51
|
Horbinski C, Ligon KL, Brastianos P, Huse JT, Venere M, Chang S, Buckner J, Cloughesy T, Jenkins RB, Giannini C, Stupp R, Nabors LB, Wen PY, Aldape KJ, Lukas RV, Galanis E, Eberhart CG, Brat DJ, Sarkaria JN. The medical necessity of advanced molecular testing in the diagnosis and treatment of brain tumor patients. Neuro Oncol 2020; 21:1498-1508. [PMID: 31276167 DOI: 10.1093/neuonc/noz119] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accurate pathologic diagnoses and molecularly informed treatment decisions for a wide variety of cancers depend on robust clinical molecular testing that uses genomic, epigenomic, and transcriptomic-based tools. Nowhere is this more essential than in the workup of brain tumors, as emphasized by the incorporation of molecular criteria into the 2016 World Health Organization classification of central nervous system tumors and the updated official guidelines of the National Comprehensive Cancer Network. Despite the medical necessity of molecular testing in brain tumors, access to and utilization of molecular diagnostics is still highly variable across institutions, and a lack of reimbursement for such testing remains a significant obstacle. The objectives of this review are (i) to identify barriers to adoption of molecular testing in brain tumors, (ii) to describe the current molecular tools recommended for the clinical evaluation of brain tumors, and (iii) to summarize how molecular data are interpreted to guide clinical care, so as to improve understanding and justification for their coverage in the routine workup of adult and pediatric brain tumor cases.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology, Northwestern University, Chicago, Illinois.,Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Keith L Ligon
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Monica Venere
- Department of Radiation Oncology and the Comprehensive Cancer Center, Ohio State University, Columbus, Ohio
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Jan Buckner
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Timothy Cloughesy
- Department of Neurology, University of California Los Angeles, Los Angeles, California
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois.,Department of Neurology, Northwestern University, Chicago, Illinois
| | - L Burt Nabors
- Department of Neurology, University of Alabama Birmingham, Birmingham, Alabama
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kenneth J Aldape
- Center for Cancer Research, Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, Illinois
| | | | - Charles G Eberhart
- Department of Neurology, Northwestern University, Chicago, Illinois.,Department of Pathology, Johns Hopkins, Baltimore, Maryland.,Department of Ophthalmology, Johns Hopkins, Baltimore, Maryland
| | - Daniel J Brat
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
52
|
French PJ, Eoli M, Sepulveda JM, de Heer I, Kros JM, Walenkamp A, Frenel JS, Franceschi E, Clement PM, Weller M, Ansell P, Looman J, Bain E, Morfouace M, Gorlia T, van den Bent M. Defining EGFR amplification status for clinical trial inclusion. Neuro Oncol 2020; 21:1263-1272. [PMID: 31125418 PMCID: PMC6784284 DOI: 10.1093/neuonc/noz096] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Precision medicine trials targeting the epidermal growth factor receptor (EGFR) in glioblastoma patients require selection for EGFR-amplified tumors. However, there is currently no gold standard in determining the amplification status of EGFR or variant III (EGFRvIII) expression. Here, we aimed to determine which technique and which cutoffs are suitable to determine EGFR amplification status. Methods We compared fluorescence in-situ hybridization (FISH) and real-time quantitative (RT-q)PCR data from patients screened for trial inclusion into the Intellance 2 clinical trial, with data from a panel-based next generation sequencing (NGS) platform (both DNA and RNA). Results By using data from >1000 samples, we show that at least 50% of EGFR amplified nuclei should be present to define EGFR gene amplification by FISH. Gene amplification (as determined by FISH) correlates with EGFR expression levels (as determined by RT-qPCR) with receiver operating characteristics analysis showing an area under the curve of up to 0.902. EGFR expression as assessed by RT-qPCR therefore may function as a surrogate marker for EGFR amplification. Our NGS data show that EGFR copy numbers can strongly vary between tumors, with levels ranging from 2 to more than 100 copies per cell. Levels exceeding 5 gene copies can be used to define EGFR-amplification by NGS; below this level, FISH detects very few (if any) EGFR amplified nuclei and none of the samples express EGFRvIII. Conclusion Our data from central laboratories and diagnostic sequencing facilities, using material from patients eligible for clinical trial inclusion, help define the optimal cutoff for various techniques to determine EGFR amplification for diagnostic purposes.
Collapse
Affiliation(s)
- Pim J French
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Marica Eoli
- Carlo Besta Neurological Institute, Milan, Italy
| | | | - Iris de Heer
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | | | | | - Enrico Franceschi
- Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | | | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | | | | | - Marie Morfouace
- European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Thierry Gorlia
- European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Martin van den Bent
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
53
|
Campanella R, Guarnaccia L, Caroli M, Zarino B, Carrabba G, La Verde N, Gaudino C, Rampini A, Luzzi S, Riboni L, Locatelli M, Navone SE, Marfia G. Personalized and translational approach for malignant brain tumors in the era of precision medicine: the strategic contribution of an experienced neurosurgery laboratory in a modern neurosurgery and neuro-oncology department. J Neurol Sci 2020; 417:117083. [PMID: 32784071 DOI: 10.1016/j.jns.2020.117083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Personalized medicine (PM) aims to optimize patient management, taking into account the individual traits of each patient. The main purpose of PM is to obtain the best response, improving health care and lowering costs. Extending traditional approaches, PM introduces novel patient-specific paradigms from diagnosis to treatment, with greater precision. In neuro-oncology, the concept of PM is well established. Indeed, every neurosurgical intervention for brain tumors has always been highly personalized. In recent years, PM has been introduced in neuro-oncology also to design and prescribe specific therapies for the patient and the patient's tumor. The huge advances in basic and translational research in the fields of genetics, molecular and cellular biology, transcriptomics, proteomics, and metabolomics have led to the introduction of PM into clinical practice. The identification of a patient's individual variation map may allow to design selected therapeutic protocols that ensure successful outcomes and minimize harmful side effects. Thus, clinicians can switch from the "one-size-fits-all" approach to PM, ensuring better patient care and high safety margin. Here, we review emerging trends and the current literature about the development of PM in neuro-oncology, considering the positive impact of innovative advanced researches conducted by a neurosurgical laboratory.
Collapse
Affiliation(s)
- Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Manuela Caroli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Zarino
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Carrabba
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Chiara Gaudino
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Rampini
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy.
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Moosso", Aeronautica Militare, Milan, Italy
| |
Collapse
|
54
|
Zhou W, Yao Y, Scott AJ, Wilder-Romans K, Dresser JJ, Werner CK, Sun H, Pratt D, Sajjakulnukit P, Zhao SG, Davis M, Nelson BS, Halbrook CJ, Zhang L, Gatto F, Umemura Y, Walker AK, Kachman M, Sarkaria JN, Xiong J, Morgan MA, Rehemtualla A, Castro MG, Lowenstein P, Chandrasekaran S, Lawrence TS, Lyssiotis CA, Wahl DR. Purine metabolism regulates DNA repair and therapy resistance in glioblastoma. Nat Commun 2020; 11:3811. [PMID: 32732914 PMCID: PMC7393131 DOI: 10.1038/s41467-020-17512-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Intratumoral genomic heterogeneity in glioblastoma (GBM) is a barrier to overcoming therapy resistance. Treatments that are effective independent of genotype are urgently needed. By correlating intracellular metabolite levels with radiation resistance across dozens of genomically-distinct models of GBM, we find that purine metabolites, especially guanylates, strongly correlate with radiation resistance. Inhibiting GTP synthesis radiosensitizes GBM cells and patient-derived neurospheres by impairing DNA repair. Likewise, administration of exogenous purine nucleosides protects sensitive GBM models from radiation by promoting DNA repair. Neither modulating pyrimidine metabolism nor purine salvage has similar effects. An FDA-approved inhibitor of GTP synthesis potentiates the effects of radiation in flank and orthotopic patient-derived xenograft models of GBM. High expression of the rate-limiting enzyme of de novo GTP synthesis is associated with shorter survival in GBM patients. These findings indicate that inhibiting purine synthesis may be a promising strategy to overcome therapy resistance in this genomically heterogeneous disease. Targeting genotype-independent abnormalities may overcome therapy resistance in glioblastoma despite intratumoral genomic heterogeneity. Here, the authors show that glioblastoma radiation resistance is promoted by purine metabolism and can be overcome by inhibitors of purine synthesis.
Collapse
Affiliation(s)
- Weihua Zhou
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yangyang Yao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Andrew J Scott
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joseph J Dresser
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christian K Werner
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hanshi Sun
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Drew Pratt
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mary Davis
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Barbara S Nelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Francesco Gatto
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Yoshie Umemura
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Angela K Walker
- Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maureen Kachman
- Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Jianping Xiong
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alnawaz Rehemtualla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria G Castro
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Pedro Lowenstein
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sriram Chandrasekaran
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Costas A Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA. .,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
55
|
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 2020; 70:299-312. [PMID: 32478924 DOI: 10.3322/caac.21613] [Citation(s) in RCA: 1176] [Impact Index Per Article: 235.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Overall, the prognosis for patients with this disease is poor, with a median survival of <2 years. There is a slight predominance in males, and incidence increases with age. The standard approach to therapy in the newly diagnosed setting includes surgery followed by concurrent radiotherapy with temozolomide and further adjuvant temozolomide. Tumor-treating fields, delivering low-intensity alternating electric fields, can also be given concurrently with adjuvant temozolomide. At recurrence, there is no standard of care; however, surgery, radiotherapy, and systemic therapy with chemotherapy or bevacizumab are all potential options, depending on the patient's circumstances. Supportive and palliative care remain important considerations throughout the disease course in the multimodality approach to management. The recently revised classification of glioblastoma based on molecular profiling, notably isocitrate dehydrogenase (IDH) mutation status, is a result of enhanced understanding of the underlying pathogenesis of disease. There is a clear need for better therapeutic options, and there have been substantial efforts exploring immunotherapy and precision oncology approaches. In contrast to other solid tumors, however, biological factors, such as the blood-brain barrier and the unique tumor and immune microenvironment, represent significant challenges in the development of novel therapies. Innovative clinical trial designs with biomarker-enrichment strategies are needed to ultimately improve the outcome of patients with glioblastoma.
Collapse
Affiliation(s)
- Aaron C Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Giselle Y López
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Michael Malinzak
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Henry S Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
56
|
Ellingson BM, Yao J, Raymond C, Nathanson DA, Chakhoyan A, Simpson J, Garner JS, Olivero AG, Mueller LU, Rodon J, Gerstner E, Cloughesy TF, Wen PY. Multiparametric MR-PET Imaging Predicts Pharmacokinetics and Clinical Response to GDC-0084 in Patients with Recurrent High-Grade Glioma. Clin Cancer Res 2020; 26:3135-3144. [PMID: 32269051 DOI: 10.1158/1078-0432.ccr-19-3817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/14/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE GDC-0084 is an oral, brain-penetrant small-molecule inhibitor of PI3K and mTOR. Because these two targets alter tumor vascularity and metabolism, respectively, we hypothesized multiparametric MR-PET could be used to quantify the response, estimate pharmacokinetic (PK) parameters, and predict progression-free survival (PFS) in patients with recurrent malignant gliomas. PATIENTS AND METHODS Multiparametric advanced MR-PET imaging was performed to evaluate physiologic response in a first-in-man, multicenter, phase I, dose-escalation study of GDC-0084 (NCT01547546) in 47 patients with recurrent malignant glioma. RESULTS Measured maximum concentration (C max) was associated with a decrease in enhancing tumor volume (P = 0.0287) and an increase in fractional anisotropy (FA; P = 0.0418). Posttreatment tumor volume, 18F-FDG uptake, Ktrans, and relative cerebral blood volume (rCBV) were all correlated with C max. A linear combination of change in 18F-FDG PET uptake, apparent diffusion coefficient (ADC), FA, Ktrans, vp, and rCBV was able to estimate both C max (R2 = 0.4113; P < 0.0001) and drug exposure (AUC; R2 = 0.3481; P < 0.0001). Using this composite multiparametric MR-PET imaging response biomarker to predict PK, patients with an estimated C max > 0.1 μmol/L and AUC > 1.25 μmol/L*hour demonstrated significantly longer PFS compared with patients with a lower estimated concentration and exposure (P = 0.0039 and P = 0.0296, respectively). CONCLUSIONS Results from this study suggest composite biomarkers created from multiparametric MR-PET imaging targeting metabolic and/or physiologic processes specific to the drug mechanism of action may be useful for subsequent evaluation of treatment efficacy for larger phase II-III studies.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California. .,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, California
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ararat Chakhoyan
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jeremy Simpson
- Kazia Therapeutics Limited, Sydney, New South Wales, Australia
| | - James S Garner
- Kazia Therapeutics Limited, Sydney, New South Wales, Australia
| | | | | | - Jordi Rodon
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Elizabeth Gerstner
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
57
|
Giotta Lucifero A, Luzzi S, Brambilla I, Schena L, Mosconi M, Foiadelli T, Savasta S. Potential roads for reaching the summit: an overview on target therapies for high-grade gliomas. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:61-78. [PMID: 32608376 PMCID: PMC7975828 DOI: 10.23750/abm.v91i7-s.9956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
UNLABELLED The tailored targeting of specific oncogenes represents a new frontier in the treatment of high-grade glioma in the pursuit of innovative and personalized approaches. The present study consists in a wide-ranging overview of the target therapies and related translational challenges in neuro-oncology. METHODS A review of the literature on PubMed/MEDLINE on recent advances concerning the target therapies for treatment of central nervous system malignancies was carried out. In the Medical Subject Headings, the terms "Target Therapy", "Target drug" and "Tailored Therapy" were combined with the terms "High-grade gliomas", "Malignant brain tumor" and "Glioblastoma". Articles published in the last five years were further sorted, based on the best match and relevance. The ClinicalTrials.gov website was used as a source of the main trials, where the search terms were "Central Nervous System Tumor", "Malignant Brain Tumor", "Brain Cancer", "Brain Neoplasms" and "High-grade gliomas". RESULTS A total of 137 relevant articles and 79 trials were selected. Target therapies entailed inhibitors of tyrosine kinases, PI3K/AKT/mTOR pathway, farnesyl transferase enzymes, p53 and pRB proteins, isocitrate dehydrogenases, histone deacetylases, integrins and proteasome complexes. The clinical trials mostly involved combined approaches. They were phase I, II, I/II and III in 33%, 42%, 16%, and 9% of the cases, respectively. CONCLUSION Tyrosine kinase and angiogenesis inhibitors, in combination with standard of care, have shown most evidence of the effectiveness in glioblastoma. Resistance remains an issue. A deeper understanding of the molecular pathways involved in gliomagenesis is the key aspect on which the translational research is focusing, in order to optimize the target therapies of newly diagnosed and recurrent brain gliomas.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Ilaria Brambilla
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Lucia Schena
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Mario Mosconi
- Orthopaedic and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Thomas Foiadelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Salvatore Savasta
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| |
Collapse
|
58
|
Receptor Tyrosine Kinases: Principles and Functions in Glioma Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:151-178. [PMID: 32034713 DOI: 10.1007/978-3-030-30651-9_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein tyrosine kinases are enzymes that are capable of adding a phosphate group to specific tyrosines on target proteins. A receptor tyrosine kinase (RTK) is a tyrosine kinase located at the cellular membrane and is activated by binding of a ligand via its extracellular domain. Protein phosphorylation by kinases is an important mechanism for communicating signals within a cell and regulating cellular activity; furthermore, this mechanism functions as an "on" or "off" switch in many cellular functions. Ninety unique tyrosine kinase genes, including 58 RTKs, were identified in the human genome; the products of these genes regulate cellular proliferation, survival, differentiation, function, and motility. Tyrosine kinases play a critical role in the development and progression of many types of cancer, in addition to their roles as key regulators of normal cellular processes. Recent studies have revealed that RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), c-Met, Tie, Axl, discoidin domain receptor 1 (DDR1), and erythropoietin-producing human hepatocellular carcinoma (Eph) play a major role in glioma invasion. Herein, we summarize recent advances in understanding the role of RTKs in glioma pathobiology, especially the invasive phenotype, and present the perspective that RTKs are a potential target of glioma therapy.
Collapse
|
59
|
Jensen KV, Hao X, Aman A, Luchman HA, Weiss S. EGFR blockade in GBM brain tumor stem cells synergizes with JAK2/STAT3 pathway inhibition to abrogate compensatory mechanisms in vitro and in vivo. Neurooncol Adv 2020; 2:vdaa020. [PMID: 32226941 PMCID: PMC7086303 DOI: 10.1093/noajnl/vdaa020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background The EGFR pathway is frequently mutated in glioblastoma (GBM). However, to date, EGFR therapies have not demonstrated efficacy in clinical trials. Poor brain penetration of conventional inhibitors, lack of patient stratification for EGFR status, and mechanisms of resistance are likely responsible for the failure of EGFR-targeted therapy. We aimed to address these elements in a large panel of molecularly diverse patient-derived GBM brain tumor stem cells (BTSCs). Methods In vitro growth inhibition and on-target efficacy of afatinib, pacritinib, or a combination were assessed by cell viability, neurosphere formation, cytotoxicity, limiting dilution assays, and western blotting. In vivo efficacy was assessed with mass spectrometry, immunohistochemistry, magnetic resonance imaging, and intracranial xenograft models. Results We show that afatinib and pacritinib decreased BTSC growth and sphere-forming capacity in vitro. Combinations of the 2 drugs were synergistic and abrogated the activation of STAT3 signaling observed upon EGFR inhibition in vitro and in vivo. We further demonstrate that the brain-penetrant EGFR inhibitor, afatinib, improved survival in EGFRvIII mt orthotopic xenograft models. However, upregulation of the oncogenic STAT3 signaling pathway was observed following afatinib treatment. Combined inhibition with 2 clinically relevant drugs, afatinib and pacritinib, synergistically decreased BTSC viability and abrogated this compensatory mechanism of resistance to EGFR inhibition. A significant decrease in tumor burden in vivo was observed with the combinatorial treatment. Conclusions These data demonstrate that brain-penetrant combinatorial therapies targeting the EGFR and STAT3 signaling pathways hold therapeutic promise for GBM.
Collapse
Affiliation(s)
- Katharine V Jensen
- Hotchkiss Brain Institute and Arnie Charbonneau Cancer Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoguang Hao
- Hotchkiss Brain Institute and Arnie Charbonneau Cancer Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - H Artee Luchman
- Hotchkiss Brain Institute and Arnie Charbonneau Cancer Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute and Arnie Charbonneau Cancer Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
60
|
Truong DH, Le VKH, Pham TT, Dao AH, Pham TPD, Tran TH. Delivery of erlotinib for enhanced cancer treatment: An update review on particulate systems. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
61
|
Gomez-Roman N, Chong MY, Chahal SK, Caragher SP, Jackson MR, Stevenson KH, Dongre SA, Chalmers AJ. Radiation Responses of 2D and 3D Glioblastoma Cells: A Novel, 3D-specific Radioprotective Role of VEGF/Akt Signaling through Functional Activation of NHEJ. Mol Cancer Ther 2020; 19:575-589. [PMID: 31672763 DOI: 10.1158/1535-7163.mct-18-1320] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/12/2019] [Accepted: 10/24/2019] [Indexed: 11/16/2022]
Abstract
Glioblastoma is resistant to conventional treatments and has dismal prognosis. Despite promising in vitro data, molecular targeted agents have failed to improve outcomes in patients, indicating that conventional two-dimensional (2D) in vitro models of GBM do not recapitulate the clinical scenario. Responses of primary glioblastoma stem-like cells (GSC) to radiation in combination with EGFR, VEGF, and Akt inhibition were investigated in conventional 2D cultures and a three-dimensional (3D) in vitro model of GBM that recapitulates key GBM clinical features. VEGF deprivation had no effect on radiation responses of 2D GSCs, but enhanced radiosensitivity of GSC cultures in 3D. The opposite effects were observed for EGFR inhibition. Detailed analysis of VEGF and EGF signaling demonstrated a radioprotective role of Akt that correlates with VEGF in 3D and with EGFR in 2D. In all cases, positive correlations were observed between increased radiosensitivity, markers of unrepaired DNA damage and persistent phospho-DNA-PK nuclear foci. Conversely, increased numbers of Rad51 foci were observed in radioresistant populations, indicating a novel role for VEGF/Akt signaling in influencing radiosensitivity by regulating the balance between nonhomologous end-joining and homologous recombination-mediated DNA repair. Differential activation of tyrosine kinase receptors in 2D and 3D models of GBM explains the well documented discrepancy between preclinical and clinical effects of EGFR inhibitors. Data obtained from our 3D model identify novel determinants and mechanisms of DNA repair and radiosensitivity in GBM, and confirm Akt as a promising therapeutic target in this cancer of unmet need.
Collapse
Affiliation(s)
- Natividad Gomez-Roman
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom.
| | - Ming Y Chong
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Sandeep K Chahal
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Seamus P Caragher
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Mark R Jackson
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Katrina H Stevenson
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Sidhartha A Dongre
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Anthony J Chalmers
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
62
|
Rutkowska A, Stoczyńska-Fidelus E, Janik K, Włodarczyk A, Rieske P. EGFR vIII: An Oncogene with Ambiguous Role. JOURNAL OF ONCOLOGY 2019; 2019:1092587. [PMID: 32089685 PMCID: PMC7024087 DOI: 10.1155/2019/1092587] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblastoma (GB), as it is specifically present on up to 28-30% of GB cells. In case of other tumor types, expression and possible role of this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low, and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies. On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells. Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and, therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and advanced cancer stages.
Collapse
Affiliation(s)
- Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| |
Collapse
|
63
|
Gholamrezanezhad A, Shooli H, Jokar N, Nemati R, Assadi M. Radioimmunotherapy (RIT) in Brain Tumors. Nucl Med Mol Imaging 2019; 53:374-381. [PMID: 31867072 PMCID: PMC6898703 DOI: 10.1007/s13139-019-00618-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022] Open
Abstract
Annually, the incidence of brain tumors has slightly increased and also the patient prognosis is still disappointing, especially for high-grade neoplasms. So, researchers seek methods to improve therapeutic index as a critical aim of treatment. One of these new challenging methods is radioimmunotherapy (RIT) that involves recruiting a coupling of radionuclide component with monoclonal antibody (mAb) which are targeted against cell surface tumor-related antigens or antigens of cells within the tumor microenvironment. In the context of cancer care, precision medicine is exemplified by RIT; precision medicine can offer a tailored treatment to meet the needs for treatment of brain tumors. This review aims to discuss the molecular targets used in radioimmunotherapy of brain tumors, available and future radioimmunopharmaceutics, clinical trials of radioimmunotherapy in brain neoplasms, and eventually, conclusion and future perspective of application of radioimmunotherapy in neurooncology cancer care.
Collapse
Affiliation(s)
- Ali Gholamrezanezhad
- Department of Diagnostic Radiology, Keck School of Medicine, University of Southern California (USC), 1520 San Pablo Street, Suite L1600, Los Angeles, CA 90033 USA
| | - Hossein Shooli
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Jokar
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Nemati
- Department of Neurology, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
64
|
The Role of Next Generation Sequencing in Diagnosis of Brain Tumors: A Review Study. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.68874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
65
|
Vengoji R, Ponnusamy MP, Rachagani S, Mahapatra S, Batra SK, Shonka N, Macha MA. Novel therapies hijack the blood-brain barrier to eradicate glioblastoma cancer stem cells. Carcinogenesis 2019; 40:2-14. [PMID: 30475990 DOI: 10.1093/carcin/bgy171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/12/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is amongst the most aggressive brain tumors with a dismal prognosis. Despite significant advances in the current multimodality therapy including surgery, postoperative radiotherapy (RT) and temozolomide (TMZ)-based concomitant and adjuvant chemotherapy (CT), tumor recurrence is nearly universal with poor patient outcomes. These limitations are in part due to poor drug penetration through the blood-brain barrier (BBB) and resistance to CT and RT by a small population of cancer cells recognized as tumor-initiating cells or cancer stem cells (CSCs). Though CT and RT kill the bulk of the tumor cells, they fail to affect CSCs, resulting in their enrichment and their development into more refractory tumors. Therefore, identifying the mechanisms of resistance and developing therapies that specifically target CSCs can improve response, prevent the development of refractory tumors and increase overall survival of GBM patients. Small molecule inhibitors that can breach the BBB and selectively target CSCs are emerging. In this review, we have summarized the recent advancements in understanding the GBM CSC-specific signaling pathways, the CSC-tumor microenvironment niche that contributes to CT and RT resistance and the use of novel combination therapies of small molecule inhibitors that may be used in conjunction with TMZ-based chemoradiation for effective management of GBM.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
66
|
Reddick SJ, Campagne O, Huang J, Onar-Thomas A, Broniscer A, Gajjar A, Stewart CF. Pharmacokinetics and safety of erlotinib and its metabolite OSI-420 in infants and children with primary brain tumors. Cancer Chemother Pharmacol 2019; 84:829-838. [PMID: 31392390 PMCID: PMC6773504 DOI: 10.1007/s00280-019-03921-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Erlotinib (Tarceva®), a potent small molecule inhibitor of the epidermal growth factor receptor tyrosine kinase, has been evaluated to treat infants and children with primary brain tumors. The pharmacokinetics of erlotinib and its primary metabolite OSI-420 were characterized and exposure-safety associations were investigated. METHODS This analysis involved patients enrolled in two clinical studies and receiving oral erlotinib once daily as part of treatment. Single-dose and steady-state erlotinib and OSI-420 plasma concentrations were assayed using HPLC-MS/MS methods. Population pharmacokinetic modeling and univariate covariate analysis evaluating demographic, clinical and selected CYP3A5, CYP3A4, ABCB1, and ABCG2 genotypes were performed. Associations between erlotinib and OSI-420 pharmacokinetics, and with toxicities (diarrhea and skin rash) occurring post-dose were explored. RESULTS Data from 47 patients (0.7-19 years old) were collected and best fitted by one-compartment linear models. Erlotinib and OSI-420 apparent clearances (CL/F and CLm/Fm) were higher in patients < 5 years compared to older patients (mean CL/F: 6.8 vs 3.6 L/h/m2, and mean CLm/Fm: 79 vs 38 L/h/m2, p < 0.001), and were 1.62-fold and 1.73-fold higher in males compared to females (p < 0.01). Moreover, CL/F was 1.53-fold higher in wild-type patients than in patients heterozygous or homozygous mutant for ABCG2 rs55930652 (p < 0.05). Most of the toxicities reported were grade 1. No associations were found between drug pharmacokinetics and drug-induced toxicities. CONCLUSIONS Erlotinib therapy was well tolerated by pediatric patients with primary brain tumors. No dosing adjustments based on age or patient characteristics are recommended for this patient population.
Collapse
Affiliation(s)
- Samuel J Reddick
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Olivia Campagne
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Jie Huang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alberto Broniscer
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amar Gajjar
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA.
| |
Collapse
|
67
|
Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets. Front Oncol 2019; 9:963. [PMID: 31616641 PMCID: PMC6775189 DOI: 10.3389/fonc.2019.00963] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumour in humans and has a very poor prognosis. The existing treatments have had limited success in increasing overall survival. Thus, identifying and understanding the key molecule(s) responsible for the malignant phenotype of GBM will yield new potential therapeutic targets. The treatment of brain tumours faces unique challenges, including the presence of the blood brain barrier (BBB), which limits the concentration of drugs that can reach the site of the tumour. Nevertheless, several promising treatments have been shown to cross the BBB and have shown promising pre-clinical results. This review will outline the status of several of these promising targeted therapies.
Collapse
Affiliation(s)
- Olivia G Taylor
- Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Cancer Research Alliance and Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Joshua S Brzozowski
- Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Cancer Research Alliance and Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kathryn A Skelding
- Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Cancer Research Alliance and Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
68
|
Lowe S, Bhat KP, Olar A. Current clinical management of patients with glioblastoma. Cancer Rep (Hoboken) 2019; 2:e1216. [PMID: 32721125 DOI: 10.1002/cnr2.1216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Glioblastoma (GB) is the most aggressive primary brain tumor, historically resistant to treatment, and with overall fatal outcome. RECENT FINDINGS Recently, several molecular subgroups and rare genetic alterations have been described in GB. In this review article, we will describe the current clinical management of patients with GB in the United States, discuss selected next-generation molecular-targeted therapies in GB, and present ongoing clinical trials for patients with GB. This review is intended for clinical and preclinical researchers who conduct work on GB and would like to understand more about the current standard of treatment of GB patients, historical perspectives, current challenges, and ongoing and upcoming clinical trials. CONCLUSIONS GB is an extremely complex disease, and despite recent progress and advanced therapeutic strategies, the overall patient's prognosis remains dismal. Innovative strategies and integrative ways of approach to disease are urgently needed.
Collapse
Affiliation(s)
- Stephen Lowe
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Krishna P Bhat
- Deparment of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adriana Olar
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina.,Departments of Pathology and Laboratory Medicine, Medical University of South Carolina & Hollings Cancer Center, Charleston, South Carolina
| |
Collapse
|
69
|
Miller TW, Traphagen NA, Li J, Lewis LD, Lopes B, Asthagiri A, Loomba J, De Jong J, Schiff D, Patel SH, Purow BW, Fadul CE. Tumor pharmacokinetics and pharmacodynamics of the CDK4/6 inhibitor ribociclib in patients with recurrent glioblastoma. J Neurooncol 2019; 144:563-572. [PMID: 31399936 DOI: 10.1007/s11060-019-03258-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/02/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION We conducted a phase Ib study (NCT02345824) to determine whether ribociclib, an inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6), penetrates tumor tissue and modulates downstream signaling pathways including retinoblastoma protein (Rb) in patients with recurrent glioblastoma (GBM). METHODS Study participants received ribociclib (600 mg QD) for 8-21 days before surgical resection of their recurrent GBM. Total and unbound concentrations of ribociclib were measured in samples of tumor tissue, plasma, and cerebrospinal fluid (CSF). We analyzed tumor specimens obtained from the first (initial/pre-study) and second (recurrent/on-study) surgery by immunohistochemistry for Rb status and downstream signaling of CDK4/6 inhibition. Participants with Rb-positive recurrent tumors continued ribociclib treatment on a 21-day-on, 7-day-off schedule after surgery, and were monitored for toxicity and disease progression. RESULTS Three participants with recurrent Rb-positive GBM participated in this study. Mean unbound (pharmacologically active) ribociclib concentrations in plasma, CSF, MRI-enhancing, MRI-non-enhancing, and tumor core regions were 0.337 μM, 0.632 μM, 1.242 nmol/g, 0.484 nmol/g, and 1.526 nmol/g, respectively, which exceeded the in vitro IC50 (0.04 μM) for inhibition of CDK4/6 in cell-free assay. Modulation of pharmacodynamic markers of ribociclib CDK 4/6 inhibition in tumor tissues were inconsistent between study participants. No participants experienced serious adverse events, but all experienced early disease progression. CONCLUSIONS This study suggests that ribociclib penetrated recurrent GBM tissue at concentrations predicted to be therapeutically beneficial. Our study was unable to demonstrate tumor pharmacodynamic correlates of drug activity. Although well tolerated, ribociclib monotherapy seemed ineffective for the treatment of recurrent GBM.
Collapse
Affiliation(s)
- Todd W Miller
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine At Dartmouth, Lebanon, NH, USA
| | - Nicole A Traphagen
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine At Dartmouth, Lebanon, NH, USA
| | - Jing Li
- Pharmacology Core, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Lionel D Lewis
- Section of Clinical Pharmacology, Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine At Dartmouth, Lebanon, NH, USA
| | - Beatriz Lopes
- Department of Pathology, Divisions of Neuropathology and Molecular Diagnostics, University of Virginia Health System, Charlottesville, VA, USA
| | - Ashok Asthagiri
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Johanna Loomba
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Jenny De Jong
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800432, Charlottesville, VA, 22908, USA
| | - Sohil H Patel
- Department of Radiology and Medical Imaging, Division of Neuroradiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Benjamin W Purow
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800432, Charlottesville, VA, 22908, USA
| | - Camilo E Fadul
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800432, Charlottesville, VA, 22908, USA.
| |
Collapse
|
70
|
Hyaluronic acid-functionalized gelatin hydrogels reveal extracellular matrix signals temper the efficacy of erlotinib against patient-derived glioblastoma specimens. Biomaterials 2019; 219:119371. [PMID: 31352310 DOI: 10.1016/j.biomaterials.2019.119371] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023]
Abstract
Therapeutic options to treat primary glioblastoma (GBM) tumors are scarce. GBM tumors with epidermal growth factor receptor (EGFR) mutations, in particular a constitutively active EGFRvIII mutant, have extremely poor clinical outcomes. GBM tumors with concurrent EGFR amplification and active phosphatase and tensin homolog (PTEN) are sensitive to the tyrosine kinase inhibitor erlotinib, but the effect is not durable. A persistent challenge to improved treatment is the poorly understood role of cellular, metabolic, and biophysical signals from the GBM tumor microenvironment on therapeutic efficacy and acquired resistance. The intractable nature of studying GBM cell in vivo motivates tissue engineering approaches to replicate aspects of the complex GBM tumor microenvironment. Here, we profile the effect of erlotinib on two patient-derived GBM specimens: EGFR + GBM12 and EGFRvIII GBM6. We use a three-dimensional gelatin hydrogel to present brain-mimetic hyaluronic acid (HA) and evaluate the coordinated influence of extracellular matrix signals and EGFR mutation status on GBM cell migration, survival and proliferation, as well as signaling pathway activation in response to cyclic erlotinib exposure. Comparable to results observed in vivo for xenograft tumors, erlotinib exposure is not cytotoxic for GBM6 EGFRvIII specimens. We also identify a role of extracellular HA (via CD44) in altering the effect of erlotinib in GBM EGFR + cells by modifying STAT3 phosphorylation status. Taken together, we report an in vitro tissue engineered platform to monitor signaling associated with poor response to targeted inhibitors in GBM.
Collapse
|
71
|
Carpenter CD, Alnahhas I, Gonzalez J, Giglio P, Puduvalli VK. Changing paradigms for targeted therapies against diffuse infiltrative gliomas: tackling a moving target. Expert Rev Neurother 2019; 19:663-677. [PMID: 31106606 DOI: 10.1080/14737175.2019.1621169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Gliomas are highly heterogeneous primary brain tumors which result in a disproportionately high degree of morbidity and mortality despite their locoregional occurrence. Advances in the understanding of the biological makeup of these malignancies have yielded a number of potential tumor-driving pathways which have been identified as rational targets for therapy. However, early trials of agents that target these pathways have uniformly failed to yield improvement in outcomes in patients with malignant gliomas. Areas covered: This review provides an overview of the most common biological features of gliomas and the strategies to target the same; in addition, the current status of immunotherapy and biological therapies are outlined and the future directions to tackle the challenges of therapy for gliomas are examined. Expert opinion: The limitations of current treatments are attributed to the inability of most of these agents to cross the blood-brain barrier and to the intrinsic heterogeneity of the tumors that result in treatment resistance. The recent emergence of immune-mediated and biological therapies and of agents that target metabolic pathways in gliomas have provided strategies that may overcome tumor heterogeneity and ongoing trials of such agents are anticipated to yield improved outcomes.
Collapse
Affiliation(s)
- Candice D Carpenter
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Iyad Alnahhas
- b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Javier Gonzalez
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Pierre Giglio
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Vinay K Puduvalli
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| |
Collapse
|
72
|
Nadeem Abbas M, Kausar S, Wang F, Zhao Y, Cui H. Advances in Targeting the Epidermal Growth Factor Receptor Pathway by Synthetic Products and Its Regulation by Epigenetic Modulators As a Therapy for Glioblastoma. Cells 2019; 8:cells8040350. [PMID: 31013819 PMCID: PMC6523687 DOI: 10.3390/cells8040350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Glioma is the most common primary tumor of the nervous system, and approximately 50% of patients exhibit the most aggressive form of the cancer, glioblastoma. The biological function of epidermal growth factor receptor (EGFR) in tumorigenesis and progression has been established in various types of cancers, since it is overexpressed, mutated, or dysregulated. Its overexpression has been shown to be associated with enhanced metastatic potential in glioblastoma, with EGFR at the top of a downstream signaling cascade that controls basic functional properties of glioblastoma cells such as survival, cell proliferation, and migration. Thus, EGFR is considered as an important therapeutic target in glioblastoma. Many anti-EGFR therapies have been investigated both in vivo and in vitro, making their way to clinical studies. However, in clinical trials, the potential efficacy of anti-EGFR therapies is low, primarily because of chemoresistance. Currently, a range of epigenetic drugs including histone deacetylase (HDAC) inhibitors, DNA methylation and histone inhibitors, microRNA, and different types of EGFR inhibitor molecules are being actively investigated in glioblastoma patients as therapeutic strategies. Here, we describe recent knowledge on the signaling pathways mediated by EGFR/EGFR variant III (EGFRvIII) with regard to current therapeutic strategies to target EGFR/EGFRvIII amplified glioblastoma.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Yongju Zhao
- College of Animal and Technology, Southwest University, Chongqing 400715, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| |
Collapse
|
73
|
Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, Giannini C, Burns TC, Kizilbash SH, Laramy JK, Swanson KR, Kaufmann TJ, Brown PD, Agar NYR, Galanis E, Buckner JC, Elmquist WF. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol 2019; 20:184-191. [PMID: 29016900 DOI: 10.1093/neuonc/nox175] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The blood-brain barrier (BBB) excludes the vast majority of cancer therapeutics from normal brain. However, the importance of the BBB in limiting drug delivery and efficacy is controversial in high-grade brain tumors, such as glioblastoma (GBM). The accumulation of normally brain impenetrant radiographic contrast material in essentially all GBM has popularized a belief that the BBB is uniformly disrupted in all GBM patients so that consideration of drug distribution across the BBB is not relevant in designing therapies for GBM. However, contrary to this view, overwhelming clinical evidence demonstrates that there is also a clinically significant tumor burden with an intact BBB in all GBM, and there is little doubt that drugs with poor BBB permeability do not provide therapeutically effective drug exposures to this fraction of tumor cells. This review provides an overview of the clinical literature to support a central hypothesis: that all GBM patients have tumor regions with an intact BBB, and cure for GBM will only be possible if these regions of tumor are adequately treated.
Collapse
Affiliation(s)
- Jann N Sarkaria
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Leland S Hu
- Mayo Clinic, Scottsdale, Arizona (L.S.H., K.R.S.)
| | - Ian F Parney
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Deanna H Pafundi
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Debra H Brinkmann
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Nadia N Laack
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Caterina Giannini
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Terence C Burns
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Sani H Kizilbash
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Janice K Laramy
- University of Minnesota, Minneapolis, Minnesota (J.K.L., W.F.E.)
| | | | - Timothy J Kaufmann
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Paul D Brown
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | | | - Evanthia Galanis
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Jan C Buckner
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - William F Elmquist
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| |
Collapse
|
74
|
Chen AS, Read RD. Drosophila melanogaster as a Model System for Human Glioblastomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:207-224. [PMID: 31520357 DOI: 10.1007/978-3-030-23629-8_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Genomic amplifications, activating mutations, and overexpression of receptor tyrosine kinases (RTKs) such as EGFR, and genes in core RTK signaling transduction pathways such as PI3K are common in GBM. However, efforts to target these pathways have been largely unsuccessful in the clinic, and the median survival of GBM patients remains poor at 14-15 months. Therefore, to improve patient outcomes, there must be a concerted effort to elucidate the underlying biology involved in GBM tumorigenesis. Drosophila melanogaster has been a highly effective model for furthering our understanding of GBM tumorigenesis due to a number of experimental advantages it has over traditional mouse models. For example, there exists extensive cellular and genetic homology between humans and Drosophila, and 75% of genes associated with human disease have functional fly orthologs. To take advantage of these traits, we developed a Drosophila GBM model with constitutively active variants of EGFR and PI3K that effectively recapitulated key aspects of GBM disease. Researchers have utilized this model in forward genetic screens and have expanded on its functionality to make a number of important discoveries regarding requirements for key components in GBM tumorigenesis, including genes and pathways involved in extracellular matrix signaling, glycolytic metabolism, invasion/migration, stem cell fate and differentiation, and asymmetric cell division. Drosophila will continue to reveal novel biological pathways and mechanisms involved in gliomagenesis, and this knowledge may contribute to the development of effective treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Alexander S Chen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA. .,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA. .,Winship Cancer Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
75
|
Lassman AB, van den Bent MJ, Gan HK, Reardon DA, Kumthekar P, Butowski N, Lwin Z, Mikkelsen T, Nabors LB, Papadopoulos KP, Penas-Prado M, Simes J, Wheeler H, Walbert T, Scott AM, Gomez E, Lee HJ, Roberts-Rapp L, Xiong H, Ansell PJ, Bain E, Holen KD, Maag D, Merrell R. Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: results from an international phase I multicenter trial. Neuro Oncol 2019; 21:106-114. [PMID: 29982805 PMCID: PMC6303422 DOI: 10.1093/neuonc/noy091] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Patients with glioblastoma (GBM) have a dismal prognosis. Nearly all will relapse with no clear standard of care for recurrent disease (rGBM). Approximately 50% of patients have tumors harboring epidermal growth factor receptor (EGFR) amplification. The antibody-drug conjugate depatuxizumab mafodotin (depatux-m) binds cells with EGFR amplification, is internalized, and releases a microtubule toxin, killing the cell. Here we report efficacy, safety and pharmacokinetics (PK) of depatux-m + temozolomide (TMZ) in patients with EGFR-amplified rGBM. Methods M12-356 (NCT01800695) was an open-label study encompassing patients with newly diagnosed or rGBM across 3 treatment arms. Results are reported for adults with EGFR-amplified, measurable rGBM who received depatux-m (0.5-1.5 mg/kg) on days 1 and 15, and TMZ (150-200 mg/m2) on days 1-5 in a 28-day cycle. Patients were bevacizumab and nitrosourea naïve. Results There were 60 patients, median age 56 years (range, 20-79). Fifty-nine patients previously received TMZ. Common adverse events (AEs) were blurred vision (63%), fatigue (38%), and photophobia (35%). Grades 3/4 AEs were split between ocular and non-ocular AEs, occurring in 22% of patients each. Systemic PK exposure of depatux-m was dose proportional. The objective response rate was 14.3%, the 6-month progression-free survival rate was 25.2%, and the 6-month overall survival rate was 69.1%. Conclusions Depatux-m + TMZ displayed an AE profile similar to what was described previously. Antitumor activity in this TMZ-refractory population was encouraging. Continued study of depatux-m in patients with EGFR-amplified, newly diagnosed, or recurrent GBM is ongoing in 2 global, randomized trials (NCT02573324, NCT02343406).
Collapse
Affiliation(s)
- Andrew B Lassman
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Hui K Gan
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Zarnie Lwin
- Department of Medical Oncology, University of Queensland School of Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | | | - Louis B Nabors
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Marta Penas-Prado
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John Simes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Helen Wheeler
- Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | | | - Andrew M Scott
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
| | | | - Ho-Jin Lee
- AbbVie Inc., North Chicago, Illinois, USA
| | | | - Hao Xiong
- AbbVie Inc., North Chicago, Illinois, USA
| | | | - Earle Bain
- AbbVie Inc., North Chicago, Illinois, USA
| | | | - David Maag
- AbbVie Inc., North Chicago, Illinois, USA
| | - Ryan Merrell
- NorthShore University Health System, Evanston, Illinois, USA
| |
Collapse
|
76
|
Li L, Huang Y, Gao Y, Shi T, Xu Y, Li H, Hyytiäinen M, Keski-Oja J, Jiang Q, Hu Y, Du Z. EGF/EGFR upregulates and cooperates with Netrin-4 to protect glioblastoma cells from DNA damage-induced senescence. BMC Cancer 2018; 18:1215. [PMID: 30514230 PMCID: PMC6280426 DOI: 10.1186/s12885-018-5056-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most malignant central nervous system tumor. Alkylating agent, temozolomide (TMZ), is currently the first-line chemotherapeutic agent for GBM. However, the sensitivity of GBM cells to TMZ is affected by many factors. And, several clinic trials, including co-administration of TMZ with other drugs, have failed in successful treatment of GBM. We have previously reported that Netrin-4 (NTN4), a laminin-like axon guidance protein, plays a protective role in GBM cell senescence upon TMZ-triggered DNA damage. However, the master regulator of NTN4 needs further elucidation. Epidermal growth factor/Epidermal growth factor receptor (EGF/EGFR) can modulate the expression of various extracellular matrix related molecules, and prevent DNA damage in GBM cells. In this study, we investigated the relationship between EGF/EGFR signaling and NTN4, and explored their effect on therapeutic efficacy in GBM cells upon TMZ treatment. METHODS Co-expression analysis were performed by using the RNA sequencing data from NIH 934 cell lines and from single cell RNA sequencing data of GBM tumor. The co-expressing genes were used for GO enrichment and signaling pathway enrichment. mRNA expression of the target genes were quantified by qPCR, and cell senescence were investigated by Senescence-Associated Beta-Galactosidase Staining. Protein phosphorylation were observed and analyzed by immunoblotting. The RNA sequencing data and clinical information of TMZ treated patients were extracted from TCGA-glioblastoma project, and then used for Kaplan-Meier survival analysis. RESULTS Analysis of RNA sequencing data revealed a potential co-expression relationship between NTN4 and EGFR. GO enrichment of EGFR-correlated genes indicated that EGFR regulates GBM cells in a manner similar to that in central nervous system development and neural cell differentiation. Pathway analysis suggested that EGFR and its related genes contribute to cell adhesion, extracellular matrix (ECM) organization and caspase related signaling. We also show that EGF stimulates NTN4 expression in GBM cells and cooperates with NTN4 to attenuate GBM cell senescence induced by DNA damage, possibly via AKT and ERK. Clinical analysis showed that co-expression of EGFR and NTN4 significantly predicts poor survival in TMZ-treated GBM patients. CONCLUSIONS This study indicates that EGF/EGFR regulates and cooperates with NTN4 in DNA damage resistance in GBM. Therefore, our findings provide a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China
| | - Yulun Huang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuge Gao
- Department of Oncology, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China
| | - Tengfei Shi
- Department of Oncology, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China
| | - Yunyun Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Huini Li
- Departments of Virology and Pathology, Faculty of Medicine, the Haartman Institute, Translational Cancer Biology Research Program and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marko Hyytiäinen
- Departments of Virology and Pathology, Faculty of Medicine, the Haartman Institute, Translational Cancer Biology Research Program and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jorma Keski-Oja
- Departments of Virology and Pathology, Faculty of Medicine, the Haartman Institute, Translational Cancer Biology Research Program and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Qiuying Jiang
- Department of Oncology, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China.
| | - Yizhou Hu
- Departments of Virology and Pathology, Faculty of Medicine, the Haartman Institute, Translational Cancer Biology Research Program and Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
- Present address: Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Zhimin Du
- Department of pharmacy, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
77
|
Gao Y, Vallentgoed WR, French PJ. Finding the Right Way to Target EGFR in Glioblastomas; Lessons from Lung Adenocarcinomas. Cancers (Basel) 2018; 10:cancers10120489. [PMID: 30518123 PMCID: PMC6316468 DOI: 10.3390/cancers10120489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
The EGFR gene is one of the most frequently mutated and/or amplified gene both in lung adenocarcinomas (LUAD) and in glioblastomas (GBMs). Although both tumor types depend on the mutation for growth, clinical benefit of EGFR tyrosine kinase inhibitors (TKIs) has only been observed in LUAD patients and, thus-far, not in GBM patients. Also in LUAD patients however, responses are restricted to specific EGFR mutations only and these ‘TKI-sensitive’ mutations hardly occur in GBMs. This argues for mutation-specific (as opposed to tumor-type specific) responses to EGFR-TKIs. We here discuss potential reasons for the differences in mutation spectrum and highlight recent evidence for specific functions of different EGFR mutations. These mutation-specific effects likely underlie the differential treatment response between LUAD and GBMs and provide new insights into how to target EGFR in GBM patients.
Collapse
Affiliation(s)
- Ya Gao
- Department of Neurology, Erasmus MC Cancer Institute; 3015 CD Rotterdam, The Netherlands.
| | - Wies R Vallentgoed
- Department of Neurology, Erasmus MC Cancer Institute; 3015 CD Rotterdam, The Netherlands.
| | - Pim J French
- Department of Neurology, Erasmus MC Cancer Institute; 3015 CD Rotterdam, The Netherlands.
| |
Collapse
|
78
|
Balça-Silva J, Matias D, Carmo AD, Sarmento-Ribeiro AB, Lopes MC, Moura-Neto V. Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Semin Cancer Biol 2018; 58:130-141. [PMID: 30266571 DOI: 10.1016/j.semcancer.2018.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023]
Abstract
Glioblastoma (GB) is the more frequent and malignant brain tumour. In spite of all efforts, the median overall survival of GB patients remains approximately 15 months under therapy. The molecular biology underlying GB is complex, which highlight the need of specific treatment strategies. In fact, the deregulation of several molecular signalling pathways, the existence of the blood-brain barrier (BBB), that makes almost all the chemotherapeutic agents inaccessible to the tumour site, and the existence of a population of stem-like cells known to be responsible for tumour recurrence after therapy, can contribute to GB chemoresistance. In the present review, we summarize the reliable factors responsible for the failure of the most important chemotherapeutic agents in GB. Specifically, we describe the utmost important characteristics of the BBB, as well as the genetic, molecular and transcription factors alterations that lead to tumour malignancy, and ultimately their impact on stem-like cell plasticity modulation. Recently, nanocarriers have attracted increasing attention in brain- and tumour-targeted drug-delivery systems, owing to their potential ability to target cell surface specific molecules and to cross the BBB delivering the drug specifically to the tumour cells, improving efficacy and thus reducing non-specific toxicity. In this sense, we will lastly highlight the therapeutic challenges and improvements regarding GB treatment.
Collapse
Affiliation(s)
- Joana Balça-Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Diana Matias
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil.
| | - Anália do Carmo
- Clinical Pathology Department, Coimbra Hospital and Universitary Center (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Coimbra, Portugal.
| | - Ana Bela Sarmento-Ribeiro
- Faculty of Medicine, University of Coimbra (FMUC) and Coimbra Institute for Clinical and Biomedical Research (iCBR), group of Environment, Genetics and Oncobiology (CIMAGO), Coimbra, Portugal; Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.
| | - Maria Celeste Lopes
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra (FFUC); Coimbra, Portugal.
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
79
|
Brastianos PK, Ippen FM, Hafeez U, Gan HK. Emerging Gene Fusion Drivers in Primary and Metastatic Central Nervous System Malignancies: A Review of Available Evidence for Systemic Targeted Therapies. Oncologist 2018; 23:1063-1075. [PMID: 29703764 PMCID: PMC6192601 DOI: 10.1634/theoncologist.2017-0614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Primary and metastatic tumors of the central nervous system present a difficult clinical challenge, and they are a common cause of disease progression and death. For most patients, treatment consists primarily of surgery and/or radiotherapy. In recent years, systemic therapies have become available or are under investigation for patients whose tumors are driven by specific genetic alterations, and some of these targeted treatments have been associated with dramatic improvements in extracranial and intracranial disease control and survival. However, the success of other systemic therapies has been hindered by inadequate penetration of the drug into the brain parenchyma. Advances in molecular characterization of oncogenic drivers have led to the identification of new gene fusions driving oncogenesis in some of the most common sources of intracranial tumors. Systemic therapies targeting many of these alterations have been approved recently or are in clinical development, and the ability to penetrate the blood-brain barrier is now widely recognized as an important property of such drugs. We review this rapidly advancing field with a focus on recently uncovered gene fusions and brain-penetrant systemic therapies targeting them. IMPLICATIONS FOR PRACTICE Driver gene fusions involving receptor tyrosine kinases have been identified across a wide range of tumor types, including primary central nervous system (CNS) tumors and extracranial solid tumors that are associated with high rates of metastasis to the CNS (e.g., lung, breast, melanoma). This review discusses the systemic therapies that target emerging gene fusions, with a focus on brain-penetrant agents that will target the intracranial disease and, where present, also extracranial disease.
Collapse
Affiliation(s)
- Priscilla K Brastianos
- Department of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Franziska Maria Ippen
- Department of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Umbreen Hafeez
- Medical Oncology, Austin Hospital, Heidelberg, Melbourne, Australia
| | - Hui K Gan
- Medical Oncology, Austin Hospital, Heidelberg, Melbourne, Australia
- La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
80
|
Donoghue JF, Kerr LT, Alexander NW, Greenall SA, Longano AB, Gottardo NG, Wang R, Tabar V, Adams TE, Mischel PS, Johns TG. Activation of ERBB4 in Glioblastoma Can Contribute to Increased Tumorigenicity and Influence Therapeutic Response. Cancers (Basel) 2018; 10:cancers10080243. [PMID: 30044378 PMCID: PMC6116191 DOI: 10.3390/cancers10080243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma (GBM) is often resistant to conventional and targeted therapeutics. ErbB2 Receptor Tyrosine Kinase 4 (ERBB4) is expressed throughout normal brain and is an oncogene in several pediatric brain cancers; therefore, we investigated ERBB4 as a prognostic marker and therapeutic target in GBM. Using RT-qPCR, we quantified mRNA encoding total ERBB4 and known ERBB4 variants in GBM and non-neoplastic normal brain (NNB) samples. Using immunohistochemistry, we characterized the localization of total and phosphorylated ERBB4 (p-ERBB4) and EGFR protein in archived GBM samples and assessed their association with patient survival. Furthermore, we evaluated the effect of ERBB4 phosphorylation on angiogenesis and tumorigenicity in GBM xenograft models. Total ERBB4 mRNA was significantly lower in GBM than NNB samples, with the juxtamembrane JM-a and cytoplasmic CYT-2 variants predominating. ERBB4 protein was ubiquitously expressed in GBM but was not associated with patient survival. However, high p-ERBB4 in 11% of archived GBM samples, independent of p-EGFR, was associated with shorter patient survival (12.0 ± 3.2 months) than was no p-ERBB4 (22.5 ± 9.5 months). Increased ERBB4 activation was also associated with increased proliferation, angiogenesis, tumorigenicity and reduced sensitivity to anti-EGFR treatment in xenograft models. Despite low ERBB4 mRNA in GBM, the functional effects of increased ERBB4 activation identify ERBB4 as a potential prognostic and therapeutic target.
Collapse
Affiliation(s)
- Jacqueline F Donoghue
- Oncogenic Signalling Group, Hudson Institute of Medical Research, 21⁻37 Wright Street, Clayton, VIC 3168, Australia.
| | - Lauren T Kerr
- Oncogenic Signalling Group, Hudson Institute of Medical Research, 21⁻37 Wright Street, Clayton, VIC 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia.
| | - Naomi W Alexander
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6008, Australia.
| | - Sameer A Greenall
- Oncogenic Signalling Group, Hudson Institute of Medical Research, 21⁻37 Wright Street, Clayton, VIC 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia.
| | - Anthony B Longano
- Department of Anatomical Pathology, Monash Medical Centre, Clayton, VIC 3168, Australia.
| | - Nicholas G Gottardo
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6008, Australia.
| | - Rong Wang
- Department of Neurosurgery and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Viviane Tabar
- Department of Neurosurgery and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Timothy E Adams
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia.
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA.
| | - Terrance G Johns
- Oncogenic Signalling Group, Hudson Institute of Medical Research, 21⁻37 Wright Street, Clayton, VIC 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia.
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6008, Australia.
| |
Collapse
|
81
|
Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch A. The biology and mathematical modelling of glioma invasion: a review. J R Soc Interface 2018; 14:rsif.2017.0490. [PMID: 29118112 DOI: 10.1098/rsif.2017.0490] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion.
Collapse
Affiliation(s)
- J C L Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - K Talkenberger
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - M Seifert
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - B Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Consortium (DKTK), partner site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Hawkins-Daarud
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - K R Swanson
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - H Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - A Deutsch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| |
Collapse
|
82
|
Kuang JY, Guo YF, Chen Y, Wang J, Duan JJ, He XL, Li L, Yu SC, Bian XW. Connexin 43 C-terminus directly inhibits the hyperphosphorylation of Akt/ERK through protein-protein interactions in glioblastoma. Cancer Sci 2018; 109:2611-2622. [PMID: 29931708 PMCID: PMC6113504 DOI: 10.1111/cas.13707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Although the deregulation of epidermal growth factor receptor (EGFR) is one of the most common molecular mechanisms of glioblastoma (GBM) pathogenesis, the efficacy of anti-EGFR therapy is limited. Additionally, response to anti-EGFR therapy is not solely dependent on EGFR expression and is more promising in patients with reduced activity of EGFR downstream signaling pathways. Thus, there is considerable interest in identifying the compensatory regulatory factors of the EGFR signaling pathway to improve the efficacy of anti-EGFR therapies for GBM. In this study, we confirmed the low efficacy of EGFR inhibitors in GBM patients by meta-analysis. We then identified a negative correlation between connexin 43 (Cx43) expression and Akt/ERK activation, which was caused by the direct interactions between Akt/ERK and Cx43. By comparing the interactions between Akt/ERK and Cx43 using a series of truncated and mutated Cx43 variants, we revealed that the residues T286/A305/Q308/Y313 and S272/S273 at the carboxy terminus of Cx43 are critical for its binding with Akt and ERK, respectively. In addition, Kaplan-Meier survival analysis using data from The Cancer Genome Atlas datasets indicated that the expression of Cx43 significantly improved the prognosis of GBM patients who express EGFR. Together, our results suggested that Cx43 acts as an inhibitory regulator of the activation of growth factor receptor downstream signaling pathways, indicating the potential of Cx43 as a marker for predicting the efficacy of EGFR inhibitor treatments for GBM. Targeting the interaction between the carboxy terminus of Cx43 and Akt/ERK could be an effective therapeutic strategy against GBM.
Collapse
Affiliation(s)
- Jing-Ya Kuang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Yu-Feng Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Ying Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Jun Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Xiao-Li He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Lin Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| |
Collapse
|
83
|
Zhou K, Yao H, Zhang X, Liu J, Qi Z, Xie X, Xu X, Zhou Y, Yu Z, Wang Z, Che Y, Huang Y. Next generation sequencing and molecular imaging identify EGFR mutation and amplification in a glioblastoma multiforme patient treated with an EGFR inhibitor: a case report. Oncotarget 2018; 8:50305-50313. [PMID: 28611289 PMCID: PMC5564850 DOI: 10.18632/oncotarget.18148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/14/2017] [Indexed: 01/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations and amplifications are frequently reported in glioblastoma multiforme (GBM) patients. In this case report, we utilize next-generation sequencing (NGS) and EGFR molecular imaging to investigate intratumoral heterogeneity in a male patient presenting with GBM. Further, we describe the patient's clinical course as well as outcomes of targeted EGFR therapy with erlotinib, an EGFR tyrosine kinase inhibitor (TKI). NGS demonstrated the presence of an EGFR mutation and amplification in our patient. Molecular imaging revealed a heterogeneous expression pattern of EGFR in the frontal and temporal lobes. This patient briefly responded to erlotinib therapy. However, the patient relapsed and died from progressive neurological deterioration. Partial response and acquired secondary resistance may be attributed to intratumoral heterogeneity. Combination of NGS and EGFR molecular imaging may be helpful in understanding intratumoral molecular heterogeneity and may aid in developing individualized GBM treatments, thereby improving outcomes.
Collapse
Affiliation(s)
- Ke Zhou
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurosurgery, The Jingjiang People's Hospital, Taizhou, China
| | - Hui Yao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuewen Zhang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiangang Liu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyu Qi
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueshun Xie
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoting Xu
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Youxin Zhou
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengquan Yu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanjun Che
- Department of Neurosurgery, The Jingjiang People's Hospital, Taizhou, China
| | - Yulun Huang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
84
|
Mesbahi Y, Zekri A, Ahmadian S, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Targeting of EGFR increase anti-cancer effects of arsenic trioxide: Promising treatment for glioblastoma multiform. Eur J Pharmacol 2018; 820:274-285. [DOI: 10.1016/j.ejphar.2017.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
85
|
The Influence of EGFR Inactivation on the Radiation Response in High Grade Glioma. Int J Mol Sci 2018; 19:ijms19010229. [PMID: 29329222 PMCID: PMC5796178 DOI: 10.3390/ijms19010229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/16/2022] Open
Abstract
Lack of effectiveness of radiation therapy may arise from different factors such as radiation induced receptor tyrosine kinase activation and cell repopulation; cell capability to repair radiation induced DNA damage; high grade glioma (HGG) tumous heterogeneity, etc. In this study, we analyzed the potential of targeting epidermal growth factor receptor (EGFR) in inducing radiosensitivity in two human HGG cell lines (11 and 15) that displayed similar growth patterns and expressed the receptor protein at the cell surface. We found that 15 HGG cells that express more EGFR at the cell surface were more sensitive to AG556 (an EGFR inhibitor), compared to 11 HGG cells. Although in line 15 the effect of the inhibitor was greater than in line 11, it should be noted that the efficacy of this small-molecule EGFR inhibitor as monotherapy in both cell lines has been modest, at best. Our data showed a slight difference in the response to radiation of the HGG cell lines, three days after the treatment, with line 15 responding better than line 11. However, both cell lines responded to ionizing radiation in the same way, seven days after irradiation. EGFR inhibition induced radiosensitivity in 11 HGG cells, while, in 15 HGG cells, the effect of AG556 treatment on radiation response was almost nonexistent.
Collapse
|
86
|
Xiu J, Piccioni D, Juarez T, Pingle SC, Hu J, Rudnick J, Fink K, Spetzler DB, Maney T, Ghazalpour A, Bender R, Gatalica Z, Reddy S, Sanai N, Idbaih A, Glantz M, Kesari S. Multi-platform molecular profiling of a large cohort of glioblastomas reveals potential therapeutic strategies. Oncotarget 2017; 7:21556-69. [PMID: 26933808 PMCID: PMC5008305 DOI: 10.18632/oncotarget.7722] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/28/2016] [Indexed: 01/22/2023] Open
Abstract
Glioblastomas (GBM) are the most aggressive and prevalent form of gliomas with abysmal prognosis and limited treatment options. We analyzed clinically relevant molecular aberrations suggestive of response to therapies in 1035 GBM tumors. Our analysis revealed mutations in 39 genes of 48 tested. IHC revealed expression of PD-L1 in 19% and PD-1 in 46%. MGMT-methylation was seen in 43%, EGFRvIII in 19% and 1p19q co-deletion in 2%. TP53 mutation was associated with concurrent mutations, while IDH1 mutation was associated with MGMT-methylation and TP53 mutation and was mutually exclusive of EGFRvIII mutation. Distinct biomarker profiles were seen in GBM compared with WHO grade III astrocytoma, suggesting different biology and potentially different treatment approaches. Analysis of 17 metachronous paired tumors showed frequent biomarker changes, including MGMT-methylation and EGFR aberrations, indicating the need for a re-biopsy for tumor profiling to direct subsequent therapy. MGMT-methylation, PR and TOPO1 appeared as significant prognostic markers in sub-cohorts of GBM defined by age. The current study represents the largest biomarker study on clinical GBM tumors using multiple technologies to detect gene mutation, amplification, protein expression and promoter methylation. These data will inform planning for future personalized biomarker-based clinical trials and identifying effective treatments based on tumor biomarkers.
Collapse
Affiliation(s)
| | - David Piccioni
- Neuro-Oncology Program, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Tiffany Juarez
- Neuro-Oncology Program, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Sandeep C Pingle
- Neuro-Oncology Program, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Jethro Hu
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Karen Fink
- Baylor University Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | - Nader Sanai
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ahmed Idbaih
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMRS 975, Institut du Cerveau et de la Moelle, Paris, France.,Inserm U 975, Paris, France.,CNRS, UMR 7225, Paris, France
| | | | - Santosh Kesari
- Neuro-Oncology Program, Moores Cancer Center, UC San Diego, La Jolla, CA, USA.,Translational Neuro-Oncology Laboratories, Department of Neurosciences UC San Diego, La Jolla, CA, USA.,Department of Translational Neuro-Oncology and Neurotherapeutics, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| |
Collapse
|
87
|
van den Bent M, Gan HK, Lassman AB, Kumthekar P, Merrell R, Butowski N, Lwin Z, Mikkelsen T, Nabors LB, Papadopoulos KP, Penas-Prado M, Simes J, Wheeler H, Walbert T, Scott AM, Gomez E, Lee HJ, Roberts-Rapp L, Xiong H, Bain E, Ansell PJ, Holen KD, Maag D, Reardon DA. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multi-center, international study. Cancer Chemother Pharmacol 2017; 80:1209-1217. [PMID: 29075855 PMCID: PMC5686264 DOI: 10.1007/s00280-017-3451-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/07/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE Patients with recurrent glioblastoma (rGBM) have a poor prognosis. Epidermal growth factor receptor (EGFR) gene amplification is present in ~ 50% of glioblastomas (GBMs). Depatuxizumab mafodotin (depatux-m), formerly ABT-414, is an antibody-drug conjugate that preferentially binds cells with EGFR amplification, is internalized and releases a potent antimicrotubule agent, monomethyl auristatin F (MMAF). Here we report the safety, pharmacokinetics, and efficacy of depatux-m monotherapy at the recommended Phase 2 dose (RPTD) in patients with EGFR-amplified, rGBM. METHODS M12-356 (NCT01800695) is an open-label study with three escalation and expansion cohorts. Sixty-six patients with EGFR-amplified, rGBM were treated with depatux-m monotherapy at 1.25 mg/kg intravenously every 2 weeks. Adults with measurable rGBM, who were bevacizumab-naïve, with EGFR amplification were eligible. RESULTS Among 66 patients, median age was 58 years (range 35-80). All patients were previously treated with radiotherapy/temozolomide. The most common adverse events (AEs) were eye related (91%), including blurred vision (65%), dry eye (29%), keratitis, and photophobia (27% each). Grade 3/4 AEs occurred in 42% of all patients, and ocular Grade 3/4 AEs occurred in 33% of patients overall. One patient (2%) had a Grade 4 ocular AE. Ocular AEs were manageable and usually resolved once treatment with depatux-m ceased. The objective response rate was 6.8%, the 6-month progression-free survival rate was 28.8%, and the 6-month overall survival rate was 72.5%. CONCLUSION Depatux-m monotherapy displayed frequent but mostly Grade 1/2 ocular toxicities. A PFS6 of 28.8% was observed in this rGBM population, warranting further study.
Collapse
Affiliation(s)
- Martin van den Bent
- Brain Tumor Center, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA, Rotterdam, the Netherlands.
| | - Hui K Gan
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew B Lassman
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | | | - Ryan Merrell
- NorthShore University Health System, Evanston, IL, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Zarnie Lwin
- Department of Medical Oncology, School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | - Louis B Nabors
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - John Simes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Helen Wheeler
- Medical Oncology, Royal North Shore Hospital, Sydney, NSW, Australia
| | | | - Andrew M Scott
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther 2017; 2:17040. [PMID: 29263927 PMCID: PMC5661637 DOI: 10.1038/sigtrans.2017.40] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a debilitating disease that is associated with poor prognosis, short median patient survival and a very limited response to therapies. GBM has a very complex pathogenesis that involves mutations and alterations of several key cellular pathways that are involved in cell proliferation, survival, migration and angiogenesis. Therefore, efforts that are directed toward better understanding of GBM pathogenesis are essential to the development of efficient therapies that provide hope and extent patient survival. In this review, we outline the alterations commonly associated with GBM pathogenesis and summarize therapeutic strategies that are aimed at targeting aberrant cellular pathways in GBM.
Collapse
|
89
|
Gan HK, van den Bent M, Lassman AB, Reardon DA, Scott AM. Antibody-drug conjugates in glioblastoma therapy: the right drugs to the right cells. Nat Rev Clin Oncol 2017; 14:695-707. [PMID: 28675164 DOI: 10.1038/nrclinonc.2017.95] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastomas are high-grade brain tumours with a poor prognosis and, currently, few available therapeutic options. This lack of effective treatments has been linked to diverse factors, including target selection, tumour heterogeneity and poor penetrance of therapeutic agents through the blood-brain barrier and into tumours. Therapies using monoclonal antibodies, alone or linked to cytotoxic payloads, have proved beneficial for patients with different solid tumours; these approaches are currently being explored in patients with glioblastoma. In this Review, we summarise clinical data regarding antibody-drug conjugates (ADCs) against a variety of targets in glioblastoma, and compare the efficacy and toxicity of targeting EGFR with ADCs versus naked antibodies in order to illustrate key aspects of the use of ADCs in this malignancy. Finally, we discuss the complex challenges related to the biology and mutational changes of glioblastoma that can affect the use of ADC-based therapies in patients with this disease, and highlight potential strategies to improve efficacy.
Collapse
Affiliation(s)
- Hui K Gan
- Austin Health and Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Victoria 3084, Australia.,La Trobe University School of Cancer Medicine, 145 Studley Road, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Martin van den Bent
- Brain Tumour Centre, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, Netherlands
| | - Andrew B Lassman
- Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 161 Fort Washington Avenue, New York, New York 10032, USA
| | - David A Reardon
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana 2134, Boston, Massachusetts 02215, USA
| | - Andrew M Scott
- Austin Health and Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Victoria 3084, Australia.,La Trobe University School of Cancer Medicine, 145 Studley Road, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
90
|
Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol 2017; 28:1457-1472. [PMID: 28863449 PMCID: PMC5834086 DOI: 10.1093/annonc/mdx106] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma (WHO grade IV astrocytoma) is the most frequent primary brain tumor in adults, representing a highly heterogeneous group of neoplasms that are among the most aggressive and challenging cancers to treat. An improved understanding of the molecular pathways that drive malignancy in glioblastoma has led to the development of various biomarkers and the evaluation of several agents specifically targeting tumor cells and the tumor microenvironment. A number of rational approaches are being investigated, including therapies targeting tumor growth factor receptors and downstream pathways, cell cycle and epigenetic regulation, angiogenesis and antitumor immune response. Moreover, recent identification and validation of prognostic and predictive biomarkers have allowed implementation of modern trial designs based on matching molecular features of tumors to targeted therapeutics. However, while occasional targeted therapy responses have been documented in patients, to date no targeted therapy has been formally validated as effective in clinical trials. The lack of knowledge about relevant molecular drivers in vivo combined with a lack of highly bioactive and brain penetrant-targeted therapies remain significant challenges. In this article, we review the most promising biological insights that have opened the way for the development of targeted therapies in glioblastoma, and examine recent data from clinical trials evaluating targeted therapies and immunotherapies. We discuss challenges and opportunities for the development of these agents in glioblastoma.
Collapse
Affiliation(s)
- M. Touat
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris
- Gustave Roussy, Université Paris-Saclay, Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Villejuif
| | - A. Idbaih
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - M. Sanson
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - K. L. Ligon
- Department of Oncologic Pathology, Dana-Farber/Brigham and Women's Cancer Center, Boston, USA
| |
Collapse
|
91
|
Report of safety of pulse dosing of lapatinib with temozolomide and radiation therapy for newly-diagnosed glioblastoma in a pilot phase II study. J Neurooncol 2017; 134:357-362. [PMID: 28669012 DOI: 10.1007/s11060-017-2533-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
Abstract
Epidermal growth factor receptor (EGFR) mutations are commonly observed in Glioblastoma (GBM) and have long posed as a target for new therapies. Trials involving erlotinib have shown mixed results, likely owing to a mechanism of the mutation that may instead favor other EGFR inhibitors, such as lapatinib. We aimed to determine whether or not pulse high-dose lapatinib was a safe and tolerable regimen in addition to standard therapy. We recruited adult patients with newly-diagnosed GBM who had Karnofsky Performance Status ≥60, normal baseline hematological, hepatic, and renal function tests, and no prior history of radiation or treatment with EGFR inhibitor. Lapatinib was administered at 2500 mg twice daily for two consecutive days per week on a weekly basis throughout concomitant and adjuvant standard therapy. The primary endpoints were tolerability and safety. 12 patients were enrolled in this study over 2 years. Of the non-hematological adverse events, there were 2 grade 3 events, fatigue and post-radiation cystic brain necrosis. The most common adverse events in general were fatigue, rashes, and diarrhea. Of the hematological adverse events, there were 13 grade 3 events, all of which were due to lymphopenia and affected 6 of 12 patients. Pulse high-dose lapatinib in addition to standard therapy for newly-diagnosed GBM is a tolerable and safe regimen, but higher rates of lymphopenia should be noted. However, further investigations will be required to evaluate the efficacy of this combination for the treatments of GBM. Trial registration ClinicalTrials.gov Identifier: NCT01591577.
Collapse
|
92
|
Xu H, Zong H, Ma C, Ming X, Shang M, Li K, He X, Du H, Cao L. Epidermal growth factor receptor in glioblastoma. Oncol Lett 2017; 14:512-516. [PMID: 28693199 PMCID: PMC5494611 DOI: 10.3892/ol.2017.6221] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 03/21/2017] [Indexed: 12/11/2022] Open
Abstract
Mutations in the epidermal growth factor receptor (EGFR) are commonly occurring in glioblastoma. Enhanced activation of EGFR can occur through a variety of different mechanisms, both ligand-dependent and ligand-independent. Numerous evidence has suggested that EGFR is overexpressed in most of primary glioblastomas and some of the secondary glioblastomas and is characteristic of more aggressive glioblastoma phenotypes. Additionally, recent studies have revealed that wild-type EGFR, and to a greater extent hyper-activating EGFR mutants induced a substantial upregulation of Fyn expression. Furthermore, it was determined that Fyn expression is upregulated across a panel of patient-derived glioblastoma stem cells (GSCs) relative to normal progenitor controls. Moreover, researchers are continuously involved in elucidation of novel mechanism linking EGFR EGFR-expressing glioblastoma. The present review highlights current aspects of EGFR receptor in glioblastoma and concludes that the concept of EGFR signaling and related receptors and associated factors is evolving, however, it needs detailed evaluation for future clinical applications in cancer patients.
Collapse
Affiliation(s)
- Hongsheng Xu
- Department of Neurosurgery, Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Hailiang Zong
- Department of Neurosurgery, Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Chong Ma
- Department of Neurosurgery, Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Xing Ming
- Department of Neurosurgery, Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Ming Shang
- Department of Neurosurgery, Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Kai Li
- Department of Neurosurgery, Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Xiaoguang He
- Department of Neurosurgery, Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Hai Du
- Department of Neurosurgery, Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Lei Cao
- Department of Neurosurgery, Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
93
|
Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma Subclassifications and Their Clinical Significance. Neurotherapeutics 2017; 14:284-297. [PMID: 28281173 PMCID: PMC5398991 DOI: 10.1007/s13311-017-0519-x] [Citation(s) in RCA: 508] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The impact of targeted therapies in glioma has been modest. All the therapies that have demonstrated a significant survival benefit for gliomas in Phase III trials, including radiation, chemotherapy (temozolomide and PCV [procarbazine, lomustine, vincristine]), and tumor-treating fields, are based on nonspecific targeting of proliferating cells. Recent advances in the molecular understanding of gliomas suggest some potential reasons for the failure of more targeted therapies in gliomas. Specifically, the histologic-based glioma classification is composed of multiple different molecular subtypes with distinct biology, natural history, and prognosis. As a result of these insights, the diagnosis and classification of gliomas have recently been updated by the World Health Organization. However, these changes and other novel observations regarding glioma biomarkers and subtypes highlight several clinical challenges. First, the field is faced with the difficulty of reinterpreting the results of prior studies and retrospective data using the new classifications to clarify prognostic assessments and treatment recommendations for patients. Second, the new classifications and insights require rethinking the design and stratification of future clinical trials. Last, these observations provide the essential framework for the development and testing of new specific targeted therapies for particular glioma subtypes. This review aims to summarize the current literature regarding glioma subclassifications and their clinical relevance in this evolving field.
Collapse
Affiliation(s)
- Ricky Chen
- Department of Neurology, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Matthew Smith-Cohn
- Department of Neurology, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Adam L Cohen
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Howard Colman
- Department of Neurosurgery, Huntsman Cancer Institute and Clinical Neuroscience Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
94
|
Blockade of vascular endothelial growth factor receptors by tivozanib has potential anti-tumour effects on human glioblastoma cells. Sci Rep 2017; 7:44075. [PMID: 28287096 PMCID: PMC5347040 DOI: 10.1038/srep44075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/02/2017] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma (GBM) remains one of the most fatal human malignancies due to its high angiogenic and infiltrative capacities. Even with optimal therapy including surgery, radiotherapy and temozolomide, it is essentially incurable. GBM is among the most neovascularised neoplasms and its malignant progression associates with striking neovascularisation, evidenced by vasoproliferation and endothelial cell hyperplasia. Targeting the pro-angiogenic pathways is therefore a promising anti-glioma strategy. Here we show that tivozanib, a pan-inhibitor of vascular endothelial growth factor (VEGF) receptors, inhibited proliferation of GBM cells through a G2/M cell cycle arrest via inhibition of polo-like kinase 1 (PLK1) signalling pathway and down-modulation of Aurora kinases A and B, cyclin B1 and CDC25C. Moreover, tivozanib decreased adhesive potential of these cells through reduction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Tivozanib diminished GBM cell invasion through impairing the proteolytic cascade of cathepsin B/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase-2 (MMP-2). Combination of tivozanib with EGFR small molecule inhibitor gefitinib synergistically increased sensitivity to gefitinib. Altogether, these findings suggest that VEGFR blockade by tivozanib has potential anti-glioma effects in vitro. Further in vivo studies are warranted to explore the anti-tumour activity of tivozanib in combinatorial approaches in GBM.
Collapse
|
95
|
Verduin M, Zindler JD, Martinussen HMA, Jansen RLH, Croes S, Hendriks LEL, Eekers DBP, Hoeben A. Use of Systemic Therapy Concurrent With Cranial Radiotherapy for Cerebral Metastases of Solid Tumors. Oncologist 2017; 22:222-235. [PMID: 28167569 PMCID: PMC5330699 DOI: 10.1634/theoncologist.2016-0117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/02/2016] [Indexed: 12/25/2022] Open
Abstract
The incidence of brain metastases of solid tumors is increasing. Local treatment of brain metastases is generally straightforward: cranial radiotherapy (e.g., whole-brain radiotherapy or stereotactic radiosurgery) or resection when feasible. However, treatment becomes more complex when brain metastases occur while other metastases, outside of the central nervous system, are being controlled with systemic therapy (chemotherapeutics, molecular targeted agents, or monoclonal antibodies). It is known that some anticancer agents can increase the risk for neurotoxicity when used concurrently with radiotherapy. Increased neurotoxicity decreases quality of life, which is undesirable in this predominantly palliative patient group. Therefore, it is of utmost importance to identify the compounds that should be temporarily discontinued when cranial radiotherapy is needed.This review summarizes the (neuro)toxicity data for combining systemic therapy (chemotherapeutics, molecular targeted agents, or monoclonal antibodies) with concurrent radiotherapy of brain metastases. Because only a limited amount of high-level data has been published, a risk assessment of each agent was done, taking into account the characteristics of each compound (e.g., lipophilicity) and the microenvironment of brain metastasis. The available trials suggest that only gemcitabine, erlotinib, and vemurafenib induce significant neurotoxicity when used concurrently with cranial radiotherapy. We conclude that for most systemic therapies, the currently available literature does not show an increase in neurotoxicity when these therapies are used concurrently with cranial radiotherapy. However, further studies are needed to confirm safety because there is no high-level evidence to permit definitive conclusions. The Oncologist 2017;22:222-235Implications for Practice: The treatment of symptomatic brain metastases diagnosed while patients are receiving systemic therapy continues to pose a dilemma to clinicians. Will concurrent treatment with cranial radiotherapy and systemic therapy (chemotherapeutics, molecular targeted agents, and monoclonal antibodies), used to control intra- and extracranial tumor load, increase the risk for neurotoxicity? This review addresses this clinically relevant question and evaluates the toxicity of combining systemic therapies with cranial radiotherapy, based on currently available literature, in order to determine the need to and interval to interrupt systemic treatment.
Collapse
Affiliation(s)
- Maikel Verduin
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jaap D Zindler
- Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Hanneke M A Martinussen
- Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rob L H Jansen
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sander Croes
- Department of Clinical Pharmacy & Toxicology, CAPHRI-School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Danielle B P Eekers
- Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
96
|
Abstract
Primary brain tumors, particularly glioblastoma, are associated with significant morbidity and are often recalcitrant to standard therapies. In recent years, brain tumors have been the focus of large-scale genomic sequencing efforts, providing unprecedented insight into the genomic aberrations and cellular signaling mechanisms that drive these cancers. Discoveries from these efforts have translated into novel diagnostic algorithms, biomarkers, and therapeutic strategies in Neuro-Oncology. However, the cellular mechanisms that drive brain tumors are heterogeneous and complex: applying this new knowledge to improve patient outcomes remains a challenge. Efforts to characterize and target these molecular vulnerabilities are evolving.
Collapse
Affiliation(s)
- Rebecca A Harrison
- Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
97
|
Abstract
The receptor for epidermal growth factor (EGFR) is a prime target for cancer therapy across a broad variety of tumor types. As it is a tyrosine kinase, small molecule tyrosine kinase inhibitors (TKIs) targeting signal transduction, as well as monoclonal antibodies against the EGFR, have been investigated as anti-tumor agents. However, despite the long-known enigmatic EGFR gene amplification and protein overexpression in glioblastoma, the most aggressive intrinsic human brain tumor, the potential of EGFR as a target for this tumor type has been unfulfilled. This review analyses the attempts to use TKIs and monoclonal antibodies against glioblastoma, with special consideration given to immunological approaches, the use of EGFR as a docking molecule for conjugates with toxins, T-cells, oncolytic viruses, exosomes and nanoparticles. Drug delivery issues associated with therapies for intracerebral diseases, with specific emphasis on convection enhanced delivery, are also discussed.
Collapse
Affiliation(s)
- Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Cecile L. Maire
- 0000 0001 2180 3484grid.13648.38Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Katrin Lamszus
- 0000 0001 2180 3484grid.13648.38Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
98
|
Boccellino M, Quagliuolo L, Alaia C, Grimaldi A, Addeo R, Nicoletti GF, Kast RE, Caraglia M. The strange connection between epidermal growth factor receptor tyrosine kinase inhibitors and dapsone: from rash mitigation to the increase in anti-tumor activity. Curr Med Res Opin 2016; 32:1839-1848. [PMID: 27398628 DOI: 10.1080/03007995.2016.1211522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The presence of an aberrantly activated epidermal growth factor receptor (EGFR) in many epithelial tumors, due to its overexpression, activating mutations, gene amplification and/or overexpression of receptor ligands, represent the fundamental basis underlying the use of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Drugs inhibiting the EGFR have different mechanisms of action; while erlotinib and gefitinib inhibit the intracellular tyrosine kinase, monoclonal antibodies like cetuximab and panitumumab bind the extracellular domain of the EGFR both activating immunomediated anti-cancer effect and inhibiting receptor function. On the other hand, interleukin-8 has tumor promoting as well as neo-angiogenesis enhancing effects and several attempts have been made to inhibit its activity. One of these is based on the use of the old sulfone antibiotic dapsone that has demonstrated several interleukin-8 system inhibiting actions. Erlotinib typically gives a rash that has recently been proven to come out via up-regulated keratinocyte interleukin-8 synthesis with histological features reminiscent of typical neutrophilic dermatoses. In this review, we report experimental evidence that shows the use of dapsone to improve quality of life in erlotinib-treated patients by ameliorating rash as well as short-circuiting a growth-enhancing aspect of erlotinib based on increased interleukin-8 secretion.
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Lucio Quagliuolo
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Concetta Alaia
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Anna Grimaldi
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Raffaele Addeo
- b Oncology DH ASL Napoli 3 Nord, Frattamaggiore Hospital , Frattamaggiore , Naples , Italy
| | | | | | - Michele Caraglia
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| |
Collapse
|
99
|
Petit C, Samson A, Morita S, Ursino M, Guedj J, Jullien V, Comets E, Zohar S. Unified approach for extrapolation and bridging of adult information in early-phase dose-finding paediatric studies. Stat Methods Med Res 2016; 27:1860-1877. [PMID: 27705884 PMCID: PMC5958415 DOI: 10.1177/0962280216671348] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The number of trials conducted and the number of patients per trial are typically small in paediatric clinical studies. This is due to ethical constraints and the complexity of the medical process for treating children. While incorporating prior knowledge from adults may be extremely valuable, this must be done carefully. In this paper, we propose a unified method for designing and analysing dose-finding trials in paediatrics, while bridging information from adults. The dose-range is calculated under three extrapolation options, linear, allometry and maturation adjustment, using adult pharmacokinetic data. To do this, it is assumed that target exposures are the same in both populations. The working model and prior distribution parameters of the dose–toxicity and dose–efficacy relationships are obtained using early-phase adult toxicity and efficacy data at several dose levels. Priors are integrated into the dose-finding process through Bayesian model selection or adaptive priors. This calibrates the model to adjust for misspecification, if the adult and pediatric data are very different. We performed a simulation study which indicates that incorporating prior adult information in this way may improve dose selection in children.
Collapse
Affiliation(s)
- Caroline Petit
- 1 INSERM, UMRS 1138, CRC, Team 22, University of Paris 5, University of Paris 6, Paris, France
| | - Adeline Samson
- 2 LJK, UMR CNRS 5224, University of Grenoble Alpes, Grenoble, France
| | - Satoshi Morita
- 3 Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Moreno Ursino
- 1 INSERM, UMRS 1138, CRC, Team 22, University of Paris 5, University of Paris 6, Paris, France
| | - Jérémie Guedj
- 4 INSERM, IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Vincent Jullien
- 5 Pharmacology Department, Hôpital Européen Georges Pompidou, Paris Descartes University, INSERM U1129, Paris, France
| | - Emmanuelle Comets
- 4 INSERM, IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,6 INSERM CIC 1414, Université de Rennes 1, Rennes
| | - Sarah Zohar
- 1 INSERM, UMRS 1138, CRC, Team 22, University of Paris 5, University of Paris 6, Paris, France
| |
Collapse
|
100
|
Raizer JJ, Giglio P, Hu J, Groves M, Merrell R, Conrad C, Phuphanich S, Puduvalli VK, Loghin M, Paleologos N, Yuan Y, Liu D, Rademaker A, Yung WK, Vaillant B, Rudnick J, Chamberlain M, Vick N, Grimm S, Tremont-Lukats IW, De Groot J, Aldape K, Gilbert MR. A phase II study of bevacizumab and erlotinib after radiation and temozolomide in MGMT unmethylated GBM patients. J Neurooncol 2016; 126:185-192. [PMID: 26476729 DOI: 10.1007/s11060-015-1958-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022]
Abstract
Survival for glioblastoma (GBM) patients with an unmethyated MGMT promoter in their tumor is generally worse than methylated MGMT tumors, as temozolomide (TMZ) response is limited. How to better treat patients with unmethylated MGMT is unknown. We performed a trial combining erlotinib and bevacizumab in unmethylated GBM patients after completion of radiation (RT) and TMZ. GBM patients with an unmethylated MGMT promoter were trial eligible. Patient received standard RT (60 Gy) and TMZ (75 mg/m2 × 6 weeks) after surgical resection of their tumor. After completion of RT they started erlotinib 150 mg daily and bevacizumab 10 mg/kg every 2 weeks until progression. Imaging evaluations occurred every 8 weeks. The primary endpoint was overall survival. Of the 48 unmethylated patients enrolled, 46 were evaluable (29 men and 17 women); median age was 55.5 years (29-75) and median KPS was 90 (70-100). All patients completed RT with TMZ. The median number of cycles (1 cycle was 4 weeks) was 8 (2-47). Forty-one patients either progressed or died with a median progression free survival of 9.2 months. At a follow up of 33 months the median overall survival was 13.2 months. There were no unexpected toxicities and most observed toxicities were categorized as CTC grade 1 or 2. The combination of erlotinib and bevacizumab is tolerable but did not meet our primary endpoint of increasing survival. Importantly, more trials are needed to find better therapies for GBM patients with an unmethylated MGMT promoter.
Collapse
Affiliation(s)
- J J Raizer
- Department of Neurology, Northwestern University, 710 North Lake Shore Drive, Abbott Hall, Room 1123, Chicago, IL, 60611, USA.
| | - P Giglio
- James Cancer Hospital, Ohio State University, Columbus, OH, USA
| | - J Hu
- Departments of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | - M Groves
- Austin Brain Tumor Center, Austin, USA
| | - R Merrell
- Department of Neurology, NorthShore University Health System, Evanston, USA
| | - C Conrad
- Austin Brain Tumor Center, Austin, USA
| | - S Phuphanich
- Departments of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | - V K Puduvalli
- James Cancer Hospital, Ohio State University, Columbus, OH, USA
| | - M Loghin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - N Paleologos
- Department of Neurology, Rush University Medical Center, Chicago, USA
| | - Y Yuan
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, USA
| | - D Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, USA
| | - A Rademaker
- Department of Preventive Medicine, Northwestern University, Chicago, USA
| | - W K Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - B Vaillant
- Dell Medical School, The University of Texas, Austin, USA
| | - J Rudnick
- Departments of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | - M Chamberlain
- Department of Neurology, University of Washington, Seattle, USA
| | - N Vick
- Department of Neurology, NorthShore University Health System, Evanston, USA
| | - S Grimm
- Department of Neurology, Northwestern University, 710 North Lake Shore Drive, Abbott Hall, Room 1123, Chicago, IL, 60611, USA
| | - I W Tremont-Lukats
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - J De Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - K Aldape
- Department of Pathology, Princess Margaret Cancer Centre, Toronto, Canada
| | | |
Collapse
|