51
|
Lysophosphatidylcholine acyltransferase 3 deficiency impairs 3T3L1 cell adipogenesis through activating Wnt/β-catenin pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:834-843. [PMID: 29673706 DOI: 10.1016/j.bbalip.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/07/2018] [Accepted: 04/15/2018] [Indexed: 11/21/2022]
Abstract
Levels of polyunsaturated phosphatidylcholine (PC) influence plasma membrane structure and function. Phosphatidylcholine (PC) is synthesized de novo in the Kennedy pathway and then undergoes extensive deacylation/reacylation remodeling via Lands' cycle (non-Kennedy pathway). The reacylation is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), which adds a polyunsaturated fatty acid at the sn-2 position. Four LPCAT isoforms have been described to date, among which we found LPCAT3 to be the major isoform in adipose tissue, but its exact role in adipogenesis is unclear. In this study, we aimed to investigate whether LPCAT3 activity affects 3T3L1 cell adipogenic differentiation potential and its underline mechanism. Lentivirus-mediated LPCAT3 shRNA expression stably knocked down LPCAT3 in 3T3L1 preadipocytes and LPCAT3 deficiency dramatically reduced the levels of cellular polyunsaturated PCs. Importantly, we found that this deficiency activated the β-catenin dependent Wnt signaling pathway, which suppressed the expression of adipogenesis-related genes, thereby inhibiting 3T3L1 preadipocyte differentiation and lipid accumulation. Moreover, three different Wnt/β-catenin pathway inhibitors reversed the effect of LPCAP3 deficiency, suggesting that Wnt/β-catenin pathway activation is one of the causes for the observed phenotypes. To the best of our knowledge, we show here for the first time that PC remodeling is an important regulator of adipocyte differentiation.
Collapse
|
52
|
Watt J, Baker AH, Meeks B, Pajevic PD, Morgan EF, Gerstenfeld LC, Schlezinger JJ. Tributyltin induces distinct effects on cortical and trabecular bone in female C57Bl/6J mice. J Cell Physiol 2018; 233:7007-7021. [PMID: 29380368 DOI: 10.1002/jcp.26495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/β and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro. Bone marrow multipotent mesenchymal stromal cells derived from female C57BL/6J mice were more sensitive to suppression of osteogenesis by TBT than those derived from male mice. In vivo, oral gavage of 12 week old female, C57Bl/6J mice with 10 mg/kg TBT for 10 weeks resulted in femurs with a smaller cross-sectional area and thinner cortex. Surprisingly, TBT induced significant increases in trabecular thickness, number, and bone volume fraction. TBT treatment did not change the Rankl:Opg RNA ratio in whole bone, and histological analyses showed that osteoclasts in the trabecular space were minimally reduced. In contrast, expression of cardiotrophin-1, an osteoblastogenic cytokine secreted by osteoclasts, increased. In primary bone marrow macrophage cultures, TBT marginally inhibited the number of osteoclasts that differentiated, in spite of significantly suppressing expression of osteoclast markers Nfatc1, Acp5, and Ctsk and resorptive activity. TBT induced expression of RXR- and LXR-dependent genes in whole bone and in vitro osteoclast cultures. However, only an RXR antagonist, but not an LXR antagonist, significantly inhibited TBTs ability to suppress osteoclast differentiation. These results suggest that TBT has distinct effects on cortical versus trabecular bone, likely resulting from independent effects on osteoblast and osteoclast differentiation that are mediated through RXR.
Collapse
Affiliation(s)
- James Watt
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Amelia H Baker
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Brett Meeks
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Paola D Pajevic
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, Massachusetts
| | - Elise F Morgan
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts.,Department of Mechanical Engineering, Boston University, Boston, Massachusetts
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
53
|
Ye X, Li M, Hou T, Gao T, Zhu WG, Yang Y. Sirtuins in glucose and lipid metabolism. Oncotarget 2018; 8:1845-1859. [PMID: 27659520 PMCID: PMC5352102 DOI: 10.18632/oncotarget.12157] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/13/2016] [Indexed: 01/02/2023] Open
Abstract
Sirtuins are evolutionarily conserved protein, serving as nicotinamide adenine dinucleotide-dependent deacetylases or adenosine diphosphate-ribosyltransferases. The mammalian sirtuins family, including SIRT1~7, is involved in many biological processes such as cell survival, proliferation, senescence, stress response, genome stability and metabolism. Evidence accumulated over the past two decades has indicated that sirtuins not only serve as important energy status sensors but also protect cells against metabolic stresses. In this review, we summarize the background of glucose and lipid metabolism concerning sirtuins and discuss the functions of sirtuins in glucose and lipid metabolism. We also seek to highlight the biological roles of certain sirtuins members in cancer metabolism.
Collapse
Affiliation(s)
- Xin Ye
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Meiting Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Tianyun Hou
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Tian Gao
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
54
|
Ryu S, Kim DS, Lee MW, Lee JW, Sung KW, Koo HH, Yoo KH. Anti-leukemic effects of PPARγ ligands. Cancer Lett 2018; 418:10-19. [PMID: 29331412 DOI: 10.1016/j.canlet.2018.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/11/2023]
Abstract
The peroxisome proliferator-activated receptor (PPAR) γ, a subtype of PPARs, is a member of the nuclear receptor family. PPARγ and its ligands contribute to various types of diseases including cancer. Given that currently developed therapies against leukemia are not very effective or safe, PPARγ ligands have been shown to be a new class of compounds with the potential to treat hematologic malignancies, particularly leukemia. The capability of PPARγ ligands to induce apoptosis, inhibit proliferation, and promote differentiation of leukemia cells suggests it has significant potential as a drug against leukemia. However, the specific mechanisms and molecules involved are not well-understood, although a number of PPARγ ligands with anti-leukemic effects have been identified. This may explain why PPARγ ligands have not been widely evaluated in clinical trials. To fill the gaps in the lack of understanding of specific anti-leukemic processes of PPARγ ligands and further adapt these molecules as anti-leukemic agents, this review describes previous studies of the anti-leukemic effects of PPARγ ligands.
Collapse
Affiliation(s)
- Somi Ryu
- Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, South Korea.
| | - Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
55
|
YAMASHITA Y, MITANI T, WANG L, ASHIDA H. Methylxanthine Derivative-Rich Cacao Extract Suppresses Differentiation of Adipocytes through Downregulation of PPARγ and C/EBPs. J Nutr Sci Vitaminol (Tokyo) 2018; 64:151-160. [DOI: 10.3177/jnsv.64.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yoko YAMASHITA
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Takakazu MITANI
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| | - Liuqing WANG
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Hitoshi ASHIDA
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
56
|
Gellrich L, Merk D. Therapeutic Potential of Peroxisome Proliferator-Activated Receptor Modulation in Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
57
|
Lee JA, Cho YR, Hong SS, Ahn EK. Anti-Obesity Activity of Saringosterol Isolated from Sargassum muticum (Yendo) Fensholt Extract in 3T3-L1 Cells. Phytother Res 2017; 31:1694-1701. [PMID: 28921681 DOI: 10.1002/ptr.5892] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/27/2017] [Accepted: 07/21/2017] [Indexed: 12/23/2022]
Abstract
Saringosterol, a steroid isolated from Sargassum muticum, a brown edible alga widely distributed on the seashores of southern and eastern Korea, has been shown to exhibit anti-obesity effect. In this study, we investigated the anti-obesity activity of saringosterol through various experiments. The inhibitory effect of saringosterol on adipogenesis was evaluated via Oil Red O staining in 3T3-L1 preadipocytes. After confirming that saringosterol is not cytotoxic to these cells by using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, the effect of saringosterol on the expression of various adipogenesis-related genes was analyzed via quantitative real-time polymerase chain reaction and western blotting. We demonstrated that saringosterol dose dependently inhibited adipocyte differentiation and expression of adipogenic marker genes such as adipocyte fatty acid-binding protein, adiponectin, resistin, and fatty acid synthase in 3T3-L1 cells. In addition, saringosterol significantly inhibited the mRNA and protein expression of peroxisome proliferator-activated receptor γ and CCAAT enhancer-binding protein α in 3T3-L1 cells. Collectively, these findings indicate that saringosterol isolated from S. muticum exhibits anti-obesity effect by inhibiting the expression of adipogenic transcription factors and marker genes and that it may be developed as a drug to suppress adipogenesis. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jung A Lee
- Bio-Center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Young-Rak Cho
- Bio-Center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Seong Su Hong
- Bio-Center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Eun-Kyung Ahn
- Bio-Center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| |
Collapse
|
58
|
Prinsloo G, Papadi G, Hiben MG, de Haan L, Louisse J, Beekmann K, Vervoort J, Rietjens IMCM. In vitro bioassays to evaluate beneficial and adverse health effects of botanicals: promises and pitfalls. Drug Discov Today 2017; 22:1187-1200. [PMID: 28533190 DOI: 10.1016/j.drudis.2017.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/24/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023]
Abstract
This review provides an update on the promises and pitfalls when using in vitro bioassays to evaluate beneficial and adverse health effects of botanicals and botanical preparations. Important issues addressed in the paper are: (i) the type of assays and biological effects available; (ii) false-positives, false-negatives and confounding factors; (iii) matrix and combination effects; (iv) extrapolation of in vitro data to the in vivo situation; (v) when (not) to use bioassays; and (vi) identification of active constituents. It is concluded that in vitro bioassays provide models to detect beneficial as well as adverse activities, but that linking these observations to individual ingredients and extrapolations to the in vivo situation is more complicated than generally anticipated.
Collapse
Affiliation(s)
- Gerhard Prinsloo
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Agriculture and Animal Health, University of South Africa, Private bag x 6, Florida, South Africa.
| | - Georgia Papadi
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Biological Applications & Technology, University of Ioannina, Greece
| | - Mebrahtom G Hiben
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Laura de Haan
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jochem Louisse
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Karsten Beekmann
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jacques Vervoort
- Department of Agriculture and Animal Health, University of South Africa, Private bag x 6, Florida, South Africa; Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
59
|
Tung EWY, Ahmed S, Peshdary V, Atlas E. Firemaster® 550 and its components isopropylated triphenyl phosphate and triphenyl phosphate enhance adipogenesis and transcriptional activity of peroxisome proliferator activated receptor (Pparγ) on the adipocyte protein 2 (aP2) promoter. PLoS One 2017; 12:e0175855. [PMID: 28437481 PMCID: PMC5402942 DOI: 10.1371/journal.pone.0175855] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/31/2017] [Indexed: 01/10/2023] Open
Abstract
Firemaster® 550 (FM550) is a chemical mixture currently used as an additive flame retardant in commercial products, and is comprised of 2-ethylhexyl-2,3,4,5-tertrabromobenzoate (TBB), bis(2-ethylhexyl) tetrabromophthalate (TBPH), triphenyl phosphate (TPP), and isopropylated triphenyl phosphate (IPTP). Animal and in vitro studies suggest that FM550, TPP and IPTP may have adipogenic effects and may exert these effects through PPARγ activation. Using murine 3T3-L1 preadipocytes, we investigated the detailed expression of transcription factors and adipogenic markers in response to FM550 and its components. Further we investigated the mechanism of action of the peroxisome proliferator-activated receptor gamma (PPARγ) on downstream targets of the receptor by focussing on the mature adipocyte marker, adipocyte protein 2 (aP2). In addition, we set to elucidate the components responsible for the adipogenic effects seen in the FM550 mixture. We show that FM550 and its components TPP, IPTP, and TBPH, but not TBB induced lipid accumulation in a dose-dependent manner. Interestingly, despite displaying enhanced lipid accumulation, TBPH did not alter the mRNA or protein expression of terminal differentiation markers. In contrast, FM550, TPP, and IPTP treatment enhanced lipid accumulation, and mRNA and protein expression of terminal differentiation markers. To further delineate the mechanisms of action of FM550 and its components we focussed on aP2 promoter activity. For this purpose we used the enhancer region of the mouse aP2 promoter using a 584-bp reporter construct containing an active PPRE located 5.4 kb away from the transcription start site of aP2. Exposure to FM550, IPTP, and TPP significantly increased PPARγ mediated aP2 enhancer activity. Furthermore, we show that TPP- and IPTP-dependent upregulation of aP2 was significantly inhibited by the selective PPARγ antagonist GW9662. In addition, chromatin immunoprecipitation experiments showed that IPTP and TPP treatment led to the recruitment of PPARγ to the regulatory region of aP2.
Collapse
Affiliation(s)
- Emily W. Y. Tung
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Shaimaa Ahmed
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Vian Peshdary
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
60
|
den Broeder MJ, Moester MJB, Kamstra JH, Cenijn PH, Davidoiu V, Kamminga LM, Ariese F, de Boer JF, Legler J. Altered Adipogenesis in Zebrafish Larvae Following High Fat Diet and Chemical Exposure Is Visualised by Stimulated Raman Scattering Microscopy. Int J Mol Sci 2017; 18:E894. [PMID: 28441764 PMCID: PMC5412473 DOI: 10.3390/ijms18040894] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/08/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023] Open
Abstract
Early life stage exposure to environmental chemicals may play a role in obesity by altering adipogenesis; however, robust in vivo methods to quantify these effects are lacking. The goal of this study was to analyze the effects of developmental exposure to chemicals on adipogenesis in the zebrafish (Danio rerio). We used label-free Stimulated Raman Scattering (SRS) microscopy for the first time to image zebrafish adipogenesis at 15 days post fertilization (dpf) and compared standard feed conditions (StF) to a high fat diet (HFD) or high glucose diet (HGD). We also exposed zebrafish embryos to a non-toxic concentration of tributyltin (TBT, 1 nM) or Tris(1,3-dichloroisopropyl)phosphate (TDCiPP, 0.5 µM) from 0-6 dpf and reared larvae to 15 dpf under StF. Potential molecular mechanisms of altered adipogenesis were examined by qPCR. Diet-dependent modulation of adipogenesis was observed, with HFD resulting in a threefold increase in larvae with adipocytes, compared to StF and HGD. Developmental exposure to TBT but not TDCiPP significantly increased adipocyte differentiation. The expression of adipogenic genes such as pparda, lxr and lepa was altered in response to HFD or chemicals. This study shows that SRS microscopy can be successfully applied to zebrafish to visualize and quantify adipogenesis, and is a powerful approach for identifying obesogenic chemicals in vivo.
Collapse
Affiliation(s)
- Marjo J den Broeder
- Institute of Environmental, Health and Societies, Brunel University, UB8 3PH London, UK.
- Institute for Environmental Studies, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| | - Miriam J B Moester
- Institute for Lasers, Life and Biophotonics, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| | - Jorke H Kamstra
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. BOX 8146, Dep 0033 Oslo, Norway.
| | - Peter H Cenijn
- Institute for Environmental Studies, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| | - Valentina Davidoiu
- Institute for Lasers, Life and Biophotonics, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
- Rotterdam Ophthalmic Institute, Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands.
| | - Leonie M Kamminga
- Radboud University Nijmegen, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands.
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands.
| | - Freek Ariese
- Institute for Lasers, Life and Biophotonics, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| | - Johannes F de Boer
- Institute for Lasers, Life and Biophotonics, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| | - Juliette Legler
- Institute of Environmental, Health and Societies, Brunel University, UB8 3PH London, UK.
- Institute for Environmental Studies, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
61
|
Lin HTV, Tsou YC, Chen YT, Lu WJ, Hwang PA. Effects of Low-Molecular-Weight Fucoidan and High Stability Fucoxanthin on Glucose Homeostasis, Lipid Metabolism, and Liver Function in a Mouse Model of Type II Diabetes. Mar Drugs 2017; 15:md15040113. [PMID: 28387741 PMCID: PMC5408259 DOI: 10.3390/md15040113] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 01/09/2023] Open
Abstract
The combined effects of low-molecular-weight fucoidan (LMF) and fucoxanthin (Fx) in terms of antihyperglycemic, antihyperlipidemic, and hepatoprotective activities were investigated in a mouse model of type II diabetes. The intake of LMF, Fx, and LMF + Fx lowered the blood sugar and fasting blood sugar levels, and increased serum adiponectin levels. The significant decrease in urinary sugar was only observed in LMF + Fx supplementation. LMF and Fx had ameliorating effects on the hepatic tissue of db/db mice by increasing hepatic glycogen and antioxidative enzymes, and LMF was more effective than Fx at improving hepatic glucose metabolism. As for glucose and lipid metabolism in the adipose tissue, the expression of insulin receptor substrate (IRS)-1, glucose transporter (GLUT), peroxisome proliferator-activated receptor gamma (PPARγ), and uncoupling protein (UCP)-1 mRNAs in the adipose tissue of diabetic mice was significantly upregulated by Fx and LMF + Fx, and levels of inflammatory adipocytokines, such as adiponectin, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), were significantly modulated only by LMF + Fx supplementation. The efficacy of LMF + Fx supplementation on the decrease in urinary sugar and on glucose and lipid metabolism in the white adipose tissue of db/db mice was better than that of Fx or LMF alone, indicating the occurrence of a synergistic effect of LMF and Fx.
Collapse
Affiliation(s)
- Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Yu-Chi Tsou
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Yu-Ting Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Wen-Jung Lu
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| |
Collapse
|
62
|
Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional Regulation of Adipogenesis. Compr Physiol 2017; 7:635-674. [PMID: 28333384 DOI: 10.1002/cphy.c160022] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipocytes are the defining cell type of adipose tissue. Once considered a passive participant in energy storage, adipose tissue is now recognized as a dynamic organ that contributes to several important physiological processes, such as lipid metabolism, systemic energy homeostasis, and whole-body insulin sensitivity. Therefore, understanding the mechanisms involved in its development and function is of great importance. Adipocyte differentiation is a highly orchestrated process which can vary between different fat depots as well as between the sexes. While hormones, miRNAs, cytoskeletal proteins, and many other effectors can modulate adipocyte development, the best understood regulators of adipogenesis are the transcription factors that inhibit or promote this process. Ectopic expression and knockdown approaches in cultured cells have been widely used to understand the contribution of transcription factors to adipocyte development, providing a basis for more sophisticated in vivo strategies to examine adipogenesis. To date, over two dozen transcription factors have been shown to play important roles in adipocyte development. These transcription factors belong to several families with many different DNA-binding domains. While peroxisome proliferator-activated receptor gamma (PPARγ) is undoubtedly the most important transcriptional modulator of adipocyte development in all types of adipose tissue, members of the CCAAT/enhancer-binding protein, Krüppel-like transcription factor, signal transducer and activator of transcription, GATA, early B cell factor, and interferon-regulatory factor families also regulate adipogenesis. The importance of PPARγ activity is underscored by several covalent modifications that modulate its activity and its ability to modulate adipocyte development. This review will primarily focus on the transcriptional control of adipogenesis in white fat cells and on the mechanisms involved in this fine-tuned developmental process. © 2017 American Physiological Society. Compr Physiol 7:635-674, 2017.
Collapse
Affiliation(s)
- Paula Mota de Sá
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Allison J Richard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Hardy Hang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
63
|
Abstract
PURPOSE OF REVIEW The goal of this review is to delineate the following: (1) the primary means of inorganic arsenic (iAs) exposure for human populations, (2) the adverse public health outcomes associated with chronic iAs exposure, (3) the pathophysiological connection between arsenic and type 2 diabetes (T2D), and (4) the incipient evidence for microRNAs as candidate mechanistic links between iAs exposure and T2D. RECENT FINDINGS Exposure to iAs in animal models has been associated with the dysfunction of several different cell types and tissues, including liver and pancreatic islets. Many microRNAs that have been identified as responsive to iAs exposure under in vitro and/or in vivo conditions have also been shown in independent studies to regulate processes that underlie T2D etiology, such as glucose-stimulated insulin secretion from pancreatic beta cells. Defects in insulin secretion could be, in part, associated with aberrant microRNA expression and activity. Additional in vivo studies need to be performed with standardized concentrations and durations of arsenic exposure in order to evaluate rigorously microRNAs as molecular drivers of iAs-associated diabetes.
Collapse
Affiliation(s)
- Rowan Beck
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Miroslav Styblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Praveen Sethupathy
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
64
|
Sturla L, Mannino E, Scarfì S, Bruzzone S, Magnone M, Sociali G, Booz V, Guida L, Vigliarolo T, Fresia C, Emionite L, Buschiazzo A, Marini C, Sambuceti G, De Flora A, Zocchi E. Abscisic acid enhances glucose disposal and induces brown fat activity in adipocytes in vitro and in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:131-144. [PMID: 27871880 DOI: 10.1016/j.bbalip.2016.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/20/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022]
Abstract
Abscisic acid (ABA) is a plant hormone also present in animals, where it is involved in the regulation of innate immune cell function and of glucose disposal, through its receptor LANCL2. ABA stimulates glucose uptake by myocytes and pre-adipocytes in vitro and oral ABA improves glycemic control in rats and in healthy subjects. Here we investigated the role of the ABA/LANCL2 system in the regulation of glucose uptake and metabolism in adipocytes. Silencing of LANCL2 abrogated both the ABA- and insulin-induced increase of glucose transporter-4 expression and of glucose uptake in differentiated 3T3-L1 murine adipocytes; conversely, overexpression of LANCL2 enhanced basal, ABA- and insulin-stimulated glucose uptake. As compared with insulin, ABA treatment of adipocytes induced lower triglyceride accumulation, CO2 production and glucose-derived fatty acid synthesis. ABA per se did not induce pre-adipocyte differentiation in vitro, but stimulated adipocyte remodeling in terminally differentiated cells, with a reduction in cell size, increased mitochondrial content, enhanced O2 consumption, increased transcription of adiponectin and of brown adipose tissue (BAT) genes. A single dose of oral ABA (1μg/kg body weight) increased BAT glucose uptake 2-fold in treated rats compared with untreated controls. One-month-long ABA treatment at the same daily dose significantly upregulated expression of BAT markers in the WAT and in WAT-derived preadipocytes from treated mice compared with untreated controls. These results indicate a hitherto unknown role of LANCL2 in adipocyte sensitivity to insulin-stimulated glucose uptake and suggest a role for ABA in the induction and maintenance of BAT activity.
Collapse
Affiliation(s)
- Laura Sturla
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy.
| | - Elena Mannino
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Mirko Magnone
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Giovanna Sociali
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Valeria Booz
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Lucrezia Guida
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Tiziana Vigliarolo
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Chiara Fresia
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Laura Emionite
- Animal Facility, IRCCS AOU San Martino - IST, Genova, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine, Dept of Health Sciences, University of Genova, Genova, Italy
| | - Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology, Section of Genova, Genova, Italy; IRCCS AOU San Martino - IST, Genova, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, Dept of Health Sciences, University of Genova, Genova, Italy; IRCCS AOU San Martino - IST, Genova, Italy
| | - Antonio De Flora
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Elena Zocchi
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| |
Collapse
|
65
|
Wafer R, Tandon P, Minchin JEN. The Role of Peroxisome Proliferator-Activated Receptor Gamma ( PPARG) in Adipogenesis: Applying Knowledge from the Fish Aquaculture Industry to Biomedical Research. Front Endocrinol (Lausanne) 2017; 8:102. [PMID: 28588550 PMCID: PMC5438977 DOI: 10.3389/fendo.2017.00102] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022] Open
Abstract
The tropical freshwater zebrafish has recently emerged as a valuable model organism for the study of adipose tissue biology and obesity-related disease. The strengths of the zebrafish model system are its wealth of genetic mutants, transgenic tools, and amenability to high-resolution imaging of cell dynamics within live animals. However, zebrafish adipose research is at a nascent stage and many gaps exist in our understanding of zebrafish adipose physiology and metabolism. By contrast, adipose research within other, closely related, teleost species has a rich and extensive history, owing to the economic importance of these fish as a food source. Here, we compare and contrast knowledge on peroxisome proliferator-activated receptor gamma (PPARG)-mediated adipogenesis derived from both biomedical and aquaculture literatures. We first concentrate on the biomedical literature to (i) briefly review PPARG-mediated adipogenesis in mammals, before (ii) reviewing Pparg-mediated adipogenesis in zebrafish. Finally, we (iii) mine the aquaculture literature to compare and contrast Pparg-mediated adipogenesis in aquaculturally relevant teleosts. Our goal is to highlight evolutionary similarities and differences in adipose biology that will inform our understanding of the role of adipose tissue in obesity and related disease.
Collapse
Affiliation(s)
- Rebecca Wafer
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Panna Tandon
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - James E. N. Minchin
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- *Correspondence: James E. N. Minchin,
| |
Collapse
|
66
|
Chatterjee S, Sanyal D, Das Choudhury S, Bandyopadhyay M, Chakraborty S, Mukherjee A. Effect of pioglitazone on nerve conduction velocity of the median nerve in the carpal tunnel in type 2 diabetes patients. World J Diabetes 2016; 7:547-553. [PMID: 27895823 PMCID: PMC5107714 DOI: 10.4239/wjd.v7.i19.547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/08/2016] [Accepted: 08/27/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To evaluate the impact of pioglitazone pharmacotherapy in median nerve electrophysiology in the carpal tunnel among type 2 diabetes patients. METHODS The study was executed in patients with type 2 diabetes, treated with oral drugs, categorized under pioglitazone or non-pioglitazone group (14 in each group), and who received electrophysiological evaluation by nerve conduction velocity at baseline and 3 mo. RESULTS At 3 mo, pioglitazone-category had inferior amplitude in sensory median nerve [8.5 interquartile range (IQR) = 6.5 to 11.5) vs non-pioglitazone 14.5 (IQR 10.5 to 18.75)] (P = 0.002). Non-pioglitazone category displayed amelioration in amplitude in the sensory median nerve [baseline 13 (IQR = 9 to 16.25) vs 3 mo 8.5 (IQR = 6.5 to 11.5)] (P = 0.01) and amplitude in motor median nerve [baseline 9 (IQR = 4.75 to 11) vs 3 mo 6.75 (IQR = 4.75 to 10.25)] (P = 0.049); and deterioration of terminal latency of in motor ulnar nerve [baseline 2.07 (IQR = 1.92 to 2.25) vs 3 mo 2.16 (IQR = 1.97 to 2.325)] (P = 0.043). There was amelioration of terminal latency in sensory ulnar nerve [baseline 2.45 (IQR = 2.315 to 2.88) vs 3 mo 2.37 (IQR = 2.275 to 2.445) for pioglitazone group (P = 0.038). CONCLUSION Treatment with pioglitazone accentuates probability of compressive neuropathy. In spite of comparable glycemic control over 3 mo, patients treated with pioglitazone showed superior electrophysiological parameters for the ulnar nerve. Pioglitazone has favourable outcome in nerve electrophysiology which was repealed when the nerve was subjected to compressive neuropathy.
Collapse
|
67
|
Long Noncoding RNAs in Metabolic Syndrome Related Disorders. Mediators Inflamm 2016; 2016:5365209. [PMID: 27881904 PMCID: PMC5110871 DOI: 10.1155/2016/5365209] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/05/2016] [Indexed: 02/06/2023] Open
Abstract
Ribonucleic acids (RNAs) are very complex and their all functions have yet to be fully clarified. Noncoding genes (noncoding RNA, sequences, and pseudogenes) comprise 67% of all genes and they are represented by housekeeping noncoding RNAs (transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA)) that are engaged in basic cellular processes and by regulatory noncoding RNA (short and long noncoding RNA (ncRNA)) that are important for gene expression/transcript stability. In this review, we summarize data concerning the significance of long noncoding RNAs (lncRNAs) in metabolic syndrome related disorders, focusing on adipose tissue and pancreatic islands.
Collapse
|
68
|
Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:634-41. [PMID: 26383846 PMCID: PMC4858396 DOI: 10.1289/ehp.1509763] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/16/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. OBJECTIVE The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. METHODS Quantitative structure-activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro-in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. RESULTS The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. CONCLUSION Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. CITATION Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634-641; http://dx.doi.org/10.1289/ehp.1509763.
Collapse
Affiliation(s)
- Marlene Thai Kim
- Department of Chemistry, Rutgers University, Camden, New Jersey, USA
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Alexander Sedykh
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
- Multicase Inc., Beachwood, Ohio, USA
| | - Wenyi Wang
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Hao Zhu
- Department of Chemistry, Rutgers University, Camden, New Jersey, USA
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
- Address correspondence to H. Zhu, 315 Penn St., Rutgers University, Camden, NJ 08102 USA. Telephone: (856) 225-6781. E-mail:
| |
Collapse
|
69
|
Trinh NT, Yamashita T, Ohneda K, Kimura K, Salazar GT, Sato F, Ohneda O. Increased Expression of EGR-1 in Diabetic Human Adipose Tissue-Derived Mesenchymal Stem Cells Reduces Their Wound Healing Capacity. Stem Cells Dev 2016; 25:760-73. [PMID: 26988763 DOI: 10.1089/scd.2015.0335] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM), which leads to diabetic complications, has been increasing worldwide. The possible applications of T2DM-derived stem cells in cell therapy are limited because their characteristics are still not fully understood. In this study, we characterized adipose tissue-derived mesenchymal stem cells (AT-MSCs) from diabetic patients (dAT-MSCs) and found that insulin receptor substrate-1 (IRS-1) was highly phosphorylated at serine 636/639 in dAT-MSCs. Moreover, we found that early growth response factor-1 (EGR-1) and its target genes of PTEN and GGPS1 were highly expressed in dAT-MSCs in comparison to healthy donor-derived AT-MSCs (nAT-MSCs). We observed impaired wound healing after the injection of dAT-MSCs in the ischemic flap mouse model. The expressions of EGR-1 and its target genes were diminished by small hairpin RNA-targeted EGR-1 (shEGR-1) and treatment with a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) inhibitor (PD98059). Importantly, dAT-MSCs with shEGR-1 were able to restore the wound healing ability in the mouse model. Interestingly, under hypoxic conditions, hypoxia-inducible factor-1α (HIF-1α) can bind to the EGR-1 promoter in dAT-MSCs, but not in nAT-MSCs. Together, these results demonstrate that the expression of EGR-1 was upregulated in dAT-MSCs through two pathways: the main regulatory pathway is the MAPK/ERK pathway, the other is mediated by HIF-1α through direct transcriptional activation at the promoter region of the EGR1 gene. Our study suggests that dAT-MSCs may contribute to microvascular damage and delay wound healing through the overexpression of EGR-1. Interrupting the expression of EGR-1 in dAT-MSCs may be a useful treatment for chronic wounds in diabetic patients.
Collapse
Affiliation(s)
- Nhu-Thuy Trinh
- 1 Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba , Tsukuba, Japan
| | - Toshiharu Yamashita
- 1 Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba , Tsukuba, Japan
| | - Kinuko Ohneda
- 2 Laboratory of Molecular Pathophysiology, Faculty of Pharmacy, Takasaki University of Health and Welfare , Takasaki, Japan
| | - Kenichi Kimura
- 1 Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba , Tsukuba, Japan
| | - Georgina To'a Salazar
- 1 Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba , Tsukuba, Japan
| | - Fujio Sato
- 3 Department of Cardiovascular Surgery, University of Tsukuba , Tsukuba, Japan
| | - Osamu Ohneda
- 1 Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba , Tsukuba, Japan
| |
Collapse
|
70
|
Wright SK, Wuertz BR, Harris G, Abu Ghazallah R, Miller WA, Gaffney PM, Ondrey FG. Functional activation of PPARγ in human upper aerodigestive cancer cell lines. Mol Carcinog 2016; 56:149-162. [PMID: 26999671 DOI: 10.1002/mc.22479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 02/21/2016] [Accepted: 03/01/2016] [Indexed: 11/07/2022]
Abstract
Upper aerodigestive cancer is an aggressive malignancy with relatively stagnant long-term survival rates over 20 yr. Recent studies have demonstrated that exploitation of PPARγ pathways may be a novel therapy for cancer and its prevention. We tested whether PPARγ is expressed and inducible in aerodigestive carcinoma cells and whether it is present in human upper aerodigestive tumors. Human oral cancer CA-9-22 and NA cell lines were treated with the PPAR activators eicosatetraynoic acid (ETYA), 15-deoxy-δ- 12,14-prostaglandin J2 (PG-J2), and the thiazolidinedione, ciglitazone, and evaluated for their ability to functionally activate PPARγ luciferase reporter gene constructs. Cellular proliferation and clonogenic potential after PPARγ ligand treatment were also evaluated. Aerodigestive cancer specimens and normal tissues were evaluated for PPARγ expression on gene expression profiling and immunoblotting. Functional activation of PPARγ reporter gene constructs and increases in PPARγ protein were confirmed in the nuclear compartment after PPARγ ligand treatment. Significant decreases in cell proliferation and clonogenic potential resulted from treatment. Lipid accumulation was induced by PPARγ activator treatment. 75% of tumor specimens and 100% of normal control tissues expressed PPARγ RNA, and PPARγ protein was confirmed in 66% of tumor specimens analyzed by immunoblotting. We conclude PPARγ can be functionally activated in upper aerodigestive cancer and that its activation downregulates several features of the neoplastic phenotype. PPARγ expression in human upper aerodigestive tract tumors and normal cells potentially legitimizes it as a novel intervention target in this disease. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Simon K Wright
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota
| | - Beverly R Wuertz
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota
| | - George Harris
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota
| | - Raed Abu Ghazallah
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota
| | - Wendy A Miller
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Frank G Ondrey
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
71
|
Hallenborg P, Petersen RK, Kouskoumvekaki I, Newman JW, Madsen L, Kristiansen K. The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects. Prog Lipid Res 2016; 61:149-62. [DOI: 10.1016/j.plipres.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023]
|
72
|
Busche S, Shao X, Caron M, Kwan T, Allum F, Cheung WA, Ge B, Westfall S, Simon MM, The Multiple Tissue Human Expression Resource, Barrett A, Bell JT, McCarthy MI, Deloukas P, Blanchette M, Bourque G, Spector TD, Lathrop M, Pastinen T, Grundberg E. Population whole-genome bisulfite sequencing across two tissues highlights the environment as the principal source of human methylome variation. Genome Biol 2015; 16:290. [PMID: 26699896 PMCID: PMC4699357 DOI: 10.1186/s13059-015-0856-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND CpG methylation variation is involved in human trait formation and disease susceptibility. Analyses within populations have been biased towards CpG-dense regions through the application of targeted arrays. We generate whole-genome bisulfite sequencing data for approximately 30 adipose and blood samples from monozygotic and dizygotic twins for the characterization of non-genetic and genetic effects at single-site resolution. RESULTS Purely invariable CpGs display a bimodal distribution with enrichment of unmethylated CpGs and depletion of fully methylated CpGs in promoter and enhancer regions. Population-variable CpGs account for approximately 15-20 % of total CpGs per tissue, are enriched in enhancer-associated regions and depleted in promoters, and single nucleotide polymorphisms at CpGs are a frequent confounder of extreme methylation variation. Differential methylation is primarily non-genetic in origin, with non-shared environment accounting for most of the variance. These non-genetic effects are mainly tissue-specific. Tobacco smoking is associated with differential methylation in blood with no evidence of this exposure impacting cell counts. Opposite to non-genetic effects, genetic effects of CpG methylation are shared across tissues and thus limit inter-tissue epigenetic drift. CpH methylation is rare, and shows similar characteristics of variation patterns as CpGs. CONCLUSIONS Our study highlights the utility of low pass whole-genome bisulfite sequencing in identifying methylome variation beyond promoter regions, and suggests that targeting the population dynamic methylome of tissues requires assessment of understudied intergenic CpGs distal to gene promoters to reveal the full extent of inter-individual variation.
Collapse
Affiliation(s)
- Stephan Busche
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Xiaojian Shao
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Maxime Caron
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Tony Kwan
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Fiona Allum
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Warren A. Cheung
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Bing Ge
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Susan Westfall
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
| | - Marie-Michelle Simon
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - The Multiple Tissue Human Expression Resource
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
- />Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, UK
- />Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- />Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
- />William Harvey Research Institute, Queen Mary University of London, London, UK
- />Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- />School of Computer Science, McGill University, Montreal, Quebec Canada
| | - Amy Barrett
- />Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, UK
| | - Jordana T. Bell
- />Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Mark I. McCarthy
- />Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, UK
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- />Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Panos Deloukas
- />William Harvey Research Institute, Queen Mary University of London, London, UK
- />Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Mathieu Blanchette
- />School of Computer Science, McGill University, Montreal, Quebec Canada
| | - Guillaume Bourque
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Timothy D. Spector
- />Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Mark Lathrop
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Tomi Pastinen
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Elin Grundberg
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| |
Collapse
|
73
|
Zebrafish as a Model to Study the Role of Peroxisome Proliferating-Activated Receptors in Adipogenesis and Obesity. PPAR Res 2015; 2015:358029. [PMID: 26697060 PMCID: PMC4677228 DOI: 10.1155/2015/358029] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/05/2015] [Indexed: 02/05/2023] Open
Abstract
The Peroxisome Proliferator-Activated Receptors (PPARs) PPARA and PPARD are regulators of lipid metabolism with important roles in energy release through lipid breakdown, while PPARG plays a key role in lipid storage and adipogenesis. The aim of this review is to describe the role of PPARs in lipid metabolism, adipogenesis, and obesity and evaluate the zebrafish as an emerging vertebrate model to study the function of PPARs. Zebrafish are an appropriate model to study human diseases, including obesity and related metabolic diseases, as pathways important for adipogenesis and lipid metabolism which are conserved between mammals and fish. This review synthesizes knowledge on the role of PPARs in zebrafish and focuses on the putative function of PPARs in zebrafish adipogenesis. Using in silico analysis, we confirm the presence of five PPARs (pparaa, pparab, pparda, ppardb, and pparg) in the zebrafish genome with 67–74% identity to human and mouse PPARs. During development, pparda/b paralogs and pparg show mRNA expression around the swim bladder and pancreas, the region where adipocytes first develop, whereas pparg is detectable in adipocytes at 15 days post fertilization (dpf). This review indicates that the zebrafish is a promising model to investigate the specific functions of PPARs in adipogenesis and obesity.
Collapse
|
74
|
Han Y, Choi YH, Lee SH, Jin YH, Cheong H, Lee KY. Yin Yang 1 is a multi-functional regulator of adipocyte differentiation in 3T3-L1 cells. Mol Cell Endocrinol 2015; 413:217-27. [PMID: 26159900 DOI: 10.1016/j.mce.2015.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/21/2015] [Accepted: 06/29/2015] [Indexed: 01/03/2023]
Abstract
Yin Yang 1 (YY1) is an ubiquitously distributed transcription factor that belongs to the GLI-Kruppel class of zinc finger proteins. The mechanism by which YY1 regulates adipocyte differentiation remains unclear. In this study, we investigated the functional role of YY1 during adipocyte differentiation. During the early stage, YY1 gene and protein expression was transiently downregulated upon the induction of differentiation, however, it was consistently induced during the later stage. YY1 overexpression decreased adipocyte differentiation and blocked cell differentiation at the preadipocyte stage, while YY1 knockdown by RNA interference increased adipocyte differentiation. YY1 physically interacted with PPARγ (Peroxisome proliferator-activated receptor gamma) and C/EBPβ (CCAAT/enhancer-binding protein beta) respectively in 3T3-L1 cells. Through its interaction with PPARγ, YY1 directly decreased PPARγ transcriptional activity. YY1 ectopic expression prevented C/EBPβ from binding to the PPARγ promoter, resulting in the downregulation of PPARγ transcriptional activity. These results indicate that YY1 repressed adipocyte differentiation by repressing the activity of adipogenic transcriptional factors in 3T3-L1 cells.
Collapse
Affiliation(s)
- Younho Han
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - You Hee Choi
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Sung Ho Lee
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Yun-Hye Jin
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Heesun Cheong
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, South Korea.
| | - Kwang Youl Lee
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea.
| |
Collapse
|
75
|
Molecular events in muscle-invasive bladder cancer development. Bladder Cancer 2015. [DOI: 10.1002/9781118674826.ch29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
76
|
Duan K, Sun Y, Zhang X, Zhang T, Zhang W, Zhang J, Wang G, Wang S, Leng L, Li H, Wang N. Identification and characterization of transcript variants of chicken peroxisome proliferator-activated receptor gamma. Poult Sci 2015; 94:2516-27. [PMID: 26286997 DOI: 10.3382/ps/pev229] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma regulates adipogenesis. The genomic structure of the chicken peroxisome proliferator-activated receptor gamma (cPPARγ) gene has not been fully characterized, and only one cPPARγ gene mRNA sequence has been reported in genetic databases. Using 5' rapid amplification of cDNA ends, we identified five different cPPARγ mRNAs that are transcribed from three transcription initiation sites. The open reading frame analysis showed that these five cPPARγ transcript variants (cPPARγ1 to 5) could encode two cPPARγ protein isoforms (cPPARγ1 and cPPARγ2), which differ only in their N-terminal region. Quantitative real-time RT-PCR analysis showed that, of these five cPPARγ transcript variants, cPPARγ1 was ubiquitously highly expressed in various chicken tissues, including adipose tissue, liver, kidney, spleen and duodenal; cPPARγ2 was exclusively highly expressed in adipose tissue; cPPARγ3 was highly expressed in adipose tissue, kidney, spleen and liver; cPPARγ4 and cPPARγ5 were ubiquitously weakly expressed in all the tested tissues, and comparatively, cPPARγ5 was highly expressed in adipose tissue, heart, liver and kidney. The comparison of the expression of the five cPPARγ transcript variants showed that adipose tissue cPPARγ1 expression was significantly higher in the fat line than in the lean line from 2 to 7 wk of age (P < 0.05 or P < 0.01). Adipose tissue cPPARγ3 expression was significantly higher in the fat line than in the lean line at 3, 5 and 6 wk of age (P < 0.01, P < 0.05), but lower at 4 wk of age (P < 0.05). Adipose tissue cPPARγ5 expression was significantly higher in the fat line than in the lean line at 3, 4, and 6 wk of age (P < 0.01) and at 2 and 7 wk of age (P < 0.05). This is the first report of transcript variants and protein isoforms of cPPARγ gene. Our findings provided a foundation for future investigations of the function and regulation of cPPARγ gene in adipose tissue development.
Collapse
Affiliation(s)
- Kui Duan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yingning Sun
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Xiaofei Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tianmu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wenjian Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guihua Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
77
|
Thiazolidinediones and Edema: Recent Advances in the Pathogenesis of Thiazolidinediones-Induced Renal Sodium Retention. PPAR Res 2015; 2015:646423. [PMID: 26074951 PMCID: PMC4446477 DOI: 10.1155/2015/646423] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/03/2015] [Indexed: 02/07/2023] Open
Abstract
Thiazolidinediones (TZDs) are one of the major classes of antidiabetic drugs that are used widely. TZDs improve insulin resistance by activating peroxisome proliferator-activated receptor gamma (PPARγ) and ameliorate diabetic and other nephropathies, at least, in experimental animals. However, TZDs have side effects, such as edema, congestive heart failure, and bone fracture, and may increase bladder cancer risk. Edema and heart failure, which both probably originate from renal sodium retention, are of great importance because these side effects make it difficult to continue the use of TZDs. However, the pathogenesis of edema remains a matter of controversy. Initially, upregulation of the epithelial sodium channel (ENaC) in the collecting ducts by TZDs was thought to be the primary cause of edema. However, the results of other studies do not support this view. Recent data suggest the involvement of transporters in the proximal tubule, such as sodium-bicarbonate cotransporter and sodium-proton exchanger. Other studies have suggested that sodium-potassium-chloride cotransporter 2 in the thick ascending limb of Henle and aquaporins are also possible targets for TZDs. This paper will discuss the recent advances in the pathogenesis of TZD-induced sodium reabsorption in the renal tubules and edema.
Collapse
|
78
|
Abstract
Classic as well as more recent large-scale genomic analyses have uncovered multiple genes and pathways important for bladder cancer development. Genes involved in cell-cycle control, chromatin regulation, and receptor tyrosine and PI3 kinase-mammalian target of rapamycin signaling pathways are commonly mutated in muscle-invasive bladder cancer. Expression-based analyses have identified distinct types of bladder cancer that are similar to subsets of breast cancer, and have prognostic and therapeutic significance. These observations are leading to novel therapeutic approaches in bladder cancer, providing optimism for therapeutic progress.
Collapse
Affiliation(s)
- William Martin-Doyle
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - David J Kwiatkowski
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| |
Collapse
|
79
|
Yang SH, Ahn EK, Lee JA, Shin TS, Tsukamoto C, Suh JW, Mei I, Chung G. Soyasaponins Aa and Ab Exert an Anti-Obesity Effect in 3T3-L1 Adipocytes Through Downregulation of PPARγ. Phytother Res 2014; 29:281-7. [DOI: 10.1002/ptr.5252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/22/2014] [Accepted: 10/02/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Seung Hwan Yang
- Center for Nutraceutical and Pharmaceutical Materials; Myongji University; Yongin Gyeonggi 449-728 Korea
| | - Eun-Kyung Ahn
- Natural Products Research Institute; Gyeonggi Institute of Science and Technology Promotion; Suwon Gyeonggi 443-270 Korea
| | - Jung A Lee
- Natural Products Research Institute; Gyeonggi Institute of Science and Technology Promotion; Suwon Gyeonggi 443-270 Korea
| | - Tai-Sun Shin
- Department of Nutrition; Chonnam National University; Yeosu Chonnam 550-749 Korea
| | - Chigen Tsukamoto
- Department of Applied Biological Chemistry; Iwate University; Morioka Iwate 020-8550 Japan
| | - Joo-won Suh
- Division of Bioscience and Bioinformatics; Myongji University; Seoul Gyeonggi 449-728 Korea
| | - Itabashi Mei
- Department of Biotechnology; Chonnam National University; Yeosu Chonnam 550-749 Korea
| | - Gyuhwa Chung
- Department of Biotechnology; Chonnam National University; Yeosu Chonnam 550-749 Korea
| |
Collapse
|
80
|
Penna-de-Carvalho A, Graus-Nunes F, Rabelo-Andrade J, Mandarim-de-Lacerda CA, Souza-Mello V. Enhanced pan-peroxisome proliferator-activated receptor gene and protein expression in adipose tissue of diet-induced obese mice treated with telmisartan. Exp Physiol 2014; 99:1663-78. [PMID: 25326526 DOI: 10.1113/expphysiol.2014.081596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Telmisartan has previously been used to target obesity, showing peroxisome proliferator-activated receptor (PPAR) β/δ-related effects in white adipose tissue (WAT). We sought to evaluate whether telmisartan enhances gene and protein expression of all PPAR isoforms in WAT and brown adipose tissue (BAT), as well as their downstream effects upon insulin resistance, adipokine profile and adaptive thermogenesis. Male C57BL/6 mice were fed standard chow (SC; 10% lipids) or high-fat diet (HF; 50% lipids) for 10 weeks. Animals were then randomly allocated into the following four groups: SC, SC-T, HF and HF-T. Telmisartan [10 mg (kg diet)(-1)] was administered for 4 weeks in the diet. Animals in the HF group were overweight and exhibited hypertension, insulin resistance, decreased energy expenditure, a pro-inflammatory adipokine profile and abnormal fat pad mass distribution. Animals in the HF group showed decreased expression of PPARα, β/δ and γ in WAT and BAT, resulting in impaired glucose uptake and insufficient thermogenesis. Due to the improvement in the adipokine profile and enhanced insulin sensitivity with adequate insulin-stimulated glucose uptake after treatment with telmisartan, the activation of all PPAR isoforms in WAT was beneficial. In BAT, telmisartan induced sustained sympathetic activation, because the β3-adrenergic receptor was induced by PPARβ/δ, while uncoupling protein 1 was induced by PPARα to promote thermogenesis. Telmisartan exerted anti-obesity effects through higher pan-PPAR gene and protein expression. Upon PPARα, β/δ and γ (pan-PPAR) agonism in adipose tissue of obese mice, telmisartan ameliorates inflammation and insulin resistance, as well as inducing non-shivering thermogenesis. Our results point to new therapeutic targets for the control of obesity and comorbidities through pan-PPAR-related effects.
Collapse
Affiliation(s)
- Aline Penna-de-Carvalho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Francielle Graus-Nunes
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Júlia Rabelo-Andrade
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| |
Collapse
|
81
|
Nikolopoulou E, Papacleovoulou G, Jean-Alphonse F, Grimaldi G, Parker MG, Hanyaloglu AC, Christian M. Arachidonic acid-dependent gene regulation during preadipocyte differentiation controls adipocyte potential. J Lipid Res 2014; 55:2479-90. [PMID: 25325755 PMCID: PMC4242441 DOI: 10.1194/jlr.m049551] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arachidonic acid (AA) is a major PUFA that has been implicated in the regulation of adipogenesis. We examined the effect of a short exposure to AA at different stages of 3T3-L1 adipocyte differentiation. AA caused the upregulation of fatty acid binding protein 4 (FABP4/aP2) following 24 h of differentiation. This was mediated by the prostaglandin F2α (PGF2α), as inhibition of cyclooxygenases or PGF2α receptor signaling counteracted the AA-mediated aP2 induction. In addition, calcium, protein kinase C, and ERK are all key elements of the pathway through which AA induces the expression of aP2. We also show that treatment with AA during the first 24 h of differentiation upregulates the expression of the transcription factor Fos-related antigen 1 (Fra-1) via the same pathway. Finally, treatment with AA for 24 h at the beginning of the adipocyte differentiation is sufficient to inhibit the late stages of adipogenesis through a Fra-1-dependent pathway, as Fra-1 knockdown rescued adipogenesis. Our data show that AA is able to program the differentiation potential of preadipocytes by regulating gene expression at the early stages of adipogenesis.
Collapse
Affiliation(s)
- Evanthia Nikolopoulou
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | - Frederic Jean-Alphonse
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Giulia Grimaldi
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Malcolm G Parker
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Mark Christian
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
82
|
Tian L, Wang C, Hagen FK, Gormley M, Addya S, Soccio R, Casimiro MC, Zhou J, Powell MJ, Xu P, Deng H, Sauve AA, Pestell RG. Acetylation-defective mutant of Pparγ is associated with decreased lipid synthesis in breast cancer cells. Oncotarget 2014; 5:7303-15. [PMID: 25229978 PMCID: PMC4202124 DOI: 10.18632/oncotarget.2371] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/18/2014] [Indexed: 01/09/2023] Open
Abstract
In our prior publications we characterized a conserved acetylation motif (K(R)xxKK) of evolutionarily related nuclear receptors. Recent reports showed that peroxisome proliferator activated receptor gamma (PPARγ) deacetylation by SIRT1 is involved in delaying cellular senescence and maintaining the brown remodeling of white adipose tissue. However, it still remains unknown whether lysyl residues 154 and 155 (K154/155) of the conserved acetylation motif (RIHKK) in Pparγ1 are acetylated. Herein, we demonstrate that Pparγ1 is acetylated and regulated by both endogenous TSA-sensitive and NAD-dependent deacetylases. Acetylation of lysine 154 was identified by mass spectrometry (MS) while deacetylation of lysine 155 by SIRT1 was confirmed by in vitro deacetylation assay. An in vivo labeling assay revealed K154/K155 as bona fide acetylation sites. The conserved acetylation sites of Pparγ1 and the catalytic domain of SIRT1 are both required for the interaction between Pparγ1 and SIRT1. Sirt1 and Pparγ1 converge to govern lipid metabolism in vivo. Acetylation-defective mutants of Pparγ1 were associated with reduced lipid synthesis in ErbB2 overexpressing breast cancer cells. Together, these results suggest that the conserved lysyl residues K154/K155 of Pparγ1 are acetylated and play an important role in lipid synthesis in ErbB2-positive breast cancer cells.
Collapse
Affiliation(s)
- Lifeng Tian
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chenguang Wang
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fred K Hagen
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - Michael Gormley
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sankar Addya
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond Soccio
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mathew C Casimiro
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jie Zhou
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael J Powell
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ping Xu
- Department of Pharmacology, Weill Medical College of Cornell University, York Avenue LC216, New York, NY, USA
| | - Haiteng Deng
- Proteomics Resource Center, Rockefeller University, New York, NY, USA
| | - Anthony A Sauve
- Department of Pharmacology, Weill Medical College of Cornell University, York Avenue LC216, New York, NY, USA
| | - Richard G Pestell
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
83
|
Liu Y, Weng J, Huang S, Shen Y, Sheng X, Han Y, Xu M, Weng Q. Immunoreactivities of PPARγ2, leptin and leptin receptor in oviduct of Chinese brown frog during breeding period and pre-hibernation. Eur J Histochem 2014; 58:2422. [PMID: 25308849 PMCID: PMC4194397 DOI: 10.4081/ejh.2014.2422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 12/14/2022] Open
Abstract
The Chinese brown frog (Rana dybowskii) is a special amphibian with one unique physiological phenomenon, which is that its oviduct expands prior to hibernation, instead of during the breeding period. In this study, we investigate the localization and expression level of PPARγ2, leptin and leptin receptor proteins in oviduct of Rana dybowskii during breeding period and pre-hibernation. There were significant variations in oviductal weight and size, with values much lower in the breeding period than in pre-hibernation. PPARγ2 was observed in stromal and epithelial cells in both periods. Leptin was immunolocalized in epithelial cells in both periods, whereas leptin receptor was detected only in stromal cells. Consistently, the protein levels of PPARγ2, leptin and leptin receptor were higher in pre-hibernation as compared to the breeding period. These results suggested that oviduct was the target organ of leptin, which may play an important paracrine role in regulating the oviductal hypertrophy during prehibernation.
Collapse
Affiliation(s)
- Y Liu
- Beijing Forestry University.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Zhang GH, Lu JX, Chen Y, Zhao YQ, Guo PH, Yang JT, Zang RX. Comparison of the adipogenesis in intramuscular and subcutaneous adipocytes from Bamei and Landrace pigs. Biochem Cell Biol 2014; 92:259-67. [DOI: 10.1139/bcb-2014-0019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Fat deposition is a complex process involving proliferation, differentiation, and lipogenesis of adipocytes. Bamei and Landrace are considered to represent fat- and lean-type pig breeds. Subcutaneous (SC) and intramuscular (IM) pre-adipocytes were cultured to compare the proliferation and lipogenesis in these breeds. The differentiated adipocytes were exposed to glucose or insulin to evaluate their effects on lipogenesis and lipogenic gene expression. Pre-adipocytes proliferated dramatically faster in SC vs. IM cells, and in Bamei vs. Landrace breeds. Lipogenesis and lipogenic gene expression had a greater increase in Bamei than in Landrace, and in SC vs. IM in the process of differentiation. Glucose markedly promoted lipogenesis and lipogenic gene expression in differentiated adipocytes. The stimulation of high-glucose levels on lipogenesis and ChREBP and lipogenic gene expression was higher in SC than IM adipocytes, and in Bamei vs. Landrace. Insulin largely increased SREBP-1c expression, however it modestly stimulated lipogenesis and lipogenic gene expression, and there was no difference between cell populationsor between breeds. These data demonstrated that regional and varietal differences obviously existed in the development of porcine adipocytes. The proliferation and differentiation capacity of pre-adipocytes, and the adipocyte lipogenesis stimulated by glucose, are stronger in Bamei than Landrace, and in SC vs. IM adipocytes independent of breed.
Collapse
Affiliation(s)
- Guo Hua Zhang
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| | - Jian Xiong Lu
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| | - Yan Chen
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| | - Yong Qing Zhao
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| | - Peng Hui Guo
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| | - Ju Tian Yang
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| | - Rong Xin Zang
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| |
Collapse
|
85
|
Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 2014; 4:2834. [PMID: 24280772 PMCID: PMC3876736 DOI: 10.1038/ncomms3834] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/29/2013] [Indexed: 12/27/2022] Open
Abstract
Macrophages are able to polarize to proinflammatory M1 or alternative M2 states with distinct phenotypes and physiological functions. How metabolic status regulates macrophage polarization remains not well understood, and here we examine the role of mTOR (Mechanistic Target of Rapamycin), a central metabolic pathway that couples nutrient sensing to regulation of metabolic processes. Using a mouse model in which myeloid lineage specific deletion of Tsc1 (Tsc1Δ/Δ) leads to constitutive mTOR Complex 1 (mTORC1) activation, we find that Tsc1Δ/Δ macrophages are refractory to IL-4 induced M2 polarization, but produce increased inflammatory responses to proinflammatory stimuli. Moreover, mTORC1-mediated downregulation of Akt signaling critically contributes to defective polarization. These findings highlight a key role for the mTOR pathway in regulating macrophage polarization, and suggest how nutrient sensing and metabolic status could be “hard-wired” to control of macrophage function, with broad implications for regulation of Type 2 immunity, inflammation, and allergy.
Collapse
Affiliation(s)
- Vanessa Byles
- 1] Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA [2]
| | | | | | | | | | | | | |
Collapse
|
86
|
A Role for Acyclic Retinoid in the Chemoprevention of Hepatocellular Carcinoma: Therapeutic Strategy Targeting Phosphorylated Retinoid X Receptor-α. Diseases 2014. [DOI: 10.3390/diseases2030226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
87
|
Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol Metab 2014; 25:293-302. [PMID: 24793638 PMCID: PMC4104504 DOI: 10.1016/j.tem.2014.04.001] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor (NR) superfamily of ligand-dependent transcription factors (TFs) and function as a master regulator of adipocyte differentiation and metabolism. We review recent breakthroughs in the understanding of PPARγ gene regulation and function in the chromatin context. It is now clear that multiple TFs team up to induce PPARγ during adipogenesis, and that other TFs cooperate with PPARγ to ensure adipocyte-specific genomic binding and function. We discuss how this differs in other PPARγ-expressing cells such as macrophages and how these genome-wide mechanisms are preserved across species despite modest conservation of specific binding sites. These emerging considerations inform our understanding of PPARγ function as well as of adipocyte development and physiology.
Collapse
Affiliation(s)
- Martina I Lefterova
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anders K Haakonsson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.
| |
Collapse
|
88
|
Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K, Ashida H. Tea Catechin Suppresses Adipocyte Differentiation Accompanied by Down-regulation of PPARγ2 and C/EBPα in 3T3-L1 Cells. Biosci Biotechnol Biochem 2014; 68:2353-9. [PMID: 15564676 DOI: 10.1271/bbb.68.2353] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Obesity is a serious health problem, and its prevention is promoted through life style including diet and exercise. In this study, we investigated the suppressive effects of tea catechin on the differentiation of 3T3-L1 preadipocytes to adipocytes. (-)-Catechin 3-gallate (CG), (-)-epigallocatechin (EGC), (-)-epicatechin 3-gallate, and (-)-epigallocatechin 3-gallate at 5 muM suppressed intracellular lipid accumulation. The suppressive effects of CG and EGC were stronger than the others, and CG and EGC also suppressed the activity of glycerol-3-phosphate dehydrogenase as a differentiation marker. These catechins inhibited the expression of peroxisome proliferator-activated receptor (PPAR) gamma2 and CCAAT/enhancer-binding protein (C/EBP) alpha, both of which act as key transcription factors at an early stage of differentiation, followed by the expression of glucose transporter (GLUT) 4 at a later stage. In addition, the catechins did not affect the phosphorylation status of the insulin signal pathway. Thus, catechin suppressed adipocyte differentiation accompanied by the down-regulation of PPARgamma2, C/EBPalpha, and GLUT4. These results suggest that tea catechin prevents obesity through the suppression of adipocyte differentiation.
Collapse
Affiliation(s)
- Takashi Furuyashiki
- Department of Biofunctional Chemistry, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | | | | | |
Collapse
|
89
|
Börsch-Haubold AG, Montero I, Konrad K, Haubold B. Genome-wide quantitative analysis of histone H3 lysine 4 trimethylation in wild house mouse liver: environmental change causes epigenetic plasticity. PLoS One 2014; 9:e97568. [PMID: 24849289 PMCID: PMC4029994 DOI: 10.1371/journal.pone.0097568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/17/2014] [Indexed: 01/05/2023] Open
Abstract
In mammals, exposure to toxic or disease-causing environments can change epigenetic marks that are inherited independently of the intrauterine environment. Such inheritance of molecular phenotypes may be adaptive. However, studies demonstrating molecular evidence for epigenetic inheritance have so far relied on extreme treatments, and are confined to inbred animals. We therefore investigated whether epigenomic changes could be detected after a non-drastic change in the environment of an outbred organism. We kept two populations of wild-caught house mice (Mus musculus domesticus) for several generations in semi-natural enclosures on either standard diet and light cycle, or on an energy-enriched diet with longer daylight to simulate summer. As epigenetic marker for active chromatin we quantified genome-wide histone-3 lysine-4 trimethylation (H3K4me3) from liver samples by chromatin immunoprecipitation and high-throughput sequencing as well as by quantitative polymerase chain reaction. The treatment caused a significant increase of H3K4me3 at metabolic genes such as lipid and cholesterol regulators, monooxygenases, and a bile acid transporter. In addition, genes involved in immune processes, cell cycle, and transcription and translation processes were also differently marked. When we transferred young mice of both populations to cages and bred them under standard conditions, most of the H3K4me3 differences were lost. The few loci with stable H3K4me3 changes did not cluster in metabolic functional categories. This is, to our knowledge, the first quantitative study of an epigenetic marker in an outbred mammalian organism. We demonstrate genome-wide epigenetic plasticity in response to a realistic environmental stimulus. In contrast to disease models, the bulk of the epigenomic changes we observed were not heritable.
Collapse
Affiliation(s)
- Angelika G. Börsch-Haubold
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail:
| | - Inka Montero
- Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Kathryn Konrad
- Cologne Center for Genomics, University of Cologne, Köln, Germany
| | - Bernhard Haubold
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
90
|
Zhang T, Yamamoto N, Yamashita Y, Ashida H. The chalcones cardamonin and flavokawain B inhibit the differentiation of preadipocytes to adipocytes by activating ERK. Arch Biochem Biophys 2014; 554:44-54. [PMID: 24845100 DOI: 10.1016/j.abb.2014.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/09/2014] [Accepted: 05/10/2014] [Indexed: 12/18/2022]
Abstract
AIM We searched for polyphenols capable of inhibiting the lipid accumulation in 3T3-L1 cells, and investigated the mechanisms of two effective chalcones cardamonin and flavokawain B on differentiation of preadipocytes. METHOD AND RESULTS We treated 3T3-L1 cells with a panel of 46 polyphenols and measured intracellular lipid accumulation by Sudan II staining. Four of them, including cardamonin and flavokawain B, inhibited lipid accumulation. In the further study, cardamonin and flavokawain B inhibited lipid accumulation by downregulating the expression of CCAAT/enhancer binding protein (C/EBP)-β, C/EBPα, and peroxisome proliferator-activated receptor-γ (PPARγ) at both mRNA and protein levels. Cardamonin and flavokawain B also increased phosphorylation of extracellular signal-regulated kinase (ERK) in the early phase of adipocyte differentiation. PD98059, an ERK inhibitor, restored C/EBPβ, PPARγ expression and intracellular lipid accumulation in adipocytes. Moreover, cardamonin and flavokawain B also modulated the secretion of C-reactive protein, dipeptidyl peptidase IV, interleukin-6, tumor necrosis factor-α and fibroblast growth factor-21 in mature adipocytes. CONCLUSIONS These results indicate that ERK activation and consequent downregulation of adipocyte-specific transcription factors are involved in the inhibitory effects of the chalcones cardamonin and flavokawain B on adipocyte differentiation. Moreover, cardamonin and flavokawain B are able to modulate secretion of adipokines in mature adipocytes.
Collapse
Affiliation(s)
- Tianshun Zhang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Norio Yamamoto
- Food Science Research Center, House Wellness Foods Corporation, Imoji 3-20, Itami, Hyogo 664-0011, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
91
|
The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014; 507:315-22. [PMID: 24476821 PMCID: PMC3962515 DOI: 10.1038/nature12965] [Citation(s) in RCA: 2307] [Impact Index Per Article: 209.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/19/2013] [Indexed: 12/11/2022]
Abstract
Urothelial carcinoma of the bladder is a common malignancy that causes approximately 150,000 deaths per year worldwide. So far, no molecularly targeted agents have been approved for treatment of the disease. As part of The Cancer Genome Atlas project, we report here an integrated analysis of 131 urothelial carcinomas to provide a comprehensive landscape of molecular alterations. There were statistically significant recurrent mutations in 32 genes, including multiple genes involved in cell-cycle regulation, chromatin regulation, and kinase signalling pathways, as well as 9 genes not previously reported as significantly mutated in any cancer. RNA sequencing revealed four expression subtypes, two of which (papillary-like and basal/squamous-like) were also evident in microRNA sequencing and protein data. Whole-genome and RNA sequencing identified recurrent in-frame activating FGFR3-TACC3 fusions and expression or integration of several viruses (including HPV16) that are associated with gene inactivation. Our analyses identified potential therapeutic targets in 69% of the tumours, including 42% with targets in the phosphatidylinositol-3-OH kinase/AKT/mTOR pathway and 45% with targets (including ERBB2) in the RTK/MAPK pathway. Chromatin regulatory genes were more frequently mutated in urothelial carcinoma than in any other common cancer studied so far, indicating the future possibility of targeted therapy for chromatin abnormalities.
Collapse
|
92
|
Garin-Shkolnik T, Rudich A, Hotamisligil GS, Rubinstein M. FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes 2014; 63:900-11. [PMID: 24319114 DOI: 10.2337/db13-0436] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fatty acid binding protein 4 (FABP4, also known as aP2) is a cytoplasmic fatty acid chaperone expressed primarily in adipocytes and myeloid cells and implicated in the development of insulin resistance and atherosclerosis. Here we demonstrate that FABP4 triggers the ubiquitination and subsequent proteasomal degradation of peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and insulin responsiveness. Importantly, FABP4-null mouse preadipocytes as well as macrophages exhibited increased expression of PPARγ, and complementation of FABP4 in the macrophages reversed the increase in FABP4 expression. The FABP4-null preadipocytes exhibited a remarkably enhanced adipogenesis compared with wild-type cells, indicating that FABP4 regulates adipogenesis by downregulating PPARγ. We found that the FABP4 level was higher and PPARγ level was lower in human visceral fat and mouse epididymal fat compared with their subcutaneous fat. Furthermore, FABP4 was higher in the adipose tissues of obese diabetic individuals compared with healthy ones. Suppression of PPARγ by FABP4 in visceral fat may explain the reported role of FABP4 in the development of obesity-related morbidities, including insulin resistance, diabetes, and atherosclerosis.
Collapse
Affiliation(s)
- Tali Garin-Shkolnik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
93
|
Kusuyama J, Bandow K, Shamoto M, Kakimoto K, Ohnishi T, Matsuguchi T. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. J Biol Chem 2014; 289:10330-10344. [PMID: 24550383 DOI: 10.1074/jbc.m113.546382] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent cells that can differentiate into multilineage cell types, including adipocytes and osteoblasts. Mechanical stimulus is one of the crucial factors in regulating MSC differentiation. However, it remains unknown how mechanical stimulus affects the balance between adipogenesis and osteogenesis. Low intensity pulsed ultrasound (LIPUS) therapy is a clinical application of mechanical stimulus and facilitates bone fracture healing. Here, we applied LIPUS to adipogenic progenitor cell and MSC lines to analyze how multilineage cell differentiation was affected. We found that LIPUS suppressed adipogenic differentiation of both cell types, represented by impaired lipid droplet appearance and decreased gene expression of peroxisome proliferator-activated receptor γ2 (Pparg2) and fatty acid-binding protein 4 (Fabp4). LIPUS also down-regulated the phosphorylation level of peroxisome proliferator-activated receptor γ2 protein, inhibiting its transcriptional activity. In contrast, LIPUS promoted osteogenic differentiation of the MSC line, characterized by increased cell calcification as well as inductions of runt-related transcription factor 2 (Runx2) and Osteocalcin mRNAs. LIPUS induced phosphorylation of cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, which was essential for the phosphorylation of mitogen-activated kinase kinase 1 (MEK1) and p44/p42 extracellular signal-regulated kinases (ERKs). Notably, effects of LIPUS on both adipogenesis and osteogenesis were prevented by a Cot/Tpl2-specific inhibitor. Furthermore, effects of LIPUS on MSC differentiation as well as Cot/Tpl2 phosphorylation were attenuated by the inhibition of Rho-associated kinase. Taken together, these results indicate that mechanical stimulus with LIPUS suppresses adipogenesis and promotes osteogenesis of MSCs through Rho-associated kinase-Cot/Tpl2-MEK-ERK signaling pathway.
Collapse
Affiliation(s)
- Joji Kusuyama
- Department of Biochemistry and Molecular Dentistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kenjiro Bandow
- Department of Biochemistry and Molecular Dentistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Mitsuo Shamoto
- Department of Biochemistry and Molecular Dentistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kyoko Kakimoto
- Department of Biochemistry and Molecular Dentistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Biochemistry and Molecular Dentistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Biochemistry and Molecular Dentistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
94
|
Biemann R, Fischer B, Navarrete Santos A. Adipogenic effects of a combination of the endocrine-disrupting compounds bisphenol A, diethylhexylphthalate, and tributyltin. Obes Facts 2014; 7:48-56. [PMID: 24503497 PMCID: PMC5644809 DOI: 10.1159/000358913] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The food contaminants bisphenol A (BPA), diethylhexylphthalate (DEHP), and tributyltin (TBT) are potent endocrine-disrupting compounds (EDC) known to interfere with adipogenesis. EDC usually act in mixtures and not as single compounds. The aim of this study was to investigate the effects of a simultaneous exposure of BPA, DEHP, and TBT on mesenchymal stem cell differentiation into adipocytes. METHODS Multipotent murine mesenchymal stem cells (C3H10T1/2) were exposed to EDC mixtures in high concentrations, i.e. MIX-high (10 µmol/l BPA, 100 µmol/l DEHP, 100 nmol/l TBT), and in environmentally relevant concentrations, i.e. MIX-low (10 nmol/l BPA, 100 nmol/l DEHP, 1 nmol/l TBT). The exposure was performed either for the entire culture time (0-12 days) or at distinct stages of adipogenic differentiation. At day 12 of cell culture, the amount of adipocytes, triglyceride content (TG), and adipogenic marker gene expression were analyzed. RESULTS MIX-high increased the development of adipocytes and the expression of adipogenic marker genes independently of the exposure window. The total TG amount was not increased. The low-concentrated EDC mixture had no obvious impact on adipogenesis. CONCLUSION In EDC mixtures, the adipogenic effect of TBT and DEHP predominates single effects of BPA. Mixture effects of EDC are not deducible from single compound experiments.
Collapse
Affiliation(s)
- Ronald Biemann
- *Ronald Biemann, Department of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120 Magdeburg (Germany),
| | | | | |
Collapse
|
95
|
Mansour M. The Roles of Peroxisome Proliferator-Activated Receptors in the Metabolic Syndrome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:217-66. [DOI: 10.1016/b978-0-12-800101-1.00007-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
96
|
Peroxisome proliferator-activated receptor γ and C/EBPα synergistically activate key metabolic adipocyte genes by assisted loading. Mol Cell Biol 2013; 34:939-54. [PMID: 24379442 DOI: 10.1128/mcb.01344-13] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) are key activators of adipogenesis. They mutually induce the expression of each other and have been reported to cooperate in activation of a few adipocyte genes. Recently, genome-wide profiling revealed a high degree of overlap between PPARγ and C/EBPα binding in adipocytes, suggesting that cooperativeness could be mediated through common binding sites. To directly investigate the interplay between PPARγ and C/EBPα at shared binding sites, we established a fibroblastic model system in which PPARγ and C/EBPα can be independently expressed. Using RNA sequencing, we demonstrate that coexpression of PPARγ and C/EBPα leads to synergistic activation of many key metabolic adipocyte genes. This is associated with extensive C/EBPα-mediated reprogramming of PPARγ binding and vice versa in the vicinity of these genes, as determined by chromatin immunoprecipitation combined with deep sequencing. Our results indicate that this is at least partly mediated by assisted loading involving chromatin remodeling directed by the leading factor. In conclusion, we report a novel mechanism by which the key adipogenic transcription factors, PPARγ and C/EBPα, cooperate in activation of the adipocyte gene program.
Collapse
|
97
|
Li L, Jiang J, Wang L, Zhong T, Chen B, Zhan S, Zhang H, Du L. Expression patterns of peroxisome proliferator-activated receptor gamma 1 versus gamma 2, and their association with intramuscular fat in goat tissues. Gene 2013; 528:195-200. [PMID: 23895798 DOI: 10.1016/j.gene.2013.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 02/07/2023]
Abstract
Intramuscular fat (IMF) shortage causes the lack of juiciness and tenderness of goat meat, while peroxisome proliferator-activated receptor gamma 1 (PPARγ1) and gamma 2 (PPARγ2) play key roles in lipid metabolism. Nevertheless, their expression patterns and the relationship with IMF have been poorly exposed. Using quantitative polymerase chain reaction (qPCR), classical Soxhlet extraction, and in situ hybridization, we demonstrated that among 13 goat tissues, expression of PPARγ1 was dramatically higher than that of PPARγ2 except for lung. We further demonstrated the expression patterns of PPARγ1 and PPARγ2 and their negative association with intramuscular fat content in three goat muscles with kids growing. Meanwhile, PPARγ expression was located in the connective tissues. These results suggest that PPARγ1 is rather active for most tissues of goat, and closely related with the muscular fat metabolism during early postnatal life, but a more direct proof remains to be provided.
Collapse
Affiliation(s)
- Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Sadie-Van Gijsen H, Hough FS, Ferris WF. Determinants of bone marrow adiposity: the modulation of peroxisome proliferator-activated receptor-γ2 activity as a central mechanism. Bone 2013; 56:255-65. [PMID: 23800517 DOI: 10.1016/j.bone.2013.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/04/2013] [Accepted: 06/12/2013] [Indexed: 12/23/2022]
Abstract
Although the presence of adipocytes in the bone marrow is a normal physiological phenomenon, the role of these cells in bone homeostasis and during pathological states has not yet been fully delineated. As osteoblasts and adipocytes originate from a common progenitor, with an inverse relationship existing between osteoblastogenesis and adipogenesis, bone marrow adiposity often negatively correlates with osteoblast number and bone mineral density. Bone adiposity can be affected by several physiological and pathophysiological factors, with abnormal, elevated marrow fat resulting in a pathological state. This review focuses on the regulation of bone adiposity by physiological factors, including aging, mechanical loading and growth factor expression, as well as the pathophysiological factors, including diseases such as anorexia nervosa and dyslipidemia, and pharmacological agents such as thiazolidinediones and statins. Although these factors regulate bone marrow adiposity via a plethora of different intracellular signaling pathways, these diverse pathways often converge on the modulation of the expression and/or activity of the pro-adipogenic transcription factor peroxisome proliferator-activated receptor (PPAR)-γ2, suggesting that any factor that affects PPAR-γ2 may have an impact on the fat content of bone.
Collapse
Affiliation(s)
- H Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg 7505, South Africa.
| | | | | |
Collapse
|
99
|
Zhang C, He Y, Okutsu M, Ong LC, Jin Y, Zheng L, Chow P, Yu S, Zhang M, Yan Z. Autophagy is involved in adipogenic differentiation by repressesing proteasome-dependent PPARγ2 degradation. Am J Physiol Endocrinol Metab 2013; 305:E530-9. [PMID: 23800883 PMCID: PMC5504416 DOI: 10.1152/ajpendo.00640.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Animal studies have shown that autophagy is essential in the process of obesity. Here, we performed daily injection of the autophagy inhibitor chloroquine (CQ) in mice and found that systemic administration of CQ blocks high-fat diet-induced obesity. To investigate the potential underlying molecular mechanism, we employed genetic and pharmacological interventions in cultured preadipocytes to investigate the role of autophagy in the control of the expression of the adipogenic regulator peroxisome proliferatior-activated receptor-γ (PPARγ). We show that adipogenic differentiation of 3T3-L1 preadipocytes is associated with activation of autophagy and increased PPARγ2 protein level. Treatment with CQ, shRNA-mediated knockdown, or genetic engineering-induced deletion of autophagy-related gene 5 (Atg5) promoted proteasome-dependent PPARγ2 degradation and attenuated adipogenic differentiation. Therefore, activated autophagy increases PPARγ2 stability and promotes adipogenic differentiation, and inhibition of autophagy may prevent high-fat diet-induced obesity and the consequential type 2 diabetes.
Collapse
Affiliation(s)
- Chongben Zhang
- Departments of Medicine, Pharmacology, and Molecular Physiology and Biological Physics and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Mizoguchi Y, Moriya M, Taniguchi D, Hasegawa A. Effect of retinoic acid on gene expression profiles of bovine intramuscular preadipocytes during adipogenesis. Anim Sci J 2013; 85:101-11. [PMID: 23911087 DOI: 10.1111/asj.12101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
To investigate genes involved in intramuscular adipogenesis in ruminants, 16 genes with dramatic variable expression were selected. These were selected from the differentiation- and proliferation-phase libraries of our previous serial analysis of gene expression (SAGE) studies of a clonal bovine intramuscular preadipocyte (BIP) cell line. We harvested the BIP cells over 12 days after adipogenic stimulation with all-trans retinoic acid (ATRA). Quantitative real-time PCR confirmed the earlier SAGE study results of the expression patterns of 15 of the genes. On day 6, TG accumulation increased significantly in the BIP cells but was completely inhibited in the 3T3-L1 cells (the monogastric reference). ATRA enhanced expression levels of six genes whereas it suppressed expression of eight genes on day 3 of adipogenesis in the BIP cells. Forty-eight hours after transfection, the messenger RNA expression level of the adipose differentiation-related protein (ADFP), encoded by one of the upregulated genes, in the ADFP small interference RNA (siRNA)-transfected cells was 3.5% of that in negative control-transfected cells. Also, 6 days after induction the TG level in the ADFP siRNA-transfected cells was 21.8% lower than that in negative control-transfected cells. This analysis of gene expression profiles after ATRA treatment will contribute to our understanding of the molecular mechanisms involved in bovine intramuscular adipogenesis.
Collapse
|