51
|
Haase MAB, Kominek J, Opulente DA, Shen XX, LaBella AL, Zhou X, DeVirgilio J, Hulfachor AB, Kurtzman CP, Rokas A, Hittinger CT. Repeated horizontal gene transfer of GALactose metabolism genes violates Dollo's law of irreversible loss. Genetics 2021; 217:6007471. [PMID: 33724406 DOI: 10.1093/genetics/iyaa012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
Dollo's law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome sizes and the losses of metabolic capabilities. However, the extent and mechanisms of trait reacquisition after gene loss in yeasts have not been thoroughly studied. Here, through phylogenomic analyses, we reconstructed the evolutionary history of the yeast galactose utilization pathway and observed widespread and repeated losses of the ability to utilize galactose, which occurred concurrently with the losses of GALactose (GAL) utilization genes. Unexpectedly, we detected multiple galactose-utilizing lineages that were deeply embedded within clades that underwent ancient losses of galactose utilization. We show that at least two, and possibly three, lineages reacquired the GAL pathway via yeast-to-yeast horizontal gene transfer. Our results show how trait reacquisition can occur tens of millions of years after an initial loss via horizontal gene transfer from distant relatives. These findings demonstrate that the losses of complex traits and even whole pathways are not always evolutionary dead-ends, highlighting how reversals to ancestral states can occur.
Collapse
Affiliation(s)
- Max A B Haase
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Vilcek Institute of Graduate Biomedical Sciences and Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Jacek Kominek
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Dana A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Jeremy DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
52
|
Mongiardino Koch N. Phylogenomic Subsampling and the Search for Phylogenetically Reliable Loci. Mol Biol Evol 2021; 38:4025-4038. [PMID: 33983409 DOI: 10.1101/2021.02.13.431075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
53
|
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
54
|
Čadež N, Bellora N, Ulloa R, Tome M, Petković H, Groenewald M, Hittinger CT, Libkind D. Hanseniaspora smithiae sp. nov., a Novel Apiculate Yeast Species From Patagonian Forests That Lacks the Typical Genomic Domestication Signatures for Fermentative Environments. Front Microbiol 2021; 12:679894. [PMID: 34367085 PMCID: PMC8334367 DOI: 10.3389/fmicb.2021.679894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
During a survey of Nothofagus trees and their parasitic fungi in Andean Patagonia (Argentina), genetically distinct strains of Hanseniaspora were obtained from the sugar-containing stromata of parasitic Cyttaria spp. Phylogenetic analyses based on the single-gene sequences (encoding rRNA and actin) or on conserved, single-copy, orthologous genes from genome sequence assemblies revealed that these strains represent a new species closely related to Hanseniaspora valbyensis. Additionally, delimitation of this novel species was supported by genetic distance calculations using overall genome relatedness indices (OGRI) between the novel taxon and its closest relatives. To better understand the mode of speciation in Hanseniaspora, we examined genes that were retained or lost in the novel species in comparison to its closest relatives. These analyses show that, during diversification, this novel species and its closest relatives, H. valbyensis and Hanseniaspora jakobsenii, lost mitochondrial and other genes involved in the generation of precursor metabolites and energy, which could explain their slower growth and higher ethanol yields under aerobic conditions. Similarly, Hanseniaspora mollemarum lost the ability to sporulate, along with genes that are involved in meiosis and mating. Based on these findings, a formal description of the novel yeast species Hanseniaspora smithiae sp. nov. is proposed, with CRUB 1602 H as the holotype.
Collapse
Affiliation(s)
- Neža Čadež
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nicolas Bellora
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, Bariloche, Argentina
| | - Ricardo Ulloa
- Laboratorio de Bioprocesos, Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, Neuquén, Argentina
| | - Miha Tome
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Hrvoje Petković
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, Bariloche, Argentina
| |
Collapse
|
55
|
Torres A, Goloboff PA, Catalano SA. Parsimony analysis of phylogenomic datasets (I): scripts and guidelines for using TNT (Tree Analysis using New Technology). Cladistics 2021; 38:103-125. [DOI: 10.1111/cla.12477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ambrosio Torres
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas ‐ Fundación Miguel Lillo Miguel Lillo 251 S. M. de Tucumán Tucumán 4000 Argentina
| | - Pablo A. Goloboff
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas ‐ Fundación Miguel Lillo Miguel Lillo 251 S. M. de Tucumán Tucumán 4000 Argentina
- American Museum of Natural History 200 Central Park West New York NY 10024 USA
| | - Santiago A. Catalano
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas ‐ Fundación Miguel Lillo Miguel Lillo 251 S. M. de Tucumán Tucumán 4000 Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo Universidad Nacional de Tucumán Miguel Lillo 205 S. M. de Tucumán Tucumán 4000 Argentina
| |
Collapse
|
56
|
Walker JF, Smith SA, Hodel RGJ, Moyroud E. Concordance-based approaches for the inference of relationships and molecular rates with phylogenomic datasets. Syst Biol 2021; 71:943-958. [PMID: 34240209 DOI: 10.1093/sysbio/syab052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 11/12/2022] Open
Abstract
Gene tree conflict is common and finding methods to analyze and alleviate the negative effects that conflict has on species tree analysis is a crucial part of phylogenomics. This study aims to expand the discussion of inferring species trees and molecular branch lengths when conflict is present. Conflict is typically examined in two ways: inferring its prevalence, and inferring the influence of the individual genes (how strongly one gene supports any given topology compared to an alternative topology). Here, we examine a procedure for incorporating both conflict and the influence of genes in order to infer evolutionary relationships. All supported relationships in the gene trees are analyzed and the likelihood of the genes constrained to these relationships is summed to provide a likelihood for the relationship. Consensus tree assembly is conducted based on the sum of likelihoods for a given relationship and choosing relationships based on the most likely relationship assuming it does not conflict with a relationship that has a higher likelihood score. If it is not possible for all most likely relationships to be combined into a single bifurcating tree then multiple trees are produced and a consensus tree with a polytomy is created. This procedure allows for more influential genes to have greater influence on an inferred relationship, does not assume conflict has arisen from any one source, and does not force the dataset to produce a single bifurcating tree. Using this approach on three empirical datasets, we examine and discuss the relationship between influence and prevalence of gene tree conflict. We find that in one of the datasets, assembling a bifurcating consensus tree solely composed of the most likely relationships is impossible. To account for conflict in molecular rate analysis we also introduce a concordance-based approach to the summary and estimation of branch lengths suitable for downstream comparative analyses. We demonstrate through simulation that even under high levels of stochastic conflict, the mean and median of the concordant rates recapitulate the true molecular rate better than using a supermatrix approach. Using a large phylogenomic dataset, we examine rate heterogeneity across concordant genes with a focus on the branch subtending crown angiosperms. Notably, we find highly variable rates of evolution along the branch subtending crown angiosperms. The approaches outlined here have several limitations, but they also represent some alternative methods for harnessing the complexity of phylogenomic datasets and enrich our inferences of both species' relationships and evolutionary processes.
Collapse
Affiliation(s)
- Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607 U.S.A
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Richard G J Hodel
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
57
|
Kozak KM, Joron M, McMillan WO, Jiggins CD. Rampant Genome-Wide Admixture across the Heliconius Radiation. Genome Biol Evol 2021; 13:evab099. [PMID: 33944917 PMCID: PMC8283734 DOI: 10.1093/gbe/evab099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
How frequent is gene flow between species? The pattern of evolution is typically portrayed as a phylogenetic tree, yet gene flow between good species may be an important mechanism in diversification, spreading adaptive traits and leading to a complex pattern of phylogenetic incongruence. This process has thus far been studied mainly among a few closely related species, or in geographically restricted areas such as islands, but not on the scale of a continental radiation. Using a genomic representation of 40 out of 47 species in the genus, we demonstrate that admixture has played a role throughout the evolution of the charismatic Neotropical butterflies Heliconius. Modeling of phylogenetic networks based on the exome uncovers up to 13 instances of interspecific gene flow. Admixture is detected among the relatives of Heliconius erato, as well as between the ancient lineages leading to modern clades. Interspecific gene flow played a role throughout the evolution of the genus, although the process has been most frequent in the clade of Heliconius melpomene and relatives. We identify Heliconius hecalesia and relatives as putative hybrids, including new evidence for introgression at the loci controlling the mimetic wing patterns. Models accounting for interspecific gene flow yield a more complete picture of the radiation as a network, which will improve our ability to study trait evolution in a realistic comparative framework.
Collapse
Affiliation(s)
- Krzysztof M Kozak
- Smithsonian Tropical Research Institute, Panamá, Panamá
- Department of Zoology, University of Cambridge, United Kingdom
| | - Mathieu Joron
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD, France
| | | | - Chris D Jiggins
- Smithsonian Tropical Research Institute, Panamá, Panamá
- Department of Zoology, University of Cambridge, United Kingdom
| |
Collapse
|
58
|
Geiser DM, Al-Hatmi AMS, Aoki T, Arie T, Balmas V, Barnes I, Bergstrom GC, Bhattacharyya MK, Blomquist CL, Bowden RL, Brankovics B, Brown DW, Burgess LW, Bushley K, Busman M, Cano-Lira JF, Carrillo JD, Chang HX, Chen CY, Chen W, Chilvers M, Chulze S, Coleman JJ, Cuomo CA, de Beer ZW, de Hoog GS, Del Castillo-Múnera J, Del Ponte EM, Diéguez-Uribeondo J, Di Pietro A, Edel-Hermann V, Elmer WH, Epstein L, Eskalen A, Esposto MC, Everts KL, Fernández-Pavía SP, da Silva GF, Foroud NA, Fourie G, Frandsen RJN, Freeman S, Freitag M, Frenkel O, Fuller KK, Gagkaeva T, Gardiner DM, Glenn AE, Gold SE, Gordon TR, Gregory NF, Gryzenhout M, Guarro J, Gugino BK, Gutierrez S, Hammond-Kosack KE, Harris LJ, Homa M, Hong CF, Hornok L, Huang JW, Ilkit M, Jacobs A, Jacobs K, Jiang C, Jiménez-Gasco MDM, Kang S, Kasson MT, Kazan K, Kennell JC, Kim HS, Kistler HC, Kuldau GA, Kulik T, Kurzai O, Laraba I, Laurence MH, Lee T, Lee YW, Lee YH, Leslie JF, Liew ECY, Lofton LW, Logrieco AF, López-Berges MS, Luque AG, Lysøe E, Ma LJ, Marra RE, Martin FN, May SR, McCormick SP, McGee C, Meis JF, Migheli Q, Mohamed Nor NMI, Monod M, Moretti A, Mostert D, Mulè G, et alGeiser DM, Al-Hatmi AMS, Aoki T, Arie T, Balmas V, Barnes I, Bergstrom GC, Bhattacharyya MK, Blomquist CL, Bowden RL, Brankovics B, Brown DW, Burgess LW, Bushley K, Busman M, Cano-Lira JF, Carrillo JD, Chang HX, Chen CY, Chen W, Chilvers M, Chulze S, Coleman JJ, Cuomo CA, de Beer ZW, de Hoog GS, Del Castillo-Múnera J, Del Ponte EM, Diéguez-Uribeondo J, Di Pietro A, Edel-Hermann V, Elmer WH, Epstein L, Eskalen A, Esposto MC, Everts KL, Fernández-Pavía SP, da Silva GF, Foroud NA, Fourie G, Frandsen RJN, Freeman S, Freitag M, Frenkel O, Fuller KK, Gagkaeva T, Gardiner DM, Glenn AE, Gold SE, Gordon TR, Gregory NF, Gryzenhout M, Guarro J, Gugino BK, Gutierrez S, Hammond-Kosack KE, Harris LJ, Homa M, Hong CF, Hornok L, Huang JW, Ilkit M, Jacobs A, Jacobs K, Jiang C, Jiménez-Gasco MDM, Kang S, Kasson MT, Kazan K, Kennell JC, Kim HS, Kistler HC, Kuldau GA, Kulik T, Kurzai O, Laraba I, Laurence MH, Lee T, Lee YW, Lee YH, Leslie JF, Liew ECY, Lofton LW, Logrieco AF, López-Berges MS, Luque AG, Lysøe E, Ma LJ, Marra RE, Martin FN, May SR, McCormick SP, McGee C, Meis JF, Migheli Q, Mohamed Nor NMI, Monod M, Moretti A, Mostert D, Mulè G, Munaut F, Munkvold GP, Nicholson P, Nucci M, O'Donnell K, Pasquali M, Pfenning LH, Prigitano A, Proctor RH, Ranque S, Rehner SA, Rep M, Rodríguez-Alvarado G, Rose LJ, Roth MG, Ruiz-Roldán C, Saleh AA, Salleh B, Sang H, Scandiani MM, Scauflaire J, Schmale DG, Short DPG, Šišić A, Smith JA, Smyth CW, Son H, Spahr E, Stajich JE, Steenkamp E, Steinberg C, Subramaniam R, Suga H, Summerell BA, Susca A, Swett CL, Toomajian C, Torres-Cruz TJ, Tortorano AM, Urban M, Vaillancourt LJ, Vallad GE, van der Lee TAJ, Vanderpool D, van Diepeningen AD, Vaughan MM, Venter E, Vermeulen M, Verweij PE, Viljoen A, Waalwijk C, Wallace EC, Walther G, Wang J, Ward TJ, Wickes BL, Wiederhold NP, Wingfield MJ, Wood AKM, Xu JR, Yang XB, Yli-Mattila T, Yun SH, Zakaria L, Zhang H, Zhang N, Zhang SX, Zhang X. Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic Fusarium that Includes the Fusarium solani Species Complex. PHYTOPATHOLOGY 2021; 111:1064-1079. [PMID: 33200960 DOI: 10.1094/phyto-08-20-0330-le] [Show More Authors] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.
Collapse
Affiliation(s)
- David M Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | | | - Takayuki Aoki
- Genetic Resources Center, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Tsutomu Arie
- Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Virgilio Balmas
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Gary C Bergstrom
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, U.S.A
| | | | - Cheryl L Blomquist
- Plant Pest Diagnostics Branch, California Department of Food and Agriculture, Sacramento, CA 95832, U.S.A
| | - Robert L Bowden
- Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture Agricultural Research Service (USDA-ARS), Manhattan, KS 66506, U.S.A
| | - Balázs Brankovics
- Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Daren W Brown
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Lester W Burgess
- Sydney Institute of Agriculture, Faculty of Science, University of Sydney, Sydney, Australia
| | - Kathryn Bushley
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Mark Busman
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - José F Cano-Lira
- Mycology Unit and IISPV, Universitat Rovira i Virgili Medical School, Reus, Spain
| | - Joseph D Carrillo
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, U.S.A
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chi-Yu Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, People's Republic of China
| | - Martin Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Sofia Chulze
- Research Institute on Mycology and Mycotoxicology, National Scientific and Technical Research Council, National University of Rio Cuarto, Rio Cuarto, Córdoba, Argentina
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | | | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - G Sybren de Hoog
- Department of Medical Mycology and Infectious Diseases, Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | | | - Wade H Elmer
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Akif Eskalen
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | | | - Kathryne L Everts
- Wye Research and Education Center, University of Maryland, Queenstown, MD 21658, U.S.A
| | - Sylvia P Fernández-Pavía
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58880, México
| | | | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - Gerda Fourie
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rasmus J N Frandsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Stanley Freeman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Kevin K Fuller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, U.S.A
| | - Tatiana Gagkaeva
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, St. Petersburg-Pushkin, Russia
| | | | - Anthony E Glenn
- Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, GA 30605, U.S.A
| | - Scott E Gold
- Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, GA 30605, U.S.A
| | - Thomas R Gordon
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Nancy F Gregory
- Department of Plant and Soil Sciences, University of Delaware, DE 19716, U.S.A
| | - Marieka Gryzenhout
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Josep Guarro
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Beth K Gugino
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | | | - Kim E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Linda J Harris
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
| | - Mónika Homa
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - Cheng-Fang Hong
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - László Hornok
- Institute of Plant Protection, Szent István University, Gödöllő, Hungary
| | - Jenn-Wen Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, University of Çukurova, Sarıçam, Adana, Turkey
| | - Adriaana Jacobs
- Biosystematics Unit, Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - Karin Jacobs
- Department of Microbiology, Stellenbosch University, Matieland, South Africa
| | - Cong Jiang
- College of Plant Protection, Northwest Agriculture and Forestry University, Xianyang, People's Republic of China
| | - María Del Mar Jiménez-Gasco
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Matthew T Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, U.S.A
| | - Kemal Kazan
- CSIRO Agriculture and Food, St. Lucia, Australia
| | - John C Kennell
- Biology Department, St. Louis University, St. Louis, MO 63101, U.S.A
| | - Hye-Seon Kim
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - H Corby Kistler
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Gretchen A Kuldau
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Oliver Kurzai
- German National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Imane Laraba
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Matthew H Laurence
- Australian Institute of Botanical Science, Royal Botanic Garden and Domain Trust, Sydney, Australia
| | - Theresa Lee
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - John F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Edward C Y Liew
- Australian Institute of Botanical Science, Royal Botanic Garden and Domain Trust, Sydney, Australia
| | - Lily W Lofton
- Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, GA 30605, U.S.A
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, Research National Council, Bari, Italy
| | - Manuel S López-Berges
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Alicia G Luque
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Referencia de Micología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien, Ås, Norway
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - Robert E Marra
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Frank N Martin
- Crop Improvement and Protection Research Unit, ARS-USDA, Salinas, CA 93905, U.S.A
| | - Sara R May
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Chyanna McGee
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Jacques F Meis
- Department of Medical Mycology and Infectious Diseases, Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Quirico Migheli
- Dipartimento di Agraria and Nucleo Ricerca Desertificazione, Università degli Studi di Sassari, Sassari, Italy
| | - N M I Mohamed Nor
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Michel Monod
- Laboratoire de Mycologie, Service de Dermatologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Antonio Moretti
- Institute of Sciences of Food Production, Research National Council, Bari, Italy
| | - Diane Mostert
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, Research National Council, Bari, Italy
| | | | - Gary P Munkvold
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Marcio Nucci
- Hospital Universitário, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milano, Milan, Italy
| | - Ludwig H Pfenning
- Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, Minas Gerais State, Brazil
| | - Anna Prigitano
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Stéphane Ranque
- Institut Hospitalier Universitaire Méditerranée Infection, Aix Marseille University, Marseille, France
| | - Stephen A Rehner
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A
| | - Martijn Rep
- Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerardo Rodríguez-Alvarado
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58880, México
| | - Lindy Joy Rose
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
| | - Mitchell G Roth
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Carmen Ruiz-Roldán
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Amgad A Saleh
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Baharuddin Salleh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - María Mercedes Scandiani
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Referencia de Micología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jonathan Scauflaire
- Centre de Recherche et de Formation Agronomie, Haute Ecole Louvain en Hainaut, Montignies-sur-Sambre, Belgium
| | - David G Schmale
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A
| | | | - Adnan Šišić
- Department of Ecological Plant Protection, University of Kassel, Witzenhausen, Germany
| | - Jason A Smith
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, U.S.A
| | - Christopher W Smyth
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, U.S.A
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ellie Spahr
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, U.S.A
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Emma Steenkamp
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Christian Steinberg
- Agroécologie, AgroSup Dijon, INRAE, University of Bourgogne Franche-Comté, Dijon, France
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
| | - Haruhisa Suga
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Brett A Summerell
- Australian Institute of Botanical Science, Royal Botanic Garden and Domain Trust, Sydney, Australia
| | - Antonella Susca
- Institute of Sciences of Food Production, Research National Council, Bari, Italy
| | - Cassandra L Swett
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | | | - Terry J Torres-Cruz
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Anna M Tortorano
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
| | - Martin Urban
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Lisa J Vaillancourt
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Gary E Vallad
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, U.S.A
| | - Theo A J van der Lee
- Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Dan Vanderpool
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Anne D van Diepeningen
- Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Eduard Venter
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, South Africa
| | - Marcele Vermeulen
- Department of Microbial Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Paul E Verweij
- Department of Medical Mycology and Infectious Diseases, Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Altus Viljoen
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
| | - Cees Waalwijk
- Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Emma C Wallace
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Grit Walther
- German National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Jie Wang
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94702
| | - Todd J Ward
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Brian L Wickes
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229, U.S.A
| | - Nathan P Wiederhold
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78229, U.S.A
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Ana K M Wood
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Jin-Rong Xu
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78229, U.S.A
| | - Xiao-Bing Yang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Republic of Korea
| | - Latiffah Zakaria
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, People's Republic of China
| | - Ning Zhang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, U.S.A
| | - Sean X Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, U.S.A
| | - Xue Zhang
- College of Plant Protection, Northwest Agriculture and Forestry University, Xianyang, People's Republic of China
| |
Collapse
|
59
|
Marciniak S, Mughal MR, Godfrey LR, Bankoff RJ, Randrianatoandro H, Crowley BE, Bergey CM, Muldoon KM, Randrianasy J, Raharivololona BM, Schuster SC, Malhi RS, Yoder AD, Louis EE, Kistler L, Perry GH. Evolutionary and phylogenetic insights from a nuclear genome sequence of the extinct, giant, "subfossil" koala lemur Megaladapis edwardsi. Proc Natl Acad Sci U S A 2021; 118:e2022117118. [PMID: 34162703 PMCID: PMC8255780 DOI: 10.1073/pnas.2022117118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
No endemic Madagascar animal with body mass >10 kg survived a relatively recent wave of extinction on the island. From morphological and isotopic analyses of skeletal "subfossil" remains we can reconstruct some of the biology and behavioral ecology of giant lemurs (primates; up to ∼160 kg) and other extraordinary Malagasy megafauna that survived into the past millennium. Yet, much about the evolutionary biology of these now-extinct species remains unknown, along with persistent phylogenetic uncertainty in some cases. Thankfully, despite the challenges of DNA preservation in tropical and subtropical environments, technical advances have enabled the recovery of ancient DNA from some Malagasy subfossil specimens. Here, we present a nuclear genome sequence (∼2× coverage) for one of the largest extinct lemurs, the koala lemur Megaladapis edwardsi (∼85 kg). To support the testing of key phylogenetic and evolutionary hypotheses, we also generated high-coverage nuclear genomes for two extant lemurs, Eulemur rufifrons and Lepilemur mustelinus, and we aligned these sequences with previously published genomes for three other extant lemurs and 47 nonlemur vertebrates. Our phylogenetic results confirm that Megaladapis is most closely related to the extant Lemuridae (typified in our analysis by E. rufifrons) to the exclusion of L. mustelinus, which contradicts morphology-based phylogenies. Our evolutionary analyses identified significant convergent evolution between M. edwardsi and an extant folivore (a colobine monkey) and an herbivore (horse) in genes encoding proteins that function in plant toxin biodegradation and nutrient absorption. These results suggest that koala lemurs were highly adapted to a leaf-based diet, which may also explain their convergent craniodental morphology with the small-bodied folivore Lepilemur.
Collapse
Affiliation(s)
- Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
| | - Mehreen R Mughal
- Bioinformatics and Genomics Intercollege Graduate Program, Pennsylvania State University, University Park, PA 16082
| | - Laurie R Godfrey
- Department of Anthropology, University of Massachusetts, Amherst, MA 01003
| | - Richard J Bankoff
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
| | - Heritiana Randrianatoandro
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo 101, Madagascar
| | - Brooke E Crowley
- Department of Geology, University of Cincinnati, Cincinnati, OH 45220
- Department of Anthropology, University of Cincinnati, Cincinnati, OH 45220
| | - Christina M Bergey
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Department of Genetics, Rutgers University, New Brunswick, NJ 08854
| | | | - Jeannot Randrianasy
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo 101, Madagascar
| | - Brigitte M Raharivololona
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo 101, Madagascar
| | - Stephan C Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 639798
| | - Ripan S Malhi
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Department of Ecology, Evolution and Behavior, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
| | - Edward E Louis
- Department of Conservation Genetics, Omaha's Henry Doorly Zoo and Aquarium, Omaha, NE 68107;
| | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560;
| | - George H Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802;
- Bioinformatics and Genomics Intercollege Graduate Program, Pennsylvania State University, University Park, PA 16082
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
60
|
Li Y, Steenwyk JL, Chang Y, Wang Y, James TY, Stajich JE, Spatafora JW, Groenewald M, Dunn CW, Hittinger CT, Shen XX, Rokas A. A genome-scale phylogeny of the kingdom Fungi. Curr Biol 2021; 31:1653-1665.e5. [PMID: 33607033 PMCID: PMC8347878 DOI: 10.1016/j.cub.2021.01.074] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
Phylogenomic studies using genome-scale amounts of data have greatly improved understanding of the tree of life. Despite the diversity, ecological significance, and biomedical and industrial importance of fungi, evolutionary relationships among several major lineages remain poorly resolved, especially those near the base of the fungal phylogeny. To examine poorly resolved relationships and assess progress toward a genome-scale phylogeny of the fungal kingdom, we compiled a phylogenomic data matrix of 290 genes from the genomes of 1,644 species that includes representatives from most major fungal lineages. We also compiled 11 data matrices by subsampling genes or taxa from the full data matrix based on filtering criteria previously shown to improve phylogenomic inference. Analyses of these 12 data matrices using concatenation- and coalescent-based approaches yielded a robust phylogeny of the fungal kingdom, in which ∼85% of internal branches were congruent across data matrices and approaches used. We found support for several historically poorly resolved relationships as well as evidence for polytomies likely stemming from episodes of ancient diversification. By examining the relative evolutionary divergence of taxonomic groups of equivalent rank, we found that fungal taxonomy is broadly aligned with both genome sequence divergence and divergence time but also identified lineages where current taxonomic circumscription does not reflect their levels of evolutionary divergence. Our results provide a robust phylogenomic framework to explore the tempo and mode of fungal evolution and offer directions for future fungal phylogenetic and taxonomic studies.
Collapse
Affiliation(s)
- Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Ying Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Yan Wang
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA; Department of Biological Sciences, University of Toronto Scarborough and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, 3584 CT, Utrecht 85167, the Netherlands
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xing-Xing Shen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
61
|
Minh BQ, Hahn MW, Lanfear R. New Methods to Calculate Concordance Factors for Phylogenomic Datasets. Mol Biol Evol 2021; 37:2727-2733. [PMID: 32365179 PMCID: PMC7475031 DOI: 10.1093/molbev/msaa106] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We implement two measures for quantifying genealogical concordance in phylogenomic data sets: the gene concordance factor (gCF) and the novel site concordance factor (sCF). For every branch of a reference tree, gCF is defined as the percentage of "decisive" gene trees containing that branch. This measure is already in wide usage, but here we introduce a package that calculates it while accounting for variable taxon coverage among gene trees. sCF is a new measure defined as the percentage of decisive sites supporting a branch in the reference tree. gCF and sCF complement classical measures of branch support in phylogenetics by providing a full description of underlying disagreement among loci and sites. An easy to use implementation and tutorial is freely available in the IQ-TREE software package (http://www.iqtree.org/doc/Concordance-Factor, last accessed May 13, 2020).
Collapse
Affiliation(s)
- Bui Quang Minh
- Research School of Computer Science, Australian National University, Canberra, ACT, Australia.,Department of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN.,Department of Computer Science, Indiana University, Bloomington, IN
| | - Robert Lanfear
- Department of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
62
|
Ferreira MS, Jones MR, Callahan CM, Farelo L, Tolesa Z, Suchentrunk F, Boursot P, Mills LS, Alves PC, Good JM, Melo-Ferreira J. The Legacy of Recurrent Introgression during the Radiation of Hares. Syst Biol 2021; 70:593-607. [PMID: 33263746 PMCID: PMC8048390 DOI: 10.1093/sysbio/syaa088] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022] Open
Abstract
Hybridization may often be an important source of adaptive variation, but the extent and long-term impacts of introgression have seldom been evaluated in the phylogenetic context of a radiation. Hares (Lepus) represent a widespread mammalian radiation of 32 extant species characterized by striking ecological adaptations and recurrent admixture. To understand the relevance of introgressive hybridization during the diversification of Lepus, we analyzed whole exome sequences (61.7 Mb) from 15 species of hares (1-4 individuals per species), spanning the global distribution of the genus, and two outgroups. We used a coalescent framework to infer species relationships and divergence times, despite extensive genealogical discordance. We found high levels of allele sharing among species and show that this reflects extensive incomplete lineage sorting and temporally layered hybridization. Our results revealed recurrent introgression at all stages along the Lepus radiation, including recent gene flow between extant species since the last glacial maximum but also pervasive ancient introgression occurring since near the origin of the hare lineages. We show that ancient hybridization between northern hemisphere species has resulted in shared variation of potential adaptive relevance to highly seasonal environments, including genes involved in circadian rhythm regulation, pigmentation, and thermoregulation. Our results illustrate how the genetic legacy of ancestral hybridization may persist across a radiation, leaving a long-lasting signature of shared genetic variation that may contribute to adaptation. [Adaptation; ancient introgression; hybridization; Lepus; phylogenomics.].
Collapse
Affiliation(s)
- Mafalda S Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Matthew R Jones
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Zelalem Tolesa
- Department of Biology, Hawassa University, Hawassa, Ethiopia
| | - Franz Suchentrunk
- Department for Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pierre Boursot
- Institut des Sciences de l’Évolution Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, France
| | - L Scott Mills
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
- Office of Research and Creative Scholarship, University of Montana, Missoula, Montana, United States of America; Jeffrey M. Good and José Melo-Ferreira shared the senior authorship
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
63
|
Ulrich NJ, Uchida H, Kanesaki Y, Hirose E, Murakami A, Miller SR. Reacquisition of light-harvesting genes in a marine cyanobacterium confers a broader solar niche. Curr Biol 2021; 31:1539-1546.e4. [PMID: 33571437 DOI: 10.1016/j.cub.2021.01.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
The evolution of phenotypic plasticity, i.e., the environmental induction of alternative phenotypes by the same genotype, can be an important mechanism of biological diversification.1,2 For example, an evolved increase in plasticity may promote ecological niche expansion as well as the innovation of novel traits;3 however, both the role of phenotypic plasticity in adaptive evolution and its underlying mechanisms are still poorly understood.4,5 Here, we report that the Chlorophyll d-producing marine cyanobacterium Acaryochloris marina strain MBIC11017 has evolved greater photosynthetic plasticity by reacquiring light-harvesting genes via horizontal gene transfer. The genes, which had been lost by the A. marina ancestor, are involved in the production and degradation of the light-harvesting phycobiliprotein phycocyanin. A. marina MBIC11017 exhibits a high degree of wavelength-dependence in phycocyanin production, and this ability enables it to grow with yellow and green light wavelengths that are inaccessible to other A. marina. Consequently, this strain has a broader solar niche than its close relatives. We discuss the role of horizontal gene transfer for regaining a lost phenotype in light of Dollo's Law6 that the loss of a complex trait is irreversible.
Collapse
Affiliation(s)
- Nikea J Ulrich
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Hiroko Uchida
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, 656-2401, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Euichi Hirose
- Department of Chemistry, Biology & Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Akio Murakami
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, 656-2401, Japan
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
64
|
Crous P, Lombard L, Sandoval-Denis M, Seifert K, Schroers HJ, Chaverri P, Gené J, Guarro J, Hirooka Y, Bensch K, Kema G, Lamprecht S, Cai L, Rossman A, Stadler M, Summerbell R, Taylor J, Ploch S, Visagie C, Yilmaz N, Frisvad J, Abdel-Azeem A, Abdollahzadeh J, Abdolrasouli A, Akulov A, Alberts J, Araújo J, Ariyawansa H, Bakhshi M, Bendiksby M, Ben Hadj Amor A, Bezerra J, Boekhout T, Câmara M, Carbia M, Cardinali G, Castañeda-Ruiz R, Celis A, Chaturvedi V, Collemare J, Croll D, Damm U, Decock C, de Vries R, Ezekiel C, Fan X, Fernández N, Gaya E, González C, Gramaje D, Groenewald J, Grube M, Guevara-Suarez M, Gupta V, Guarnaccia V, Haddaji A, Hagen F, Haelewaters D, Hansen K, Hashimoto A, Hernández-Restrepo M, Houbraken J, Hubka V, Hyde K, Iturriaga T, Jeewon R, Johnston P, Jurjević Ž, Karalti İ, Korsten L, Kuramae E, Kušan I, Labuda R, Lawrence D, Lee H, Lechat C, Li H, Litovka Y, Maharachchikumbura S, Marin-Felix Y, Matio Kemkuignou B, Matočec N, McTaggart A, Mlčoch P, Mugnai L, Nakashima C, Nilsson R, Noumeur S, Pavlov I, Peralta M, Phillips A, Pitt J, Polizzi G, Quaedvlieg W, Rajeshkumar K, Restrepo S, Rhaiem A, Robert J, Robert V, Rodrigues A, et alCrous P, Lombard L, Sandoval-Denis M, Seifert K, Schroers HJ, Chaverri P, Gené J, Guarro J, Hirooka Y, Bensch K, Kema G, Lamprecht S, Cai L, Rossman A, Stadler M, Summerbell R, Taylor J, Ploch S, Visagie C, Yilmaz N, Frisvad J, Abdel-Azeem A, Abdollahzadeh J, Abdolrasouli A, Akulov A, Alberts J, Araújo J, Ariyawansa H, Bakhshi M, Bendiksby M, Ben Hadj Amor A, Bezerra J, Boekhout T, Câmara M, Carbia M, Cardinali G, Castañeda-Ruiz R, Celis A, Chaturvedi V, Collemare J, Croll D, Damm U, Decock C, de Vries R, Ezekiel C, Fan X, Fernández N, Gaya E, González C, Gramaje D, Groenewald J, Grube M, Guevara-Suarez M, Gupta V, Guarnaccia V, Haddaji A, Hagen F, Haelewaters D, Hansen K, Hashimoto A, Hernández-Restrepo M, Houbraken J, Hubka V, Hyde K, Iturriaga T, Jeewon R, Johnston P, Jurjević Ž, Karalti İ, Korsten L, Kuramae E, Kušan I, Labuda R, Lawrence D, Lee H, Lechat C, Li H, Litovka Y, Maharachchikumbura S, Marin-Felix Y, Matio Kemkuignou B, Matočec N, McTaggart A, Mlčoch P, Mugnai L, Nakashima C, Nilsson R, Noumeur S, Pavlov I, Peralta M, Phillips A, Pitt J, Polizzi G, Quaedvlieg W, Rajeshkumar K, Restrepo S, Rhaiem A, Robert J, Robert V, Rodrigues A, Salgado-Salazar C, Samson R, Santos A, Shivas R, Souza-Motta C, Sun G, Swart W, Szoke S, Tan Y, Taylor J, Taylor P, Tiago P, Váczy K, van de Wiele N, van der Merwe N, Verkley G, Vieira W, Vizzini A, Weir B, Wijayawardene N, Xia J, Yáñez-Morales M, Yurkov A, Zamora J, Zare R, Zhang C, Thines M. Fusarium: more than a node or a foot-shaped basal cell. Stud Mycol 2021; 98:100116. [PMID: 34466168 PMCID: PMC8379525 DOI: 10.1016/j.simyco.2021.100116] [Show More Authors] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).
Collapse
Key Words
- Apiognomonia platani (Lév.) L. Lombard
- Atractium ciliatum Link
- Atractium pallidum Bonord.
- Calloria tremelloides (Grev.) L. Lombard
- Cephalosporium sacchari E.J. Butler
- Cosmosporella cavisperma (Corda) Sand.-Den., L. Lombard & Crous
- Cylindrodendrum orthosporum (Sacc. & P. Syd.) L. Lombard
- Dialonectria volutella (Ellis & Everh.) L. Lombard & Sand.-Den.
- Fusarium aeruginosum Delacr.
- Fusarium agaricorum Sarrazin
- Fusarium albidoviolaceum Dasz.
- Fusarium aleyrodis Petch
- Fusarium amentorum Lacroix
- Fusarium annuum Leonian
- Fusarium arcuatum Berk. & M.A. Curtis
- Fusarium aridum O.A. Pratt
- Fusarium armeniacum (G.A. Forbes et al.) L.W. Burgess & Summerell
- Fusarium arthrosporioides Sherb.
- Fusarium asparagi Delacr.
- Fusarium batatas Wollenw.
- Fusarium biforme Sherb.
- Fusarium buharicum Jacz. ex Babajan & Teterevn.-Babajan
- Fusarium cactacearum Pasin. & Buzz.-Trav.
- Fusarium cacti-maxonii Pasin. & Buzz.-Trav.
- Fusarium caudatum Wollenw.
- Fusarium cavispermum Corda
- Fusarium cepae Hanzawa
- Fusarium cesatii Rabenh.
- Fusarium citriforme Jamal.
- Fusarium citrinum Wollenw.
- Fusarium citrulli Taubenh.
- Fusarium clavatum Sherb.
- Fusarium coccinellum Kalchbr.
- Fusarium cromyophthoron Sideris
- Fusarium cucurbitae Taubenh.
- Fusarium cuneiforme Sherb.
- Fusarium delacroixii Sacc.
- Fusarium dimerum var. nectrioides Wollenw.
- Fusarium echinatum Sand.-Den. & G.J. Marais
- Fusarium epicoccum McAlpine
- Fusarium eucheliae Sartory, R. Sartory & J. Mey.
- Fusarium fissum Peyl
- Fusarium flocciferum Corda
- Fusarium gemmiperda Aderh.
- Fusarium genevense Dasz.
- Fusarium graminearum Schwabe
- Fusarium graminum Corda
- Fusarium heterosporioides Fautrey
- Fusarium heterosporum Nees & T. Nees
- Fusarium idahoanum O.A. Pratt
- Fusarium juruanum Henn.
- Fusarium lanceolatum O.A. Pratt
- Fusarium lateritium Nees
- Fusarium loncheceras Sideris
- Fusarium longipes Wollenw. & Reinking
- Fusarium lyarnte J.L. Walsh, Sangal., L.W. Burgess, E.C.Y. Liew & Summerell
- Fusarium malvacearum Taubenh.
- Fusarium martii f. phaseoli Burkh.
- Fusarium muentzii Delacr.
- Fusarium nigrum O.A. Pratt
- Fusarium oxysporum var. asclerotium Sherb.
- Fusarium palczewskii Jacz.
- Fusarium palustre W.H. Elmer & Marra
- Fusarium polymorphum Matr.
- Fusarium poolense Taubenh.
- Fusarium prieskaense G.J. Marais & Sand.-Den.
- Fusarium prunorum McAlpine
- Fusarium pusillum Wollenw.
- Fusarium putrefaciens Osterw.
- Fusarium redolens Wollenw.
- Fusarium reticulatum Mont.
- Fusarium rhizochromatistes Sideris
- Fusarium rhizophilum Corda
- Fusarium rhodellum McAlpine
- Fusarium roesleri Thüm.
- Fusarium rostratum Appel & Wollenw.
- Fusarium rubiginosum Appel & Wollenw.
- Fusarium rubrum Parav.
- Fusarium samoense Gehrm.
- Fusarium scirpi Lambotte & Fautrey
- Fusarium secalis Jacz.
- Fusarium spinaciae Hungerf.
- Fusarium sporotrichioides Sherb.
- Fusarium stercoris Fuckel
- Fusarium stilboides Wollenw.
- Fusarium stillatum De Not. ex Sacc.
- Fusarium sublunatum Reinking
- Fusarium succisae Schröt. ex Sacc.
- Fusarium tabacivorum Delacr.
- Fusarium trichothecioides Wollenw.
- Fusarium tritici Liebman
- Fusarium tuberivorum Wilcox & G.K. Link
- Fusarium tumidum var. humi Reinking
- Fusarium ustilaginis Kellerm. & Swingle
- Fusarium viticola Thüm.
- Fusarium werrikimbe J.L. Walsh, L.W. Burgess, E.C.Y. Liew & B.A. Summerell
- Fusarium willkommii Lindau
- Fusarium xylarioides Steyaert
- Fusarium zygopetali Delacr.
- Fusicolla meniscoidea L. Lombard & Sand.-Den.
- Fusicolla quarantenae J.D.P. Bezerra, Sand.-Den., Crous & Souza-Motta
- Fusicolla sporellula Sand.-Den. & L. Lombard
- Fusisporium andropogonis Cooke ex Thüm.
- Fusisporium anthophilum A. Braun
- Fusisporium arundinis Corda
- Fusisporium avenaceum Fr.
- Fusisporium clypeaster Corda
- Fusisporium culmorum Wm.G. Sm.
- Fusisporium didymum Harting
- Fusisporium elasticae Thüm.
- Fusisporium episphaericum Cooke & Ellis
- Fusisporium flavidum Bonord.
- Fusisporium hordei Wm.G. Sm.
- Fusisporium incarnatum Roberge ex Desm.
- Fusisporium lolii Wm.G. Sm.
- Fusisporium pandani Corda
- Gibberella phyllostachydicola W. Yamam.
- Hymenella aurea (Corda) L. Lombard
- Hymenella spermogoniopsis (Jul. Müll.) L. Lombard & Sand.-Den.
- Luteonectria Sand.-Den., L. Lombard, Schroers & Rossman
- Luteonectria albida (Rossman) Sand.-Den. & L. Lombard
- Luteonectria nematophila (Nirenberg & Hagedorn) Sand.-Den. & L. Lombard
- Macroconia bulbipes Crous & Sand.-Den.
- Macroconia phlogioides Sand.-Den. & Crous
- Menispora penicillata Harz
- Multi-gene phylogeny
- Mycotoxins
- Nectriaceae
- Neocosmospora
- Neocosmospora epipeda Quaedvl. & Sand.-Den.
- Neocosmospora floridana (T. Aoki et al.) L. Lombard & Sand.-Den.
- Neocosmospora merkxiana Quaedvl. & Sand.-Den.
- Neocosmospora neerlandica Crous & Sand.-Den.
- Neocosmospora nelsonii Crous & Sand.-Den.
- Neocosmospora obliquiseptata (T. Aoki et al.) L. Lombard & Sand.-Den.
- Neocosmospora pseudopisi Sand.-Den. & L. Lombard
- Neocosmospora rekana (Lynn & Marinc.) L. Lombard & Sand.-Den.
- Neocosmospora tuaranensis (T. Aoki et al.) L. Lombard & Sand.-Den.
- Nothofusarium Crous, Sand.-Den. & L. Lombard
- Nothofusarium devonianum L. Lombard, Crous & Sand.-Den.
- Novel taxa
- Pathogen
- Scolecofusarium L. Lombard, Sand.-Den. & Crous
- Scolecofusarium ciliatum (Link) L. Lombard, Sand.-Den. & Crous
- Selenosporium equiseti Corda
- Selenosporium hippocastani Corda
- Selenosporium sarcochroum Desm
- Selenosporium urticearum Corda.
- Setofusarium (Nirenberg & Samuels) Crous & Sand.-Den.
- Setofusarium setosum (Samuels & Nirenberg) Sand.-Den. & Crous.
- Sphaeria sanguinea var. cicatricum Berk.
- Sporotrichum poae Peck.
- Stylonectria corniculata Gräfenhan, Crous & Sand.-Den.
- Stylonectria hetmanica Akulov, Crous & Sand.-Den.
- Taxonomy
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - L. Lombard
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - K.A. Seifert
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - H.-J. Schroers
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000, Ljubljana, Slovenia
| | - P. Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Escuela de Biología and Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San Pedro, Costa Rica
| | - J. Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut i Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - J. Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut i Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - Y. Hirooka
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584, Japan
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - G.H.J. Kema
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - S.C. Lamprecht
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, Western Cape, South Africa
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - A.Y. Rossman
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, 97330, USA
| | - M. Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - J.W. Taylor
- Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA, 94720-3102, USA
| | - S. Ploch
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - A.M. Abdel-Azeem
- Systematic Mycology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - J. Abdollahzadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - A. Abdolrasouli
- Department of Medical Microbiology, King's College Hospital, London, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| | - A. Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022, Kharkiv, Ukraine
| | - J.F. Alberts
- Department of Food Science and Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535, South Africa
| | - J.P.M. Araújo
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - H.A. Ariyawansa
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - M. Bakhshi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - M. Bendiksby
- Natural History Museum, University of Oslo, Norway
- Department of Natural History, NTNU University Museum, Trondheim, Norway
| | - A. Ben Hadj Amor
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - J.D.P. Bezerra
- Setor de Micologia/Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Rua 235 - s/n – Setor Universitário - CEP: 74605-050, Universidade Federal de Goiás/Federal University of Goiás, Goiânia, Brazil
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M.P.S. Câmara
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, 52171-900, PE, Brazil
| | - M. Carbia
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina – Universidad de la República, Av. A. Navarro 3051, Montevideo, Uruguay
| | - G. Cardinali
- Department of Pharmaceutical Science, University of Perugia, Via Borgo 20 Giugno, 74 Perugia, Italy
| | - R.F. Castañeda-Ruiz
- Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt (INIFAT), Académico Titular de la Academia de Ciencias de, Cuba
| | - A. Celis
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, 111711, Colombia
| | - V. Chaturvedi
- Mycology Laboratory, New York State Department of Health Wadsworth Center, Albany, NY, USA
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - D. Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, CH-2000, Neuchatel, Switzerland
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806, Görlitz, Germany
| | - C.A. Decock
- Mycothèque de l'Université catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute – ELIM – Mycology, Université catholique de Louvain, Croix du Sud 2 bte L7.05.06, B-1348, Louvain-la-Neuve, Belgium
| | - R.P. de Vries
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - C.N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - N.B. Fernández
- Laboratorio de Micología Clínica, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - E. Gaya
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - C.D. González
- Laboratorio de Salud de Bosques y Ecosistemas, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, casilla 567, Valdivia, Chile
| | - D. Gramaje
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logroño, 26007, Spain
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M. Grube
- Institut für Biologie, Karl-Franzens-Universität Graz, Holteigasse 6, 8010, Graz, Austria
| | - M. Guevara-Suarez
- Applied genomics research group, Universidad de los Andes, Cr 1 # 18 a 12, Bogotá, Colombia
| | - V.K. Gupta
- Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - V. Guarnaccia
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Torino, Largo P. Braccini 2, 10095, Grugliasco, TO, Italy
| | | | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - D. Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, 35 K.L. Ledeganckstraat, 9000, Ghent, Belgium
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - K. Hansen
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05, Stockholm, Sweden
| | - A. Hashimoto
- Microbe Division/Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | | | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K.D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chaing Rai, 57100, Thailand
| | - T. Iturriaga
- Cornell University, 334 Plant Science Building, Ithaca, NY, 14850, USA
| | - R. Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - P.R. Johnston
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
| | - Ž. Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ, 08077, USA
| | - İ. Karalti
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Yeditepe University, Turkey
| | - L. Korsten
- Department of Plant and Soil Sciences, University of Pretoria, P. Bag X20 Hatfield, Pretoria, 0002, South Africa
| | - E.E. Kuramae
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - I. Kušan
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - R. Labuda
- University of Veterinary Medicine, Vienna (VetMed), Institute of Food Safety, Food Technology and Veterinary Public Health, Veterinaerplatz 1, 1210 Vienna and BiMM – Bioactive Microbial Metabolites group, 3430 Tulln a.d. Donau, Austria
| | - D.P. Lawrence
- University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - H.B. Lee
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Yongbong-Dong 300, Buk-Gu, Gwangju, 61186, South Korea
| | - C. Lechat
- Ascofrance, 64 route de Chizé, 79360, Villiers-en-Bois, France
| | - H.Y. Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Y.A. Litovka
- V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russia
- Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russia
| | - S.S.N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Y. Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - B. Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - N. Matočec
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - A.R. McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, G.P.O. Box 267, Brisbane, 4001, Australia
| | - P. Mlčoch
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - L. Mugnai
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology section, University of Florence, P.le delle Cascine 28, 50144, Firenze, Italy
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - R.H. Nilsson
- Gothenburg Global Biodiversity Center at the Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
| | - S.R. Noumeur
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, Batna, 05000, Algeria
| | - I.N. Pavlov
- V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russia
- Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russia
| | - M.P. Peralta
- Laboratorio de Micodiversidad y Micoprospección, PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Argentina
| | - A.J.L. Phillips
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016, Lisbon, Portugal
| | - J.I. Pitt
- Microbial Screening Technologies, 28 Percival Rd, Smithfield, NSW, 2164, Australia
| | - G. Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - W. Quaedvlieg
- Phytopathology, Van Zanten Breeding B.V., Lavendelweg 15, 1435 EW, Rijsenhout, the Netherlands
| | - K.C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Group, Agharkar Research Institute, Pune, Maharashtra, 411 004, India
| | - S. Restrepo
- Laboratory of Mycology and Phytopathology – (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, Cr 1 # 18 a 12, Bogotá, Colombia
| | - A. Rhaiem
- Plant Pathology and Population Genetics, Laboratory of Microorganisms, National Gene Bank, Tunisia
| | | | - V. Robert
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - C. Salgado-Salazar
- USDA-ARS Mycology & Nematology Genetic Diversity & Biology Laboratory, Bldg. 010A, Rm. 212, BARC-West, 10300 Baltimore Ave, Beltsville, MD, 20705, USA
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - A.C.S. Santos
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - R.G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, 4350, Queensland, Australia
| | - C.M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - G.Y. Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - W.J. Swart
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | | | - Y.P. Tan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, 4350, Queensland, Australia
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, Queensland, 4102, Australia
| | - J.E. Taylor
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, United Kingdom
| | - P.W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - P.V. Tiago
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - K.Z. Váczy
- Food and Wine Research Institute, Eszterházy Károly University, 6 Leányka Street, H-3300, Eger, Hungary
| | | | - N.A. van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - G.J.M. Verkley
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - W.A.S. Vieira
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, 52171-900, PE, Brazil
| | - A. Vizzini
- Department of Life Sciences and Systems Biology, University of Torino and Institute for Sustainable Plant Protection (IPSP-SS Turin), C.N.R, Viale P.A. Mattioli, 25, I-10125, Torino, Italy
| | - B.S. Weir
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
| | - N.N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - J.W. Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
| | - M.J. Yáñez-Morales
- Fitosanidad, Colegio de Postgraduados-Campus Montecillo, Montecillo-Texcoco, 56230 Edo. de Mexico, Mexico
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - J.C. Zamora
- Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36, Uppsala, Sweden
| | - R. Zare
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - C.L. Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
- Goethe-University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue Str. 13, D-60438, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
65
|
Spillane JL, LaPolice TM, MacManes MD, Plachetzki DC. Signal, bias, and the role of transcriptome assembly quality in phylogenomic inference. BMC Ecol Evol 2021; 21:43. [PMID: 33726665 PMCID: PMC7968300 DOI: 10.1186/s12862-021-01772-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phylogenomic approaches have great power to reconstruct evolutionary histories, however they rely on multi-step processes in which each stage has the potential to affect the accuracy of the final result. Many studies have empirically tested and established methodology for resolving robust phylogenies, including selecting appropriate evolutionary models, identifying orthologs, or isolating partitions with strong phylogenetic signal. However, few have investigated errors that may be initiated at earlier stages of the analysis. Biases introduced during the generation of the phylogenomic dataset itself could produce downstream effects on analyses of evolutionary history. Transcriptomes are widely used in phylogenomics studies, though there is little understanding of how a poor-quality assembly of these datasets could impact the accuracy of phylogenomic hypotheses. Here we examined how transcriptome assembly quality affects phylogenomic inferences by creating independent datasets from the same input data representing high-quality and low-quality transcriptome assembly outcomes. RESULTS By studying the performance of phylogenomic datasets derived from alternative high- and low-quality assembly inputs in a controlled experiment, we show that high-quality transcriptomes produce richer phylogenomic datasets with a greater number of unique partitions than low-quality assemblies. High-quality assemblies also give rise to partitions that have lower alignment ambiguity and less compositional bias. In addition, high-quality partitions hold stronger phylogenetic signal than their low-quality transcriptome assembly counterparts in both concatenation- and coalescent-based analyses. CONCLUSIONS Our findings demonstrate the importance of transcriptome assembly quality in phylogenomic analyses and suggest that a portion of the uncertainty observed in such studies could be alleviated at the assembly stage.
Collapse
Affiliation(s)
- Jennifer L Spillane
- Molecular, Cellular, and Biomedical Sciences Department, University of New Hampshire, Durham, NH, 03824, USA.
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, 03824, USA.
| | - Troy M LaPolice
- Molecular, Cellular, and Biomedical Sciences Department, University of New Hampshire, Durham, NH, 03824, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, 03824, USA
| | - Matthew D MacManes
- Molecular, Cellular, and Biomedical Sciences Department, University of New Hampshire, Durham, NH, 03824, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, 03824, USA
| | - David C Plachetzki
- Molecular, Cellular, and Biomedical Sciences Department, University of New Hampshire, Durham, NH, 03824, USA.
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
66
|
Shen XX, Steenwyk JL, Rokas A. Dissecting incongruence between concatenation- and quartet-based approaches in phylogenomic data. Syst Biol 2021; 70:997-1014. [PMID: 33616672 DOI: 10.1093/sysbio/syab011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Topological conflict or incongruence is widespread in phylogenomic data. Concatenation- and coalescent-based approaches often result in incongruent topologies, but the causes of this conflict can be difficult to characterize. We examined incongruence stemming from conflict between likelihood-based signal (quantified by the difference in gene-wise log likelihood score or ΔGLS) and quartet-based topological signal (quantified by the difference in gene-wise quartet score or ΔGQS) for every gene in three phylogenomic studies in animals, fungi, and plants, which were chosen because their concatenation-based IQ-TREE (T1) and quartet-based ASTRAL (T2) phylogenies are known to produce eight conflicting internal branches (bipartitions). By comparing the types of phylogenetic signal for all genes in these three data matrices, we found that 30% - 36% of genes in each data matrix are inconsistent, that is, each of these genes has higher log likelihood score for T1 versus T2 (i.e., ΔGLS >0) whereas its T1 topology has lower quartet score than its T2 topology (i.e., ΔGQS <0) or vice versa. Comparison of inconsistent and consistent genes using a variety of metrics (e.g., evolutionary rate, gene tree topology, distribution of branch lengths, hidden paralogy, and gene tree discordance) showed that inconsistent genes are more likely to recover neither T1 nor T2 and have higher levels of gene tree discordance than consistent genes. Simulation analyses demonstrate that removal of inconsistent genes from datasets with low levels of incomplete lineage sorting (ILS) and low and medium levels of gene tree estimation error (GTEE) reduced incongruence and increased accuracy. In contrast, removal of inconsistent genes from datasets with medium and high ILS levels and high GTEE levels eliminated or extensively reduced incongruence, but the resulting congruent species phylogenies were not always topologically identical to the true species trees.
Collapse
Affiliation(s)
- Xing-Xing Shen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.,Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
67
|
Čadež N, Dlauchy D, Tome M, Péter G. Novakomyces olei sp. nov., the First Member of a Novel Taphrinomycotina Lineage. Microorganisms 2021; 9:microorganisms9020301. [PMID: 33540601 PMCID: PMC7912804 DOI: 10.3390/microorganisms9020301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/25/2023] Open
Abstract
Taphrinomycotina is the smallest subphylum of the phylum Ascomycota. It is an assemblage of distantly related early diverging lineages of the phylum, comprising organisms with divergent morphology and ecology; however, phylogenomic analyses support its monophyly. In this study, we report the isolation of a yeast strain, which could not be assigned to any of the currently recognised five classes of Taphrinomycotina. The strain of the novel budding species was recovered from extra virgin olive oil and characterised phenotypically by standard methods. The ultrastructure of the cell wall was investigated by transmission electron microscopy. Comparisons of barcoding DNA sequences indicated that the investigated strain is not closely related to any known organism. Tentative phylogenetic placement was achieved by maximum-likelihood analysis of the D1/D2 domain of the nuclear LSU rRNA gene. The genome of the investigated strain was sequenced, assembled, and annotated. Phylogenomic analyses placed it next to the fission Schizosaccharomyces species. To accommodate the novel species, Novakomyces olei, a novel genus Novakomyces, a novel family Novakomycetaceae, a novel order Novakomycetales, and a novel class Novakomycetes is proposed as well. Functional analysis of genes missing in N. olei in comparison to Schizosaccharomyces pombe revealed that they are biased towards biosynthesis of complex organic molecules, regulation of mRNA, and the electron transport chain. Correlating the genome content and physiology among species of Taphrinomycotina revealed some discordance between pheno- and genotype. N. olei produced ascospores in axenic culture preceded by conjugation between two cells. We confirmed that N. olei is a primary homothallic species lacking genes for different mating types.
Collapse
Affiliation(s)
- Neža Čadež
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (N.Č.); (M.T.)
| | - Dénes Dlauchy
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14-16, H-1118 Budapest, Hungary;
| | - Miha Tome
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (N.Č.); (M.T.)
| | - Gábor Péter
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14-16, H-1118 Budapest, Hungary;
- Correspondence:
| |
Collapse
|
68
|
Phylogenomic analyses recover a clade of large-bodied decapodiform cephalopods. Mol Phylogenet Evol 2020; 156:107038. [PMID: 33285289 DOI: 10.1016/j.ympev.2020.107038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Phylogenetic relationships among the squids and cuttlefishes (Cephalopoda:Decapodiformes) have resisted clarification for decades, despite multiple analyses of morphological, molecular and combined data sets. More recently, analyses of complete mitochondrial genomes and hundreds of nuclear loci have yielded similarly ambiguous results. In this study, we re-evaluate hypotheses of decapodiform relationships by increasing taxonomic breadth and utilizing higher-quality genome and transcriptome data for several taxa. We also employ analytical approaches to (1) identify contamination in transcriptome data, (2) better assess model adequacy, and (3) account for potential biases. Using this larger data set, we consistently recover a clade comprising Myopsida (closed-eye squid), Sepiida (cuttlefishes), and Oegopsida (open-eye squid) that is sister to a Sepiolida (bobtail and bottletail squid) clade. Idiosepiida (pygmy squid) is consistently recovered as the sister group to all sampled decapodiform lineages. Further, a weighted Shimodaira-Hasegawa test applied to one of our larger data matrices rejects all alternatives to these ordinal-level relationships. At present, available nuclear genome-scale data support nested clades of relatively large-bodied decapodiform cephalopods to the exclusion of pygmy squids, but improved taxon sampling and additional genomic data will be needed to test these novel hypotheses rigorously.
Collapse
|
69
|
Steenwyk JL, Buida TJ, Li Y, Shen XX, Rokas A. ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol 2020; 18:e3001007. [PMID: 33264284 PMCID: PMC7735675 DOI: 10.1371/journal.pbio.3001007] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/14/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
Highly divergent sites in multiple sequence alignments (MSAs), which can stem from erroneous inference of homology and saturation of substitutions, are thought to negatively impact phylogenetic inference. Thus, several different trimming strategies have been developed for identifying and removing these sites prior to phylogenetic inference. However, a recent study reported that doing so can worsen inference, underscoring the need for alternative alignment trimming strategies. Here, we introduce ClipKIT, an alignment trimming software that, rather than identifying and removing putatively phylogenetically uninformative sites, instead aims to identify and retain parsimony-informative sites, which are known to be phylogenetically informative. To test the efficacy of ClipKIT, we examined the accuracy and support of phylogenies inferred from 14 different alignment trimming strategies, including those implemented in ClipKIT, across nearly 140,000 alignments from a broad sampling of evolutionary histories. Phylogenies inferred from ClipKIT-trimmed alignments are accurate, robust, and time saving. Furthermore, ClipKIT consistently outperformed other trimming methods across diverse datasets, suggesting that strategies based on identifying and retaining parsimony-informative sites provide a robust framework for alignment trimming.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- * E-mail: (JLS); (AR)
| | | | - Yuanning Li
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Xing-Xing Shen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- * E-mail: (JLS); (AR)
| |
Collapse
|
70
|
Kautt AF, Kratochwil CF, Nater A, Machado-Schiaffino G, Olave M, Henning F, Torres-Dowdall J, Härer A, Hulsey CD, Franchini P, Pippel M, Myers EW, Meyer A. Contrasting signatures of genomic divergence during sympatric speciation. Nature 2020; 588:106-111. [PMID: 33116308 PMCID: PMC7759464 DOI: 10.1038/s41586-020-2845-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/23/2020] [Indexed: 01/25/2023]
Abstract
The transition from 'well-marked varieties' of a single species into 'well-defined species'-especially in the absence of geographic barriers to gene flow (sympatric speciation)-has puzzled evolutionary biologists ever since Darwin1,2. Gene flow counteracts the buildup of genome-wide differentiation, which is a hallmark of speciation and increases the likelihood of the evolution of irreversible reproductive barriers (incompatibilities) that complete the speciation process3. Theory predicts that the genetic architecture of divergently selected traits can influence whether sympatric speciation occurs4, but empirical tests of this theory are scant because comprehensive data are difficult to collect and synthesize across species, owing to their unique biologies and evolutionary histories5. Here, within a young species complex of neotropical cichlid fishes (Amphilophus spp.), we analysed genomic divergence among populations and species. By generating a new genome assembly and re-sequencing 453 genomes, we uncovered the genetic architecture of traits that have been suggested to be important for divergence. Species that differ in monogenic or oligogenic traits that affect ecological performance and/or mate choice show remarkably localized genomic differentiation. By contrast, differentiation among species that have diverged in polygenic traits is genomically widespread and much higher overall, consistent with the evolution of effective and stable genome-wide barriers to gene flow. Thus, we conclude that simple trait architectures are not always as conducive to speciation with gene flow as previously suggested, whereas polygenic architectures can promote rapid and stable speciation in sympatry.
Collapse
Affiliation(s)
- Andreas F Kautt
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Alexander Nater
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gonzalo Machado-Schiaffino
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Functional Biology, Area of Genetics, University of Oviedo, Oviedo, Spain
| | - Melisa Olave
- Department of Biology, University of Konstanz, Konstanz, Germany
- Argentine Dryland Research Institute of the National Council for Scientific Research (IADIZA-CONICET), Mendoza, Argentina
| | - Frederico Henning
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Andreas Härer
- Department of Biology, University of Konstanz, Konstanz, Germany
- Division of Biological Sciences, Section of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA
| | - C Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
71
|
McCraney WT, Thacker CE, Alfaro ME. Supermatrix phylogeny resolves goby lineages and reveals unstable root of Gobiaria. Mol Phylogenet Evol 2020; 151:106862. [DOI: 10.1016/j.ympev.2020.106862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023]
|
72
|
Simon C. An Evolving View of Phylogenetic Support. Syst Biol 2020; 71:921-928. [PMID: 32915964 DOI: 10.1093/sysbio/syaa068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/04/2020] [Accepted: 08/15/2020] [Indexed: 01/09/2023] Open
Abstract
If all nucleotide sites evolved at the same rate within molecules and throughout the history of lineages, if all nucleotides were in equal proportion, if any nucleotide or amino acid evolved to any other with equal probability, if all taxa could be sampled, if diversification happened at well-spaced intervals, and if all gene segments had the same history, then tree building would be easy. But of course none of those conditions are true. Hence the need for evaluating the information content and accuracy of phylogenetic trees. The symposium for which this historial essay and presentation were developed focused on the importance of phylogenetic support, specifically branch support for individual clades. Here I present a timeline and review significant events in the history of systematics that set the stage for the development of the sophisticated measures of branch support and examinations of the information content of data highlighted in this symposium.
Collapse
Affiliation(s)
- Chris Simon
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Road, University of Connecticut, Storrs, CT
| |
Collapse
|
73
|
A distinct lineage of Caudovirales that encodes a deeply branching multi-subunit RNA polymerase. Nat Commun 2020; 11:4506. [PMID: 32908149 PMCID: PMC7481178 DOI: 10.1038/s41467-020-18281-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/14/2020] [Indexed: 01/27/2023] Open
Abstract
Bacteriophages play critical roles in the biosphere, but their vast genomic diversity has obscured their evolutionary origins, and phylogenetic analyses have traditionally been hindered by their lack of universal phylogenetic marker genes. In this study we mine metagenomic data and identify a clade of Caudovirales that encodes the β and β' subunits of multi-subunit RNA polymerase (RNAP), a high-resolution phylogenetic marker which enables detailed evolutionary analyses. Our RNAP phylogeny revealed that the Caudovirales RNAP forms a clade distinct from cellular homologs, suggesting an ancient acquisition of this enzyme. Within these multimeric RNAP-encoding Caudovirales (mReC), we find that the similarity of major capsid proteins and terminase large subunits further suggests they form a distinct clade with common evolutionary origin. Our study characterizes a clade of RNAP-encoding Caudovirales and suggests the ancient origin of this enzyme in this group, underscoring the important role of viruses in the early evolution of life on Earth.
Collapse
|
74
|
Evidence Supporting an Antimicrobial Origin of Targeting Peptides to Endosymbiotic Organelles. Cells 2020; 9:cells9081795. [PMID: 32731621 PMCID: PMC7463930 DOI: 10.3390/cells9081795] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria and chloroplasts emerged from primary endosymbiosis. Most proteins of the endosymbiont were subsequently expressed in the nucleo-cytosol of the host and organelle-targeted via the acquisition of N-terminal presequences, whose evolutionary origin remains enigmatic. Using a quantitative assessment of their physico-chemical properties, we show that organelle targeting peptides, which are distinct from signal peptides targeting other subcellular compartments, group with a subset of antimicrobial peptides. We demonstrate that extant antimicrobial peptides target a fluorescent reporter to either the mitochondria or the chloroplast in the green alga Chlamydomonas reinhardtii and, conversely, that extant targeting peptides still display antimicrobial activity. Thus, we provide strong computational and functional evidence for an evolutionary link between organelle-targeting and antimicrobial peptides. Our results support the view that resistance of bacterial progenitors of organelles to the attack of host antimicrobial peptides has been instrumental in eukaryogenesis and in the emergence of photosynthetic eukaryotes.
Collapse
|
75
|
Perotti JI, Almeira N, Saracco F. Towards a generalization of information theory for hierarchical partitions. Phys Rev E 2020; 101:062148. [PMID: 32688491 DOI: 10.1103/physreve.101.062148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/02/2020] [Indexed: 11/07/2022]
Abstract
Complex systems often exhibit multiple levels of organization covering a wide range of physical scales, so the study of the hierarchical decomposition of their structure and function is frequently convenient. To better understand this phenomenon, we introduce a generalization of information theory that works with hierarchical partitions. We begin revisiting the recently introduced hierarchical mutual information (HMI), and show that it can be written as a level by level summation of classical conditional mutual information terms. Then, we prove that the HMI is bounded from above by the corresponding hierarchical joint entropy. In this way, in analogy to the classical case, we derive hierarchical generalizations of many other classical information-theoretic quantities. In particular, we prove that, as opposed to its classical counterpart, the hierarchical generalization of the variation of information is not a metric distance, but it admits a transformation into one. Moreover, focusing on potential applications of the existing developments of the theory, we show how to adjust by chance the HMI. We also corroborate and analyze all the presented theoretical results with exhaustive numerical computations, and include an illustrative application example of the introduced formalism. Finally, we mention some open problems that should be eventually addressed for the proposed generalization of information theory to reach maturity.
Collapse
Affiliation(s)
- Juan Ignacio Perotti
- Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.,Instituto de Física Enrique Gaviola (IFEG-CONICET), Ciudad Universitaria, Córdoba, Argentina
| | - Nahuel Almeira
- Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.,Instituto de Física Enrique Gaviola (IFEG-CONICET), Ciudad Universitaria, Córdoba, Argentina
| | - Fabio Saracco
- IMT School for Advanced Studies Lucca, Piazza San Francesco 19, I-55100, Lucca, Italy
| |
Collapse
|
76
|
Morales-Briones DF, Kadereit G, Tefarikis DT, Moore MJ, Smith SA, Brockington SF, Timoneda A, Yim WC, Cushman JC, Yang Y. Disentangling Sources of Gene Tree Discordance in Phylogenomic Data Sets: Testing Ancient Hybridizations in Amaranthaceae s.l. Syst Biol 2020; 70:219-235. [PMID: 32785686 PMCID: PMC7875436 DOI: 10.1093/sysbio/syaa066] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/01/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
Gene tree discordance in large genomic data sets can be caused by evolutionary processes such as incomplete lineage sorting and hybridization, as well as model violation, and errors in data processing, orthology inference, and gene tree estimation. Species tree methods that identify and accommodate all sources of conflict are not available, but a combination of multiple approaches can help tease apart alternative sources of conflict. Here, using a phylotranscriptomic analysis in combination with reference genomes, we test a hypothesis of ancient hybridization events within the plant family Amaranthaceae s.l. that was previously supported by morphological, ecological, and Sanger-based molecular data. The data set included seven genomes and 88 transcriptomes, 17 generated for this study. We examined gene-tree discordance using coalescent-based species trees and network inference, gene tree discordance analyses, site pattern tests of introgression, topology tests, synteny analyses, and simulations. We found that a combination of processes might have generated the high levels of gene tree discordance in the backbone of Amaranthaceae s.l. Furthermore, we found evidence that three consecutive short internal branches produce anomalous trees contributing to the discordance. Overall, our results suggest that Amaranthaceae s.l. might be a product of an ancient and rapid lineage diversification, and remains, and probably will remain, unresolved. This work highlights the potential problems of identifiability associated with the sources of gene tree discordance including, in particular, phylogenetic network methods. Our results also demonstrate the importance of thoroughly testing for multiple sources of conflict in phylogenomic analyses, especially in the context of ancient, rapid radiations. We provide several recommendations for exploring conflicting signals in such situations. [Amaranthaceae; gene tree discordance; hybridization; incomplete lineage sorting; phylogenomics; species network; species tree; transcriptomics.]
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| | - Gudrun Kadereit
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Delphine T Tefarikis
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Michael J Moore
- Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH 44074-1097, USA
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge CB2 3EA, UK
| | - Alfonso Timoneda
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge CB2 3EA, UK
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89577, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89577, USA
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
77
|
Vasilikopoulos A, Misof B, Meusemann K, Lieberz D, Flouri T, Beutel RG, Niehuis O, Wappler T, Rust J, Peters RS, Donath A, Podsiadlowski L, Mayer C, Bartel D, Böhm A, Liu S, Kapli P, Greve C, Jepson JE, Liu X, Zhou X, Aspöck H, Aspöck U. An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). BMC Evol Biol 2020; 20:64. [PMID: 32493355 PMCID: PMC7268685 DOI: 10.1186/s12862-020-01631-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The latest advancements in DNA sequencing technologies have facilitated the resolution of the phylogeny of insects, yet parts of the tree of Holometabola remain unresolved. The phylogeny of Neuropterida has been extensively studied, but no strong consensus exists concerning the phylogenetic relationships within the order Neuroptera. Here, we assembled a novel transcriptomic dataset to address previously unresolved issues in the phylogeny of Neuropterida and to infer divergence times within the group. We tested the robustness of our phylogenetic estimates by comparing summary coalescent and concatenation-based phylogenetic approaches and by employing different quartet-based measures of phylogenomic incongruence, combined with data permutations. RESULTS Our results suggest that the order Raphidioptera is sister to Neuroptera + Megaloptera. Coniopterygidae is inferred as sister to all remaining neuropteran families suggesting that larval cryptonephry could be a ground plan feature of Neuroptera. A clade that includes Nevrorthidae, Osmylidae, and Sisyridae (i.e. Osmyloidea) is inferred as sister to all other Neuroptera except Coniopterygidae, and Dilaridae is placed as sister to all remaining neuropteran families. Ithonidae is inferred as the sister group of monophyletic Myrmeleontiformia. The phylogenetic affinities of Chrysopidae and Hemerobiidae were dependent on the data type analyzed, and quartet-based analyses showed only weak support for the placement of Hemerobiidae as sister to Ithonidae + Myrmeleontiformia. Our molecular dating analyses suggest that most families of Neuropterida started to diversify in the Jurassic and our ancestral character state reconstructions suggest a primarily terrestrial environment of the larvae of Neuropterida and Neuroptera. CONCLUSION Our extensive phylogenomic analyses consolidate several key aspects in the backbone phylogeny of Neuropterida, such as the basal placement of Coniopterygidae within Neuroptera and the monophyly of Osmyloidea. Furthermore, they provide new insights into the timing of diversification of Neuropterida. Despite the vast amount of analyzed molecular data, we found that certain nodes in the tree of Neuroptera are not robustly resolved. Therefore, we emphasize the importance of integrating the results of morphological analyses with those of sequence-based phylogenomics. We also suggest that comparative analyses of genomic meta-characters should be incorporated into future phylogenomic studies of Neuropterida.
Collapse
Affiliation(s)
- Alexandros Vasilikopoulos
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany.
| | - Bernhard Misof
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany.
| | - Karen Meusemann
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
- Australian National Insect Collection, National Research Collections Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT 2601, Australia
| | - Doria Lieberz
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Rolf G Beutel
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Torsten Wappler
- Natural History Department, Hessisches Landesmuseum Darmstadt, 64283, Darmstadt, Germany
| | - Jes Rust
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany
| | - Ralph S Peters
- Centre for Taxonomy and Evolutionary Research, Arthropoda Department, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Alexander Donath
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Lars Podsiadlowski
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Christoph Mayer
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Daniela Bartel
- Department of Evolutionary Biology, University of Vienna, 1090, Vienna, Austria
| | - Alexander Böhm
- Department of Evolutionary Biology, University of Vienna, 1090, Vienna, Austria
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Paschalia Kapli
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325, Frankfurt, Germany
| | - James E Jepson
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 N73K, Cork, Ireland
| | - Xingyue Liu
- Department of Entomology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Xin Zhou
- Department of Entomology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Horst Aspöck
- Institute of Specific Prophylaxis and Tropical Medicine, Medical Parasitology, Medical University of Vienna (MUW), 1090, Vienna, Austria
| | - Ulrike Aspöck
- Department of Evolutionary Biology, University of Vienna, 1090, Vienna, Austria
- Zoological Department II, Natural History Museum of Vienna, 1010, Vienna, Austria
| |
Collapse
|
78
|
Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, Zhu Q, Bolzan M, Cumbo F, May U, Sanders JG, Zolfo M, Kopylova E, Pasolli E, Knight R, Mirarab S, Huttenhower C, Segata N. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat Commun 2020; 11:2500. [PMID: 32427907 PMCID: PMC7237447 DOI: 10.1038/s41467-020-16366-7] [Citation(s) in RCA: 440] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 04/27/2020] [Indexed: 01/10/2023] Open
Abstract
Microbial genomes are available at an ever-increasing pace, as cultivation and sequencing become cheaper and obtaining metagenome-assembled genomes (MAGs) becomes more effective. Phylogenetic placement methods to contextualize hundreds of thousands of genomes must thus be efficiently scalable and sensitive from closely related strains to divergent phyla. We present PhyloPhlAn 3.0, an accurate, rapid, and easy-to-use method for large-scale microbial genome characterization and phylogenetic analysis at multiple levels of resolution. PhyloPhlAn 3.0 can assign genomes from isolate sequencing or MAGs to species-level genome bins built from >230,000 publically available sequences. For individual clades of interest, it reconstructs strain-level phylogenies from among the closest species using clade-specific maximally informative markers. At the other extreme of resolution, it scales to large phylogenies comprising >17,000 microbial species. Examples including Staphylococcus aureus isolates, gut metagenomes, and meta-analyses demonstrate the ability of PhyloPhlAn 3.0 to support genomic and metagenomic analyses.
Collapse
Affiliation(s)
| | | | | | | | - Serena Manara
- Department CIBIO, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Mattia Bolzan
- Department CIBIO, University of Trento, Trento, Italy
- PreBiomics s.r.l, Trento, Italy
| | - Fabio Cumbo
- Department CIBIO, University of Trento, Trento, Italy
| | - Uyen May
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jon G Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Cornell Institute for Host-Microbe Interaction and Disease, Cornell University, Ithaca, NY, USA
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
| | - Evguenia Kopylova
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Clarity Genomics BVBA, Sint-Michielskaai 34, 2000, Antwerpen, Belgium
| | - Edoardo Pasolli
- Department CIBIO, University of Trento, Trento, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
79
|
Proctor RH, McCormick SP, Gutiérrez S. Genetic bases for variation in structure and biological activity of trichothecene toxins produced by diverse fungi. Appl Microbiol Biotechnol 2020; 104:5185-5199. [PMID: 32328680 DOI: 10.1007/s00253-020-10612-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 11/26/2022]
Abstract
Trichothecenes are sesquiterpene toxins produced by diverse but relatively few fungal species in at least three classes of Ascomycetes: Dothideomycetes, Eurotiomycetes, and Sordariomycetes. Approximately 200 structurally distinct trichothecene analogs have been described, but a given fungal species typically produces only a small subset of analogs. All trichothecenes share a core structure consisting of a four-ring nucleus known as 12,13-epoxytrichothec-9-ene. This structure can be substituted at various positions with hydroxyl, acyl, or keto groups to give rise to the diversity of trichothecene structures that has been described. Over the last 30 years, the genetic and biochemical pathways required for trichothecene biosynthesis in several species of the fungi Fusarium and Trichoderma have been elucidated. In addition, phylogenetic and functional analyses of trichothecene biosynthetic (TRI) genes from fungi in multiple genera have provided insights into how acquisition, loss, and changes in functions of TRI genes have given rise to the diversity of trichothecene structures. These analyses also suggest both divergence and convergence of TRI gene function during the evolutionary history of trichothecene biosynthesis. What has driven trichothecene structural diversification remains an unanswered question. However, insight into the role of trichothecenes in plant pathogenesis of Fusarium species and into plant glucosyltransferases that detoxify the toxins by glycosylating them point to a possible driver. Because the glucosyltransferases can have substrate specificity, changes in trichothecene structures produced by a fungus could allow it to evade detoxification by the plant enzymes. Thus, it is possible that advantages conferred by evading detoxification have contributed to trichothecene structural diversification. KEY POINTS : • TRI genes have evolved by diverse processes: loss, acquisition and changes in function. • Some TRI genes have acquired the same function by convergent evolution. • Some other TRI genes have evolved divergently to have different functions. • Some TRI genes were acquired or resulted from diversification in function of other genes. • Substrate specificity of plant glucosyltransferases could drive trichothecene diversity.
Collapse
Affiliation(s)
- R H Proctor
- United States Department of Agriculture, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, 61604-3902, USA.
| | - S P McCormick
- United States Department of Agriculture, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, 61604-3902, USA
| | - S Gutiérrez
- Area of Microbiology, University of León, Campus de Ponferrada, 24400, Ponferrada, Spain.
| |
Collapse
|
80
|
Yang L, Su D, Chang X, Foster CS, Sun L, Huang CH, Zhou X, Zeng L, Ma H, Zhong B. Phylogenomic Insights into Deep Phylogeny of Angiosperms Based on Broad Nuclear Gene Sampling. PLANT COMMUNICATIONS 2020; 1:100027. [PMID: 33367231 PMCID: PMC7747974 DOI: 10.1016/j.xplc.2020.100027] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 05/02/2023]
Abstract
Angiosperms (flowering plants) are the most diverse and species-rich group of plants. The vast majority (∼99.95%) of angiosperms form a clade called Mesangiospermae, which is subdivided into five major groups: eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales. The relationships among these Mesangiospermae groups have been the subject of long debate. In this study, we assembled a phylogenomic dataset of 1594 genes from 151 angiosperm taxa, including representatives of all five lineages, to investigate the phylogeny of major angiosperm lineages under both coalescent- and concatenation-based methods. We dissected the phylogenetic signal and found that more than half of the genes lack phylogenetic information for the backbone of angiosperm phylogeny. We further removed the genes with weak phylogenetic signal and showed that eudicots, Ceratophyllales, and Chloranthales form a clade, with magnoliids and monocots being the next successive sister lineages. Similar frequencies of gene tree conflict are suggestive of incomplete lineage sorting along the backbone of the angiosperm phylogeny. Our analyses suggest that a fully bifurcating species tree may not be the best way to represent the early radiation of angiosperms. Meanwhile, we inferred that the crown-group angiosperms originated approximately between 255.1 and 222.2 million years ago, and Mesangiospermae diversified into the five extant groups in a short time span (∼27 million years) at the Early to Late Jurassic.
Collapse
Affiliation(s)
- Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Danyan Su
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xin Chang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Charles S.P. Foster
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Linhua Sun
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
81
|
Pérez-Escobar OA, Bogarín D, Schley R, Bateman RM, Gerlach G, Harpke D, Brassac J, Fernández-Mazuecos M, Dodsworth S, Hagsater E, Blanco MA, Gottschling M, Blattner FR. Resolving relationships in an exceedingly young Neotropical orchid lineage using Genotyping-by-sequencing data. Mol Phylogenet Evol 2020; 144:106672. [DOI: 10.1016/j.ympev.2019.106672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 01/18/2023]
|
82
|
Keuler R, Garretson A, Saunders T, Erickson RJ, St Andre N, Grewe F, Smith H, Lumbsch HT, Huang JP, St Clair LL, Leavitt SD. Genome-scale data reveal the role of hybridization in lichen-forming fungi. Sci Rep 2020; 10:1497. [PMID: 32001749 PMCID: PMC6992703 DOI: 10.1038/s41598-020-58279-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Advancements in molecular genetics have revealed that hybridization may be common among plants, animals, and fungi, playing a role in evolutionary dynamics and speciation. While hybridization has been well-documented in pathogenic fungi, the effects of these processes on speciation in fungal lineages with different life histories and ecological niches are largely unexplored. Here we investigated the potential influence of hybridization on the emergence of morphologically and reproductively distinct asexual lichens. We focused on vagrant forms (growing obligately unattached to substrates) within a clade of rock-dwelling, sexually reproducing species in the Rhizoplaca melanophthalma (Lecanoraceae, Ascomycota) species complex. We used phylogenomic data from both mitochondrial and nuclear genomes to infer evolutionary relationships and potential patterns of introgression. We observed multiple instances of discordance between the mitochondrial and nuclear trees, including the clade comprising the asexual vagrant species R. arbuscula, R. haydenii, R. idahoensis, and a closely related rock-dwelling lineage. Despite well-supported phylogenies, we recovered strong evidence of a reticulated evolutionary history using a network approach that incorporates both incomplete lineage sorting and hybridization. These data suggest that the rock-dwelling western North American subalpine endemic R. shushanii is potentially the result of a hybrid speciation event, and introgression may have also played a role in other taxa, including vagrant species R. arbuscula, R. haydenii and R. idahoensis. We discuss the potential roles of hybridization in terms of generating asexuality and novel morphological traits in lichens. Furthermore, our results highlight the need for additional study of reticulate phylogenies when investigating species boundaries and evolutionary history, even in cases with well-supported topologies inferred from genome-scale data.
Collapse
Affiliation(s)
- Rachel Keuler
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Alexis Garretson
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Theresa Saunders
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Robert J Erickson
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Nathan St Andre
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Felix Grewe
- Grainger Bioinformatics Center, Science & Education, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL, 60605, USA
| | - Hayden Smith
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - H Thorsten Lumbsch
- Grainger Bioinformatics Center, Science & Education, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL, 60605, USA
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, 128 Academia Rd, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Larry L St Clair
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
- M. L. Bean Life Science Museum, Brigham Young University, 1115 MLBM, Provo, UT, 84602, USA
| | - Steven D Leavitt
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA.
- M. L. Bean Life Science Museum, Brigham Young University, 1115 MLBM, Provo, UT, 84602, USA.
| |
Collapse
|
83
|
Neupane S, Fučíková K, Lewis LA, Kuo L, Chen MH, Lewis PO. Assessing Combinability of Phylogenomic Data Using Bayes Factors. Syst Biol 2020; 68:744-754. [PMID: 30726954 DOI: 10.1093/sysbio/syz007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/26/2019] [Accepted: 02/04/2019] [Indexed: 11/14/2022] Open
Abstract
With the rapid reduction in sequencing costs of high-throughput genomic data, it has become commonplace to use hundreds of genes to infer phylogeny of any study system. While sampling a large number of genes has given us a tremendous opportunity to uncover previously unknown relationships and improve phylogenetic resolution, it also presents us with new challenges when the phylogenetic signal is confused by differences in the evolutionary histories of sampled genes. Given the incorporation of accurate marginal likelihood estimation methods into popular Bayesian software programs, it is natural to consider using the Bayes Factor (BF) to compare different partition models in which genes within any given partition subset share both tree topology and edge lengths. We explore using marginal likelihood to assess data subset combinability when data subsets have varying levels of phylogenetic discordance due to deep coalescence events among genes (simulated within a species tree), and compare the results with our recently described phylogenetic informational dissonance index (D) estimated for each data set. BF effectively detects phylogenetic incongruence and provides a way to assess the statistical significance of D values. We use BFs to assess data combinability using an empirical data set comprising 56 plastid genes from the green algal order Volvocales. We also discuss the potential need for calibrating BFs and demonstrate that BFs used in this study are correctly calibrated.
Collapse
Affiliation(s)
- Suman Neupane
- Department of Biological Sciences, Virginia Tech University, 4076 Derring Hall, 926 West Campus Drive, Blacksburg, VA 24061, USA.,Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Karolina Fučíková
- Department of Natural Sciences, Assumption College, 500 Salisbury St., Worcester, MA 01609, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Lynn Kuo
- Department of Statistics, University of Connecticut, 215 Glenbrook Road, Unit 4120, Storrs, CT 06269, USA
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, 215 Glenbrook Road, Unit 4120, Storrs, CT 06269, USA
| | - Paul O Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| |
Collapse
|
84
|
Mao H, Wang H. Resolution of deep divergence of club fungi (phylum Basidiomycota). Synth Syst Biotechnol 2019; 4:225-231. [PMID: 31890927 PMCID: PMC6926304 DOI: 10.1016/j.synbio.2019.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 11/05/2022] Open
Abstract
A long-standing question about the early evolution of club fungi (phylum Basidiomycota) is the relationship between the three major groups, Pucciniomycotina, Ustilaginomycotina and Agaricomycotina. It is unresolved whether Agaricomycotina are more closely related to Ustilaginomycotina or to Pucciniomycotina. Here we reconstructed the branching order of the three subphyla through two sources of phylogenetic signals, i.e. standard phylogenomic analysis and alignment-free phylogenetic approach. Overall, beyond congruency within the frame of standard phylogenomic analysis, our results consistently and robustly supported the early divergence of Ustilaginomycotina and a closer relationship between Agaricomycotina and Pucciniomycotina.
Collapse
Affiliation(s)
- Hongliang Mao
- T-Life Research Center, Department of Physics, Fudan University, Shanghai, 200433, PR China
| | - Hao Wang
- T-Life Research Center, Department of Physics, Fudan University, Shanghai, 200433, PR China
| |
Collapse
|
85
|
Martín-Hernanz S, Aparicio A, Fernández-Mazuecos M, Rubio E, Reyes-Betancort JA, Santos-Guerra A, Olangua-Corral M, Albaladejo RG. Maximize Resolution or Minimize Error? Using Genotyping-By-Sequencing to Investigate the Recent Diversification of Helianthemum (Cistaceae). FRONTIERS IN PLANT SCIENCE 2019; 10:1416. [PMID: 31781140 PMCID: PMC6859804 DOI: 10.3389/fpls.2019.01416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/11/2019] [Indexed: 05/27/2023]
Abstract
A robust phylogenetic framework, in terms of extensive geographical and taxonomic sampling, well-resolved species relationships and high certainty of tree topologies and branch length estimations, is critical in the study of macroevolutionary patterns. Whereas Sanger sequencing-based methods usually recover insufficient phylogenetic signal, especially in recently diversified lineages, reduced-representation sequencing methods tend to provide well-supported phylogenetic relationships, but usually entail remarkable bioinformatic challenges due to the inherent trade-off between the number of SNPs and the magnitude of associated error rates. The genus Helianthemum (Cistaceae) is a species-rich and taxonomically complex Palearctic group of plants that diversified mainly since the Upper Miocene. It is a challenging case study since previous attempts using Sanger sequencing were unable to resolve the intrageneric phylogenetic relationships. Aiming to obtain a robust phylogenetic reconstruction based on genotyping-by-sequencing (GBS), we established a rigorous methodological workflow in which we i) explored how variable settings during dataset assembly have an impact on error rates and on the degree of resolution under concatenation and coalescent approaches, ii) assessed the effect of two extreme parameter configurations (minimizing error rates vs. maximizing phylogenetic resolution) on tree topology and branch lengths, and iii) evaluated the effects of these two configurations on estimates of divergence times and diversification rates. Our analyses produced highly supported topologically congruent phylogenetic trees for both configurations. However, minimizing error rates did produce more reliable branch lengths, critically affecting the accuracy of downstream analyses (i.e. divergence times and diversification rates). In addition to recommending a revision of intrageneric systematics, our results enabled us to identify three highly diversified lineages in Helianthemum in contrasting geographical areas and ecological conditions, which started radiating in the Upper Miocene.
Collapse
Affiliation(s)
- Sara Martín-Hernanz
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Abelardo Aparicio
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | | | - Encarnación Rubio
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - J. Alfredo Reyes-Betancort
- Jardín de Aclimatación de la Orotava, Instituto Canario de Investigaciones Agrarias (ICIA), Santa Cruz de Tenerife, Spain
| | - Arnoldo Santos-Guerra
- Jardín de Aclimatación de la Orotava, Instituto Canario de Investigaciones Agrarias (ICIA), Santa Cruz de Tenerife, Spain
| | - María Olangua-Corral
- Departamento de Biología Reproductiva y Micro-morfología, Jardín Botánico Canario ‘Viera y Clavijo’—Unidad Asociada CSIC (Cabildo de Gran Canaria), Las Palmas de Gran Canaria, Spain
| | - Rafael G. Albaladejo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
86
|
Takashima M, Sugita T. Draft Genome Analysis of Trichosporonales Species That Contribute to the Taxonomy of the Genus Trichosporon and Related Taxa. Med Mycol J 2019; 60:51-57. [PMID: 31155572 DOI: 10.3314/mmj.19.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many nomenclatural changes, including proposals of new taxa, have been carried out in fungi to adapt to the "One fungus = One name" (1F=1N) principle. In yeasts, while some changes have been made in response to 1F=1N, most have resulted from two other factors: i) an improved understanding of biological diversity due to an increase in number of known species, and ii) progress in the methods for analyzing and evaluating biological diversity. The method for constructing a backbone tree, which is a basal tree used to infer phylogeny, has also progressed from single-gene trees to multi-locus trees and further, to genome trees. This paper describes recent advances related to the contribution of genomic data to taxonomy, using the order Trichosporonales as an example.
Collapse
Affiliation(s)
- Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Research Center
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University
| |
Collapse
|
87
|
Cloutier A, Sackton TB, Grayson P, Clamp M, Baker AJ, Edwards SV. Whole-Genome Analyses Resolve the Phylogeny of Flightless Birds (Palaeognathae) in the Presence of an Empirical Anomaly Zone. Syst Biol 2019; 68:937-955. [PMID: 31135914 PMCID: PMC6857515 DOI: 10.1093/sysbio/syz019] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/06/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023] Open
Abstract
Palaeognathae represent one of the two basal lineages in modern birds, and comprise the volant (flighted) tinamous and the flightless ratites. Resolving palaeognath phylogenetic relationships has historically proved difficult, and short internal branches separating major palaeognath lineages in previous molecular phylogenies suggest that extensive incomplete lineage sorting (ILS) might have accompanied a rapid ancient divergence. Here, we investigate palaeognath relationships using genome-wide data sets of three types of noncoding nuclear markers, together totaling 20,850 loci and over 41 million base pairs of aligned sequence data. We recover a fully resolved topology placing rheas as the sister to kiwi and emu + cassowary that is congruent across marker types for two species tree methods (MP-EST and ASTRAL-II). This topology is corroborated by patterns of insertions for 4274 CR1 retroelements identified from multispecies whole-genome screening, and is robustly supported by phylogenomic subsampling analyses, with MP-EST demonstrating particularly consistent performance across subsampling replicates as compared to ASTRAL. In contrast, analyses of concatenated data supermatrices recover rheas as the sister to all other nonostrich palaeognaths, an alternative that lacks retroelement support and shows inconsistent behavior under subsampling approaches. While statistically supporting the species tree topology, conflicting patterns of retroelement insertions also occur and imply high amounts of ILS across short successive internal branches, consistent with observed patterns of gene tree heterogeneity. Coalescent simulations and topology tests indicate that the majority of observed topological incongruence among gene trees is consistent with coalescent variation rather than arising from gene tree estimation error alone, and estimated branch lengths for short successive internodes in the inferred species tree fall within the theoretical range encompassing the anomaly zone. Distributions of empirical gene trees confirm that the most common gene tree topology for each marker type differs from the species tree, signifying the existence of an empirical anomaly zone in palaeognaths.
Collapse
Affiliation(s)
- Alison Cloutier
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Department of Ornithology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Timothy B Sackton
- Informatics Group, Harvard University, 28 Oxford Street, Cambridge, MA 02138, USA
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Department of Ornithology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Michele Clamp
- Informatics Group, Harvard University, 28 Oxford Street, Cambridge, MA 02138, USA
| | - Allan J Baker
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, Ontario M5S 3B2, Canada
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Department of Ornithology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
88
|
Natsidis P, Tsakogiannis A, Pavlidis P, Tsigenopoulos CS, Manousaki T. Phylogenomics investigation of sparids (Teleostei: Spariformes) using high-quality proteomes highlights the importance of taxon sampling. Commun Biol 2019; 2:400. [PMID: 31701028 PMCID: PMC6825128 DOI: 10.1038/s42003-019-0654-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/08/2019] [Indexed: 12/29/2022] Open
Abstract
Sparidae (Teleostei: Spariformes) are a family of fish constituted by approximately 150 species with high popularity and commercial value, such as porgies and seabreams. Although the phylogeny of this family has been investigated multiple times, its position among other teleost groups remains ambiguous. Most studies have used a single or few genes to decipher the phylogenetic relationships of sparids. Here, we conducted a thorough phylogenomic analysis using five recently available Sparidae gene-sets and 26 high-quality, genome-predicted teleost proteomes. Our analysis suggested that Tetraodontiformes (puffer fish, sunfish) are the closest relatives to sparids than all other groups used. By analytically comparing this result to our own previous contradicting finding, we show that this discordance is not due to different orthology assignment algorithms; on the contrary, we prove that it is caused by the increased taxon sampling of the present study, outlining the great importance of this aspect in phylogenomic analyses in general.
Collapse
Affiliation(s)
- Paschalis Natsidis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - Alexandros Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology, Heraklion, Greece
| | - Costas S. Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| |
Collapse
|
89
|
Gatesy J, Sloan DB, Warren JM, Baker RH, Simmons MP, Springer MS. Partitioned coalescence support reveals biases in species-tree methods and detects gene trees that determine phylogenomic conflicts. Mol Phylogenet Evol 2019; 139:106539. [DOI: 10.1016/j.ympev.2019.106539] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022]
|
90
|
Morales‐Briones DF, Arias T, Di Stilio VS, Tank DC. Chloroplast primers for clade-wide phylogenetic studies of Thalictrum. APPLICATIONS IN PLANT SCIENCES 2019; 7:e11294. [PMID: 31667022 PMCID: PMC6814179 DOI: 10.1002/aps3.11294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/20/2019] [Indexed: 06/02/2023]
Abstract
PREMISE Chloroplast primers were developed for phylogenetic and comparative studies in Thalictrum (Ranunculaceae). METHODS AND RESULTS We assembled and annotated the complete plastome sequence of T. thalictroides by combining multiple whole genome sequencing libraries. Using transcriptome-sequencing libraries, we also assembled a partial plastome of the related species T. hernandezii. From the newly assembled plastomes and one previously sequenced plastome, we designed and validated 28 primer pairs to target variable portions of the chloroplast genome in Thalictrum. Furthermore, we tested the validated primers in 62 species of Thalictrum. The total alignment length of the 28 regions was 15,268 bp with 2443 variable sites and 92% character occupancy. CONCLUSIONS The newly developed chloroplast primer pairs improve the phylogenetic resolution (bootstrap support and tree certainty) in Thalictum and will be a useful resource for future phylogenetic and evolutionary studies for species in the genus and in close relatives in Thalictroideae.
Collapse
Affiliation(s)
- Diego F. Morales‐Briones
- Department of Biological SciencesUniversity of Idaho875 Perimeter Dr. MS 3051MoscowIdaho83844‐3051USA
- Stillinger HerbariumUniversity of Idaho875 Perimeter Dr. MS 3026MoscowIdaho83844-3026USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST)University of Idaho875 Perimeter Dr. MS 3051MoscowIdaho83844‐3051USA
- Present address:
Department of Plant and Microbial BiologyUniversity of Minnesota1479 Gortner AvenueSaint PaulMinnesota55108‐1095USA
| | - Tatiana Arias
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongHong Kong
- Corporación para Investigaciones BiológicasCra. 72 A No. 78 B 141MedellínColombia
- Department of BiologyUniversity of WashingtonBox 351800SeattleWashington98195‐1800USA
| | - Verónica S. Di Stilio
- Department of BiologyUniversity of WashingtonBox 351800SeattleWashington98195‐1800USA
| | - David C. Tank
- Department of Biological SciencesUniversity of Idaho875 Perimeter Dr. MS 3051MoscowIdaho83844‐3051USA
- Stillinger HerbariumUniversity of Idaho875 Perimeter Dr. MS 3026MoscowIdaho83844-3026USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST)University of Idaho875 Perimeter Dr. MS 3051MoscowIdaho83844‐3051USA
| |
Collapse
|
91
|
Paetzold C, Wood KR, Eaton DAR, Wagner WL, Appelhans MS. Phylogeny of Hawaiian Melicope (Rutaceae): RAD-seq Resolves Species Relationships and Reveals Ancient Introgression. FRONTIERS IN PLANT SCIENCE 2019; 10:1074. [PMID: 31608076 PMCID: PMC6758601 DOI: 10.3389/fpls.2019.01074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/07/2019] [Indexed: 05/11/2023]
Abstract
Hawaiian Melicope are one of the major adaptive radiations of the Hawaiian Islands comprising 54 endemic species. The lineage is monophyletic with an estimated crown age predating the rise of the current high islands. Phylogenetic inference based on Sanger sequencing has not been sufficient to resolve species or deeper level relationships. Here, we apply restriction site-associated DNA sequencing (RAD-seq) to the lineage to infer phylogenetic relationships. We employ Quartet Sampling to assess information content and statistical support, and to quantify discordance as well as partitioned ABBA-BABA tests to uncover evidence of introgression. Our new results drastically improved resolution of relationships within Hawaiian Melicope. The lineage is divided into five fully supported main clades, two of which correspond to morphologically circumscribed infrageneric groups. We provide evidence for both ancestral and current hybridization events. We confirm the necessity for a taxonomic revision of the Melicope section Pelea, as well as a re-evaluation of several species complexes by combining genomic and morphological data.
Collapse
Affiliation(s)
- Claudia Paetzold
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Göttingen, Goettingen, Germany
| | - Kenneth R. Wood
- National Tropical Botanical Garden, Kalaheo, HI, United States
| | - Deren A. R. Eaton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, United States
| | - Warren L. Wagner
- Department of Botany, Smithsonian Institution, Washington, DC, United States
| | - Marc S. Appelhans
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Göttingen, Goettingen, Germany
- Department of Botany, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
92
|
Recognition and delineation of yeast genera based on genomic data: Lessons from Trichosporonales. Fungal Genet Biol 2019; 130:31-42. [DOI: 10.1016/j.fgb.2019.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/19/2019] [Accepted: 04/20/2019] [Indexed: 02/03/2023]
|
93
|
Quartet-Based Computations of Internode Certainty Provide Robust Measures of Phylogenetic Incongruence. Syst Biol 2019; 69:308-324. [DOI: 10.1093/sysbio/syz058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/26/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Incongruence, or topological conflict, is prevalent in genome-scale data sets. Internode certainty (IC) and related measures were recently introduced to explicitly quantify the level of incongruence of a given internal branch among a set of phylogenetic trees and complement regular branch support measures (e.g., bootstrap, posterior probability) that instead assess the statistical confidence of inference. Since most phylogenomic studies contain data partitions (e.g., genes) with missing taxa and IC scores stem from the frequencies of bipartitions (or splits) on a set of trees, IC score calculation typically requires adjusting the frequencies of bipartitions from these partial gene trees. However, when the proportion of missing taxa is high, the scores yielded by current approaches that adjust bipartition frequencies in partial gene trees differ substantially from each other and tend to be overestimates. To overcome these issues, we developed three new IC measures based on the frequencies of quartets, which naturally apply to both complete and partial trees. Comparison of our new quartet-based measures to previous bipartition-based measures on simulated data shows that: (1) on complete data sets, both quartet-based and bipartition-based measures yield very similar IC scores; (2) IC scores of quartet-based measures on a given data set with and without missing taxa are more similar than the scores of bipartition-based measures; and (3) quartet-based measures are more robust to the absence of phylogenetic signal and errors in phylogenetic inference than bipartition-based measures. Additionally, the analysis of an empirical mammalian phylogenomic data set using our quartet-based measures reveals the presence of substantial levels of incongruence for numerous internal branches. An efficient open-source implementation of these quartet-based measures is freely available in the program QuartetScores (https://github.com/lutteropp/QuartetScores).
Collapse
|
94
|
Chen X, Dong Z, Liu G, He J, Zhao R, Wang W, Peng Y, Li X. Phylogenetic analysis provides insights into the evolution of Asian fireflies and adult bioluminescence. Mol Phylogenet Evol 2019; 140:106600. [PMID: 31445200 DOI: 10.1016/j.ympev.2019.106600] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 02/04/2023]
Abstract
Fireflies are one of the best-known examples of luminescent organisms. The limited geographic distribution and rarity of some firefly genera have hindered molecular phylogenetic analysis, resulting in uncertainty in regard to firefly phylogeny. Here, using genome skimming next-generation sequencing, we sequenced 23 Asian firefly species from 15 genera (Lampyridae: 14; Rhagophthalmidae: one) and assembled their mitochondrial genomes (mitogenomes) and nuclear ribosomal DNA (rDNA) repeat unit. The mitogenomes (including 15 mitochondrial genes: COX1-3, ATP6&8, ND1-6&4L, CYTB, 12S, and 16S) were recovered for almost all 23 species; furthermore, three regions of the nuclear rDNA repeat unit (18S, 28S, and 5.8S) were recovered for 22 out of the 23 species. The mitogenomes of 11 genera and 22 species as well as the complete rDNA from 22 species are reported here for the first time. Combined with previously published sequences of mitochondrial and rDNA coding regions, 166 species (170 populations with four overlapping in Lampyridae) were included in the current analyses. We selected different species groups and coding regions to infer phylogenies, and then employed tree certainty (TC) and internode certainty (IC) to quantify any phylogenetic incongruence. Phylogenetic analysis of 18 coding regions (15 mitochondrial genes and three regions of the nuclear rDNA repeat unit) from different species groups showed that the 144-species selection group (excluding 22 species outside Lampyridae) had relatively high TC (101.39). Further phylogenetic analysis of the 144 species using different coding regions indicated that the phylogeny of the 13 coding regions (10 mitochondrial genes: COX1-2, ATP6&8, ND1, ND4-5, CYTB, 12S and 16S; three rDNA regions: 18S, 5.8S, and 28S) demonstrated higher TC (103.02) than the phylogenies based on the 18 coding regions (TC = 101.39), conserved-regions (c-regions, i.e., 12S, 16S, COX1, 18S, and 28S) (TC = 95.11), or conserved-sites (c-sites, TC = 92.31) for the mitochondrial genes. In contrast, the c-sites strengthened the deeper nodes of the 144-species phylogeny compared to the c-regions. All of the 144-species phylogenies using different coding regions (except the c-regions) consistently recovered the monophyly of each of the three luminous families and their combination (Lampyridae, Rhagophthalmidae, and Phengodidae) with high IC support. Our phylogenetic analyses clarified the position of firefly genera Lamprigera, Vesta, Stenocladius, Pyrocoelia, Diaphanes, Abscondita, Pygoluciola, Emeia, Pristolycus, and Menghuoius. We also inferred the evolutionary pattern of adult bioluminescence in Lampyridae based on the phylogenies of 166 and 144 species. Our data suggest that the common ancestor of Lampyridae possessed adult bioluminescence, with a higher loss rate than gain rate of bioluminescence during its lineage evolution. Our results provide insight into Asian firefly phylogeny, and also enrich mitogenome and rDNA data resources for further study.
Collapse
Affiliation(s)
- Xing Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guichun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jinwu He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Excellence in Animal Evolution and Genetics, Kunming, Yunnan 650223, China; Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Yanqiong Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
95
|
A Robust Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the Genera Aspergillus and Penicillium. mBio 2019; 10:mBio.00925-19. [PMID: 31289177 PMCID: PMC6747717 DOI: 10.1128/mbio.00925-19] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Understanding the evolution of traits across technologically and medically significant fungi requires a robust phylogeny. Even though species in the Aspergillus and Penicillium genera (family Aspergillaceae, class Eurotiomycetes) are some of the most significant technologically and medically relevant fungi, we still lack a genome-scale phylogeny of the lineage or knowledge of the parts of the phylogeny that exhibit conflict among analyses. Here, we used a phylogenomic approach to infer evolutionary relationships among 81 genomes that span the diversity of Aspergillus and Penicillium species, to identify conflicts in the phylogeny, and to determine the likely underlying factors of the observed conflicts. Using a data matrix comprised of 1,668 genes, we found that while most branches of the phylogeny of the Aspergillaceae are robustly supported and recovered irrespective of method of analysis, a few exhibit various degrees of conflict among our analyses. Further examination of the observed conflict revealed that it largely stems from incomplete lineage sorting and hybridization or introgression. Our analyses provide a robust and comprehensive evolutionary genomic roadmap for this important lineage, which will facilitate the examination of the diverse technologically and medically relevant traits of these fungi in an evolutionary context. The filamentous fungal family Aspergillaceae contains >1,000 known species, mostly in the genera Aspergillus and Penicillium. Several species are used in the food, biotechnology, and drug industries (e.g., Aspergillus oryzae and Penicillium camemberti), while others are dangerous human and plant pathogens (e.g., Aspergillus fumigatus and Penicillium digitatum). To infer a robust phylogeny and pinpoint poorly resolved branches and their likely underlying contributors, we used 81 genomes spanning the diversity of Aspergillus and Penicillium to construct a 1,668-gene data matrix. Phylogenies of the nucleotide and amino acid versions of this full data matrix as well as of several additional data matrices were generated using three different maximum likelihood schemes (i.e., gene-partitioned, unpartitioned, and coalescence) and using both site-homogenous and site-heterogeneous models (total of 64 species-level phylogenies). Examination of the topological agreement among these phylogenies and measures of internode certainty identified 11/78 (14.1%) bipartitions that were incongruent and pinpointed the likely underlying contributing factors, which included incomplete lineage sorting, hidden paralogy, hybridization or introgression, and reconstruction artifacts associated with poor taxon sampling. Relaxed molecular clock analyses suggest that Aspergillaceae likely originated in the lower Cretaceous and that the Aspergillus and Penicillium genera originated in the upper Cretaceous. Our results shed light on the ongoing debate on Aspergillus systematics and taxonomy and provide a robust evolutionary and temporal framework for comparative genomic analyses in Aspergillaceae. More broadly, our approach provides a general template for phylogenomic identification of resolved and contentious branches in densely genome-sequenced lineages across the tree of life.
Collapse
|
96
|
Passer AR, Coelho MA, Billmyre RB, Nowrousian M, Mittelbach M, Yurkov AM, Averette AF, Cuomo CA, Sun S, Heitman J. Genetic and Genomic Analyses Reveal Boundaries between Species Closely Related to Cryptococcus Pathogens. mBio 2019; 10:e00764-19. [PMID: 31186317 PMCID: PMC6561019 DOI: 10.1128/mbio.00764-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Speciation is a central mechanism of biological diversification. While speciation is well studied in plants and animals, in comparison, relatively little is known about speciation in fungi. One fungal model is the Cryptococcus genus, which is best known for the pathogenic Cryptococcus neoformans/Cryptococcus gattii species complex that causes >200,000 new human infections annually. Elucidation of how these species evolved into important human-pathogenic species remains challenging and can be advanced by studying the most closely related nonpathogenic species, Cryptococcus amylolentus and Tsuchiyaea wingfieldii However, these species have only four known isolates, and available data were insufficient to determine species boundaries within this group. By analyzing full-length chromosome assemblies, we reappraised the phylogenetic relationships of the four available strains, confirmed the genetic separation of C. amylolentus and T. wingfieldii (now Cryptococcus wingfieldii), and revealed an additional cryptic species, for which the name Cryptococcus floricola is proposed. The genomes of the three species are ∼6% divergent and exhibit significant chromosomal rearrangements, including inversions and a reciprocal translocation that involved intercentromeric ectopic recombination, which together likely impose significant barriers to genetic exchange. Using genetic crosses, we show that while C. wingfieldii cannot interbreed with any of the other strains, C. floricola can still undergo sexual reproduction with C. amylolentus However, most of the resulting spores were inviable or sterile or showed reduced recombination during meiosis, indicating that intrinsic postzygotic barriers had been established. Our study and genomic data will foster additional studies addressing fungal speciation and transitions between nonpathogenic and pathogenic Cryptococcus lineages.IMPORTANCE The evolutionary drivers of speciation are critical to our understanding of how new pathogens arise from nonpathogenic lineages and adapt to new environments. Here we focus on the Cryptococcus amylolentus species complex, a nonpathogenic fungal lineage closely related to the human-pathogenic Cryptococcus neoformans/Cryptococcus gattii complex. Using genetic and genomic analyses, we reexamined the species boundaries of four available isolates within the C. amylolentus complex and revealed three genetically isolated species. Their genomes are ∼6% divergent and exhibit chromosome rearrangements, including translocations and small-scale inversions. Although two of the species (C. amylolentus and newly described C. floricola) were still able to interbreed, the resulting hybrid progeny were usually inviable or sterile, indicating that barriers to reproduction had already been established. These results advance our understanding of speciation in fungi and highlight the power of genomics in assisting our ability to correctly identify and discriminate fungal species.
Collapse
Affiliation(s)
- Andrew Ryan Passer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Moritz Mittelbach
- Geobotany, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andrey M Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
97
|
Blom MPK, Matzke NJ, Bragg JG, Arida E, Austin CC, Backlin AR, Carretero MA, Fisher RN, Glaw F, Hathaway SA, Iskandar DT, McGuire JA, Karin BR, Reilly SB, Rittmeyer EN, Rocha S, Sanchez M, Stubbs AL, Vences M, Moritz C. Habitat preference modulates trans-oceanic dispersal in a terrestrial vertebrate. Proc Biol Sci 2019; 286:20182575. [PMID: 31161911 DOI: 10.1098/rspb.2018.2575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The importance of long-distance dispersal (LDD) in shaping geographical distributions has been debated since the nineteenth century. In terrestrial vertebrates, LDD events across large water bodies are considered highly improbable, but organismal traits affecting dispersal capacity are generally not taken into account. Here, we focus on a recent lizard radiation and combine a summary-coalescent species tree based on 1225 exons with a probabilistic model that links dispersal capacity to an evolving trait, to investigate whether ecological specialization has influenced the probability of trans-oceanic dispersal. Cryptoblepharus species that occur in coastal habitats have on average dispersed 13 to 14 times more frequently than non-coastal species and coastal specialization has, therefore, led to an extraordinarily widespread distribution that includes multiple continents and distant island archipelagoes. Furthermore, their presence across the Pacific substantially predates the age of human colonization and we can explicitly reject the possibility that these patterns are solely shaped by human-mediated dispersal. Overall, by combining new analytical methods with a comprehensive phylogenomic dataset, we use a quantitative framework to show how coastal specialization can influence dispersal capacity and eventually shape geographical distributions at a macroevolutionary scale.
Collapse
Affiliation(s)
- Mozes P K Blom
- 1 Research School of Biology, The Australian National University , Canberra , Australia.,2 Museum für Naturkunde, Leibniz Institut für Evolutions- und Biodiversitätsforschung , Berlin , Germany
| | - Nicholas J Matzke
- 1 Research School of Biology, The Australian National University , Canberra , Australia.,3 School of Biological Sciences, University of Auckland , Auckland , New Zealand
| | - Jason G Bragg
- 1 Research School of Biology, The Australian National University , Canberra , Australia
| | - Evy Arida
- 4 Research Center for Biology, The Indonesian Institute of Sciences , Cibinong , Indonesia
| | | | - Adam R Backlin
- 6 U.S. Geological Survey, Western Ecological Research Center , Santa Ana, CA , USA
| | | | - Robert N Fisher
- 8 U.S. Geological Survey, Western Ecological Research Center , San Diego, CA , USA
| | - Frank Glaw
- 9 Department of Herpetology, Zoologische Staatssamlung Münich , Munich , Germany
| | - Stacie A Hathaway
- 8 U.S. Geological Survey, Western Ecological Research Center , San Diego, CA , USA
| | - Djoko T Iskandar
- 10 School of Life Sciences and Technology, Institut Teknologi , Bandung , Indonesia
| | - Jimmy A McGuire
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Benjamin R Karin
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Sean B Reilly
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Eric N Rittmeyer
- 1 Research School of Biology, The Australian National University , Canberra , Australia.,5 Museum of Natural Science, Louisiana State University , Baton Rouge, LA , USA
| | - Sara Rocha
- 12 Department of Biochemistry, Genetics and Immunology & Biomedical Research Center (CINBIO), University of Vigo , Vigo , Spain
| | | | - Alexander L Stubbs
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Miguel Vences
- 14 Zoological Institute, Technische Universität Braunschweig , Braunschweig , Germany
| | - Craig Moritz
- 1 Research School of Biology, The Australian National University , Canberra , Australia
| |
Collapse
|
98
|
Fučíková K, Lewis PO, Neupane S, Karol KG, Lewis LA. Order, please! Uncertainty in the ordinal-level classification of Chlorophyceae. PeerJ 2019; 7:e6899. [PMID: 31143537 PMCID: PMC6525593 DOI: 10.7717/peerj.6899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/02/2019] [Indexed: 11/20/2022] Open
Abstract
Background Chlorophyceae is one of three most species-rich green algal classes and also the only class in core Chlorophyta whose monophyly remains uncontested as gene and taxon sampling improves. However, some key relationships within Chlorophyceae are less clear-cut and warrant further investigation. The present study combined genome-scale chloroplast data and rich sampling in an attempt to resolve the ordinal classification in Chlorophyceae. The traditional division into Sphaeropleales and Volvocales (SV), and a clade containing Oedogoniales, Chaetopeltidales, and Chaetophorales (OCC) was of particular interest with the addition of deeply branching members of these groups, as well as the placement of several incertae sedis taxa. Methods We sequenced 18 chloroplast genomes across Chlorophyceae to compile a data set of 58 protein-coding genes of a total of 68 chlorophycean taxa. We analyzed the concatenated nucleotide and amino acid datasets in the Bayesian and Maximum Likelihood frameworks, supplemented by analyses to examine potential discordant signal among genes. We also examined gene presence and absence data across Chlorophyceae. Results Concatenated analyses yielded at least two well-supported phylogenies: nucleotide data supported the traditional classification with the inclusion of the enigmatic Treubarinia into Sphaeropleales sensu lato. However, amino acid data yielded equally strong support for Sphaeropleaceae as sister to Volvocales, with the rest of the taxa traditionally classified in Sphaeropleales in a separate clade, and Treubarinia as sister to all of the above. Single-gene and other supplementary analyses indicated that the data have low phylogenetic signal at these critical nodes. Major clades were supported by genomic structural features such as gene losses and trans-spliced intron insertions in the plastome. Discussion While the sequence and gene order data support the deep split between the SV and OCC lineages, multiple phylogenetic hypotheses are possible for Sphaeropleales s.l. Given this uncertainty as well as the higher-taxonomic disorder seen in other algal groups, dwelling on well-defined, strongly supported Linnaean orders is not currently practical in Chlorophyceae and a less formal clade system may be more useful in the foreseeable future. For example, we identify two strongly and unequivocally supported clades: Treubarinia and Scenedesminia, as well as other smaller groups that could serve a practical purpose as named clades. This system does not preclude future establishment of new orders, or emendment of the current ordinal classification if new data support such conclusions.
Collapse
Affiliation(s)
- Karolina Fučíková
- Department of Natural Sciences, Assumption College, Worcester, MA, United States of America
| | - Paul O Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States of America
| | - Suman Neupane
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States of America
| | - Kenneth G Karol
- The Lewis B. and Dorothy Cullman Program for Molecular Systematics, New York Botanical Garden, Bronx, NY, United States of America
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
99
|
Villani A, Proctor RH, Kim HS, Brown DW, Logrieco AF, Amatulli MT, Moretti A, Susca A. Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genomics 2019; 20:314. [PMID: 31014248 PMCID: PMC6480918 DOI: 10.1186/s12864-019-5567-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/25/2019] [Indexed: 11/29/2022] Open
Abstract
Background The Fusarium incarnatum-equiseti species complex (FIESC) comprises 33 phylogenetically distinct species that have been recovered from diverse biological sources, but have been most often isolated from agricultural plants and soils. Collectively, members of FIESC can produce diverse mycotoxins. However, because the species diversity of FIESC has been recognized only recently, the potential of species to cause mycotoxin contamination of crop plants is unclear. In this study, therefore, we used comparative genomics to investigate the distribution of and variation in genes and gene clusters responsible for the synthesis of mycotoxins and other secondary metabolites (SMs) in FIESC. Results We examined genomes of 13 members of FIESC that were selected based primarily on their phylogenetic diversity and/or occurrence on crops. The presence and absence of SM biosynthetic gene clusters varied markedly among the genomes. For example, the trichothecene mycotoxin as well as the carotenoid and fusarubin pigment clusters were present in all genomes examined, whereas the enniatin, fusarin, and zearalenone mycotoxin clusters were present in only some genomes. Some clusters exhibited discontinuous patterns of distribution in that their presence and absence was not correlated with the phylogenetic relationships of species. We also found evidence that cluster loss and horizontal gene transfer have contributed to such distribution patterns. For example, a combination of multiple phylogenetic analyses suggest that five NRPS and seven PKS genes were introduced into FIESC from other Fusarium lineages. Conclusion Our results suggest that although the portion of the genome devoted to SM biosynthesis has remained similar during the evolutionary diversification of FIESC, the ability to produce SMs could be affected by the different distribution of related functional and complete gene clusters. Electronic supplementary material The online version of this article (10.1186/s12864-019-5567-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandra Villani
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Robert H Proctor
- Department of Agriculture Peoria, National Center for Agricultural Utilization Research, U.S., Peoria, IL, USA
| | - Hye-Seon Kim
- Department of Agriculture Peoria, National Center for Agricultural Utilization Research, U.S., Peoria, IL, USA
| | - Daren W Brown
- Department of Agriculture Peoria, National Center for Agricultural Utilization Research, U.S., Peoria, IL, USA
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Maria Teresa Amatulli
- Institute of Sciences of Food Production, National Research Council, Bari, Italy.,Thales Alenia Space Italia, Torino, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, Bari, Italy.
| | - Antonia Susca
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| |
Collapse
|
100
|
Laumer CE. Inferring Ancient Relationships with Genomic Data: A Commentary on Current Practices. Integr Comp Biol 2019; 58:623-639. [PMID: 29982611 DOI: 10.1093/icb/icy075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Contemporary phylogeneticists enjoy an embarrassment of riches, not only in the volumes of data now available, but also in the diversity of bioinformatic tools for handling these data. Here, I discuss a subset of these tools I consider well-suited to the task of inferring ancient relationships with coding sequence data in particular, encompassing data generation, orthology assignment, alignment and gene tree inference, supermatrix construction, and analysis under the best-fitting models applicable to large-scale datasets. Throughout, I compare and critique methods, considering both their theoretical principles and the details of their implementation, and offering practical tips on usage where appropriate. I also entertain different motivations for analyzing what are almost always originally DNA sequence data as codons, amino acids, and higher-order recodings. Although presented in a linear order, I see value in using the diversity of tools available to us to assess the sensitivity of clades of biological interest to different gene and taxon sets and analytical modes, which can be an indication of the presence of systematic error, of which a few forms remain poorly controlled by even the best available inference methods.
Collapse
Affiliation(s)
- Christopher E Laumer
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, EBML-EBI South Building, Hinxton CB10 1SD, UK
| |
Collapse
|