51
|
Forghani R, Kim HJ, Wojtkiewicz GR, Bure L, Wu Y, Hayase M, Wei Y, Zheng Y, Moskowitz MA, Chen JW. Myeloperoxidase propagates damage and is a potential therapeutic target for subacute stroke. J Cereb Blood Flow Metab 2015; 35:485-93. [PMID: 25515211 PMCID: PMC4348390 DOI: 10.1038/jcbfm.2014.222] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/05/2014] [Indexed: 11/09/2022]
Abstract
Few effective treatment options exist for stroke beyond the hyperacute period. Radical generation and myeloperoxidase (MPO) have been implicated in stroke. We investigated whether pharmacologic reduction or gene deletion of this highly oxidative enzyme reduces infarct propagation and improves outcome in the transient middle cerebral artery occlusion mouse model (MCAO). Mice were treated with 4-aminobenzoic acid hydrazide (ABAH), a specific irreversible MPO inhibitor. Three treatment regimens were used: (1) daily throughout the 21-day observational period, (2) during the acute stage (first 24 hours), or (3) during the subacute stage (daily starting on day 2). We found elevated MPO activity in ipsilateral brain 3 to 21 days after ischemia. 4-Aminobenzoic acid hydrazide reduced enzyme activity by 30% to 40% and final lesion volume by 60% (P<0.01). The MPO-knockout (KO) mice subjected to MCAO also showed a similar reduction in the final lesion volume (P<0.01). The ABAH treatment or MPO-KO mice also improved neurobehavioral outcome (P<0.001) and survival (P=0.01), but ABAH had no additional beneficial effects in MPO-KO mice, confirming specificity of ABAH. Interestingly, inhibiting MPO activity during the subacute stage recapitulated most of the therapeutic benefit of continuous MPO inhibition, suggesting that MPO-targeted therapies could be useful when given after 24 hours of stroke onset.
Collapse
Affiliation(s)
- Reza Forghani
- 1] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hyeon Ju Kim
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lionel Bure
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yue Wu
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Makoto Hayase
- Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ying Wei
- Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi Zheng
- Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael A Moskowitz
- 1] Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John W Chen
- 1] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
52
|
Johnström P, Bergman L, Varnäs K, Malmquist J, Halldin C, Farde L. Development of rapid multistep carbon-11 radiosynthesis of the myeloperoxidase inhibitor AZD3241 to assess brain exposure by PET microdosing. Nucl Med Biol 2015; 42:555-60. [PMID: 25726760 DOI: 10.1016/j.nucmedbio.2015.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/16/2015] [Accepted: 02/03/2015] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The myeloperoxidase inhibitor AZD3241 has been selected as a candidate drug currently being developed to delay progression in patients with neurodegenerative brain disorders. Part of the decision tree for translation of AZD3241 into clinical studies included the need for assessment of brain exposure in non-human primates by PET microdosing. For that purpose a rapid multistep method for (11)C-labeling of AZD3241 was developed. METHODS AZD3241 was labeled in the thio-carbonyl position starting from [(11)C]potassium cyanide in a 4-step procedure using microwave assisted heating. In the first step [(11)C]potassium cyanide was converted to [(11)C]potassium thiocyanate followed by reaction with benzoyl chloride to yield benzoyl [(11)C]isothiocyanate. The benzoyl [(11)C]isothiocyanate was subsequently reacted with the precursor ethyl 3-(2-isopropoxyethylamino)-1H-pyrrole-2-carboxylate and the formed intermediate underwent a base catalyzed cyclization to obtain [(11)C]AZD3241 in the final step. To assess [(11)C]AZD3241 brain exposure PET measurements were performed in three cynomolgus monkeys. RESULTS [(11)C]AZD3241 was produced in good and reproducible radiochemical yield 710 ± 294 MBq (mean ± SD, n = 7). Total time of synthesis was 60 min from end of bombardment. The specific radioactivity was 9 ± 4GBq/μmol and the radiochemical purity was >98%. Following iv administration of [(11)C]AZD3241 there was a rapid presence of radioactivity in brain in each of the three monkeys. The distribution of [(11)C]AZD3241 to brain was fast and a Cmax of 1.9 to 2.6% of the injected radioactivity was observed within 1.5 min. [(11)C]AZD3241 was homogeneously distributed in brain. CONCLUSION The MPO inhibitor AZD3241 was successfully labeled with carbon-11 in a challenging 4-step procedure in good radiochemical yield allowing PET microdosing studies in cynomolgus monkey. [(11)C]AZD3241 rapidly entered brain and confirmed adequate brain exposure to support translation of AZD3241 to phase 2a studies in patients.
Collapse
Affiliation(s)
- Peter Johnström
- AstraZeneca Translational Science Centre at Karolinska Institutet, Stockholm, Sweden; Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research and Education, Stockholm, Sweden.
| | - Linda Bergman
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research and Education, Stockholm, Sweden
| | - Katarina Varnäs
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research and Education, Stockholm, Sweden
| | - Jonas Malmquist
- Isotope Chemistry, Screening and Profiling Global DMPK IM, AstraZeneca, Research & Development Innovative Medicines, Södertälje, Sweden
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research and Education, Stockholm, Sweden
| | - Lars Farde
- AstraZeneca Translational Science Centre at Karolinska Institutet, Stockholm, Sweden; Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research and Education, Stockholm, Sweden
| |
Collapse
|
53
|
Pulli B, Bure L, Wojtkiewicz GR, Iwamoto Y, Ali M, Li D, Schob S, Hsieh KLC, Jacobs AH, Chen JW. Multiple sclerosis: myeloperoxidase immunoradiology improves detection of acute and chronic disease in experimental model. Radiology 2014; 275:480-9. [PMID: 25494298 DOI: 10.1148/radiol.14141495] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To test if MPO-Gd, a gadolinium-based magnetic resonance (MR) imaging probe that is sensitive and specific for the proinflammatory and oxidative enzyme myeloperoxidase (MPO), which is secreted by certain inflammatory cells, is more sensitive than diethylenetriaminepentaacetic acid (DTPA)-Gd in revealing early subclinical and chronic disease activity in the brain in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. MATERIALS AND METHODS The protocol for animal experiments was approved by the institutional animal care committee. A total of 61 female SJL mice were induced with EAE. Mice underwent MPO-Gd- or DTPA-Gd-enhanced MR imaging on days 6, 8, and 10 after induction, before clinical disease develops, and during chronic disease at remission and the first relapse. Brains were harvested at these time points for flow cytometric evaluation of immune cell subtypes and immunohistochemistry. Statistical analysis was performed, and P < .05 was considered to indicate a significant difference. RESULTS MPO-Gd helps detect earlier (5.2 vs 2.3 days before symptom onset, P = .004) and more (3.1 vs 0.3, P = .008) subclinical inflammatory lesions compared with DTPA-Gd, including in cases in which there was no evidence of overt blood-brain barrier (BBB) breakdown detected with DTPA-Gd enhancement. The number of MPO-Gd-enhancing lesions correlated with early infiltration of MPO-secreting monocytes and neutrophils into the brain (r = 0.91). MPO-Gd also helped detect more lesions during subclinical disease at remission (5.5 vs 1.3, P = .006) and at the first relapse (9.0 vs 2.7, P = .03) than DTPA-Gd, which also correlated well with the presence and accumulation of MPO-secreting inflammatory cells in the brain (r = 0.93). CONCLUSION MPO-Gd specifically reveals lesions with inflammatory monocytes and neutrophils, which actively secrete MPO. These results demonstrate the feasibility of detection of subclinical inflammatory disease activity in vivo, which is different from overt BBB breakdown.
Collapse
Affiliation(s)
- Benjamin Pulli
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St, Boston, MA 02114 (B.P., L.B., G.R.W., Y.I., M.A., D.L., S.S., K.L.C.H., J.W.C.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (B.P., J.W.C.); and European Institute for Molecular Imaging, University of Münster, Münster, Germany (A.H.J.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Gauberti M, Montagne A, Quenault A, Vivien D. Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci 2014; 8:389. [PMID: 25505871 PMCID: PMC4245913 DOI: 10.3389/fncel.2014.00389] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023] Open
Abstract
Although the blood-brain barrier (BBB) was thought to protect the brain from the effects of the immune system, immune cells can nevertheless migrate from the blood to the brain, either as a cause or as a consequence of central nervous system (CNS) diseases, thus contributing to their evolution and outcome. Accordingly, as the interface between the CNS and the peripheral immune system, the BBB is critical during neuroinflammatory processes. In particular, endothelial cells are involved in the brain response to systemic or local inflammatory stimuli by regulating the cellular movement between the circulation and the brain parenchyma. While neuropathological conditions differ in etiology and in the way in which the inflammatory response is mounted and resolved, cellular mechanisms of neuroinflammation are probably similar. Accordingly, neuroinflammation is a hallmark and a decisive player of many CNS diseases. Thus, molecular magnetic resonance imaging (MRI) of inflammatory processes is a central theme of research in several neurological disorders focusing on a set of molecules expressed by endothelial cells, such as adhesion molecules (VCAM-1, ICAM-1, P-selectin, E-selectin, …), which emerge as therapeutic targets and biomarkers for neurological diseases. In this review, we will present the most recent advances in the field of preclinical molecular MRI. Moreover, we will discuss the possible translation of molecular MRI to the clinical setting with a particular emphasis on myeloperoxidase imaging, autologous cell tracking, and targeted iron oxide particles (USPIO, MPIO).
Collapse
Affiliation(s)
- Maxime Gauberti
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Axel Montagne
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Aurélien Quenault
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Denis Vivien
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| |
Collapse
|
55
|
Lim JL, Wilhelmus MMM, de Vries HE, Drukarch B, Hoozemans JJM, van Horssen J. Antioxidative defense mechanisms controlled by Nrf2: state-of-the-art and clinical perspectives in neurodegenerative diseases. Arch Toxicol 2014; 88:1773-86. [DOI: 10.1007/s00204-014-1338-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
|
56
|
Ciccarelli O, Barkhof F, Bodini B, Stefano ND, Golay X, Nicolay K, Pelletier D, Pouwels PJW, Smith SA, Wheeler-Kingshott CAM, Stankoff B, Yousry T, Miller DH. Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol 2014; 13:807-22. [DOI: 10.1016/s1474-4422(14)70101-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
57
|
Tseng JC, Kung AL. In vivo imaging of inflammatory phagocytes. ACTA ACUST UNITED AC 2014; 19:1199-209. [PMID: 22999887 DOI: 10.1016/j.chembiol.2012.08.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/18/2012] [Accepted: 08/03/2012] [Indexed: 01/21/2023]
Abstract
Inflammation contributes to the pathophysiology of many diseases. In this report, we present noninvasive bioluminescence imaging methods that distinguish acute and chronic inflammation in mouse models. Systemic delivery of luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) enables detection of acute inflammation largely mediated by tissue-infiltrating neutrophils, whose myeloperoxidase (MPO) activity is required for luminol bioluminescence. In contrast, bioluminescence from injection of lucigenin (bis-N-methylacridinium nitrate) closely correlates with late phase and chronic inflammation. Lucigenin bioluminescence is independent of MPO and, instead, requires phagocyte NADPH oxidase (Phox) activity in macrophages. We are able to visualize tissue inflammation resulting from wound healing, bacterial infection, foreign substance implantation, and antitumor immune responses. Given the central role of inflammation in a variety of disorders, we believe these noninvasive imaging methods can help dissect the differential roles of neutrophils and macrophages in a variety of pathological conditions.
Collapse
Affiliation(s)
- Jen-Chieh Tseng
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | | |
Collapse
|
58
|
Wang Y, Jia J, Ao G, Hu L, Liu H, Xiao Y, Du H, Alkayed NJ, Liu CF, Cheng J. Hydrogen sulfide protects blood-brain barrier integrity following cerebral ischemia. J Neurochem 2014; 129:827-38. [DOI: 10.1111/jnc.12695] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Yali Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; Soochow University; Suzhou Jiangsu China
- The Second Affiliated Hospital of Soochow University; Suzhou Jiangsu China
| | - Jia Jia
- College of Pharmaceutical Science; Soochow University; Suzhou Jiangsu China
| | - Guizhen Ao
- College of Pharmaceutical Science; Soochow University; Suzhou Jiangsu China
| | - Lifang Hu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; Soochow University; Suzhou Jiangsu China
| | - Hui Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; Soochow University; Suzhou Jiangsu China
| | - Yunqi Xiao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; Soochow University; Suzhou Jiangsu China
| | - Huaping Du
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; Soochow University; Suzhou Jiangsu China
| | - Nabil J. Alkayed
- Department of Anesthesiology & Peri-Operative Medicine; Oregon Health & Science University; Portland Oregon USA
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; Soochow University; Suzhou Jiangsu China
- The Second Affiliated Hospital of Soochow University; Suzhou Jiangsu China
| | - Jian Cheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; Soochow University; Suzhou Jiangsu China
- The Second Affiliated Hospital of Soochow University; Suzhou Jiangsu China
| |
Collapse
|
59
|
Molecular imaging of macrophage enzyme activity in cardiac inflammation. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014; 7:9258. [PMID: 24729833 DOI: 10.1007/s12410-014-9258-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular imaging is highly advantageous as various insidious inflammatory events can be imaged in a serial and quantitative fashion. Combined with the conventional imaging modalities like computed tomography (CT), magnetic resonance (MR) and nuclear imaging, it helps us resolve the extent of ongoing pathology, quantify inflammation and predict outcome. Macrophages are increasingly gaining importance as an imaging biomarker in inflammatory cardiovascular diseases. Macrophages, recruited to the site of injury, internalize necrotic or foreign material. Along with phagocytosis, activated macrophages release proteolytic enzymes like matrix metalloproteinases (MMPs) and cathepsins into the extracellular environment. Pro-inflammatory monocytes and macrophages also induce tissue oxidative damage through the inflammatory enzyme myeloperoxidase (MPO). In this review we will highlight recent advances in molecular macrophage imaging. Particular stress will be given to macrophage functional and enzymatic activity imaging which targets phagocytosis, proteolysis and myeloperoxidase activity imaging.
Collapse
|
60
|
Abstract
Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the “bench to bedside.”
Collapse
Affiliation(s)
- Benjamin Pulli
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - John W Chen
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
61
|
Eaton VL, Vasquez KO, Goings GE, Hunter ZN, Peterson JD, Miller SD. Optical tomographic imaging of near infrared imaging agents quantifies disease severity and immunomodulation of experimental autoimmune encephalomyelitis in vivo. J Neuroinflammation 2013; 10:138. [PMID: 24237884 PMCID: PMC4225609 DOI: 10.1186/1742-2094-10-138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/07/2013] [Indexed: 12/29/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) is an animal model that captures many of the hallmarks of human multiple sclerosis (MS), including blood–brain barrier (BBB) breakdown, inflammation, demyelination and axonal destruction. The standard clinical score measurement of disease severity and progression assesses functional changes in animal mobility; however, it does not offer information regarding the underlying pathophysiology of the disease in real time. The purpose of this study was to apply a novel optical imaging technique that offers the advantage of rapid imaging of relevant biomarkers in live animals. Methods Advances in non-invasive fluorescence molecular tomographic (FMT) imaging, in combination with a variety of biological imaging agents, offer a unique, sensitive and quantifiable approach to assessing disease biology in living animals. Using vascular (AngioSense 750EX) and protease-activatable cathepsin B (Cat B 680 FAST) near infrared (NIR) fluorescence imaging agents to detect BBB breakdown and inflammation, respectively, we quantified brain and spinal cord changes in mice with relapsing-remitting PLP139-151-induced EAE and in response to tolerogenic therapy. Results FMT imaging and analysis techniques were carefully characterized and non-invasive imaging results corroborated by both ex vivo tissue imaging and comparison to clinical score results and histopathological analysis of CNS tissue. FMT imaging showed clear differences between control and diseased mice, and immune tolerance induction by antigen-coupled PLGA nanoparticles effectively blocked both disease induction and accumulation of imaging agents in the brain and spinal cord. Conclusions Cat B 680 FAST and AngioSense 750EX offered the combination best able to detect disease in both the brain and spinal cord, as well as the downregulation of disease by antigen-specific tolerance. Non-invasive optical tomographic imaging thus offers a unique approach to monitoring neuroinflammatory disease and therapeutic intervention in living mice with EAE.
Collapse
Affiliation(s)
- Valerie L Eaton
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, 6-713 Tarry Building, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
62
|
Pulli B, Ali M, Forghani R, Schob S, Hsieh KLC, Wojtkiewicz G, Linnoila JJ, Chen JW. Measuring myeloperoxidase activity in biological samples. PLoS One 2013; 8:e67976. [PMID: 23861842 PMCID: PMC3702519 DOI: 10.1371/journal.pone.0067976] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Enzymatic activity measurements of the highly oxidative enzyme myeloperoxidase (MPO), which is implicated in many diseases, are widely used in the literature, but often suffer from nonspecificity and lack of uniformity. Thus, validation and standardization are needed to establish a robust method that is highly specific, sensitive, and reproducible for assaying MPO activity in biological samples. PRINCIPAL FINDINGS We found conflicting results between in vivo molecular MR imaging of MPO, which measures extracellular activity, and commonly used in vitro MPO activity assays. Thus, we established and validated a protocol to obtain extra- and intracellular MPO from murine organs. To validate the MPO activity assays, three different classes of MPO activity assays were used in spike and recovery experiments. However, these assay methods yielded inconsistent results, likely because of interfering substances and other peroxidases present in tissue extracts. To circumvent this, we first captured MPO with an antibody. The MPO activity of the resultant samples was assessed by ADHP and validated against samples from MPO-knockout mice in murine disease models of multiple sclerosis, steatohepatitis, and myocardial infarction. We found the measurements performed using this protocol to be highly specific and reproducible, and when performed using ADHP, to be highly sensitive over a broad range. In addition, we found that intracellular MPO activity correlated well with tissue neutrophil content, and can be used as a marker to assess neutrophil infiltration in the tissue. CONCLUSION We validated a highly specific and sensitive assay protocol that should be used as the standard method for all MPO activity assays in biological samples. We also established a method to obtain extra- and intracellular MPO from murine organs. Extracellular MPO activity gives an estimate of the oxidative stress in inflammatory diseases, while intracellular MPO activity correlates well with tissue neutrophil content. A detailed step-by-step protocol is provided.
Collapse
Affiliation(s)
- Benjamin Pulli
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Muhammad Ali
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Reza Forghani
- Department of Radiology, Jewish General Hospital and McGill University, Montreal, Canada
| | - Stefan Schob
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kevin L. C. Hsieh
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Imaging, Far-Eastern Memorial Hospital, Taipei, Taiwan
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jenny J. Linnoila
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - John W. Chen
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
63
|
Üllen A, Singewald E, Konya V, Fauler G, Reicher H, Nusshold C, Hammer A, Kratky D, Heinemann A, Holzer P, Malle E, Sattler W. Myeloperoxidase-derived oxidants induce blood-brain barrier dysfunction in vitro and in vivo. PLoS One 2013; 8:e64034. [PMID: 23691142 PMCID: PMC3653856 DOI: 10.1371/journal.pone.0064034] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/10/2013] [Indexed: 12/24/2022] Open
Abstract
Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB) function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl) formed via the myeloperoxidase (MPO)-H2O2-Cl(-) system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS)-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPS-induced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLP-activated leukocytes and the MPO-H2O2-Cl(-) system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC) that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H2O2-Cl(-) system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA) severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively) protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuro)inflammatory conditions.
Collapse
Affiliation(s)
- Andreas Üllen
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Evelin Singewald
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Peter Holzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| |
Collapse
|
64
|
Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, Gorbatov R, Iwamoto Y, Dutta P, Wojtkiewicz G, Courties G, Sebas M, Borodovsky A, Fitzgerald K, Nolte MW, Dickneite G, Chen JW, Anderson DG, Swirski FK, Weissleder R, Nahrendorf M. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 2013; 127:2038-46. [PMID: 23616627 DOI: 10.1161/circulationaha.112.000116] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Exaggerated and prolonged inflammation after myocardial infarction (MI) accelerates left ventricular remodeling. Inflammatory pathways may present a therapeutic target to prevent post-MI heart failure. However, the appropriate magnitude and timing of interventions are largely unknown, in part because noninvasive monitoring tools are lacking. Here, we used nanoparticle-facilitated silencing of CCR2, the chemokine receptor that governs inflammatory Ly-6C(high) monocyte subset traffic, to reduce infarct inflammation in apolipoprotein E-deficient (apoE(-/-)) mice after MI. We used dual-target positron emission tomography/magnetic resonance imaging of transglutaminase factor XIII (FXIII) and myeloperoxidase (MPO) activity to monitor how monocyte subset-targeted RNAi altered infarct inflammation and healing. METHODS AND RESULTS Flow cytometry, gene expression analysis, and histology revealed reduced monocyte numbers and enhanced resolution of inflammation in infarcted hearts of apoE(-/-) mice that were treated with nanoparticle-encapsulated siRNA. To follow extracellular matrix cross-linking noninvasively, we developed a fluorine-18-labeled positron emission tomography agent ((18)F-FXIII). Recruitment of MPO-rich inflammatory leukocytes was imaged with a molecular magnetic resonance imaging sensor of MPO activity (MPO-Gd). Positron emission tomography/magnetic resonance imaging detected anti-inflammatory effects of intravenous nanoparticle-facilitated siRNA therapy (75% decrease of MPO-Gd signal; P<0.05), whereas (18)F-FXIII positron emission tomography reflected unimpeded matrix cross-linking in the infarct. Silencing of CCR2 during the first week after MI improved ejection fraction on day 21 after MI from 29% to 35% (P<0.05). CONCLUSION CCR2-targeted RNAi reduced recruitment of Ly-6C(high) monocytes, attenuated infarct inflammation, and curbed post-MI left ventricular remodeling.
Collapse
Affiliation(s)
- Maulik D Majmudar
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Tourdias T, Dousset V. Neuroinflammatory imaging biomarkers: relevance to multiple sclerosis and its therapy. Neurotherapeutics 2013; 10:111-23. [PMID: 23132327 PMCID: PMC3557362 DOI: 10.1007/s13311-012-0155-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance imaging is an established tool in the management of multiple sclerosis (MS). Loss of blood brain barrier integrity assessed by gadolinium (Gd) enhancement is the current standard marker of MS activity. To explore the complex cascade of the inflammatory events, other magnetic resonance imaging, but also positron emission tomographic markers reviewed in this article are being developed to address active neuroinflammation with increased sensitivity and specificity. Alternative magnetic resonance contrast agents, positron emission tomographic tracers and imaging techniques could be more sensitive than Gd to early blood brain barrier alteration, and they could assess the inflammatory cell recruitment and/or the associated edema accumulation. These markers of active neuroinflammation, although some of them are limited to experimental studies, could find great relevance to complete Gd information and thereby increase our understanding of acute lesion pathophysiology and its noninvasive follow-up, especially to monitor treatment efficacy. Furthermore, such accurate markers of inflammation combined with those of neurodegeneration hold promise to provide a more complete picture of MS, which will be of great benefit for future therapeutic strategies.
Collapse
Affiliation(s)
- Thomas Tourdias
- INSERM Unit 1049 Neuroinflammation, Imagerie et Thérapie de la Sclérose en Plaques, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux, F-33076, France.
| | | |
Collapse
|
66
|
Üllen A, Fauler G, Bernhart E, Nusshold C, Reicher H, Leis HJ, Malle E, Sattler W. Phloretin ameliorates 2-chlorohexadecanal-mediated brain microvascular endothelial cell dysfunction in vitro. Free Radic Biol Med 2012; 53:1770-81. [PMID: 22982051 PMCID: PMC3485557 DOI: 10.1016/j.freeradbiomed.2012.08.575] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 06/11/2012] [Accepted: 08/18/2012] [Indexed: 11/21/2022]
Abstract
2-Chlorohexadecanal (2-ClHDA), a chlorinated fatty aldehyde, is formed via attack on ether-phospholipids by hypochlorous acid (HOCl) that is generated by the myeloperoxidase-hydrogen peroxide-chloride system of activated leukocytes. 2-ClHDA levels are elevated in atherosclerotic lesions, myocardial infarction, and neuroinflammation. Neuroinflammatory conditions are accompanied by accumulation of neutrophils (an ample source of myeloperoxidase) in the brain. Microvessel damage by inflammatory mediators and/or reactive oxidants can induce blood-brain barrier (BBB) dysfunction, a pathological condition leading to cerebral edema, brain hemorrhage, and neuronal death. In this in vitro study we investigated the impact of 2-ClHDA on brain microvascular endothelial cells (BMVEC), which constitute the morphological basis of the BBB. We show that exogenously added 2-ClHDA is subject to rapid uptake and metabolism by BMVEC. Using C16 structural analogues of 2-ClHDA we found that the cytotoxic potential decreases in the following order: 2-ClHDA>hexadecanal>palmitic acid>2-ClHDA-dimethylacetal. 2-ClHDA induces loss of barrier function, mitochondrial dysfunction, apoptosis via activation of caspase 3, and altered intracellular redox balance. Finally we investigated potential protective effects of several natural polyphenols on in vitro BBB function. Of the compounds tested, phloretin almost completely abrogated 2-ClHDA-induced BMVEC barrier dysfunction and cell death. These data suggest that 2-ClHDA has the potential to induce BBB breakdown under inflammatory conditions and that phloretin confers protection in this experimental setting.
Collapse
Affiliation(s)
- Andreas Üllen
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Hans-Jörg Leis
- Research Unit of Osteology and Analytical Mass Spectrometry, University Children's Hospital, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
- Corresponding author. Fax: +43 316 380 9615.
| |
Collapse
|
67
|
Shazeeb MS, Xie Y, Gupta S, Bogdanov AA. A novel paramagnetic substrate for detecting myeloperoxidase activity in vivo. Mol Imaging 2012; 11:433-443. [PMID: 22954188 PMCID: PMC3544410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Abstract
Bis-phenylamides and bis-hydroxyindolamides of diethylenetriaminepentaacetic acid-gadolinium (DTPA(Gd)) are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, gadolinium chelates of bis-5-hydroxytryptamide-DTPA (bis-5HT-DTPA(Gd)) have been used to image localized inflammation in animal models by detecting neutrophil-derived myeloperoxidase (MPO) activity at the inflammation site. However, in other preclinical disease models, bis-5HT-DTPA(Gd) presents technical challenges due to its limited solubility in vivo. Here we report a novel MPO-sensing probe obtained by replacing the reducing substrate serotonin (5-HT) with 5-hydroxytryptophan (HTrp). Characterization of the resulting probe (bis-HTrp-DTPA(Gd)) in vitro using nuclear magnetic resonance spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd) (1) improves solubility in water; (2) acts as a substrate for both horseradish peroxidase and MPO enzymes; (3) induces cross-linking of proteins in the presence of MPO; (4) produces oxidation products, which bind to plasma proteins; and (5) unlike bis-5HT-DTPA(Gd), does not follow first-order reaction kinetics. In vivo magnetic resonance imaging (MRI) in mice demonstrated that bis-HTrp-DTPA(Gd) was retained for up to 5 days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd) from MPO-negative sites. Bis-HTrp-DTPA(Gd) should offer improvements for MRI of MPO-mediated inflammation in vivo, especially in high-field MRI, which requires a higher dose of contrast agent.
Collapse
Affiliation(s)
- Mohammed S. Shazeeb
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA
| | - Yang Xie
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA
| | - Suresh Gupta
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA
| | - Alexei A. Bogdanov
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA
- Department of Cell Biology, University of Massachusetts Medical School, Worcester MA
| |
Collapse
|
68
|
Shazeeb MS, Xie Y, Gupta S, Bogdanov AA. A Novel Paramagnetic Substrate for Detecting Myeloperoxidase Activity in Vivo. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mohammed S. Shazeeb
- From the Laboratory of Molecular Imaging Probes, Department of Radiology, and Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| | - Yang Xie
- From the Laboratory of Molecular Imaging Probes, Department of Radiology, and Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| | - Suresh Gupta
- From the Laboratory of Molecular Imaging Probes, Department of Radiology, and Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| | - Alexei A. Bogdanov
- From the Laboratory of Molecular Imaging Probes, Department of Radiology, and Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
69
|
Myeloperoxidase exacerbates secondary injury by generating highly reactive oxygen species and mediating neutrophil recruitment in experimental spinal cord injury. Spine (Phila Pa 1976) 2012; 37:1363-9. [PMID: 22322369 DOI: 10.1097/brs.0b013e31824b9e77] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An animal study using myeloperoxidase-knockout (MPO-KO) mice to examine the in vivo role of myeloperoxidase (MPO) in spinal cord injury (SCI). OBJECTIVE To clarify the influence of MPO on inflammatory cell infiltration, tissue damage, and functional recovery after SCI. SUMMARY OF BACKGROUND DATA MPO is considered to be important in spreading tissue damage after SCI because it generates strong neurotoxic oxidant hypochlorous acid (HOCl). However, the direct involvement of MPO in the pathophysiology of SCI remains to be elucidated. METHODS To compare the inflammatory reaction, tissue damage, and neurological recovery after SCI, a moderate contusion injury was created at the ninth thoracic level in MPO-KO mice and wild-type mice. A HOCl-specific probe solution was injected into the lesion epicenter to assess the spatiotemporal production of MPO-derived HOCl. Inflammatory reactions were quantified by flow cytometry and quantitative real-time polymerase chain reaction, and tissue damage was evaluated by an immunohistochemical analysis. The motor function recovery was assessed by the open-field locomotor score. RESULTS Prominent production of HOCl was observed during the hyperacute phase of SCI at the lesion site in the wild-type mice; however, little expression was observed in the MPO-KO mice. In this phase, the number of infiltrated neutrophils was significantly reduced in the MPO-KO mice compared with the wild-type mice. In addition, significant differences were observed in the expression levels of proinflammatory cytokines and apoptosis-related genes between 2 groups. In the histological sections, fewer terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells and more spared myelin were observed at the lesion site in MPO-KO mice. Consistent with these results, better functional recovery was observed in the MPO-KO mice than in the wild-type mice after SCI. CONCLUSION These results clearly indicated that MPO exacerbated secondary injury and impaired the functional recovery not only by generating strong oxidant HOCl, but also by enhancing neutrophil infiltration after SCI.
Collapse
|
70
|
Jacobs AH, Tavitian B. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 2012; 32:1393-415. [PMID: 22549622 PMCID: PMC3390799 DOI: 10.1038/jcbfm.2012.53] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/05/2012] [Accepted: 03/23/2012] [Indexed: 12/23/2022]
Abstract
Inflammation is a highly dynamic and complex adaptive process to preserve and restore tissue homeostasis. Originally viewed as an immune-privileged organ, the central nervous system (CNS) is now recognized to have a constant interplay with the innate and the adaptive immune systems, where resident microglia and infiltrating immune cells from the periphery have important roles. Common diseases of the CNS, such as stroke, multiple sclerosis (MS), and neurodegeneration, elicit a neuroinflammatory response with the goal to limit the extent of the disease and to support repair and regeneration. However, various disease mechanisms lead to neuroinflammation (NI) contributing to the disease process itself. Molecular imaging is the method of choice to try to decipher key aspects of the dynamic interplay of various inducers, sensors, transducers, and effectors of the orchestrated inflammatory response in vivo in animal models and patients. Here, we review the basic principles of NI with emphasis on microglia and common neurologic disease mechanisms, the molecular targets which are being used and explored for imaging, and molecular imaging of NI in frequent neurologic diseases, such as stroke, MS, neurodegeneration, epilepsy, encephalitis, and gliomas.
Collapse
Affiliation(s)
- Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI) at the Westfalian Wilhelms-University of Münster (WWU), Münster, Germany.
| | | |
Collapse
|
71
|
Forghani R, Wojtkiewicz GR, Zhang Y, Seeburg D, Bautz BRM, Pulli B, Milewski AR, Atkinson WL, Iwamoto Y, Zhang ER, Etzrodt M, Rodriguez E, Robbins CS, Swirski FK, Weissleder R, Chen JW. Demyelinating diseases: myeloperoxidase as an imaging biomarker and therapeutic target. Radiology 2012; 263:451-60. [PMID: 22438365 DOI: 10.1148/radiol.12111593] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate myeloperoxidase (MPO) as a newer therapeutic target and bis-5-hydroxytryptamide-diethylenetriaminepentaacetate-gadolinium (Gd) (MPO-Gd) as an imaging biomarker for demyelinating diseases such as multiple sclerosis (MS) by using experimental autoimmune encephalomyelitis (EAE), a murine model of MS. MATERIALS AND METHODS Animal experiments were approved by the institutional animal care committee. EAE was induced in SJL mice by using proteolipid protein (PLP), and mice were treated with either 4-aminobenzoic acid hydrazide (ABAH), 40 mg/kg injected intraperitoneally, an irreversible inhibitor of MPO, or saline as control, and followed up to day 40 after induction. In another group of SJL mice, induction was performed without PLP as shams. The mice were imaged by using MPO-Gd to track changes in MPO activity noninvasively. Imaging results were corroborated by enzymatic assays, flow cytometry, and histopathologic analyses. Significance was computed by using the t test or Mann-Whitney U test. RESULTS There was a 2.5-fold increase in myeloid cell infiltration in the brain (P = .026), with a concomitant increase in brain MPO level (P = .0087). Inhibiting MPO activity with ABAH resulted in decrease in MPO-Gd-positive lesion volume (P = .012), number (P = .009), and enhancement intensity (P = .03) at MR imaging, reflecting lower local MPO activity (P = .03), compared with controls. MPO inhibition was accompanied by decreased demyelination (P = .01) and lower inflammatory cell recruitment in the brain (P < .0001), suggesting a central MPO role in inflammatory demyelination. Clinically, MPO inhibition significantly reduced the severity of clinical symptoms (P = .0001) and improved survival (P = .0051) in mice with EAE. CONCLUSION MPO may be a key mediator of myeloid inflammation and tissue damage in EAE. Therefore, MPO could represent a promising therapeutic target, as well as an imaging biomarker, for demyelinating diseases and potentially for other diseases in which MPO is implicated.
Collapse
Affiliation(s)
- Reza Forghani
- Center for Systems Biology, Harvard Medical School, Richard B. Simches Research Center, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Ligation of the jugular veins does not result in brain inflammation or demyelination in mice. PLoS One 2012; 7:e33671. [PMID: 22457780 PMCID: PMC3310075 DOI: 10.1371/journal.pone.0033671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/14/2012] [Indexed: 11/19/2022] Open
Abstract
An alternative hypothesis has been proposed implicating chronic cerebrospinal venous insufficiency (CCSVI) as a potential cause of multiple sclerosis (MS). We aimed to evaluate the validity of this hypothesis in a controlled animal model. Animal experiments were approved by the institutional animal care committee. The jugular veins in SJL mice were ligated bilaterally (n = 20), and the mice were observed for up to six months after ligation. Sham-operated mice (n = 15) and mice induced with experimental autoimmune encephalomyelitis (n = 8) were used as negative and positive controls, respectively. The animals were evaluated using CT venography and (99m)Tc-exametazime to assess for structural and hemodynamic changes. Imaging was performed to evaluate for signs of blood-brain barrier (BBB) breakdown and neuroinflammation. Flow cytometry and histopathology were performed to assess inflammatory cell populations and demyelination. There were both structural changes (stenosis, collaterals) in the jugular venous drainage and hemodynamic disturbances in the brain on Tc99m-exametazime scintigraphy (p = 0.024). In the JVL mice, gadolinium MRI and immunofluorescence imaging for barrier molecules did not reveal evidence of BBB breakdown (p = 0.58). Myeloperoxidase, matrix metalloproteinase, and protease molecular imaging did not reveal signs of increased neuroinflammation (all p>0.05). Flow cytometry and histopathology also did not reveal increase in inflammatory cell infiltration or population shifts. No evidence of demyelination was found, and the mice remained without clinical signs. Despite the structural and hemodynamic changes, we did not identify changes in the BBB permeability, neuroinflammation, demyelination, or clinical signs in the JVL group compared to the sham group. Therefore, our murine model does not support CCSVI as a cause of demyelinating diseases such as multiple sclerosis.
Collapse
|
73
|
Gupta AA, Ding D, Lee RK, Levy RB, Bhattacharya SK. Spontaneous ocular and neurologic deficits in transgenic mouse models of multiple sclerosis and noninvasive investigative modalities: a review. Invest Ophthalmol Vis Sci 2012; 53:712-24. [PMID: 22331505 DOI: 10.1167/iovs.11-8351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory, neurodegenerative, demyelinating disease of the central nervous system, predominantly involving myelinated neurons of the brain, spinal cord, and optic nerve. Optic neuritis is frequently associated with MS and often precedes other neurologic deficits associated with MS. A large number of patients experience visual defects and have abnormalities concomitant with neurologic abnormalities. Transgenic mice manifesting spontaneous neurologic and ocular disease are unique models that have revolutionized the study of MS. Spontaneous experimental autoimmune encephalomyelitis (sEAE) presents with spontaneous onset of demyelination, without the need of an injectable immunogen. This review highlights the various models of sEAE, their disease characteristics, and applicability for future research. The study of optic neuropathy and neurologic manifestations of demyelination in sEAE will expand our understanding of the pathophysiological mechanisms underlying MS. Early and precise diagnosis of MS with different noninvasive methods has opened new avenues in managing symptoms, reducing morbidity, and limiting disease burden. This review discusses the spectrum of available noninvasive techniques, such as electrophysiological and behavioral assessment, optical coherence tomography, scanning laser polarimetry, confocal scanning laser ophthalmoscopy, pupillometry, magnetic resonance imaging, positron emission tomography, gait, and cardiovascular monitoring, and their clinical relevance.
Collapse
Affiliation(s)
- Archana A Gupta
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
74
|
Sturzu A, Sheikh S, Klose U, Echner H, Kalbacher H, Deeg M, Nägele T, Horger M, Ernemann U, Heckl S. Using the neurotransmitter serotonin to target imaging agents to glioblastoma cells. Invest New Drugs 2012; 30:2141-7. [DOI: 10.1007/s10637-011-9781-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
75
|
Su HS, Nahrendorf M, Panizzi P, Breckwoldt MO, Rodriguez E, Iwamoto Y, Aikawa E, Weissleder R, Chen JW. Vasculitis: molecular imaging by targeting the inflammatory enzyme myeloperoxidase. Radiology 2011; 262:181-90. [PMID: 22084204 DOI: 10.1148/radiol.11110040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine if a molecular imaging approach targeting the highly oxidative enzyme myeloperoxidase (MPO) can help noninvasively identify and confirm sites of vascular wall inflammation in a murine model of vasculitis. MATERIALS AND METHODS Animal experiments were approved by the institutional animal care committee. Twenty-six mice were studied, including eight MPO-deficient and six sham-operated mice as controls. Vasculitis was induced with intraperitoneal injection of Candida albicans water-soluble fraction (CAWS). Aortic root magnetic resonance imaging was performed after intravenous injection of the activatable MPO sensor (bis-5-hydroxytryptamide-diethylenetriaminepentatacetate gadolinium) (n = 23), referred to as MPO-Gd, or gadopentetate dimeglumine (n = 10). Seven mice were randomly assigned to receive either MPO-Gd or gadopentetate dimeglumine first. Aortic root specimens were collected for biochemical and histopathologic analyses to validate imaging findings. Statistical significance was calculated for contrast-to-noise ratios (CNRs) by using the paired t test. RESULTS In the aortic root, the mean MPO-Gd CNRs after agent injection (CNR = 28.1) were more than 2.5-fold higher than those of sham-operated mice imaged with MPO-Gd and vasculitis mice imaged with gadopentetate dimeglumine (CNR = 10.6) (P < .05). MPO-Gd MR imaging helped identify areas of vasculitis that were not seen at unenhanced and contrast material-enhanced imaging with gadopentetate dimeglumine. Histopathologic and biochemical analyses for MPO and myeloid cells confirmed imaging findings. In MPO-deficient mice, injection of CAWS did not result in a vasculitis phenotype, implying a key role of the imaging target in disease cause. CONCLUSION Molecular imaging targeting MPO can be a useful biomarker to noninvasively detect and confirm inflammation in vasculitis by using a murine model of Kawasaki disease.
Collapse
Affiliation(s)
- Henry S Su
- Center for Molecular Imaging Research, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Taoufik E, Tseveleki V, Chu SY, Tselios T, Karin M, Lassmann H, Szymkowski DE, Probert L. Transmembrane tumour necrosis factor is neuroprotective and regulates experimental autoimmune encephalomyelitis via neuronal nuclear factor-kappaB. ACTA ACUST UNITED AC 2011; 134:2722-35. [PMID: 21908876 DOI: 10.1093/brain/awr203] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumour necrosis factor mediates chronic inflammatory pathologies including those affecting the central nervous system, but non-selective tumour necrosis factor inhibitors exacerbate multiple sclerosis. In addition, TNF receptor SF1A, which encodes one of the tumour necrosis factor receptors, has recently been identified as a multiple sclerosis susceptibility locus in genome-wide association studies in large patient cohorts. These clinical data have emphasized the need for a better understanding of the beneficial effects of tumour necrosis factor during central nervous system inflammation. In this study, we present evidence that the soluble and transmembrane forms of tumour necrosis factor exert opposing deleterious and beneficial effects, respectively, in a multiple sclerosis model. We compared the effects, in experimental autoimmune encephalomyelitis, of selectively inhibiting soluble tumour necrosis factor, and of both soluble and transmembrane tumour necrosis factor. Blocking the action of soluble tumour necrosis factor, but not of soluble tumour necrosis factor and transmembrane tumour necrosis factor, protected mice against the clinical symptoms of experimental autoimmune encephalomyelitis. Therapeutic benefit was independent of changes in antigen-specific immune responses and focal inflammatory spinal cord lesions, but was associated with reduced overall central nervous system immunoreactivity, increased expression of neuroprotective molecules, and was dependent upon the activity of neuronal nuclear factor-κB, a downstream mediator of neuroprotective tumour necrosis factor/tumour necrosis factor receptor signalling, because mice lacking IκB kinase β in glutamatergic neurons were not protected by soluble tumour necrosis factor blockade. Furthermore, blocking the action of soluble tumour necrosis factor, but not of soluble tumour necrosis factor and transmembrane tumour necrosis factor, protected neurons in astrocyte-neuron co-cultures against glucose deprivation, an in vitro neurodegeneration model relevant for multiple sclerosis, and this was dependent upon contact between the two cell types. Our results show that soluble tumour necrosis factor promotes central nervous system inflammation, while transmembrane tumour necrosis factor is neuroprotective, and suggest that selective inhibition of soluble tumour necrosis factor may provide a new way forward for the treatment of multiple sclerosis and possibly other inflammatory central nervous system disorders.
Collapse
Affiliation(s)
- Era Taoufik
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Kleijn A, Chen JW, Buhrman JS, Wojtkiewicz GR, Iwamoto Y, Lamfers ML, Stemmer-Rachamimov AO, Rabkin SD, Weissleder R, Martuza RL, Fulci G. Distinguishing inflammation from tumor and peritumoral edema by myeloperoxidase magnetic resonance imaging. Clin Cancer Res 2011; 17:4484-93. [PMID: 21558403 DOI: 10.1158/1078-0432.ccr-11-0575] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Inflammation occurs routinely when managing gliomas and is not easily distinguishable from tumor regrowth by current MRI methods. The lack of noninvasive technologies that monitor inflammation prevents us to understand whether it is beneficial or detrimental for the patient, and current therapies do not take this host response in consideration. We aim to establish whether a gadolinium (Gd)-based agent targeting the inflammatory enzyme myeloperoxidase (MPO) can selectively detect intra- and peritumoral inflammation as well as glioma response to treatment by MRI. METHODS We carried out serial Gd-bis-5-HT-DTPA (MPO-Gd) MRI before and after treating rodent gliomas with different doses of oncolytic virus (OV) and analyzed animal survival. The imaging results were compared with histopathologic and molecular analyses of the tumors for macrophage/microglia infiltration, virus persistence, and MPO levels. RESULTS Elevated MPO activity was observed by MRI inside the tumor and in the peritumoral cerebrum at day 1 post-OV injection, which corresponded with activation/infiltration of myeloid cells inhibiting OV intratumoral persistence. MPO activity decreased, whereas tumor size increased, as the virus and the immune cells were cleared (days 1-7 post-OV injection). A 10-fold increase in viral dose temporally decreased tumor size, but augmented MPO activity, thus preventing extension of viral intratumoral persistence. CONCLUSIONS MPO-Gd MRI can distinguish enhancement patterns that reflect treatment-induced spatiotemporal changes of intratumoral and intracerebral inflammation from those indicating tumor and peritumoral edema. This technology improves the posttreatment diagnosis of gliomas and will increase our understanding of the role of inflammation in cancer therapy.
Collapse
Affiliation(s)
- Anne Kleijn
- Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
[Imaging and renal failure: from inflammation to fibrosis]. ACTA ACUST UNITED AC 2011; 92:323-35. [PMID: 21549888 DOI: 10.1016/j.jradio.2011.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 11/22/2022]
Abstract
Multiple chronic renal diseases evolve to end-stage kidney disease due to progressive renal tissue fibrosis at the level of the interstitium or glomeruli. Fibrosis often results from transformation of the extracellular matrix by cytokines and chemokines released by activated cells in the setting of recurrent episodes of acute inflammation. Newer techniques to image intrarenal inflammation and fibrosis are mandatory for the non-invasive evaluation of these processes to improve follow-up and monitoring of drug therapy. These techniques are based on methods of cellular and molecular imaging, and methods of functional, such as diffusion weighted imaging, and structural, such as elastography.
Collapse
|
79
|
Tu C, Osborne EA, Louie AY. Activatable T₁ and T₂ magnetic resonance imaging contrast agents. Ann Biomed Eng 2011; 39:1335-48. [PMID: 21331662 PMCID: PMC3069332 DOI: 10.1007/s10439-011-0270-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/04/2011] [Indexed: 12/25/2022]
Abstract
Magnetic resonance imaging (MRI) has become one of the most important diagnosis tools available in medicine. Typically MRI is not capable of sensing biochemical activities. However, recently emerged activatable MRI contrast agents (CAs), whose relaxivity is variable in response to a specific parameter change in the surrounding physiological microenvironment, potentially allow for MRI to indicate biological processes. Among the various factors influencing the relaxivity of a CA, the number of inner-sphere water molecules (q) directly coordinated to the metal center, the residence time of the coordinated water molecule (τ (m)), and the rotational correlation time representing the molecular tumbling time of a complex (τ (R)) contribute strongly to the relaxivity of an activatable CA. Tuning the ligand structure and properties has been the subject of intensive research for activatable MR CA designs. This review summarizes a variety of activatable MRI CAs sensitive to common variables in microenvironment in vivo, i.e., pH, luminescence, metal ions, redox, and enzymes, etc., with emphasis on the influence of ligand design on parameters q, τ (m), and τ (R).
Collapse
Affiliation(s)
- Chuqiao Tu
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | | | | |
Collapse
|
80
|
Grenier N, Brader P. Principles and basic concepts of molecular imaging. Pediatr Radiol 2011; 41:144-60. [PMID: 20878399 DOI: 10.1007/s00247-010-1835-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 08/06/2010] [Indexed: 11/26/2022]
Abstract
Advanced knowledge in molecular biology and new technological developments in imaging modalities and contrast agents calls for molecular imaging (MI) to play a major role in the near future in many human diseases (Weissleder and Mahmood Radiology 219:316-333, 2001). Imaging systems are providing higher signal-to-noise ratio and higher spatial and/or temporal resolution. New specific contrast agents offer the opportunity to drive new challenges for obtaining functional and biological information on tissue characteristics and tissue processes. All this information could be relevant for diagnosis, prognosis and treatment follow-up and to drive local therapies, enhancing local drug/gene delivery. The recent explosion of all these developments is a radical change of perspective in our imaging community because they could have a tremendous impact on our clinical practice and on teaching programs and they call for a more prominent multidisciplinary approach in this field of research.
Collapse
Affiliation(s)
- Nicolas Grenier
- UMR-CNRS 5231 Imagerie Moléculaire et Fonctionnelle, Université Victor Segalen-Bordeaux 2, 33076, Bordeaux-Cedex, France
| | | |
Collapse
|
81
|
Üllen A, Fauler G, Köfeler H, Waltl S, Nusshold C, Bernhart E, Reicher H, Leis HJ, Wintersperger A, Malle E, Sattler W. Mouse brain plasmalogens are targets for hypochlorous acid-mediated modification in vitro and in vivo. Free Radic Biol Med 2010; 49:1655-65. [PMID: 20807565 PMCID: PMC4061399 DOI: 10.1016/j.freeradbiomed.2010.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/02/2010] [Accepted: 08/23/2010] [Indexed: 11/18/2022]
Abstract
Plasmalogens, 1-O-alk-1'-enyl-2-acyl-sn-glycerophospholipids, are significant constituents of cellular membranes and are essential for normal brain development. Plasmalogens, which contain a vinyl ether bond at the sn-1 position, are preferential targets for hypochlorous acid (HOCl), generated by myeloperoxidase (MPO) from H(2)O(2) and chloride ions. Because MPO is implicated in neurodegeneration, this study pursued two aims: (i) to investigate the reactivity of mouse brain plasmalogens toward HOCl in vitro and (ii) to obtain in vivo evidence for MPO-mediated brain plasmalogen modification. Liquid chromatography coupled to hybrid linear ion trap-Fourier transform-ion cyclotron resonance mass spectrometry revealed plasmalogen modification in mouse brain lipid extracts at lower HOCl concentrations as observed for diacylphospholipids, resulting in the generation of 2-chloro fatty aldehydes and lysophospholipids. Lysophosphatidylethanolamine accumulation was transient, whereas lysophosphatidylcholine species containing saturated acyl residues remained stable. In vivo, a single, systemic endotoxin injection resulted in upregulation of cerebral MPO mRNA levels to a range comparable to that observed for tumor necrosis factor-α and cyclooxygenase-2. This inflammatory response was accompanied by a significant decrease in several brain plasmalogen species and concomitant in vivo generation of 2-chlorohexadecanal. The present findings demonstrate that activation of the MPO-H(2)O(2)-chloride system under neuroinflammatory conditions results in oxidative attack of the total cerebral plasmalogen pool. As this lipid class is indispensable for normal neuronal function, HOCl-mediated plasmalogen modification is likely to compromise normal synaptic transmission.
Collapse
Affiliation(s)
- Andreas Üllen
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8010 Graz, Austria
| | - Harald Köfeler
- Center of Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Sabine Waltl
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Hans-Jörg Leis
- Research Unit of Osteology and Analytical Mass Spectrometry, University Children’s Hospital, Medical University of Graz, 8010 Graz, Austria
| | - Andrea Wintersperger
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
- Corresponding author. Fax: +43 316 380 9615.
| |
Collapse
|
82
|
Ronald JA. Imaging Myeloperoxidase Activity in Cardiovascular Disease. CURRENT CARDIOVASCULAR IMAGING REPORTS 2010. [DOI: 10.1007/s12410-010-9056-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
83
|
Abstract
PURPOSE OF REVIEW Inflammation is an important component not only in autoimmune but also in ischemic/degenerative disorders of the central nervous system (CNS). We here review magnetic resonance imaging (MRI)-based techniques to visualize neuroinflammation in vivo. RECENT FINDINGS Iron oxide particles such as superparamagnetic iron oxide (SPIO) and ultrasmall SPIO (USPIO) are phagocytosed by hematogeneous macrophages upon systemic application into the circulation and allow in-vivo tracking of infiltration to the CNS due to their paramagnetic effect by MRI in experimental CNS disorders, and also in multiple sclerosis and stroke. Thereby, the size and application scheme of the iron particles is critical for interpretation of the MRI data which in addition to neuroinflammation involves passive diffusion and intravascular trapping. Targeting of inflammatory, activation-dependent enzymes such as myeloperoxidase or immune function molecules by MR contrast agents represents a molecular approach to visualize critical steps of lesion development caused by neuroinflammation. Clinical studies with Gd-DTPA in conjunction with experimental investigations employing more sensitive MR contrast agents such as gadofluorine revealed that breakdown of the blood-brain barrier and SPIO/USPIO-related macrophage infiltration occur mostly independently. SUMMARY Cellular and targeted molecular MRI provides important insights into the dynamics of neuroinflammation.
Collapse
|
84
|
Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev 2010; 110:3019-42. [PMID: 20415475 DOI: 10.1021/cr100025t] [Citation(s) in RCA: 583] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Enzo Terreno
- Department of Chemistry IFM and Molecular Imaging Center, University of Torino, Torino, Italy
| | | | | | | |
Collapse
|
85
|
Inflammation induced neurological handicap processes in multiple sclerosis: new insights from preclinical studies. J Neural Transm (Vienna) 2010; 117:907-17. [PMID: 20571836 DOI: 10.1007/s00702-010-0432-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 05/26/2010] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis (MS) is described as originating from incompletely explained neuroinflammatory processes, dysfunction of neuronal repair mechanisms and chronicity of inflammation events. Blood-borne immune cell infiltration and microglia activation are causing both neuronal destruction and myelin loss, which are responsible for progressive motor deficiencies, organic and cognitive dysfunctions. MRI as a non-invasive imaging method offers various ways to visualise de- and remyelination, neuronal loss, leukocyte infiltration, blood-brain barrier modification and new sensors are emerging to detect inflammatory lesions at an early stage. We describe studies performed on experimental autoimmune encephalomyelitis (EAE) animal models of MS that shed new light on mechanisms of functional impairments to understand the neurological handicap in MS. We focus on examples of neuroinflammation-mediated inhibition of CNS repair involving adult neurogenesis in the sub-ventricular zone and hippocampus and such experimentally observed inhibitions could reflect deficient plasticity and activation of compensatory mechanisms in MS. In parallel with cognitive decline, organic deficits such as bladder dysfunction are described in most of MS patients. Neuropharmacological interventions, electrical stimulation of nerves, MRI and histopathology follow-up studies helped in understanding the operating events to remodel the neurological networks and to compensate the inflammatory lesions both in spinal cord and in cortical regions. At the molecular level, the local production of reactive products is a well-described phenomenon: oxidative species disturb cellular physiology and generate new molecular epitopes that could further promote immune reactions. The translational research from EAE animal models to MS patient cohorts helps in understanding the mechanisms of the neurological handicap and in development of new therapeutic concepts in MS.
Collapse
|
86
|
Nusshold C, Kollroser M, Köfeler H, Rechberger G, Reicher H, Üllen A, Bernhart E, Waltl S, Kratzer I, Hermetter A, Hackl H, Trajanoski Z, Hrzenjak A, Malle E, Sattler W. Hypochlorite modification of sphingomyelin generates chlorinated lipid species that induce apoptosis and proteome alterations in dopaminergic PC12 neurons in vitro. Free Radic Biol Med 2010; 48:1588-600. [PMID: 20226853 PMCID: PMC4061462 DOI: 10.1016/j.freeradbiomed.2010.02.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/12/2010] [Accepted: 02/27/2010] [Indexed: 11/15/2022]
Abstract
Recent observations link myeloperoxidase (MPO) activation to neurodegeneration. In multiple sclerosis MPO is present in areas of active demyelination where the potent oxidant hypochlorous acid (HOCl), formed by MPO from H(2)O(2) and chloride ions, could oxidatively damage myelin-associated lipids. The purpose of this study was (i) to characterize reaction products of sphingomyelin (SM) formed in response to modification by HOCl, (ii) to define the impact of exogenously added SM and HOCl-modified SM (HOCl-SM) on viability parameters of a neuronal cell line (PC12), and (iii) to study alterations in the PC12 cell proteome in response to SM and HOCl-SM. MALDI-TOF-MS analyses revealed that HOCl, added as reagent or generated enzymatically, transforms SM into chlorinated species. On the cellular level HOCl-SM but not SM induced the formation of reactive oxygen species. HOCl-SM induced severely impaired cell viability, dissipation of the mitochondrial membrane potential, and activation of caspase-3 and DNA damage. Proteome analyses identified differential expression of specific subsets of proteins in response to SM and HOCl-SM. Our results demonstrate that HOCl modification of SM results in the generation of chlorinated lipid species with potent neurotoxic properties. Given the emerging connections between the MPO-H(2)O(2)-chloride axis and neurodegeneration, this chlorinating pathway might be implicated in neuropathogenesis.
Collapse
Affiliation(s)
- Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Manfred Kollroser
- Institute of Forensic Medicine, Medical University of Graz, Graz, Austria
| | - Harald Köfeler
- Center of Medical Research, Medical University of Graz, Graz, Austria
| | - Gerald Rechberger
- Institute of Molecular Biosciences, Karl-Franzens University, Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Andreas Üllen
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sabine Waltl
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ingrid Kratzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Hubert Hackl
- Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | - Zlatko Trajanoski
- Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | - Andelko Hrzenjak
- Department of Pulmonology, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
87
|
Tsuhako MH, Augusto O, Linares E, Chadi G, Giorgio S, Pereira CA. Tempol ameliorates murine viral encephalomyelitis by preserving the blood-brain barrier, reducing viral load, and lessening inflammation. Free Radic Biol Med 2010; 48:704-12. [PMID: 20035861 PMCID: PMC7126783 DOI: 10.1016/j.freeradbiomed.2009.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/09/2009] [Accepted: 12/16/2009] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a progressive inflammatory and/or demyelinating disease of the human central nervous system (CNS). Most of the knowledge about the pathogenesis of MS has been derived from murine models, such as experimental autoimmune encephalomyelitis and viral encephalomyelitis. Here, we infected female C57BL/6 mice with a neurotropic strain of the mouse hepatitis virus (MHV-59A) to evaluate whether treatment with the multifunctional antioxidant tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) affects the ensuing encephalomyelitis. In untreated animals, neurological symptoms developed quickly: 90% of infected mice died 10 days after virus inoculation and the few survivors presented neurological deficits. Treatment with tempol (24 mg/kg, ip, two doses on the first day and daily doses for 7 days plus 2 mM tempol in the drinking water ad libitum) profoundly altered the disease outcome: neurological symptoms were attenuated, mouse survival increased up to 70%, and half of the survivors behaved as normal mice. Not surprisingly, tempol substantially preserved the integrity of the CNS, including the blood-brain barrier. Furthermore, treatment with tempol decreased CNS viral titers, macrophage and T lymphocyte infiltration, and levels of markers of inflammation, such as expression of inducible nitric oxide synthase, transcription of tumor necrosis factor-alpha and interferon-gamma, and protein nitration. The results indicate that tempol ameliorates murine viral encephalomyelitis by altering the redox status of the infectious environment that contributes to an attenuated CNS inflammatory response. Overall, our study supports the development of therapeutic strategies based on nitroxides to manage neuroinflammatory diseases, including MS.
Collapse
Key Words
- bbb, blood–brain barrier
- cns, central nervous system
- eae, experimental autoimmune encephalomyelitis
- ifn-γ, interferon-γ
- mhv, mouse hepatitis virus
- ms, multiple sclerosis
- inos, inducible nitric oxide synthase
- tempol, 4-hydroxy-2,2,6,6,-tetramethyl-1-piperidinyloxy
- tnf-α, tumor necrosis factor-α
- multiple sclerosis
- encephalomyelitis
- mouse hepatitis virus
- tempol
- antioxidant
- anti-inflammatory
- inflammation
- redox status
- nitric oxide-derived oxidants
- free radicals
Collapse
Affiliation(s)
- Maria Heloisa Tsuhako
- Laboratório de Imunologia Viral, Instituto Butantan, 05503-900 São Paulo, Brazil
- Corresponding authors. M.H. Tsuhako is to be contacted at fax: +55 11 37261505. O. Augusto, fax: +55 11 30912186.
| | - Ohara Augusto
- Instituto de Química, Departamento de Bioquímica, Department of Neurology, School of Medicine, Universidade de São Paulo, 05513-970 São Paulo, Brazil
- Corresponding authors. M.H. Tsuhako is to be contacted at fax: +55 11 37261505. O. Augusto, fax: +55 11 30912186.
| | - Edlaine Linares
- Instituto de Química, Departamento de Bioquímica, Department of Neurology, School of Medicine, Universidade de São Paulo, 05513-970 São Paulo, Brazil
| | - Gerson Chadi
- Neuroregeneration Center, Department of Neurology, School of Medicine, Universidade de São Paulo, 05513-970 São Paulo, Brazil
| | - Selma Giorgio
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Carlos A. Pereira
- Laboratório de Imunologia Viral, Instituto Butantan, 05503-900 São Paulo, Brazil
| |
Collapse
|
88
|
Rodríguez E, Nilges M, Weissleder R, Chen JW. Activatable magnetic resonance imaging agents for myeloperoxidase sensing: mechanism of activation, stability, and toxicity. J Am Chem Soc 2010; 132:168-77. [PMID: 19968300 DOI: 10.1021/ja905274f] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myeloperoxidase (MPO) is increasingly being recognized as an important factor in many inflammatory diseases, particularly cardiovascular and neurological diseases. MPO-specific imaging agents would thus be highly useful to diagnose early disease, monitor disease progression, and quantify treatment effects. This study reports in vitro and in vivo characterizations of the mechanism of interaction between MPO and paramagnetic enzyme substrates based on physical and biological measurements. We show that these agents are activated through a radical mechanism, which can combine to form oligomers and, in the presence of tyrosine-containing peptide, bind to proteins. We further identified two new imaging agents, which represent the near extremes in either oligomerization (mono-5HT-DTPA-Gd) or protein-binding in their activation mechanism (bis-o-dianisidine-DTPA-Gd). On the other hand, we found that the agent bis-5HT-DTPA-Gd utilizes both mechanisms when activated. These properties yield distinct in vivo pharmacokinetics profiles for each of these agents that may be exploited for different applications. Specificity studies show that only MPO, but not eosinophil peroxidase, can highly activate these agents, and that MPO activity as low as 0.005 U/mg of tissue can be detected. Gd kinetic lability and cytotoxicity studies further confirm stability of the Gd ion and low toxicity for the 5HT-based agents, suggesting that these agents are suitable for translational in vivo studies.
Collapse
Affiliation(s)
- Elisenda Rodríguez
- Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
89
|
Samuelson LE, Dukes MJ, Hunt CR, Casey JD, Bornhop DJ. TSPO targeted dendrimer imaging agent: synthesis, characterization, and cellular internalization. Bioconjug Chem 2009; 20:2082-9. [PMID: 19863077 PMCID: PMC3038571 DOI: 10.1021/bc9002053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While it has become common practice for dendrimers to deliver imaging and therapeutic agents, there are few reported examples of cellular internalization of dendrimers. Moreover, targeting of dendrimers to the mitochondria in cells has not yet been reported. Previously, we have delivered small molecule imaging agents into glioma and breast cancer cells by targeting the translocator protein (TSPO; formerly known as the peripheral benzodiazepine receptor or PBR) with a family of high-affinity conjugable ligands. The 18 kDa multimeric TSPO is expressed in steroid-producing cells, primarily on the outer mitochondrial membrane. This protein is a prime candidate for molecular targeting because tumors and other disease-related cells contain high densities of TSPO. Here, we present the synthesis, characterization, and cellular internalization into C6 rat glioma cells of a TSPO targeted dendrimer imaging agent.
Collapse
Affiliation(s)
- Lynn E. Samuelson
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| | - Madeline J. Dukes
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| | - Colette R. Hunt
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| | - Jonathan D. Casey
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| | - Darryl J. Bornhop
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| |
Collapse
|
90
|
van der Veen BS, de Winther MPJ, Heeringa P. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 2009; 11:2899-937. [PMID: 19622015 DOI: 10.1089/ars.2009.2538] [Citation(s) in RCA: 386] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) is a heme-containing peroxidase abundantly expressed in neutrophils and to a lesser extent in monocytes. Enzymatically active MPO, together with hydrogen peroxide and chloride, produces the powerful oxidant hypochlorous acid and is a key contributor to the oxygen-dependent microbicidal activity of phagocytes. In addition, excessive generation of MPO-derived oxidants has been linked to tissue damage in many diseases, especially those characterized by acute or chronic inflammation. It has become increasingly clear that MPO exerts effects that are beyond its oxidative properties. These properties of MPO are, in many cases, independent of its catalytic activity and affect various processes involved in cell signaling and cell-cell interactions and are, as such, capable of modulating inflammatory responses. Given these diverse effects, an increased interest has emerged in the role of MPO and its downstream products in a wide range of inflammatory diseases. In this article, our knowledge pertaining to the biologic role of MPO and its downstream effects and mechanisms of action in health and disease is reviewed and discussed.
Collapse
Affiliation(s)
- Betty S van der Veen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | | | | |
Collapse
|
91
|
Ronald JA, Chen JW, Chen Y, Hamilton AM, Rodriguez E, Reynolds F, Hegele RA, Rogers KA, Querol M, Bogdanov A, Weissleder R, Rutt BK. Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation 2009; 120:592-9. [PMID: 19652086 DOI: 10.1161/circulationaha.108.813998] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inflammation undermines the stability of atherosclerotic plaques, rendering them susceptible to acute rupture, the cataclysmic event that underlies clinical expression of this disease. Myeloperoxidase is a central inflammatory enzyme secreted by activated macrophages and is involved in multiple stages of plaque destabilization and patient outcome. We report here that a unique functional in vivo magnetic resonance agent can visualize myeloperoxidase activity in atherosclerotic plaques in a rabbit model. METHODS AND RESULTS We performed magnetic resonance imaging of the thoracic aorta of New Zealand White rabbits fed a cholesterol (n=14) or normal (n=4) diet up to 2 hours after injection of the myeloperoxidase sensor bis-5HT-DTPA(Gd) [MPO(Gd)], the conventional agent DTPA(Gd), or an MPO(Gd) analog, bis-tyr-DTPA(Gd), as controls. Delayed MPO(Gd) images (2 hours after injection) showed focal areas of increased contrast (>2-fold) in diseased wall but not in normal wall (P=0.84) compared with both DTPA(Gd) (n=11; P<0.001) and bis-tyr-DTPA(Gd) (n=3; P<0.05). Biochemical assays confirmed that diseased wall possessed 3-fold elevated myeloperoxidase activity compared with normal wall (P<0.01). Areas detected by MPO(Gd) imaging colocalized and correlated with myeloperoxidase-rich areas infiltrated by macrophages on histopathological evaluations (r=0.91, P<0.0001). Although macrophages were the main source of myeloperoxidase, not all macrophages secreted myeloperoxidase, which suggests that distinct subpopulations contribute differently to atherogenesis and supports our functional approach. CONCLUSIONS The present study represents a unique approach in the detection of inflammation in atherosclerotic plaques by examining macrophage function and the activity of an effector enzyme to noninvasively provide both anatomic and functional information in vivo.
Collapse
Affiliation(s)
- John A Ronald
- Robarts Research Institute, London, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Muja N, Bulte JW. Magnetic resonance imaging of cells in experimental disease models. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2009; 55:61-77. [PMID: 21552511 PMCID: PMC3087183 DOI: 10.1016/j.pnmrs.2008.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Naser Muja
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, 217 Traylor, 720 Rutland Ave., Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W.M. Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, 217 Traylor, 720 Rutland Ave., Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, MD, USA
- Corresponding author. Address: Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, 217 Traylor, 720 Rutland Ave., Baltimore, MD 21205, USA. (J.W.M. Bulte)
| |
Collapse
|
93
|
Tourdias T, Brochet B, Petry KG, Dousset V. [Magnetic resonance imaging of central nervous system inflammation]. Rev Neurol (Paris) 2009; 165 Suppl 3:S77-87. [PMID: 19524099 DOI: 10.1016/s0035-3787(09)73952-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Magnetic resonance imaging (MRI) is widely used to explore central nervous system inflammatory disorders, especially multiple sclerosis (MS). Advanced MRI methods are bringing more sensitive and specific tools for each step of the inflammatory process. In this review, we discuss the different MRI approaches for inflammatory disorders exploration, especially MS. We give particular emphasize on sensibility and specificity of each MRI approach and we also discuss the current knowledge concerning biological and histopathological substratum that could explain MRI signal with each modality.
Collapse
Affiliation(s)
- T Tourdias
- Service de Neuroradiologie diagnostique et thérapeutique, CHU de Bordeaux, Place Amélie Raba-Léon, 33076 Bordeaux, France.
| | | | | | | |
Collapse
|
94
|
Grenier N, Hauger O, Eker O, Combe C, Couillaud F, Moonen C. Molecular magnetic resonance imaging of the genitourinary tract: recent results and future directions. Magn Reson Imaging Clin N Am 2008; 16:627-41, viii. [PMID: 18926427 DOI: 10.1016/j.mric.2008.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This article focuses on preclinical and early clinical applications of renal cell MR imaging, on new developments in MR control of intrarenal gene therapy, and on several potential applications of molecular imaging techniques, mainly targeting cell receptors and enzyme activity, which could find exciting applications within the genitourinary tract.
Collapse
Affiliation(s)
- Nicolas Grenier
- UMR-CNRS 5231 Imagerie Moléculaire et Fonctionnelle, Université Victor Segalen-Bordeaux 2, Bordeaux-Cedex, France.
| | | | | | | | | | | |
Collapse
|
95
|
Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci U S A 2008; 105:18584-9. [PMID: 19011099 DOI: 10.1073/pnas.0803945105] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inflammation can extend ischemic brain injury and adversely affect outcome in experimental animal models. A key difficulty in translating animal studies to humans is the lack of a definitive method to confirm and track inflammation in the brain in vivo. Myeloperoxidase (MPO), a key inflammatory enzyme secreted by activated neutrophils and macrophages/microglia, can generate highly reactive oxygen species to cause additional damage in cerebral ischemia. We report here that a functional, enzyme-activatable MRI agent can accurately track the oxidative activity of MPO noninvasively in stroke in living animals. We found that MPO is widely distributed in ischemic tissues, correlates positively with infarct size, and is detected even 3 weeks postinfarction. The peak level of MPO activity, determined by activation of the MPO-sensing agent in vivo and confirmed by MPO activity and quantitative RT-PCR assays, occurred on day 3 after ischemia. Both neutrophils and macrophages/microglia contribute to secrete MPO in the ischemic brain, although neutrophils peak earlier (days 1-3) whereas macrophages/microglia are most abundant later (days 3-7). In contrast to the conventional MRI agent diethylenetriamine-pentatacetate gadolinium, which reports blood-brain barrier disruption, MPO imaging is able to additionally track MPO activity and confirm inflammation on the molecular level in vivo, information that was previously only possible to obtain on ex vivo brain sections and impossible to assess in living human patients. Our findings could allow efficient noninvasive serial screening of therapies targeting inflammation and the use of MPO imaging as an imaging biomarker to risk-stratify patients.
Collapse
|