51
|
Bhatia S, Pooja, Yadav SK. CRISPR-Cas for genome editing: Classification, mechanism, designing and applications. Int J Biol Macromol 2023; 238:124054. [PMID: 36933595 DOI: 10.1016/j.ijbiomac.2023.124054] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Clustered regularly interspersed short pallindromic repeats (CRISPR) and CRISPR associated proteins (Cas) system (CRISPR-Cas) came into light as prokaryotic defence mechanism for adaptive immune response. CRISPR-Cas works by integrating short sequences of the target genome (spacers) into the CRISPR locus. The locus containing spacers interspersed repeats is further expressed into small guide CRISPR RNA (crRNA) which is then deployed by the Cas proteins to evade the target genome. Based on the Cas proteins CRISPR-Cas is classified according to polythetic system of classification. The characteristic of the CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new arenas due to which today CRISPR-Cas has evolved as cutting end technique in the field of genome editing. Here, we discuss about the evolution of CRISPR, its classification and various Cas systems including the designing and molecular mechanism of CRISPR-Cas. Applications of CRISPR-Cas as a genome editing tools are also highlighted in the areas such as agriculture, and anticancer therapy. Briefly discuss the role of CRISPR and its Cas systems in the diagnosis of COVID-19 and its possible preventive measures. The challenges in existing CRISP-Cas technologies and their potential solutions are also discussed briefly.
Collapse
Affiliation(s)
- Simran Bhatia
- Center of Innovative and applied Bioprocessing, Sector-81, Knowledge City, Mohali, India; Regional Center for Biotechnology, Faridabad, India
| | - Pooja
- Center of Innovative and applied Bioprocessing, Sector-81, Knowledge City, Mohali, India
| | - Sudesh Kumar Yadav
- Center of Innovative and applied Bioprocessing, Sector-81, Knowledge City, Mohali, India; Regional Center for Biotechnology, Faridabad, India.
| |
Collapse
|
52
|
Liu FX, Cui JQ, Wu Z, Yao S. Recent progress in nucleic acid detection with CRISPR. LAB ON A CHIP 2023; 23:1467-1492. [PMID: 36723235 DOI: 10.1039/d2lc00928e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advances in CRISPR-based biotechnologies have greatly expanded our capabilities to repurpose CRISPR for the development of molecular diagnostic systems. The key attribute that allows CRISPR to be widely utilized is its programmable and highly specific nature. In this review, we first illustrate the principle of the class 2 CRISPR nucleases for molecular diagnostics which originates from their immunologic defence systems. Next, we present the CRISPR-based schemes in the application of diagnostics with amplification-assisted or amplification-free strategies. By highlighting some of the recent advances we interpret how general bioengineering methodologies can be integrated with CRISPR. Finally, we discuss the challenges and exciting prospects for future CRISPR-based biosensing development. We hope that this review will guide the reader to systematically learn the start-of-the-art development of CRISPR-mediated nucleic acid detection and understand how to apply the CRISPR nucleases with different design concepts to more general applications in diagnostics and beyond.
Collapse
Affiliation(s)
- Frank X Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Johnson Q Cui
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Zhihao Wu
- IIP-Advanced Materials, Interdisciplinary Program Office (IPO), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
53
|
Abavisani M, Khayami R, Hoseinzadeh M, Kodori M, Kesharwani P, Sahebkar A. CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resist Updat 2023; 68:100948. [PMID: 36780840 DOI: 10.1016/j.drup.2023.100948] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
The phenomenon of antibiotic resistance (AR) and its increasing global trends and destructive waves concerns patients and the healthcare system. In order to combat AR, it is necessary to explore new strategies when the current antibiotics fail to be effective. Thus, knowing the resistance mechanisms and appropriate diagnosis of bacterial infections may help enhance the sensitivity and specificity of novel strategies. On the other hand, resistance to antimicrobial compounds can spread from resistant populations to susceptible ones. Antimicrobial resistance genes (ARGs) significantly disseminate AR via horizontal and vertical gene transfer. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is a member of the bacterial immune system with the ability to remove the ARGs; therefore, it can be introduced as an effective and innovative strategy in the battle against AR. Here, we reviewed CRISPR-based bacterial diagnosis technologies. Moreover, the strategies to battle AR based on targeting bacterial chromosomes and resistance plasmids using the CRISPR-Cas system have been explained. Besides, we have presented the limitations of CRISPR delivery and potential solutions to help improve the future development of CRISPR-based platforms.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Reza Khayami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Melika Hoseinzadeh
- Student research committee, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Mansoor Kodori
- Non communicable Diseases Research Center, Bam University of Medical sciences, Bam, the Islamic Republic of Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran.
| |
Collapse
|
54
|
Kumaran A, Jude Serpes N, Gupta T, James A, Sharma A, Kumar D, Nagraik R, Kumar V, Pandey S. Advancements in CRISPR-Based Biosensing for Next-Gen Point of Care Diagnostic Application. BIOSENSORS 2023; 13:202. [PMID: 36831968 PMCID: PMC9953454 DOI: 10.3390/bios13020202] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 05/25/2023]
Abstract
With the move of molecular tests from diagnostic labs to on-site testing becoming more common, there is a sudden rise in demand for nucleic acid-based diagnostic tools that are selective, sensitive, flexible to terrain changes, and cost-effective to assist in point-of-care systems for large-scale screening and to be used in remote locations in cases of outbreaks and pandemics. CRISPR-based biosensors comprise a promising new approach to nucleic acid detection, which uses Cas effector proteins (Cas9, Cas12, and Cas13) as extremely specialized identification components that may be used in conjunction with a variety of readout approaches (such as fluorescence, colorimetry, potentiometry, lateral flow assay, etc.) for onsite analysis. In this review, we cover some technical aspects of integrating the CRISPR Cas system with traditional biosensing readout methods and amplification technologies such as polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA) and continue to elaborate on the prospects of the developed biosensor in the detection of some major viral and bacterial diseases. Within the scope of this article, we also discuss the recent COVID pandemic and the numerous CRISPR biosensors that have undergone development since its advent. Finally, we discuss some challenges and future prospects of CRISPR Cas systems in point-of-care testing.
Collapse
Affiliation(s)
- Akash Kumaran
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Nathan Jude Serpes
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Tisha Gupta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Vaneet Kumar
- Department of Natural Science, CT University, Ludhiana 142024, Punjab, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
55
|
Engineering CRISPR/Cas-based nanosystems for therapeutics, diagnosis and bioimaging. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
56
|
Nafian F, Nafian S, Kamali Doust Azad B, Hashemi M. CRISPR-Based Diagnostics and Microfluidics for COVID-19 Point-of-Care Testing: A Review of Main Applications. Mol Biotechnol 2023; 65:497-508. [PMID: 36183037 PMCID: PMC9526387 DOI: 10.1007/s12033-022-00570-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 09/15/2022] [Indexed: 12/04/2022]
Abstract
An ongoing pandemic of coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). So far, there have been various approaches for SARS-CoV-2 detection, each having its pros and cons. The current gold-standard method for SARS-CoV-2 detection, which offers acceptable specificity and sensitivity, is the quantitative reverse transcription-PCR (qRT-PCR). However, this method requires considerable cost and time to transport samples to specialized laboratories and extract, amplify, and detect the viral genome. On the other hand, antigen and antibody testing approaches that bring rapidity and affordability into play have lower sensitivity and specificity during the early stages of COVID-19. Moreover, the immune response is variable depending on the individual. Methods based on clustered regularly interspaced short palindromic repeats (CRISPR) can be used as an alternative approach to controlling the spread of disease by a high-sensitive, specific, and low-cost molecular diagnostic system. CRISPR-based detection systems (CRISPR-Dx) target the desired sequences by specific CRISPR-RNA (crRNA)-pairing on a pre-amplified sample and a subsequent collateral cleavage. In the present article, we have reviewed different CRISPR-Dx methods and presented their benefits and drawbacks for point-of-care testing (POCT) of suspected SARS-CoV-2 infections at home or in small clinics.
Collapse
Affiliation(s)
- Fatemeh Nafian
- Department of Medical Laboratory Sciences, Faculty of Paramedics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Nafian
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
| | | | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
57
|
CRISPR/Cas technology: Opportunities for phytopathogenic viruses detection. J Biotechnol 2022; 360:211-217. [PMID: 36423792 DOI: 10.1016/j.jbiotec.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/22/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Detection and monitoring of viruses are essential for healthy plants and prosperity. Recent development in CRISPR/Cas system in diagnosis has open an avenue well suited for pathogen detection. Variety of CRISPR associated proteins are being discovered, suggesting array of application and detection strategies in diagnosis. Phytopathogenic viruses are diverse with respect to their nucleic acid compositions, which presents a challenge in developing a single device applicable for almost all viruses. The review describes about the efficient use of CRISPR/Cas Technology in diagnosis, such as SHERLOCK, DETECTR and SATORI. These methods are different in their characteristic to identify specific nucleic acids and processing the detectable signals. These technologies are in their infancy and lot of scope is there to develop commercial kits. Plant tissue culture-based industries, climate control green houses, indoor cultivation facilities etc. has been considered as few examples. This review will be beneficial for researchers seeking to develop detection mechanism based on CRISPR/Cas technology. The outcome in the form of cost-effective detection of viruses will be boon for agro-based industries, which are facing challenges through virus contamination.
Collapse
|
58
|
Lou J, Wang B, Li J, Ni P, Jin Y, Chen S, Xi Y, Zhang R, Duan G. The CRISPR-Cas system as a tool for diagnosing and treating infectious diseases. Mol Biol Rep 2022; 49:11301-11311. [PMID: 35857175 PMCID: PMC9297709 DOI: 10.1007/s11033-022-07752-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/12/2022] [Accepted: 06/28/2022] [Indexed: 10/26/2022]
Abstract
Emerging and relapsing infectious diseases pose a huge health threat to human health and a new challenge to global public health. Rapid, sensitive and simple diagnostic tools are keys to successful management of infectious patients and containment of disease transmission. In recent years, international research on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-related proteins (Cas) has revolutionized our understanding of biology. The CRISPR-Cas system has the advantages of high specificity, high sensitivity, simple, rapid, low cost, and has begun to be used for molecular diagnosis and treatment of infectious diseases. In this paper, we described the biological principles, application fields and prospects of CRISPR-Cas system in the molecular diagnosis and treatment of infectious diseases, and compared it with existing molecular diagnosis methods, the advantages and disadvantages were summarized.
Collapse
Affiliation(s)
- Juan Lou
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junwei Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China.
- International School of Public Health and One Health, The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
59
|
Zhang B, Li M, Wei Y, Wang J, Wang Y, Shi P, Tang H, Song Z. Detection of target DNA with a visual CRISPR-associated hyperbranched rolling circle amplification technique. Anal Biochem 2022; 658:114940. [DOI: 10.1016/j.ab.2022.114940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/01/2022]
|
60
|
Kundar R, Gokarn K. CRISPR-Cas System: A Tool to Eliminate Drug-Resistant Gram-Negative Bacteria. Pharmaceuticals (Basel) 2022; 15:1498. [PMID: 36558949 PMCID: PMC9781512 DOI: 10.3390/ph15121498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Rapidly emerging drug-resistant superbugs, especially Gram-negative bacteria, pose a serious threat to healthcare systems all over the globe. Newer strategies are being developed to detect and overcome the arsenal of weapons that these bacteria possess. The development of antibiotics is time-consuming and may not provide full proof of action on evolving drug-resistant pathogens. The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) systems are promising in curbing drug-resistant bacteria. This review focuses on the pathogenesis of Gram-negative bacteria, emergence of antimicrobial drug resistance, and their treatment failures. It also draws attention to the present status of the CRISPR-Cas system in diagnosisand treatment of Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Rajeshwari Kundar
- Department of Microbiology, Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital & Research Centre, Mumbai 400004, Maharashtra, India
| | - Karuna Gokarn
- Department of Microbiology, Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital & Research Centre, Mumbai 400004, Maharashtra, India
- Department of Microbiology, St. Xavier’s College, 5- Mahapalika Marg, Mumbai 400001, Maharashtra, India
| |
Collapse
|
61
|
Development of CRISPR-Mediated Nucleic Acid Detection Technologies and Their Applications in the Livestock Industry. Genes (Basel) 2022; 13:genes13112007. [PMID: 36360244 PMCID: PMC9690124 DOI: 10.3390/genes13112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The rapid rate of virus transmission and pathogen mutation and evolution highlight the necessity for innovative approaches to the diagnosis and prevention of infectious diseases. Traditional technologies for pathogen detection, mostly PCR-based, involve costly/advanced equipment and skilled personnel and are therefore not feasible in resource-limited areas. Over the years, many promising methods based on clustered regularly interspaced short palindromic repeats and the associated protein systems (CRISPR/Cas), i.e., orthologues of Cas9, Cas12, Cas13 and Cas14, have been reported for nucleic acid detection. CRISPR/Cas effectors can provide one-tube reaction systems, amplification-free strategies, simultaneous multiplex pathogen detection, visual colorimetric detection, and quantitative identification as alternatives to quantitative PCR (qPCR). This review summarizes the current development of CRISPR/Cas-mediated molecular diagnostics, as well as their design software and readout methods, highlighting technical improvements for integrating CRISPR/Cas technologies into on-site applications. It further highlights recent applications of CRISPR/Cas-based nucleic acid detection in livestock industry, including emerging infectious diseases, authenticity and composition of meat/milk products, as well as sex determination of early embryos.
Collapse
|
62
|
Ortiz-Cartagena C, Fernández-García L, Blasco L, Pacios O, Bleriot I, López M, Cantón R, Tomás M. Reverse Transcription-Loop-Mediated Isothermal Amplification-CRISPR-Cas13a Technology as a Promising Diagnostic Tool for SARS-CoV-2. Microbiol Spectr 2022; 10:e0239822. [PMID: 36169448 PMCID: PMC9604158 DOI: 10.1128/spectrum.02398-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/07/2022] [Indexed: 01/04/2023] Open
Abstract
At the end of 2019, a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused a pandemic that persists to date and has resulted in more than 6.2 million deaths. In the last couple of years, researchers have made great efforts to develop a diagnostic technique that maintains high levels of sensitivity and specificity, since an accurate and early diagnosis is required to minimize the prevalence of SARS-CoV-2 infection. In this context, CRISPR-Cas systems are proposed as promising tools for development as diagnostic techniques due to their high specificity, highlighting that Cas13 endonuclease discriminates single nucleotide changes and displays collateral activity against single-stranded RNA molecules. With the aim of improving the sensitivity of diagnosis, this technology is usually combined with isothermal preamplification reactions (SHERLOCK, DETECTR). Based on this, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP)-CRISPR-Cas13a method for SARS-CoV-2 virus detection in nasopharyngeal samples without using RNA extraction that exhibits 100% specificity and 83% sensitivity, as well as a positive predictive value (PPV) of 100% and negative predictive values (NPVs) of 100%, 81%, 79.1%, and 66.7% for cycle threshold (CT) values of <20, 20 to 30, >30 and overall, respectively. IMPORTANCE The coronavirus disease 2019 (COVID-19) crisis has driven the development of innovative molecular diagnosis methods, including CRISPR-Cas technology. In this work, we performed a protocol, working with RNA extraction kit-free samples and using RT-LAMP-CRISPR-Cas13a technology; our results place this method at the forefront of rapid and specific diagnostic methods for COVID-19 due to the high specificity (100%), sensitivity (83%), PPVs (100%), and NPVs (81% for high viral loads) obtained with clinical samples.
Collapse
Affiliation(s)
- Concha Ortiz-Cartagena
- Translational and Multidisciplinary Microbiology (MicroTM), Biomedical Research Institute A Coruña (INIBIC), Microbiology Department, Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Laura Fernández-García
- Translational and Multidisciplinary Microbiology (MicroTM), Biomedical Research Institute A Coruña (INIBIC), Microbiology Department, Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Lucia Blasco
- Translational and Multidisciplinary Microbiology (MicroTM), Biomedical Research Institute A Coruña (INIBIC), Microbiology Department, Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Olga Pacios
- Translational and Multidisciplinary Microbiology (MicroTM), Biomedical Research Institute A Coruña (INIBIC), Microbiology Department, Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Inés Bleriot
- Translational and Multidisciplinary Microbiology (MicroTM), Biomedical Research Institute A Coruña (INIBIC), Microbiology Department, Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - María López
- Translational and Multidisciplinary Microbiology (MicroTM), Biomedical Research Institute A Coruña (INIBIC), Microbiology Department, Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI) and CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Spanish Network for Research in Infectious Diseases (REIPI) and CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Tomás
- Translational and Multidisciplinary Microbiology (MicroTM), Biomedical Research Institute A Coruña (INIBIC), Microbiology Department, Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI) and CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
63
|
Li R, Wang Q, She K, Lu F, Yang Y. CRISPR/Cas systems usher in a new era of disease treatment and diagnosis. MOLECULAR BIOMEDICINE 2022; 3:31. [PMID: 36239875 PMCID: PMC9560888 DOI: 10.1186/s43556-022-00095-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
The discovery and development of the CRISPR/Cas system is a milestone in precise medicine. CRISPR/Cas nucleases, base-editing (BE) and prime-editing (PE) are three genome editing technologies derived from CRISPR/Cas. In recent years, CRISPR-based genome editing technologies have created immense therapeutic potential with safe and efficient viral or non-viral delivery systems. Significant progress has been made in applying genome editing strategies to modify T cells and hematopoietic stem cells (HSCs) ex vivo and to treat a wide variety of diseases and disorders in vivo. Nevertheless, the clinical translation of this unique technology still faces many challenges, especially targeting, safety and delivery issues, which require further improvement and optimization. In addition, with the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), CRISPR-based molecular diagnosis has attracted extensive attention. Growing from the specific set of molecular biological discoveries to several active clinical trials, CRISPR/Cas systems offer the opportunity to create a cost-effective, portable and point-of-care diagnosis through nucleic acid screening of diseases. In this review, we describe the development, mechanisms and delivery systems of CRISPR-based genome editing and focus on clinical and preclinical studies of therapeutic CRISPR genome editing in disease treatment as well as its application prospects in therapeutics and molecular detection.
Collapse
Affiliation(s)
- Ruiting Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China
| | - Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, 610225, Sichuan, China
| | - Kaiqin She
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China.
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
64
|
Peng C, Zhang D, Li C, Li Y, Zhang H, Li N, Xiao P. Rhinolophus sinicus virome revealed multiple novel mosquito-borne zoonotic viruses. Front Cell Infect Microbiol 2022; 12:960507. [PMID: 36304937 PMCID: PMC9592836 DOI: 10.3389/fcimb.2022.960507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/23/2022] [Indexed: 12/05/2022] Open
Abstract
To exploit the Rhinolophus sinicus–specific virome, 29 Rhinolophus sinicus were gathered in Lincang, China. Enriched viral sequences of 22 virus families were acquired by metavirome techniques. Hereby, the part of virome in Rhinolophus sinicus, including Chikungunya virus (CHIKV), Getah virus, and Japanese encephalitis virus (JEV) were validated by PCR. Five CHIKV viral sequences were amplified, among which CHIKV-China/B2016C-1 shared the highest homology to CHIKV isolated from Italy in 2007, with the genotype as African ECS. Eight JEV viral sequences were amplified, of which JEV-China/B2016E-1 shared the highest homology with at least 91.3% nt identity with the JEV sequence found in South Korea in 1988 and was classified as genotype III. Notably, JEV was isolated for the first time in Rhinolophus sinicus. The newly isolated JEV-China/B2016-1 could increase infectivity while passaging in Vero cells from BHK-21 cells. Overall, the research sheds insight into the diversity and viral susceptibility dynamics of the virome in Rhinolophus sinicus and reveals new light on the ecology of other important viral hosts.
Collapse
Affiliation(s)
- Chengcheng Peng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Duo Zhang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Chenghui Li
- College of Agriculture, Yanbian University, Yanji, China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
- *Correspondence: Nan Li, ; Pengpeng Xiao,
| | - Pengpeng Xiao
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
- *Correspondence: Nan Li, ; Pengpeng Xiao,
| |
Collapse
|
65
|
Li J, Wang Y, Wang B, Lou J, Ni P, Jin Y, Chen S, Duan G, Zhang R. Application of CRISPR/Cas Systems in the Nucleic Acid Detection of Infectious Diseases. Diagnostics (Basel) 2022; 12:2455. [PMID: 36292145 PMCID: PMC9600689 DOI: 10.3390/diagnostics12102455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
The CRISPR/Cas system is a protective adaptive immune system against attacks from foreign mobile genetic elements. Since the discovery of the excellent target-specific sequence recognition ability of the CRISPR/Cas system, the CRISPR/Cas system has shown excellent performance in the development of pathogen nucleic-acid-detection technology. In combination with various biosensing technologies, researchers have made many rapid, convenient, and feasible innovations in pathogen nucleic-acid-detection technology. With an in-depth understanding and development of the CRISPR/Cas system, it is no longer limited to CRISPR/Cas9, CRISPR/Cas12, and other systems that had been widely used in the past; other CRISPR/Cas families are designed for nucleic acid detection. We summarized the application of CRISPR/Cas-related technology in infectious-disease detection and its development in SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Junwei Li
- International School of Public Health and One Health, First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Juan Lou
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Rongguang Zhang
- International School of Public Health and One Health, First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
66
|
Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111376. [PMID: 35835393 DOI: 10.1016/j.plantsci.2022.111376] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.
Collapse
Affiliation(s)
| | - Priya Das
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mirza J Baig
- ICAR-National Rice Research Institute, Cuttack 753006, India.
| | | |
Collapse
|
67
|
Banerjee G, Agarwal S, Marshall A, Jones DH, Sulaiman IM, Sur S, Banerjee P. Application of advanced genomic tools in food safety rapid diagnostics: challenges and opportunities. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
68
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
69
|
Santiago-Frangos A, Nemudryi A, Nemudraia A, Wiegand T, Nichols JE, Krishna P, Scherffius AM, Zahl TR, Wilkinson RA, Wiedenheft B. CRISPR-Cas, Argonaute proteins and the emerging landscape of amplification-free diagnostics. Methods 2022; 205:1-10. [PMID: 35690249 PMCID: PMC9181078 DOI: 10.1016/j.ymeth.2022.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/06/2022] [Accepted: 06/04/2022] [Indexed: 01/04/2023] Open
Abstract
Polymerase Chain Reaction (PCR) is the reigning gold standard for molecular diagnostics. However, the SARS-CoV-2 pandemic reveals an urgent need for new diagnostics that provide users with immediate results without complex procedures or sophisticated equipment. These new demands have stimulated a tsunami of innovations that improve turnaround times without compromising the specificity and sensitivity that has established PCR as the paragon of diagnostics. Here we briefly introduce the origins of PCR and isothermal amplification, before turning to the emergence of CRISPR-Cas and Argonaute proteins, which are being coupled to fluorimeters, spectrometers, microfluidic devices, field-effect transistors, and amperometric biosensors, for a new generation of nucleic acid-based diagnostics.
Collapse
Affiliation(s)
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Joseph E Nichols
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Pushya Krishna
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Andrew M Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Trevor R Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Royce A Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
70
|
Domazetovska A, Jensen SO, Gray M, Radzieta M, Maley M. Culture-Free Phylogenetic Analysis of Legionella pneumophila Using Targeted CRISPR/Cas9 Next-Generation Sequencing. Microbiol Spectr 2022; 10:e0035922. [PMID: 35862996 PMCID: PMC9430934 DOI: 10.1128/spectrum.00359-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Currently available methods for the laboratory investigation of Legionella pneumophila outbreaks require organism culture. The ability to sequence L. pneumophila directly from clinical samples would significantly reduce delays. Here, we develop a method for targeted next-generation sequencing (NGS) of selected L. pneumophila genes utilizing a CRISPR/Cas9-based target enrichment system. We determine the method's utility by typing cultured L. pneumophila isolates and subsequently apply the method directly to patient samples. We sequenced 10 L. pneumophila isolates by 2 methods, (i) whole-genome sequencing (WGS) and (ii) targeted (CRISPR/Cas9-based) finding low-abundance sequences by hybridization (FLASH)-NGS, sequencing 57 selected genes. The targeted NGS of 57 genes was more efficient than WGS, and phylogenetic analysis of the 57 genes yielded the same classification of the L. pneumophila isolates as that based on analysis of whole-genome data. Furthermore, targeted NGS of L. pneumophila performed directly on patient respiratory samples correctly classified the patients according to their corresponding cultured isolates. This provides proof of concept that targeted NGS can be used to sequence L. pneumophila directly from patient samples. Studies on a larger number of patient samples will further validate this method. Nonetheless, CRISPR/Cas9 targeted NGS methods have the potential to be widely applicable to microbial-outbreak investigations in the future, particularly in the context of difficult and slow-growing organisms. IMPORTANCE The bacterium Legionella pneumophila is responsible for outbreaks of serious and life-threatening pneumonia called Legionnaires' disease. There is a need for new molecular methods that allow investigation of Legionella outbreaks directly from patient samples, without the need for prior microbiological culture, which causes delays. Our study aims to address this problem. We have utilized a CRISPR/Cas9-based targeted next-generation sequencing (NGS) method that can be applied directly on human specimens. Furthermore, we show that analysis of the sequences of a small number of targeted genes offers the same classification of L. pneumophila as that based on data derived from the whole genome. Given the rising interest globally in sequencing pathogens directly from human samples, CRISPR/Cas9 targeted NGS methods have the potential to be widely applicable to microbial-outbreak investigations in the future, particularly in the context of difficult and slow-growing organisms.
Collapse
Affiliation(s)
- Ana Domazetovska
- Department of Microbiology and Infectious Diseases, Liverpool Hospital, Liverpool, New South Wales, Australia
- NSW Health Pathology, Microbiology, Liverpool Hospital, Liverpool, New South Wales, Australia
- Antibiotic Resistance and Mobile Elements Group, Ingham Institute of Applied Medical Research, Sydney, Australia
| | - Slade O. Jensen
- Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, Australia
- Antibiotic Resistance and Mobile Elements Group, Ingham Institute of Applied Medical Research, Sydney, Australia
| | - Matthew Gray
- NSW Health Pathology, Microbiology, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Michael Radzieta
- Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, Australia
- Antibiotic Resistance and Mobile Elements Group, Ingham Institute of Applied Medical Research, Sydney, Australia
| | - Michael Maley
- Department of Microbiology and Infectious Diseases, Liverpool Hospital, Liverpool, New South Wales, Australia
- NSW Health Pathology, Microbiology, Liverpool Hospital, Liverpool, New South Wales, Australia
| |
Collapse
|
71
|
Yek C, Pacheco AR, Vanaerschot M, Bohl JA, Fahsbender E, Aranda-Díaz A, Lay S, Chea S, Oum MH, Lon C, Tato CM, Manning JE. Metagenomic Pathogen Sequencing in Resource-Scarce Settings: Lessons Learned and the Road Ahead. FRONTIERS IN EPIDEMIOLOGY 2022; 2:926695. [PMID: 36247976 PMCID: PMC9558322 DOI: 10.3389/fepid.2022.926695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
Metagenomic next-generation sequencing (mNGS) is the process of sequencing all genetic material in a biological sample. The technique is growing in popularity with myriad applications including outbreak investigation, biosurveillance, and pathogen detection in clinical samples. However, mNGS programs are costly to build and maintain, and additional obstacles faced by low- and middle-income countries (LMICs) may further widen global inequities in mNGS capacity. Over the past two decades, several important infectious disease outbreaks have highlighted the importance of establishing widespread sequencing capacity to support rapid disease detection and containment at the source. Using lessons learned from the COVID-19 pandemic, LMICs can leverage current momentum to design and build sustainable mNGS programs, which would form part of a global surveillance network crucial to the elimination of infectious diseases.
Collapse
Affiliation(s)
- Christina Yek
- Department of Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Andrea R. Pacheco
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | | | - Jennifer A. Bohl
- Vaccine Immunology Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | | | - Andrés Aranda-Díaz
- Chan Zuckerberg Initiative, Redwood City, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Sreyngim Lay
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Sophana Chea
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Meng Heng Oum
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Chanthap Lon
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | | | - Jessica E. Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| |
Collapse
|
72
|
Wang H, Jia C, Li H, Yin R, Chen J, Li Y, Yue M. Paving the way for precise diagnostics of antimicrobial resistant bacteria. Front Mol Biosci 2022; 9:976705. [PMID: 36032670 PMCID: PMC9413203 DOI: 10.3389/fmolb.2022.976705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 12/26/2022] Open
Abstract
The antimicrobial resistance (AMR) crisis from bacterial pathogens is frequently emerging and rapidly disseminated during the sustained antimicrobial exposure in human-dominated communities, posing a compelling threat as one of the biggest challenges in humans. The frequent incidences of some common but untreatable infections unfold the public health catastrophe that antimicrobial-resistant pathogens have outpaced the available countermeasures, now explicitly amplified during the COVID-19 pandemic. Nowadays, biotechnology and machine learning advancements help create more fundamental knowledge of distinct spatiotemporal dynamics in AMR bacterial adaptation and evolutionary processes. Integrated with reliable diagnostic tools and powerful analytic approaches, a collaborative and systematic surveillance platform with high accuracy and predictability should be established and implemented, which is not just for an effective controlling strategy on AMR but also for protecting the longevity of valuable antimicrobials currently and in the future.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenhao Jia
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Hongzhao Li
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Rui Yin
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Jiang Chen
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- *Correspondence: Jiang Chen, ; Yan Li, ; Min Yue,
| | - Yan Li
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- *Correspondence: Jiang Chen, ; Yan Li, ; Min Yue,
| | - Min Yue
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jiang Chen, ; Yan Li, ; Min Yue,
| |
Collapse
|
73
|
Trivedi R, Upadhyay TK, Kausar MA, Saeed A, Sharangi AB, Almatroudi A, Alabdallah NM, Saeed M, Aqil F. Nanotechnological interventions of the microbiome as a next-generation antimicrobial therapy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155085. [PMID: 35398124 DOI: 10.1016/j.scitotenv.2022.155085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The rise of antimicrobial resistance (AMR) impacts public health due to the diminished potency of existing antibiotics. The microbiome plays an important role in the host's immune system activity and shows the history of exposure to antimicrobials and its manipulation in combating antimicrobial resistance. Advancements in gene technologies, DNA sequencing, and computational biology have emerged as powerful platforms to better understand the relationship between animals and microorganisms (MOs). The past few years have witnessed an increase in the use of nanotechnology, both in industry and in academia, as tools to tackle antimicrobial resistance. New strategies of microbiome manipulation have been developed, such as the use of prebiotics, probiotics, peptides, antibodies, an appropriate diet, phage therapy, and the use of various nanotechnological techniques. Owing to the research outcomes, targeted delivery of antimicrobials with some modifications with nanoparticles can lead to the destruction of resistant microbial cells. In addition, nanoparticles have been studied for their potential antimicrobial effects both in vitro and in vivo. In this review, we highlight key opportunistic areas for applying nanotechnologies with the aim of manipulating the microbiome for the treatment of antimicrobial resistance. Besides providing a detailed review on various nanomaterials, technologies, opportunities, technical needs, and potential approaches for the manipulation of the microbiome to address these challenges, we discuss future challenges and our perspective.
Collapse
Affiliation(s)
- Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India.
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Amir Saeed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal and Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia.
| | - Farrukh Aqil
- UofL Health - Brown Cancer Center and Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
74
|
Serpa PH, Deng X, Abdelghany M, Crawford E, Malcolm K, Caldera S, Fung M, McGeever A, Kalantar KL, Lyden A, Ghale R, Deiss T, Neff N, Miller SA, Doernberg SB, Chiu CY, DeRisi JL, Calfee CS, Langelier CR. Metagenomic prediction of antimicrobial resistance in critically ill patients with lower respiratory tract infections. Genome Med 2022; 14:74. [PMID: 35818068 PMCID: PMC9275031 DOI: 10.1186/s13073-022-01072-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background Antimicrobial resistance (AMR) is rising at an alarming rate and complicating the management of infectious diseases including lower respiratory tract infections (LRTI). Metagenomic next-generation sequencing (mNGS) is a recently established method for culture-independent LRTI diagnosis, but its utility for predicting AMR has remained unclear. We aimed to assess the performance of mNGS for AMR prediction in bacterial LRTI and demonstrate proof of concept for epidemiological AMR surveillance and rapid AMR gene detection using Cas9 enrichment and nanopore sequencing. Methods We studied 88 patients with acute respiratory failure between 07/2013 and 9/2018, enrolled through a previous observational study of LRTI. Inclusion criteria were age ≥ 18, need for mechanical ventilation, and respiratory specimen collection within 72 h of intubation. Exclusion criteria were decline of study participation, unclear LRTI status, or no matched RNA and DNA mNGS data from a respiratory specimen. Patients with LRTI were identified by clinical adjudication. mNGS was performed on lower respiratory tract specimens. The primary outcome was mNGS performance for predicting phenotypic antimicrobial susceptibility and was assessed in patients with LRTI from culture-confirmed bacterial pathogens with clinical antimicrobial susceptibility testing (n = 27 patients, n = 32 pathogens). Secondary outcomes included the association between hospital exposure and AMR gene burden in the respiratory microbiome (n = 88 patients), and AMR gene detection using Cas9 targeted enrichment and nanopore sequencing (n = 10 patients). Results Compared to clinical antimicrobial susceptibility testing, the performance of respiratory mNGS for predicting AMR varied by pathogen, antimicrobial, and nucleic acid type sequenced. For gram-positive bacteria, a combination of RNA + DNA mNGS achieved a sensitivity of 70% (95% confidence interval (CI) 47–87%) and specificity of 95% (CI 85–99%). For gram-negative bacteria, sensitivity was 100% (CI 87–100%) and specificity 64% (CI 48–78%). Patients with hospital-onset LRTI had a greater AMR gene burden in their respiratory microbiome versus those with community-onset LRTI (p = 0.00030), or those without LRTI (p = 0.0024). We found that Cas9 targeted sequencing could enrich for low abundance AMR genes by > 2500-fold and enabled their rapid detection using a nanopore platform. Conclusions mNGS has utility for the detection and surveillance of resistant bacterial LRTI pathogens. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01072-4.
Collapse
Affiliation(s)
- Paula Hayakawa Serpa
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Xianding Deng
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Mazin Abdelghany
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Emily Crawford
- Chan Zuckerberg Biohub, San Francisco, CA, USA.,Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Katherine Malcolm
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Saharai Caldera
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Monica Fung
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Amy Lyden
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Rajani Ghale
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.,Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Thomas Deiss
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.,Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Steven A Miller
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Sarah B Doernberg
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Carolyn S Calfee
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Charles R Langelier
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
75
|
Kostyusheva A, Brezgin S, Babin Y, Vasilyeva I, Glebe D, Kostyushev D, Chulanov V. CRISPR-Cas systems for diagnosing infectious diseases. Methods 2022; 203:431-446. [PMID: 33839288 PMCID: PMC8032595 DOI: 10.1016/j.ymeth.2021.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Infectious diseases are a global health problem affecting billions of people. Developing rapid and sensitive diagnostic tools is key for successful patient management and curbing disease spread. Currently available diagnostics are very specific and sensitive but time-consuming and require expensive laboratory settings and well-trained personnel; thus, they are not available in resource-limited areas, for the purposes of large-scale screenings and in case of outbreaks and epidemics. Developing new, rapid, and affordable point-of-care diagnostic assays is urgently needed. This review focuses on CRISPR-based technologies and their perspectives to become platforms for point-of-care nucleic acid detection methods and as deployable diagnostic platforms that could help to identify and curb outbreaks and emerging epidemics. We describe the mechanisms and function of different classes and types of CRISPR-Cas systems, including pros and cons for developing molecular diagnostic tests and applications of each type to detect a wide range of infectious agents. Many Cas proteins (Cas3, Cas9, Cas12, Cas13, Cas14 etc.) have been leveraged to create highly accurate and sensitive diagnostic tools combined with technologies of signal amplification and fluorescent, potentiometric, colorimetric, lateral flow assay detection and other. In particular, the most advanced platforms -- SHERLOCK/v2, DETECTR, CARMEN or CRISPR-Chip -- enable detection of attomolar amounts of pathogenic nucleic acids with specificity comparable to that of PCR but with minimal technical settings. Further developing CRISPR-based diagnostic tools promises to dramatically transform molecular diagnostics, making them easily affordable and accessible virtually anywhere in the world. The burden of socially significant diseases, frequent outbreaks, recent epidemics (MERS, SARS and the ongoing COVID-19) and outbreaks of zoonotic viruses (African Swine Fever Virus etc.) urgently need the developing and distribution of express-diagnostic tools. Recently devised CRISPR-technologies represent the unprecedented opportunity to reshape epidemiological surveillance and molecular diagnostics.
Collapse
Affiliation(s)
- Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia,Institute of Immunology, Moscow, Russia
| | - Yurii Babin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia
| | - Irina Vasilyeva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia
| | - Dieter Glebe
- Institute of Medical Virology, University of Giessen, Giessen, Germany
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia,Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia,Sechenov University, Moscow, Russia
| |
Collapse
|
76
|
Zhang D, Peng C, Li C, Li Y, Zhang H, Li N, Xiao P. Metavirome Analysis of Culex tritaeniorhynchus Reveals Novel Japanese Encephalitis Virus and Chikungunya Virus. Front Cell Infect Microbiol 2022; 12:938576. [PMID: 35846772 PMCID: PMC9280054 DOI: 10.3389/fcimb.2022.938576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
To explore the Culex tritaeniorhynchuses–specific virome, 6400 C. tritaeniorhynchuses were collected in Honghe autonomous prefecture, China. Abundant virus sequences were obtained from 28 viral families using metavirome sequencing. Herein, several viruses in C. tritaeniorhynchuses virome were verified using the PCR technique, which covers Japanese encephalitis virus (JEV), Getah virus, and even Chikungunya virus (CHIKV). Seven JEV gene sequences were amplified successfully, of which JEV-China/CT2016E-1 shared the highest homology with the known JEV sequence isolated in Korea, 1946, with at least 96.1% nucleotide (nt) identity, which belonged to genotype III. Nine CHIKV gene sequences were amplified, which shared the highest with at least 93.0% nt identity with CHIKV from Thailand isolated in 2007, which was assigned to genotype Asian. Remarkably, CHIKV was isolated from C. tritaeniorhynchus in China for the first time. It was initially confirmed that the isolated virus CHIKV-China/CT2016-1 may increase infectivity after passaging in Vero cells from BHK-21 cells. Collectively, our study reveals the diversity, properties, and potential virus susceptibility dynamics of the C. tritaeniorhynchus virome and sheds new perspectives on the viral ecology in other important biological vectors.
Collapse
Affiliation(s)
- Duo Zhang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Chengcheng Peng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Chenghui Li
- College of Agriculture, Yanbian University, Yanji, China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
- *Correspondence: Nan Li, ; Pengpeng Xiao,
| | - Pengpeng Xiao
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
- *Correspondence: Nan Li, ; Pengpeng Xiao,
| |
Collapse
|
77
|
CRISPR-Cas system and its use in the diagnosis of infectious diseases. Microbiol Res 2022; 263:127100. [PMID: 35849921 DOI: 10.1016/j.micres.2022.127100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
Rapid and accurate diagnostic methods for detecting pathogens are needed for effective management and treatment of infectious diseases. The conventional pathogen detection approach based on culture is considered the gold standard method, but needs several days to corroborate its results. Using nucleic acids from pathogens as detection targets has a considerable advantage in overcoming these time-consuming issues. The development of several molecular techniques has started to change the landscape of infectious disease diagnosis. However, these require expensive reagents, equipment, and sophisticated infrastructure, as well as highly trained workers. In this context, it is necessary to identify new diagnostic strategies to overcome these issues. Recently, CRISPR/Cas based diagnosis has revolutionized the area of molecular diagnostics of pathogenic diseases. In this review, we have discussed the different classes of CRISPR-Cas systems and their functions, and then focused on recent advances in CRISPR-based diagnosis technologies and the perspective of using this as a potential biosensing platform to detect infectious disease.
Collapse
|
78
|
Parsaeimehr A, Ebirim RI, Ozbay G. CRISPR-Cas technology a new era in genomic engineering. BIOTECHNOLOGY REPORTS 2022; 34:e00731. [PMID: 35686011 PMCID: PMC9171425 DOI: 10.1016/j.btre.2022.e00731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/01/2022]
Abstract
CRISPR-Cas systems offer a flexible and easy-to-use molecular platform to precisely modify and control organisms' genomes in a variety of fields, from agricultural biotechnology to therapeutics. With CRISPR technology, crop genomes can be precisely edited in a shorter and more efficient approach compared to traditional breeding or classic mutagenesis. CRISPR-Cas system can be used to manage the fermentation process by addressing phage resistance, antimicrobial activity, and genome editing. CRISPR-Cas technology has opened up a new era in gene therapy and other therapeutic fields and given hope to thousands of patients with genetic diseases. Anti-CRISPR molecules are powerful tools for regulating the CRISPR-Cas systems.
The CRISPR-Cas systems have offered a flexible, easy-to-use platform to precisely modify and control the genomes of organisms in various fields, ranging from agricultural biotechnology to therapeutics. This system is extensively used in the study of infectious, progressive, and life-threatening genetic diseases for the improvement of quality and quantity of major crops and in the development of sustainable methods for the generation of biofuels. As CRISPR-Cas technology continues to evolve, it is becoming more controllable and precise with the addition of molecular regulators, which will provide benefits for everyone and save many lives. Studies on the constant growth of CRISPR technology are important due to its rapid development. In this paper, we present the current applications and progress of CRISPR-Cas genome editing systems in several fields of research, we further highlight the applications of anti-CRISPR molecules to regulate CRISPR-Cas gene editing systems, and we discuss ethical considerations in CRISPR-Cas applications.
Collapse
|
79
|
Bhardwaj P, Kant R, Behera SP, Dwivedi GR, Singh R. Next-Generation Diagnostic with CRISPR/Cas: Beyond Nucleic Acid Detection. Int J Mol Sci 2022; 23:6052. [PMID: 35682737 PMCID: PMC9180940 DOI: 10.3390/ijms23116052] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023] Open
Abstract
The early management, diagnosis, and treatment of emerging and re-emerging infections and the rising burden of non-communicable diseases (NCDs) are necessary. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system has recently acquired popularity as a diagnostic tool due to its ability to target specific genes. It uses Cas enzymes and a guide RNA (gRNA) to cleave target DNA or RNA. The discovery of collateral cleavage in CRISPR-Cas effectors such as Cas12a and Cas13a was intensively repurposed for the development of instrument-free, sensitive, precise and rapid point-of-care diagnostics. CRISPR/Cas demonstrated proficiency in detecting non-nucleic acid targets including protein, analyte, and hormones other than nucleic acid. CRISPR/Cas effectors can provide multiple detections simultaneously. The present review highlights the technical challenges of integrating CRISPR/Cas technology into the onsite assessment of clinical and other specimens, along with current improvements in CRISPR bio-sensing for nucleic acid and non-nucleic acid targets. It also highlights the current applications of CRISPR/Cas technologies.
Collapse
Affiliation(s)
| | | | | | - Gaurav Raj Dwivedi
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur 273013, India; (P.B.); (R.K.); (S.P.B.)
| | - Rajeev Singh
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur 273013, India; (P.B.); (R.K.); (S.P.B.)
| |
Collapse
|
80
|
Ruppé E, d'Humières C, Armand-Lefèvre L. Inferring antibiotic susceptibility from metagenomic data: dream or reality? Clin Microbiol Infect 2022; 28:1225-1229. [PMID: 35551982 DOI: 10.1016/j.cmi.2022.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The diagnosis of bacterial infections continues to rely on culture, a slow process in which antibiotic susceptibility profiles of potential pathogens are made available to clinicians 48h after sampling, at best. Recently, clinical metagenomics (CMg), the metagenomic sequencing of samples with the purpose of identifying microorganisms and determining their susceptibility to antimicrobials, has emerged as a potential diagnostic tool that could prove faster than culture. CMg indeed has the potential to detect antibiotic resistance genes (ARGs) and mutations associated with resistance. Nevertheless, many challenges have yet to be overcome in order to make rapid phenotypic inference of antibiotic susceptibility from metagenomic data a reality. OBJECTIVES The objective of this narrative review is to discuss the challenges underlying the phenotypic inference of antibiotic susceptibility from metagenomic data. SOURCES We conducted a narrative review using published articles available in the NCBI Pubmed database. CONTENT We review the current ARG databases with a specific emphasis on those which now provide associations with phenotypic data. Next, we discuss the bioinformatic tools designed to identify ARGs in metagenomes. We then report on the performance of phenotypic inference from genomic data and the issue predicting the expression of ARGs. Finally, we address the challenge of linking an ARG to this host. IMPLICATIONS Significant improvements have recently been made in associating ARG and phenotype, and the inference of susceptibility from genomic data has been demonstrated in pathogenic bacteria such as Staphylococci and Enterobacterales. Resistance involving gene expression is more challenging however, and inferring susceptibility from species such as Pseudomonas aeruginosa remains difficult. Future research directions include the consideration of gene expression via RNA sequencing and machine learning.
Collapse
Affiliation(s)
- Etienne Ruppé
- Université de Paris Cité, INSERM UMR1137 IAME, F-75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, F-75018 Paris, France.
| | - Camille d'Humières
- Université de Paris Cité, INSERM UMR1137 IAME, F-75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, F-75018 Paris, France
| | - Laurence Armand-Lefèvre
- Université de Paris Cité, INSERM UMR1137 IAME, F-75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, F-75018 Paris, France
| |
Collapse
|
81
|
Shin J, Miller M, Wang YC. Recent advances in CRISPR-based systems for the detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2022; 21:3010-3029. [PMID: 35483732 DOI: 10.1111/1541-4337.12956] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
Abstract
There has long been a need for more advanced forms of pathogen detection in the food industry. Though in its infancy, biosensing based on clustered regularly interspaced short palindromic repeats (CRISPR) has the potential to solve many problems that cannot be addressed using conventional methods. In this review, we briefly introduce and classify the various CRISPR/Cas protein effectors that have thus far been used in biosensors. We then assess the current state of CRISPR technology in food-safety contexts; describe how each Cas effector is utilized in foodborne-pathogen detection; and discuss the limitations of the current technology, as well as how it might usefully be applied in other areas of the food industry. We conclude that, if the limitations of existing CRISPR/Cas-based detection methods are overcome, they can be deployed on a wide scale and produce a range of positive food-safety outcomes.
Collapse
Affiliation(s)
- Jiyong Shin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Miller
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yi-Cheng Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
82
|
Sun Y, Li J, Zhu L, Jiang L. Cooperation and competition between CRISPR- and omics-based technologies in foodborne pathogens detection: a state of the art review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
83
|
Li Y, Jiao M, Liu Y, Ren Z, Li A. Application of Metagenomic Next-Generation Sequencing in Mycobacterium tuberculosis Infection. Front Med (Lausanne) 2022; 9:802719. [PMID: 35433724 PMCID: PMC9010669 DOI: 10.3389/fmed.2022.802719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
The fight against Mycobacterium tuberculosis (MTB) has been going on for thousands of years, while it still poses a threat to human health. In addition to routine detections, metagenomic next-generation sequencing (mNGS) has begun to show presence as a comprehensive and hypothesis-free test. It can not only detect MTB without isolating specific pathogens but also suggest the co-infection pathogens or underlying tumor simultaneously, which is of benefit to assist in comprehensive clinical diagnosis. It also shows the potential to detect multiple drug resistance sites for precise treatment. However, considering the cost performance compared with conventional assays (especially Xpert MTB/RIF), mNGS seems to be overqualified for patients with mild and typical symptoms. Technology optimization of sequencing and analyzing should be conducted to improve the positive rate and broaden the applicable fields.
Collapse
Affiliation(s)
- Yaoguang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengfan Jiao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhigang Ren,
| | - Ang Li
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Ang Li,
| |
Collapse
|
84
|
Nouri R, Dong M, Politza AJ, Guan W. Figure of Merit for CRISPR-Based Nucleic Acid-Sensing Systems: Improvement Strategies and Performance Comparison. ACS Sens 2022; 7:900-911. [PMID: 35238530 PMCID: PMC9191621 DOI: 10.1021/acssensors.2c00024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based nucleic acid-sensing systems have grown rapidly in the past few years. Nevertheless, an objective approach to benchmark the performances of different CRISPR sensing systems is lacking due to the heterogeneous experimental setup. Here, we developed a quantitative CRISPR sensing figure of merit (FOM) to compare different CRISPR methods and explore performance improvement strategies. The CRISPR sensing FOM is defined as the product of the limit of detection (LOD) and the associated CRISPR reaction time (T). A smaller FOM means that the method can detect smaller target quantities faster. We found that there is a tradeoff between the LOD of the assay and the required reaction time. With the proposed CRISPR sensing FOM, we evaluated five strategies to improve the CRISPR-based sensing: preamplification, enzymes of higher catalytic efficiency, multiple crRNAs, digitalization, and sensitive readout systems. We benchmarked the FOM performances of 57 existing studies and found that the effectiveness of these strategies on improving the FOM is consistent with the model prediction. In particular, we found that digitalization is the most promising amplification-free method for achieving comparable FOM performances (∼1 fM·min) as those using preamplification. The findings here would have broad implications for further optimization of the CRISPR-based sensing.
Collapse
Affiliation(s)
- Reza Nouri
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Anthony J. Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
85
|
Thakku SG, Ackerman CM, Myhrvold C, Bhattacharyya RP, Livny J, Ma P, Gomez GI, Sabeti PC, Blainey PC, Hung DT. Multiplexed detection of bacterial nucleic acids using Cas13 in droplet microarrays. PNAS NEXUS 2022; 1:pgac021. [PMID: 35450424 PMCID: PMC9013781 DOI: 10.1093/pnasnexus/pgac021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/22/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
Abstract
Rapid and accurate diagnosis of infections is fundamental to individual patient care and public health management. Nucleic acid detection methods are critical to this effort, but are limited either in the breadth of pathogens targeted or by the expertise and infrastructure required. We present here a high-throughput system that enables rapid identification of bacterial pathogens, bCARMEN, which utilizes: (1) modular CRISPR-Cas13-based nucleic acid detection with enhanced sensitivity and specificity; and (2) a droplet microfluidic system that enables thousands of simultaneous, spatially multiplexed detection reactions at nanoliter volumes; and (3) a novel preamplification strategy that further enhances sensitivity and specificity. We demonstrate bCARMEN is capable of detecting and discriminating 52 clinically relevant bacterial species and several key antibiotic resistance genes. We further develop a simple proof of principle workflow using stabilized reagents and cell phone camera optical readout, opening up the possibility of a rapid point-of-care multiplexed bacterial pathogen identification and antibiotic susceptibility testing.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan Livny
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peijun Ma
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paul C Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
86
|
Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example. Biosens Bioelectron 2022; 206:114109. [PMID: 35245867 DOI: 10.1016/j.bios.2022.114109] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Achieving superhigh sensitivity is the ultimate goal for bio-detection in modern analytical science and life science. Among variable signal amplification strategies, nucleic acid amplification technologies are revolutionizing the field of bio-detection, providing greater possibilities in novel diagnosis achieving high efficiency, specificity, and cost-effectiveness. Nucleic acid amplification techniques (NAATs), such as Polymerase Chain Reaction (PCR), Rolling Circle Amplification (RCA), Loop-Mediated Isothermal Amplification (LAMP), Recombinase Polymerase Amplification (RPA), CRISPR-related amplification, and others are dominating methods employed in research and clinical settings. They each provide distinctively unique features that can offer desirable performance in terms of sensitivity, specificity, simplicity, stability, and cost. NAATs are in unmet demand in molecular diagnosis, especially in point-of-care scenario. This review will discuss the principles and recent advancements of each NAAT, respectively, revealing their strengths and challenges in achieving rapid and accurate bio-detection with a focus on point-of-care diagnosis. Furthermore, this review will explore the application of each of the technologies through the contemporary COVID-19 pandemic, analyzing their ability in point-of-care diagnosis of the COVID-19 with high sensitivity to emphasize significance of developing NAATs based methods in battling COVID-19. Finally, advantages and potentials of each NAAT in enhancements of sensitivity and specificity in bio-detection from bench side to the bedside will be discussed, aiming for full exploitation of capability of each NAAT. This review will provide novel aspects in the selection and combination of usages of various NAATs based on their distinctive characteristics and limitations. A possible advancing direction of future accurate POCT is also proposed.
Collapse
|
87
|
Feng C, Liang W, Liu F, Xiong Y, Chen M, Feng P, Guo M, Wang Y, Li Z, Zhang L. A Simple and Highly Sensitive Naked-Eye Analysis of EGFR 19del via CRISPR/Cas12a Triggered No-Nonspecific Nucleic Acid Amplification. ACS Synth Biol 2022; 11:867-876. [PMID: 35132857 DOI: 10.1021/acssynbio.1c00521] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mutation status of epidermal growth factor receptor (EGFR) exon 19 is of great importance for predicting sensitivity to tyrosine kinase inhibitors (TKIs) in the treatment of non-small-cell lung cancer (NSCLC). However, the development of simple, sensitive, and no-nonspecific amplification platforms for EGFR 19del detection in NSCLC remains a challenge. Herein, we developed a novel, simple, and highly sensitive naked-eye assay utilizing CRISPR/Cas12a-triggered no-nonspecific nucleic acid amplification (NAA) with rolling circle amplification (RCA) as a model for EGFR 19del detection. Typically, circular padlocks are designed to be the trans-cleavage substrate of Cas12a/crRNA and serve as templates for RCA. Since the target EGFR 19del induces robust trans-cleavage activity of the Cas12a/crRNA duplex, the surrounding circular padlocks are cleaved into random short linear fragments that are unable to initiate RCA, resulting in a colorless solution. However, in the absence of EGFR 19del, the inactivated Cas12a enzymes cannot cleave the circular padlocks, and they remain able to serve as templates to initiate RCA to generate long single-stranded DNA to further fold into G-quadruplex/hemin DNAzymes to catalyze the oxidation of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS2-), generating a color response that is obvious to the naked eye. As expected, this strategy with a detection limit as low as 20 fM exhibited robust selectivity and anti-interference ability. Moreover, this method was applicable for detecting EGFR 19del in real serum samples and showed high consistency with real-time quantitative polymerase chain reaction (qPCR) and sequencing results, providing a promising strategy for the early noninvasive diagnosis and guidance of clinical treatment for cancer.
Collapse
Affiliation(s)
- Chunfeng Feng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fei Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Yu Xiong
- Department of Clinical Laboratory, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Man Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Pan Feng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Mingjing Guo
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Yunxia Wang
- Department of Clinical Laboratory, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Zhongjun Li
- Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Liqun Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
88
|
Otoo JA, Schlappi TS. REASSURED Multiplex Diagnostics: A Critical Review and Forecast. BIOSENSORS 2022; 12:bios12020124. [PMID: 35200384 PMCID: PMC8869588 DOI: 10.3390/bios12020124] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 05/05/2023]
Abstract
The diagnosis of infectious diseases is ineffective when the diagnostic test does not meet one or more of the necessary standards of affordability, accessibility, and accuracy. The World Health Organization further clarifies these standards with a set of criteria that has the acronym ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users). The advancement of the digital age has led to a revision of the ASSURED criteria to REASSURED: Real-time connectivity, Ease of specimen collection, Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free or simple, and Deliverable to end-users. Many diagnostic tests have been developed that aim to satisfy the REASSURED criteria; however, most of them only detect a single target. With the progression of syndromic infections, coinfections and the current antimicrobial resistance challenges, the need for multiplexed diagnostics is now more important than ever. This review summarizes current diagnostic technologies for multiplexed detection and forecasts which methods have promise for detecting multiple targets and meeting all REASSURED criteria.
Collapse
|
89
|
Miłobedzka A, Ferreira C, Vaz-Moreira I, Calderón-Franco D, Gorecki A, Purkrtova S, Dziewit L, Singleton CM, Nielsen PH, Weissbrodt DG, Manaia CM. Monitoring antibiotic resistance genes in wastewater environments: The challenges of filling a gap in the One-Health cycle. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127407. [PMID: 34629195 DOI: 10.1016/j.jhazmat.2021.127407] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 05/10/2023]
Abstract
Antibiotic resistance (AR) is a global problem requiring international cooperation and coordinated action. Global monitoring must rely on methods available and comparable across nations to quantify AR occurrence and identify sources and reservoirs, as well as paths of AR dissemination. Numerous analytical tools that are gaining relevance in microbiology, have the potential to be applied to AR research. This review summarizes the state of the art of AR monitoring methods, considering distinct needs, objectives and available resources. Based on the overview of distinct approaches that are used or can be adapted to monitor AR, it is discussed the potential to establish reliable and useful monitoring schemes that can be implemented in distinct contexts. This discussion places the environmental monitoring within the One-Health approach, where two types of risk, dissemination across distinct environmental compartments, and transmission to humans, must be considered. The plethora of methodological approaches to monitor AR and the variable features of the monitored sites challenge the capacity of the scientific community and policy makers to reach a common understanding. However, the dialogue between different methods and the production of action-oriented data is a priority. The review aims to warm up this discussion.
Collapse
Affiliation(s)
- Aleksandra Miłobedzka
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; Institute of Evolutionary Biology, University of Warsaw, Warsaw, Poland.
| | - Catarina Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | | | - Adrian Gorecki
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Sabina Purkrtova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Caitlin M Singleton
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | | | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
90
|
Dubey AK, Kumar Gupta V, Kujawska M, Orive G, Kim NY, Li CZ, Kumar Mishra Y, Kaushik A. Exploring nano-enabled CRISPR-Cas-powered strategies for efficient diagnostics and treatment of infectious diseases. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 12:833-864. [PMID: 35194511 PMCID: PMC8853211 DOI: 10.1007/s40097-022-00472-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/23/2022] [Indexed: 05/02/2023]
Abstract
UNLABELLED Biomedical researchers have subsequently been inspired the development of new approaches for precisely changing an organism's genomic DNA in order to investigate customized diagnostics and therapeutics utilizing genetic engineering techniques. Clustered Regulatory Interspaced Short Palindromic Repeats (CRISPR) is one such technique that has emerged as a safe, targeted, and effective pharmaceutical treatment against a wide range of disease-causing organisms, including bacteria, fungi, parasites, and viruses, as well as genetic abnormalities. The recent discovery of very flexible engineered nucleic acid binding proteins has changed the scientific area of genome editing in a revolutionary way. Since current genetic engineering technique relies on viral vectors, issues about immunogenicity, insertional oncogenesis, retention, and targeted delivery remain unanswered. The use of nanotechnology has the potential to improve the safety and efficacy of CRISPR/Cas9 component distribution by employing tailored polymeric nanoparticles. The combination of two (CRISPR/Cas9 and nanotechnology) offers the potential to open new therapeutic paths. Considering the benefits, demand, and constraints, the goal of this research is to acquire more about the biology of CRISPR technology, as well as aspects of selective and effective diagnostics and therapies for infectious illnesses and other metabolic disorders. This review advocated combining nanomedicine (nanomedicine) with a CRISPR/Cas enabled sensing system to perform early-stage diagnostics and selective therapy of specific infectious disorders. Such a Nano-CRISPR-powered nanomedicine and sensing system would allow for successful infectious illness control, even on a personal level. This comprehensive study also discusses the current obstacles and potential of the predicted technology. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40097-022-00472-7.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG UK
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- CIBER Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba Health Research Institute, Nanobiocel Research Group, Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, Singapore, Singapore
| | - Nam-Young Kim
- Department of Electronics Engineering, RFIC Bio Centre, NDAC Centre, RFIC Bio Centre, NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897 South Korea
| | - Chen-zhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112 USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112 USA
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL-33805 USA
| |
Collapse
|
91
|
You H, Gordon CA, MacGregor SR, Cai P, McManus DP. Potential of the CRISPR-Cas system for improved parasite diagnosis: CRISPR-Cas mediated diagnosis in parasitic infections: CRISPR-Cas mediated diagnosis in parasitic infections. Bioessays 2022; 44:e2100286. [PMID: 35142378 DOI: 10.1002/bies.202100286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas technology accelerates development of fast, accurate, and portable diagnostic tools, typified by recent applications in COVID-19 diagnosis. Parasitic helminths cause devastating diseases afflicting 1.5 billion people globally, representing a significant public health and economic burden, especially in developing countries. Currently available diagnostic tests for worm infection are neither sufficiently sensitive nor field-friendly for use in low-endemic or resource-poor settings, leading to underestimation of true prevalence rates. Mass drug administration programs are unsustainable long-term, and diagnostic tools - required to be rapid, specific, sensitive, cost-effective, and user-friendly without specialized equipment and expertise - are urgently needed for rapid mapping of helminthic diseases and monitoring control programs. We describe the key features of the CRISPR-Cas12/13 system and emphasise its potential for the development of effective tools for the diagnosis of parasitic and other neglected tropical diseases (NTDs), a key recommendation of the NTDs 2021-2030 roadmap released by the World Health Organization.
Collapse
Affiliation(s)
- Hong You
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Catherine A Gordon
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Skye R MacGregor
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Pengfei Cai
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| |
Collapse
|
92
|
Puig-Serra P, Casado-Rosas MC, Martinez-Lage M, Olalla-Sastre B, Alonso-Yanez A, Torres-Ruiz R, Rodriguez-Perales S. CRISPR Approaches for the Diagnosis of Human Diseases. Int J Mol Sci 2022; 23:ijms23031757. [PMID: 35163678 PMCID: PMC8836363 DOI: 10.3390/ijms23031757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas is a prokaryotic self-defense system, widely known for its use as a gene-editing tool. Because of their high specificity to detect DNA and RNA sequences, different CRISPR systems have been adapted for nucleic acid detection. CRISPR detection technologies differ highly among them, since they are based on four of the six major subtypes of CRISPR systems. In just 5 years, the CRISPR diagnostic field has rapidly expanded, growing from a set of specific molecular biology discoveries to multiple FDA-authorized COVID-19 tests and the establishment of several companies. CRISPR-based detection methods are coupled with pre-existing preamplification and readout technologies, achieving sensitivity and reproducibility comparable to the current gold standard nucleic acid detection methods. Moreover, they are very versatile, can be easily implemented to detect emerging pathogens and new clinically relevant mutations, and offer multiplexing capability. The advantages of the CRISPR-based diagnostic approaches are a short sample-to-answer time and no requirement of laboratory settings; they are also much more affordable than current nucleic acid detection procedures. In this review, we summarize the applications and development trends of the CRISPR/Cas13 system in the identification of particular pathogens and mutations and discuss the challenges and future prospects of CRISPR-based diagnostic platforms in biomedicine.
Collapse
Affiliation(s)
- Pilar Puig-Serra
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
| | - Maria Cruz Casado-Rosas
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
| | - Marta Martinez-Lage
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
| | - Beatriz Olalla-Sastre
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
| | - Alejandro Alonso-Yanez
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
| | - Raul Torres-Ruiz
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
- Centro de Investigacion Energeticas Medioambientales y Tecnologicas (CIEMAT), Advanced Therapies Unit, Hematopoietic Innovative Therapies Division, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS-FJD, UAM), 28040 Madrid, Spain
- Correspondence: (R.T.-R.); (S.R.-P.)
| | - Sandra Rodriguez-Perales
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (M.C.C.-R.); (M.M.-L.); (B.O.-S.); (A.A.-Y.)
- Correspondence: (R.T.-R.); (S.R.-P.)
| |
Collapse
|
93
|
Wei B, Chen Y, Lu T, Cao W, Tang Z, Yang H. Correlation between vaginal microbiota and different progression stages of cervical cancer. Genet Mol Biol 2022; 45:e20200450. [PMID: 35320337 PMCID: PMC8967114 DOI: 10.1590/1678-4685-gmb-2020-0450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
The process from high-risk human papillomavirus (HR-HPV) infection to cervical cancer is a continuous and long-term process, but the pathogenesis of the whole process is not completely clear. Here, 59 Chinese women were engaged in this study, and divided into five groups: normal healthy group, HR-HPV infections group, low-grade intraepithelial neoplasia (LSIL) group, high-SIL(HSIL) group, and cervical cancer group. With the occurrence of HR-HPV infection and the development of cervical lesions, the diversity of vaginal microbiota species was increased, and the relative abundance of Lactobacillus (L.), the dominant bacteria in maintaining vaginal microecological balance, was decreased gradually. In contrast, the abundance of Actinobacteria in the four disease groups was significantly higher than that in normal group. Furthermore L. iners may be related to the serious progression of cervical cancer. After analyzing the whole process, we found that Gardnerella(G.), Atopobium(A.) and Dialister(D.) have important effects on both persistent HR-HPV infection and the pathogenesis of cervical cancer. In addition, PICRUSt2 and KEGG results showed that the KEGG pathways enriched by the predicted genes of vaginal microbiota in cancer group included metabolic diseases, endocrine system and immune systems when compared with that in normal group. These findings may provide insights into the pathogenesis of cervical cancer, and help to improve the early detection and prevention of cervical precancerous lesions.
Collapse
Affiliation(s)
- Bing Wei
- Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Embryo Original Diseases, China
| | - Yi Chen
- Shanghai Jiao Tong University, China
| | | | | | - Zhenhua Tang
- Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Embryo Original Diseases, China
| | - Haiou Yang
- Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Embryo Original Diseases, China
| |
Collapse
|
94
|
Zhang C, Sun L, Wang D, Li Y, Zhang L, Wang L, Peng J. Advances in antimicrobial resistance testing. Adv Clin Chem 2022; 111:1-68. [DOI: 10.1016/bs.acc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
95
|
Miller S, Chiu C. The Role of Metagenomics and Next-Generation Sequencing in Infectious Disease Diagnosis. Clin Chem 2021; 68:115-124. [PMID: 34969106 DOI: 10.1093/clinchem/hvab173] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Metagenomic next-generation sequencing (mNGS) for pathogen detection is becoming increasingly available as a method to identify pathogens in cases of suspected infection. mNGS analyzes the nucleic acid content of patient samples with high-throughput sequencing technologies to detect and characterize microorganism DNA and/or RNA. This unbiased approach to organism detection enables diagnosis of a broad spectrum of infection types and can identify more potential pathogens than any single conventional test. This can lead to improved ability to diagnose patients, although there remains concern regarding contamination and detection of nonclinically significant organisms. CONTENT We describe the laboratory approach to mNGS testing and highlight multiple considerations that affect diagnostic performance. We also summarize recent literature investigating the diagnostic performance of mNGS assays for a variety of infection types and recommend further studies to evaluate the improvement in clinical outcomes and cost-effectiveness of mNGS testing. SUMMARY The majority of studies demonstrate that mNGS has sensitivity similar to specific PCR assays and will identify more potential pathogens than conventional methods. While many of these additional organism detections correlate with the expected pathogen spectrum based on patient presentations, there are relatively few formal studies demonstrating whether these are true-positive infections and benefits to clinical outcomes. Reduced specificity due to contamination and clinically nonsignificant organism detections remains a major concern, emphasizing the importance of careful interpretation of the organism pathogenicity and potential association with the clinical syndrome. Further research is needed to determine the possible improvement in clinical outcomes and cost-effectiveness of mNGS testing.
Collapse
Affiliation(s)
- Steve Miller
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Charles Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
96
|
Fitzpatrick KJ, Rohlf HJ, Sutherland TD, Koo KM, Beckett S, Okelo WO, Keyburn AL, Morgan BS, Drigo B, Trau M, Donner E, Djordjevic SP, De Barro PJ. Progressing Antimicrobial Resistance Sensing Technologies across Human, Animal, and Environmental Health Domains. ACS Sens 2021; 6:4283-4296. [PMID: 34874700 DOI: 10.1021/acssensors.1c01973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The spread of antimicrobial resistance (AMR) is a rapidly growing threat to humankind on both regional and global scales. As countries worldwide prepare to embrace a One Health approach to AMR management, which is one that recognizes the interconnectivity between human, animal, and environmental health, increasing attention is being paid to identifying and monitoring key contributing factors and critical control points. Presently, AMR sensing technologies have significantly progressed phenotypic antimicrobial susceptibility testing (AST) and genotypic antimicrobial resistance gene (ARG) detection in human healthcare. For effective AMR management, an evolution of innovative sensing technologies is needed for tackling the unique challenges of interconnected AMR across various and different health domains. This review comprehensively discusses the modern state-of-play for innovative commercial and emerging AMR sensing technologies, including sequencing, microfluidic, and miniaturized point-of-need platforms. With a unique view toward the future of One Health, we also provide our perspectives and outlook on the constantly changing landscape of AMR sensing technologies beyond the human health domain.
Collapse
Affiliation(s)
- Kira J. Fitzpatrick
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty. Ltd., Brisbane, Queensland 4073, Australia
| | - Hayden J. Rohlf
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty. Ltd., Brisbane, Queensland 4073, Australia
| | - Tara D. Sutherland
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Black Mountain, Canberra, Australian Capital Territory 2601, Australia
| | - Kevin M. Koo
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty. Ltd., Brisbane, Queensland 4073, Australia
- The University of Queensland Centre for Clinical Research (UQCCR), Brisbane, Queensland 4029, Australia
| | - Sam Beckett
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Black Mountain, Canberra, Australian Capital Territory 2601, Australia
| | - Walter O. Okelo
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Black Mountain, Canberra, Australian Capital Territory 2601, Australia
| | - Anthony L. Keyburn
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness (ACDP), Geelong, Victoria 3220, Australia
| | - Branwen S. Morgan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Black Mountain, Canberra, Australian Capital Territory 2601, Australia
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Adelaide, South Australia 5095, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, South Australia 5095, Australia
| | - Steven P. Djordjevic
- Ithree Institute, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Paul J. De Barro
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health & Biosecurity, EcoSciences Precinct, Brisbane, Queensland 4001, Australia
| |
Collapse
|
97
|
Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, Draz MS, Ruan Z. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnology 2021; 19:401. [PMID: 34863214 PMCID: PMC8642896 DOI: 10.1186/s12951-021-01132-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is spreading rapidly around the world and seriously impeding efforts to control microbial infections. Although nucleic acid testing is widely deployed for the detection of antibiotic resistant bacteria, the current techniques-mainly based on polymerase chain reaction (PCR)-are time-consuming and laborious. There is an urgent need to develop new strategies to control bacterial infections and the spread of antimicrobial resistance (AMR). The CRISPR-Cas system is an adaptive immune system found in many prokaryotes that presents attractive opportunities to target and edit nucleic acids with high precision and reliability. Engineered CRISPR-Cas systems are reported to effectively kill bacteria or even revert bacterial resistance to antibiotics (resensitizing bacterial cells to antibiotics). Strategies for combating antimicrobial resistance using CRISPR (i.e., Cas9, Cas12, Cas13, and Cas14) can be of great significance in detecting bacteria and their resistance to antibiotics. This review discusses the structures, mechanisms, and detection methods of CRISPR-Cas systems and how these systems can be engineered for the rapid and reliable detection of bacteria using various approaches, with a particular focus on nanoparticles. In addition, we summarize the most recent advances in applying the CRISPR-Cas system for virulence modulation of bacterial infections and combating antimicrobial resistance.
Collapse
Affiliation(s)
- Yuye Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Mohammed J Hakeem
- Department of Food Science and Human Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Venkatarao Selamneni
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
98
|
Usha SP, Manoharan H, Deshmukh R, Álvarez-Diduk R, Calucho E, Sai VVR, Merkoçi A. Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021; 50:13012-13089. [PMID: 34673860 DOI: 10.1039/d1cs00137j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detecting the ultra-low abundance of analytes in real-life samples, such as biological fluids, water, soil, and food, requires the design and development of high-performance biosensing modalities. The breakthrough efforts from the scientific community have led to the realization of sensing technologies that measure the analyte's ultra-trace level, with relevant sensitivity, selectivity, response time, and sampling efficiency, referred to as Attomolar Analyte Sensing Techniques (AttoSens) in this review. In an AttoSens platform, 1 aM detection corresponds to the quantification of 60 target analyte molecules in 100 μL of sample volume. Herein, we review the approaches listed for various sensor probe design, and their sensing strategies that paved the way for the detection of attomolar (aM: 10-18 M) concentration of analytes. A summary of the technological advances made by the diverse AttoSens trends from the past decade is presented.
Collapse
Affiliation(s)
- Sruthi Prasood Usha
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Hariharan Manoharan
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Rehan Deshmukh
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain.
| | - Enric Calucho
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain.
| | - V V R Sai
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain. .,ICREA, Institució Catalana de Recercai Estudis Avançats, Barcelona, Spain
| |
Collapse
|
99
|
Abstract
Abstract Clustered regularly interspaced short palindromic repeats (CRISPR) technology, an easy, rapid, cost-effective, and precise gene-editing technique, has revolutionized diagnostics and gene therapy. Fast and accurate diagnosis of diseases is essential for point-of-care-testing
(POCT) and specialized medical institutes. The CRISPR-associated (Cas) proteins system shed light on the new diagnostics methods at point-of-care (POC) owning to its advantages. In addition, CRISPR/Cas-based gene-editing technology has led to various breakthroughs in gene therapy. It has been
employed in clinical trials for a variety of untreatable diseases, including cancer, blood disorders, and other syndromes. Currently, the clinical application of CRISPR/Cas has been mainly focused on ex vivo therapies. Recently, tremendous efforts have been made in the development of
ex vivo gene therapy based on CRISPR-Cas9. Despite these efforts, in vivo CRISPR/Cas gene therapy is only in its initial stage. Here, we review the milestones of CRISPR/Cas technologies that advanced the field of diagnostics and gene therapy. We also highlight the recent advances
of diagnostics and gene therapy based on CRISPR/Cas technology. In the last section, we discuss the strength and significant challenges of the CRISPR/Cas technology for its future clinical usage in diagnosis and gene therapy.
Collapse
Affiliation(s)
- Meiyu Qiu
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Pei Li
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
100
|
Schuele L, Cassidy H, Peker N, Rossen JWA, Couto N. Future potential of metagenomics in clinical laboratories. Expert Rev Mol Diagn 2021; 21:1273-1285. [PMID: 34755585 DOI: 10.1080/14737159.2021.2001329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Rapid and sensitive diagnostic strategies are necessary for patient care and public health. Most of the current conventional microbiological assays detect only a restricted panel of pathogens at a time or require a microbe to be successfully cultured from a sample. Clinical metagenomics next-generation sequencing (mNGS) has the potential to unbiasedly detect all pathogens in a sample, increasing the sensitivity for detection and enabling the discovery of unknown infectious agents. AREAS COVERED High expectations have been built around mNGS; however, this technique is far from widely available. This review highlights the advances and currently available options in terms of costs, turnaround time, sensitivity, specificity, validation, and reproducibility of mNGS as a diagnostic tool in clinical microbiology laboratories. EXPERT OPINION The need for a novel diagnostic tool to increase the sensitivity of microbial diagnostics is clear. mNGS has the potential to revolutionise clinical microbiology. However, its role as a diagnostic tool has yet to be widely established, which is crucial for successfully implementing the technique. A clear definition of diagnostic algorithms that include mNGS is vital to show clinical utility. Similarly to real-time PCR, mNGS will one day become a vital tool in any testing algorithm.
Collapse
Affiliation(s)
- Leonard Schuele
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Hayley Cassidy
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Nilay Peker
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - John W A Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Natacha Couto
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|