IDH1-mutant solid tumors is T cell exclusion, whereas mIDH1 inhibition in preclinical models restores antitumor immunity. Here, we define a cell-autonomous mechanism of mIDH1-driven immune evasion. IDH1-mutant solid tumors show selective hypermethylation and silencing of the cytoplasmic double-stranded DNA (dsDNA) sensor CGAS, compromising innate immune signaling. mIDH1 inhibition restores DNA demethylation, derepressing CGAS and transposable element (TE) subclasses. dsDNA produced by TE-reverse transcriptase (TE-RT) activates cGAS, triggering viral mimicry and stimulating antitumor immunity. In summary, we demonstrate that mIDH1 epigenetically suppresses innate immunity and link endogenous RT activity to the mechanism of action of a US Food and Drug Administration-approved oncology drug.
Collapse
Affiliation(s)
- Meng-Ju Wu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Hiroshi Kondo
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Ashwin V. Kammula
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Lei Shi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yi Xiao
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sofiene Dhiab
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Qin Xu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Chloe J. Slater
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Universite Paris-Saclay, Institut Gustave Roussy, INSERM U1015, Villejuif, France
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | - Omar I. Avila
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Joshua Merritt
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Hiroyuki Kato
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Prabhat Kattel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jonathan Sussman
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ilaria Gritti
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jason Eccleston
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Sun
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
| | - Hyo Min Cho
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Kira Olander
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Takeshi Katsuda
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Diana D. Shi
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Milan R. Savani
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bailey C. Smith
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James M Cleary
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Raul Mostoslavsky
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Vindhya Vijay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yosuke Kitagawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russell W. Jenkins
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
| | - Kathleen B. Yates
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | - Wilhelm Haas
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Daniel Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert T. Manguso
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| |
Collapse
|
92
|
Marin H, Simental E, Allen C, Martin E, Panning B, Al-Sady B, Buchwalter A. The nuclear periphery confers repression on H3K9me2-marked genes and transposons to shape cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602542. [PMID: 39026839 PMCID: PMC11257442 DOI: 10.1101/2024.07.08.602542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Heterochromatic loci marked by histone H3 lysine 9 dimethylation (H3K9me2) are enriched at the nuclear periphery in metazoans, but the effect of spatial position on heterochromatin function has not been defined. Here, we remove three nuclear lamins and lamin B receptor (LBR) in mouse embryonic stem cells (mESCs) and show that heterochromatin detaches from the nuclear periphery. Mutant mESCs sustain naïve pluripotency and maintain H3K9me2 across the genome but cannot repress H3K9me2-marked genes or transposons. Further, mutant cells fail to differentiate into epiblast-like cells (EpiLCs), a transition that requires the expansion of H3K9me2 across the genome. Mutant EpiLCs can silence naïve pluripotency genes and activate epiblast-stage genes. However, H3K9me2 cannot repress markers of alternative fates, including primitive endoderm. We conclude that the nuclear periphery controls the spatial position, dynamic remodeling, and repressive capacity of H3K9me2-marked heterochromatin to shape cell fate decisions.
Collapse
Affiliation(s)
- Harold Marin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Eric Simental
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Department of Biochemistry, University of California, San Francisco, CA, USA
| | - Charlie Allen
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Eric Martin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry, University of California, San Francisco, CA, USA
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
93
|
Atinbayeva N, Valent I, Zenk F, Loeser E, Rauer M, Herur S, Quarato P, Pyrowolakis G, Gomez-Auli A, Mittler G, Cecere G, Erhardt S, Tiana G, Zhan Y, Iovino N. Inheritance of H3K9 methylation regulates genome architecture in Drosophila early embryos. EMBO J 2024; 43:2685-2714. [PMID: 38831123 PMCID: PMC11217351 DOI: 10.1038/s44318-024-00127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin. Here, we show that H3K9me3 is transmitted from the maternal germline to the next generation. Maternally inherited H3K9me3, and the histone methyltransferases (HMT) depositing it, are required for the organization of constitutive heterochromatin: early embryos lacking H3K9 methylation display de-condensation of pericentromeric regions, centromere-centromere de-clustering, mitotic defects, and nuclear shape irregularities, resulting in embryo lethality. Unexpectedly, quantitative CUT&Tag and 4D microscopy measurements of HP1a coupled with biophysical modeling revealed that H3K9me2/3 is largely dispensable for HP1a recruitment. Instead, the main function of H3K9me2/3 at this developmental stage is to drive HP1a clustering and subsequent heterochromatin compaction. Our results show that HP1a binding to constitutive heterochromatin in the absence of H3K9me2/3 is not sufficient to promote proper embryo development and heterochromatin formation. The loss of H3K9 HMTs and H3K9 methylation alters genome organization and hinders embryonic development.
Collapse
Affiliation(s)
- Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79085, Freiburg im Breisgau, Germany
| | - Iris Valent
- Karlsruhe Institute of Technology (KIT), Zoological Institute, 76131, Karlsruhe, Germany
| | - Fides Zenk
- Brain Mind Institute, School of Life Sciences EPFL, SV3809, 1015, Lausanne, Switzerland
| | - Eva Loeser
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Michael Rauer
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Shwetha Herur
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Piergiuseppe Quarato
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giorgos Pyrowolakis
- Centre for Biological signaling studies, University of Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Alejandro Gomez-Auli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Germano Cecere
- Institute Pasteur, Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, UMR3738, CNRS, 75724, Cedex 15, Paris, France
| | - Sylvia Erhardt
- Karlsruhe Institute of Technology (KIT), Zoological Institute, 76131, Karlsruhe, Germany
| | - Guido Tiana
- Università degli Studi di Milano and INFN, Milan, Italy
| | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milan, Italy.
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
94
|
Deaville LA, Berrens RV. Technology to the rescue: how to uncover the role of transposable elements in preimplantation development. Biochem Soc Trans 2024; 52:1349-1362. [PMID: 38752836 PMCID: PMC11346443 DOI: 10.1042/bst20231262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024]
Abstract
Transposable elements (TEs) are highly expressed in preimplantation development. Preimplantation development is the phase when the cells of the early embryo undergo the first cell fate choice and change from being totipotent to pluripotent. A range of studies have advanced our understanding of TEs in preimplantation, as well as their epigenetic regulation and functional roles. However, many questions remain about the implications of TE expression during early development. Challenges originate first due to the abundance of TEs in the genome, and second because of the limited cell numbers in preimplantation. Here we review the most recent technological advancements promising to shed light onto the role of TEs in preimplantation development. We explore novel avenues to identify genomic TE insertions and improve our understanding of the regulatory mechanisms and roles of TEs and their RNA and protein products during early development.
Collapse
Affiliation(s)
- Lauryn A. Deaville
- Institute for Developmental and Regenerative Medicine, Oxford University, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Oxford OX3 7TY, U.K
- Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Headington, Oxford OX3 9DU, U.K
- MRC Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Oxford OX3 9DS, U.K
| | - Rebecca V. Berrens
- Institute for Developmental and Regenerative Medicine, Oxford University, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Oxford OX3 7TY, U.K
- Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Headington, Oxford OX3 9DU, U.K
| |
Collapse
|
95
|
Nguyen LL, Watson ZL, Ortega R, Woodruff ER, Jordan KR, Iwanaga R, Yamamoto TM, Bailey CA, To F, Jeong AD, Guntupalli SR, Behbakht K, Gibaja V, Arnoult N, Cocozaki A, Chuong EB, Bitler BG. Combining EHMT and PARP Inhibition: A Strategy to Diminish Therapy-Resistant Ovarian Cancer Tumor Growth while Stimulating Immune Activation. Mol Cancer Ther 2024; 23:OF1-OF16. [PMID: 38863225 PMCID: PMC11543919 DOI: 10.1158/1535-7163.mct-23-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/13/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Despite the success of poly-ADP-ribose polymerase inhibitors (PARPi) in the clinic, high rates of resistance to PARPi presents a challenge in the treatment of ovarian cancer, thus it is imperative to find therapeutic strategies to combat PARPi resistance. Here, we demonstrate that inhibition of epigenetic modifiers euchromatic histone lysine methyltransferases 1/2 (EHMT1/2) reduces the growth of multiple PARPi-resistant ovarian cancer cell lines and tumor growth in a PARPi-resistant mouse model of ovarian cancer. We found that combinatory EHMT and PARP inhibition increases immunostimulatory double-stranded RNA formation and elicits several immune signaling pathways in vitro. Using epigenomic profiling and transcriptomics, we found that EHMT2 is bound to transposable elements, and that EHMT inhibition leads to genome-wide epigenetic and transcriptional derepression of transposable elements. We validated EHMT-mediated activation of immune signaling and upregulation of transposable element transcripts in patient-derived, therapy-naïve, primary ovarian tumors, suggesting potential efficacy in PARPi-sensitive disease as well. Importantly, using multispectral immunohistochemistry, we discovered that combinatory therapy increased CD8 T-cell activity in the tumor microenvironment of the same patient-derived tissues. In a PARPi-resistant syngeneic murine model, EHMT and PARP inhibition combination inhibited tumor progression and increased Granzyme B+ cells in the tumor. Together, our results provide evidence that combinatory EHMT and PARP inhibition stimulates a cell autologous immune response in vitro, is an effective therapy to reduce PARPi-resistant ovarian tumor growth in vivo, and promotes antitumor immunity activity in the tumor microenvironment of patient-derived ex vivo tissues of ovarian cancer.
Collapse
Affiliation(s)
- Lily L. Nguyen
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Zachary L. Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Raquel Ortega
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Kimberly R. Jordan
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ritsuko Iwanaga
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Tomomi M. Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Courtney A. Bailey
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Francis To
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Abigail D. Jeong
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Saketh R. Guntupalli
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kian Behbakht
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Nausica Arnoult
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Edward B. Chuong
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| |
Collapse
|
96
|
Araki R, Suga T, Hoki Y, Imadome K, Sunayama M, Kamimura S, Fujita M, Abe M. iPS cell generation-associated point mutations include many C > T substitutions via different cytosine modification mechanisms. Nat Commun 2024; 15:4946. [PMID: 38862540 PMCID: PMC11166658 DOI: 10.1038/s41467-024-49335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
Genomic aberrations are a critical impediment for the safe medical use of iPSCs and their origin and developmental mechanisms remain unknown. Here we find through WGS analysis of human and mouse iPSC lines that genomic mutations are de novo events and that, in addition to unmodified cytosine base prone to deamination, the DNA methylation sequence CpG represents a significant mutation-prone site. CGI and TSS regions show increased mutations in iPSCs and elevated mutations are observed in retrotransposons, especially in the AluY subfamily. Furthermore, increased cytosine to thymine mutations are observed in differentially methylated regions. These results indicate that in addition to deamination of cytosine, demethylation of methylated cytosine, which plays a central role in genome reprogramming, may act mutagenically during iPSC generation.
Collapse
Affiliation(s)
- Ryoko Araki
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
| | - Tomo Suga
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuko Hoki
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kaori Imadome
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Misato Sunayama
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Satoshi Kamimura
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mayumi Fujita
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masumi Abe
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
| |
Collapse
|
97
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and developmental divergence in the neural crest programme between cichlid fish species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578004. [PMID: 38352436 PMCID: PMC10862805 DOI: 10.1101/2024.01.30.578004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic programme in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to inter-specific morphological differences. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared to the teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes - particularly those controlled by sox10s - might be involved in generating morphological diversification between species and lays the groundwork for further investigations into mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | | | | | - Maxon J. Ngochera
- Senga Bay Fisheries Research Center, Malawi Fisheries Department, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, United Kingdom
| | | |
Collapse
|
98
|
Hoang PM, Torre D, Jaynes P, Ho J, Mohammed K, Alvstad E, Lam WY, Khanchandani V, Lee JM, Toh CMC, Lee RX, Anbuselvan A, Lee S, Sebra RP, Martin J. Walsh, Marazzi I, Kappei D, Guccione E, Jeyasekharan AD. A PRMT5-ZNF326 axis mediates innate immune activation upon replication stress. SCIENCE ADVANCES 2024; 10:eadm9589. [PMID: 38838142 PMCID: PMC11804791 DOI: 10.1126/sciadv.adm9589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs). This response is also associated with reactivation of endogenous retroviruses (ERVs). Using quantitative mass spectrometry, we identify proteins with PRMT5-dependent symmetric dimethylarginine (SDMA) modification induced upon RS. Among these, we show that PRMT5 targets and modulates the activity of ZNF326, a zinc finger protein essential for ISG response. Our data demonstrate a role for PRMT5-mediated SDMA in the context of RS-induced transcriptional induction, affecting physiological homeostasis and cancer therapy.
Collapse
Affiliation(s)
- Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Denis Torre
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jessica Ho
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kevin Mohammed
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erik Alvstad
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Wan Yee Lam
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jie Min Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chin Min Clarissa Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Rui Xue Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Akshaya Anbuselvan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Robert P. Sebra
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martin J. Walsh
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anand D. Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
99
|
Fendler NL, Ly J, Welp L, Urlaub H, Vos SM. Identification and characterization of a human MORC2 DNA binding region that is required for gene silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597643. [PMID: 38895295 PMCID: PMC11185635 DOI: 10.1101/2024.06.05.597643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The eukaryotic microrchidia (MORC) protein family are DNA gyrase, Hsp90, histidine kinase, MutL (GHKL)-type ATPases involved in gene expression regulation and chromatin compaction. The molecular mechanisms underlying these activities are incompletely understood. Here we studied the full-length human MORC2 protein biochemically. We identified a DNA binding site in the C-terminus of the protein, and we observe that this region is heavily phosphorylated in cells. Phosphorylation of MORC2 reduces its affinity for DNA and appears to exclude the protein from the nucleus. We observe that DNA binding by MORC2 reduces its ATPase activity and that MORC2 can topologically entrap multiple DNA substrates between its N-terminal GHKL and C-terminal coiled coil 3 dimerization domains. Finally, we observe that the MORC2 C-terminal DNA binding region is required for gene silencing in cells. Together, our data provide a model to understand how MORC2 engages with DNA substrates to mediate gene silencing.
Collapse
Affiliation(s)
- Nikole L. Fendler
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
| | - Jimmy Ly
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139
| | - Luisa Welp
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, University Medical Center Göttingen, Department of Clinical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, University Medical Center Göttingen, Department of Clinical Chemistry, Göttingen, Germany
| | - Seychelle M. Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
- Howard Hughes Medical Institute
| |
Collapse
|
100
|
Kazansky Y, Cameron D, Mueller HS, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Kuwahara Y, Somwar R, Ladanyi M, Qu R, de Stanchina E, Dela Cruz FS, Kung AL, Gounder MM, Kentsis A. Overcoming Clinical Resistance to EZH2 Inhibition Using Rational Epigenetic Combination Therapy. Cancer Discov 2024; 14:965-981. [PMID: 38315003 PMCID: PMC11147720 DOI: 10.1158/2159-8290.cd-23-0110] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
Epigenetic dependencies have become evident in many cancers. On the basis of antagonism between BAF/SWI-SNF and PRC2 in SMARCB1-deficient sarcomas, we recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics and diverse experimental models, we define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient tumors. We found distinct acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell-cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest, suggests a general mechanism for effective therapy, and provides prospective biomarkers for therapy stratification, including PRICKLE1. On the basis of this, we develop a combination strategy to circumvent tazemetostat resistance using bypass targeting of AURKB. This offers a paradigm for rational epigenetic combination therapy suitable for translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers. SIGNIFICANCE Genomic studies of patient epithelioid sarcomas and rhabdoid tumors identify mutations converging on a common pathway for response to EZH2 inhibition. Resistance mutations decouple drug-induced differentiation from cell-cycle control. We identify an epigenetic combination strategy to overcome resistance and improve durability of response, supporting its investigation in clinical trials. See related commentary by Paolini and Souroullas, p. 903. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Yaniv Kazansky
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen S. Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L. Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|