51
|
Wu Q, Wu W, Fu B, Shi L, Wang X, Kuca K. JNK signaling in cancer cell survival. Med Res Rev 2019; 39:2082-2104. [PMID: 30912203 DOI: 10.1002/med.21574] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/01/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
c-Jun N-terminal kinase (JNK) is involved in cancer cell apoptosis; however, emerging evidence indicates that this Janus signaling promotes cancer cell survival. JNK acts synergistically with NF-κB, JAK/STAT, and other signaling molecules to exert a survival function. JNK positively regulates autophagy to counteract apoptosis, and its effect on autophagy is related to the development of chemotherapeutic resistance. The prosurvival effect of JNK may involve an immune evasion mechanism mediated by transforming growth factor-β, toll-like receptors, interferon-γ, and autophagy, as well as compensatory JNK-dependent cell proliferation. The present review focuses on recent advances in understanding the prosurvival function of JNK and its role in tumor development and chemoresistance, including a comprehensive analysis of the molecular mechanisms underlying JNK-mediated cancer cell survival. There is a focus on the specific "Yin and Yang" functions of JNK1 and JNK2 in the regulation of cancer cell survival. We highlight recent advances in our knowledge of the roles of JNK in cancer cell survival, which may provide insight into the distinct functions of JNK in cancer and its potential for cancer therapy.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bishi Fu
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA
| | - Lei Shi
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| |
Collapse
|
52
|
Autophagy and Apoptosis Interact to Modulate T-2 Toxin-Induced Toxicity in Liver Cells. Toxins (Basel) 2019; 11:toxins11010045. [PMID: 30650580 PMCID: PMC6356273 DOI: 10.3390/toxins11010045] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/19/2023] Open
Abstract
T-2 toxin is a mycotoxin generated by Fusarium species which has been shown to be highly toxic to human and animals. T-2 toxin induces apoptosis in various tissues/organs. Apoptosis and autophagy are two closely interconnected processes, which are important for maintaining physiological homeostasis as well as pathogenesis. Here, for the first time, we demonstrated that T-2 toxins induce autophagy in human liver cells (L02). We demonstrated that T-2 toxin induce acidic vesicular organelles formation, concomitant with the alterations in p62/SQSTM1 and LC3-phosphatidylethanolamine conjugate (LC3-II) and the enhancement of the autophagic flux. Using mRFP-GFP-LC3 by lentiviral transduction, we showed T-2 toxin-mediated lysosomal fusion and the formation of autophagosomes in L02 cells. The formation of autophagosomes was further confirmed by transmission electron microcopy. While T-2 toxin induced both autophagy and apoptosis, autophagy appears to be a leading event in the response to T-2 toxin treatment, reflecting its protective role in cells against cellular damage. Activating autophagy by rapamycin (RAPA) inhibited apoptosis, while suppressing autophagy by chloroquine greatly enhanced the T-2 toxin-induced apoptosis, suggesting the crosstalk between autophagy and apoptosis. Taken together, these results indicate that autophagy plays a role in protecting cells from T-2 toxin-induced apoptosis suggesting that autophagy may be manipulated for the alleviation of toxic responses induced by T-2 toxin.
Collapse
|
53
|
Deoxynivalenol induces toxicity and apoptosis in piglet hippocampal nerve cells via the MAPK signaling pathway. Toxicon 2018; 155:1-8. [DOI: 10.1016/j.toxicon.2018.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 08/03/2018] [Accepted: 09/25/2018] [Indexed: 11/24/2022]
|
54
|
Pyrrolidine Dithiocarbamate (PDTC) Inhibits DON-Induced Mitochondrial Dysfunction and Apoptosis via the NF- κB/iNOS Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1324173. [PMID: 30595795 PMCID: PMC6286745 DOI: 10.1155/2018/1324173] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022]
Abstract
Oxidative stress is closely linked to the toxic responses of various cell types in normal and pathophysiological conditions. Deoxynivalenol (DON), an inducer of stress responses in the ribosome and the endoplasmic reticulum (ER), causes mitochondrial dysfunction and mitochondria-dependent apoptosis through oxidative stress in humans and animals. The NF-κB pathway, which is closely linked to oxidative stress, is hypothesized to be a critical signaling pathway for DON-induced toxicity and is a potential target for intervention. The present study was conducted to explore the protective effects of pyrrolidine dithiocarbamate (PDTC) from the toxic effects of DON in rat anterior pituitary GH3 cells. Our results showed that DON activated the NF-κB transcription factors and induced cellular oxidative stress, mitochondrial dysfunction, and apoptosis. Morphological studies using transmission electron microscopy (TEM) and cell apoptosis analyses suggested that PDTC prevented DON-induced mitochondrial dysfunction and apoptosis, probably by preventing the DON-induced translocation of NF-κB p65 into the nucleus, and by inhibiting DON-induced iNOS expression. This led to the blocking of the NF-κB pathway and inhibition of iNOS activity.
Collapse
|
55
|
EGR1 is essential for deoxynivalenol-induced G2/M cell cycle arrest in HepG2 cells via the ATF3ΔZip2a/2b-EGR1-p21 pathway. Toxicol Lett 2018; 299:95-103. [PMID: 30286430 DOI: 10.1016/j.toxlet.2018.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022]
Abstract
Deoxynivalenol (DON) is a type B trichothecene mycotoxin that exerts multiple toxic effects on plants, animals and humans. Several reports have shown that DON leads to G2/M cell cycle arrest. However, its molecular mechanism is still unclear. In this study, we showed that DON induced strong G2/M cell cycle arrest in HepG2 cells, and the cell cycle-inhibitory protein p21 was highly upregulated by DON. Further analysis showed that the cell cycle regulating gene EGR1 was highly induced by DON and that EGR1 knockdown abolished the upregulation of p21 and G2/M cell cycle arrest. Furthermore, we showed that the induction of EGR1 was regulated by the stress-responsive transcription factor ATF3. ATF3ΔZip2a/2b, which is a DNA binding domain truncated isoform of ATF3, was upregulated by DON. ATF3 knockdown weakened the expression induction of EGR1 and G2/M cell cycle arrest by DON. Moreover, the upregulation of ATF3ΔZip2a/2 highly depended on the enhanced presence of histones H3K9ac and H3K27ac. H3K9ac and H3K27ac were enriched at the promoter region of ATF3 following the DON treatment, and the knocking down of the genes responsible for H3K9ac and H3K27ac abolished the upregulation of ATF3 by DON. In summary, we found that DON induced G2/M cell cycle arrest by sequentially inducing the expression of ATF3ΔZip2a/2b, EGR1 and p21, and EGR1 played an essential role in this process, which is a novel molecular mechanism of cell cycle arrest by DON and is important for understanding its toxicology.
Collapse
|
56
|
Xia Y, Dong Y, Zhao X, Di L, Li J. Transport mechanism of ursodeoxycholic acid in human placental BeWo cells. Biopharm Drug Dispos 2018; 39:335-343. [PMID: 29978488 DOI: 10.1002/bdd.2150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/09/2018] [Accepted: 06/18/2018] [Indexed: 12/27/2022]
Abstract
Ursodeoxycholic acid (UDCA) is a first-line drug to treat intrahepatic cholestasis of pregnancy (ICP). However, its effects on the fetus are not clearly known. To better guide its clinical use, we aimed to study the mechanism underlying the placental transport of UDCA. The uptake and efflux of UDCA across placental apical membranes were studied using BeWo cells; effects of different exposure durations, UDCA concentrations, temperatures, and inhibitors of transporters were studied. A transwell assay was performed, and UDCA concentration in both fetal and maternal sides was measured using LC-MS/MS. Higher unidirectional transport of UDCA was observed in the basolateral-to-apical direction than in the apical-to-basolateral direction. Ko143 and verapamil, which are typical inhibitors of efflux transporters, significantly increased UDCA transport from different directions. UDCA uptake from the apical membrane of BeWo cells was time-dependent, but sodium-independent. It was inhibited by inhibitors of energy metabolism and of organic anion transporters, indicating an active transport mechanism. UDCA uptake from the apical membranes of BeWo cells could be mediated by organic anion-transporting polypeptides, whereas its efflux could be mediated by breast cancer resistance protein and multidrug resistant protein 3. The results of the present study may provide a basis for UDCA use in pregnancy.
Collapse
Affiliation(s)
- Yanming Xia
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Dong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoli Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing, China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing, China
| |
Collapse
|
57
|
Yu Q, Zeng KW, Ma XL, Jiang Y, Tu PF, Wang XM. Ginsenoside Rk1 suppresses pro-inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells by inhibiting the Jak2/Stat3 pathway. Chin J Nat Med 2018; 15:751-757. [PMID: 29103460 DOI: 10.1016/s1875-5364(17)30106-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 12/17/2022]
Abstract
The saponin ginsenoside Rk1 is a major compound isolated from ginseng. Ginsenoside Rk1 has been reported to have anti-inflammatory and anti-tumor properties and to be involved in the regulation of metabolism. However, the effect and mechanism of anti-inflammatory action of ginsenoside Rk1 has not been fully clarified. We investigated whether ginsenoside Rk1 could suppress the inflammatory response in lipopolysaccharide-stimulated RAW264.7 macrophages and to explore its mechanism of the action. RAW264.7 cells were treated with LPS (1 μg·mL-1) in the absence or the presence of Ginsenoside Rk1 (10, 20, and 40 μmol·L-1). Then the inflammatory factors were tested with Griess reagents, ELISA, and RT-PCR. The proteins were analyzed by Western blotting. Ginsenoside Rk1 inhibited lipopolysaccharide-induced expression of nitric oxide (NO), interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, and monocyte chemotactic protein (MCP)-1. Ginsenoside Rk1 inhibited the lipopolysaccharide-stimulated phosphorylation of NF-κB and janus kinase (Jak)2 and signal transducer and activator of transcription (Stat)3 at Ser727 and Tyr705. These data suggested that ginsenoside Rk1 could inhibit expression of inflammatory mediators and suppress inflammation further by blocking activation of NF-κB and the Jak2/Stat3 pathway in LPS-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Qian Yu
- Research Studio of Integration of Traditional and Western Medicine, First Hospital, Peking University, Beijing 100034, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Li Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xue-Mei Wang
- Research Studio of Integration of Traditional and Western Medicine, First Hospital, Peking University, Beijing 100034, China.
| |
Collapse
|
58
|
Deyu H, Luqing C, Xianglian L, Pu G, Qirong L, Xu W, Zonghui Y. Protective mechanisms involving enhanced mitochondrial functions and mitophagy against T-2 toxin-induced toxicities in GH3 cells. Toxicol Lett 2018; 295:41-53. [PMID: 29870751 DOI: 10.1016/j.toxlet.2018.05.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
Abstract
T-2 toxin is the most toxic member of trichothecene mycotoxin. So far, the mechanism of mitochondrial toxicity and protective mechanism in mammalian cells against T-2 toxin are not fully understood. In this study, we aimed to investigate the cellular and mitochondrial toxicity of T-2 toxin, and the cellular protective mechanisms in rat pituitary GH3 cells. We showed that T-2 toxin significantly increased reactive oxygen species (ROS) and DNA damage and caused apoptosis in GH3 cells. T-2 toxin induced abnormal cell morphology, cytoplasm and nuclear shrinkage, nuclear fragmentation and formation of apoptotic bodies and autophagosomes. The mitochondrial degradative morphologies included local or total cristae collapse and small condensed mitochondria. T-2 toxin decreased the mitochondrial membrane potential. However, T-2 toxin significantly increased the superoxide dismutase (SOD) activity and expression of antioxidant genes glutathione peroxidase 1 (GPx-1), catalase (CAT), mitochondria-specific SOD-2 and mitochondrial uncoupling protein-1, -2 and -3 (UCP-1, 2 and 3). Interestingly, T-2 toxin increased adenosine triphosphate (ATP) levels and mitochondrial complex I activity, and increased the expression of most of mitochondrial electron transport chain subunits tested and critical transcription factors controlling mitochondrial biogenesis and mitochondrial DNA transcription and replication. T-2 toxin increased mitophagic activity by increasing the expression of mitophagy-specific proteins NIP-like protein X (NIX), PTEN-induced putative kinase protein 1 (PINK1) and E3 ubiquitin ligase Parkin. T-2 toxin activated the protective protein kinase A (PKA) signaling pathway, which activated the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/PINK1/Parkin pathway to mediate mitophagy. Taken together, our results suggested that the mammalian cells could increase their resistance against T-2 toxin by increasing the antioxidant activity, mitophagy and mitochondrial function.
Collapse
Affiliation(s)
- Huang Deyu
- Department of Animal Sciences & Technology, Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Cui Luqing
- Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Liu Xianglian
- Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guo Pu
- Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lu Qirong
- Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wang Xu
- Department of Animal Sciences & Technology, Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yuan Zonghui
- Department of Animal Sciences & Technology, Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
59
|
Yu R, Zhang Y, Lu Q, Cui L, Wang Y, Wang X, Cheng G, Liu Z, Dai M, Yuan Z. Differentially expressed genes in response to cyadox in swine liver analyzed by DDRT-PCR. Res Vet Sci 2018; 118:72-78. [DOI: 10.1016/j.rvsc.2018.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/24/2022]
|
60
|
Anti-Inflammatory Effects of Angelica sinensis (Oliv.) Diels Water Extract on RAW 264.7 Induced with Lipopolysaccharide. Nutrients 2018; 10:nu10050647. [PMID: 29883374 PMCID: PMC5986526 DOI: 10.3390/nu10050647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 01/30/2023] Open
Abstract
The dry root of Angelica sinensis (Oliv.) Diels, also known as “female ginseng”, is a popular herbal drug amongst women, used to treat a variety of health issues and cardiovascular diseases. The aim of this study is to evaluate the detailed molecular mechanism for anti-inflammatory effects of Angelica sinensis root water extract (ASW). The anti-inflammatory effect of ASW on lipopolysaccharide (LPS)-induced RAW 264.7 mouse macrophages was evaluated by the tetrazolium-based colorimetric assay (MTT), Griess reagent assay, multiplex cytokine assay, real time reverse transcription polymerase chain reaction (RT-PCR), and Fluo-4 calcium assay. ASW restored cell viability in RAW 264.7 at concentrations of up to 200 µg/mL. ASW showed notable anti-inflammatory effects. ASW exhibited IC50 = 954.3, 387.3, 191.7, 317.8, 1267.0, 347.0, 110.1, 573.6, 1171.0, 732.6, 980.8, 125.0, and 257.0 µg/mL for interleukin (IL)-6, tumor necrosis factor (TNF)-α, monocyte chemotactic activating factor (MCP)-1, regulated on activation, normal T cell expressed and secreted (RANTES), granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), lipopolysaccharide-induced CXC chemokine (LIX), macrophage inflammatory protein (MIP)-1α, MIP-1β, MIP-2, IL-10, and intracellular calcium, respectively. Additionally, ASW inhibited the LPS-induced production of nitric oxide and the LPS-induced mRNA expression of CHOP (GADD153), Janus kinase 2 (JAK2), signal transducers and activators of transcription 1 (STAT1), first apoptosis signal receptor (FAS), and c-Fos, NOS2, and PTGS2 (COX2) in RAW 264.7 significantly (p < 0.05). Data suggest that ASW exerts an anti-inflammatory effect on LPS-induced RAW 264.7 via NO-bursting/calcium-mediated JAK-STAT pathway.
Collapse
|
61
|
Guo P, Liu A, Huang D, Wu Q, Fatima Z, Tao Y, Cheng G, Wang X, Yuan Z. Brain damage and neurological symptoms induced by T-2 toxin in rat brain. Toxicol Lett 2018; 286:96-107. [DOI: 10.1016/j.toxlet.2018.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 11/17/2022]
|
62
|
Fatima Z, Guo P, Huang D, Lu Q, Wu Q, Dai M, Cheng G, Peng D, Tao Y, Ayub M, Ul Qamar MT, Ali MW, Wang X, Yuan Z. The critical role of p16/Rb pathway in the inhibition of GH3 cell cycle induced by T-2 toxin. Toxicology 2018; 400-401:28-39. [PMID: 29567467 DOI: 10.1016/j.tox.2018.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 12/21/2022]
Abstract
T-2 toxin is a worldwide trichothecenetoxin and can cause various toxicities.T-2 toxin is involved in G1 phase arrest in several cell lines but molecular mechanism is still not clear. In present study, we used rat pituitary GH3 cells to investigate the mechanism involved in cell cycle arrest against T-2 toxin (40 nM) for 12, 24, 36 and 48 h as compared to control cells. GH3 cells showed a considerable increase in reactive oxygen species (ROS) as well as loss in mitochondrial membrane potential (△Ym) upon exposure to the T-2 toxin. Flow cytometry showed a significant time-dependent increase in percentage of apoptotic cells and gel electrophoresis showed the hallmark of apoptosis oligonucleosomal DNA fragmentation. Additionally, T-2 toxin-induced oxidative stress and DNA damage with a time-dependent significant increased expression of p53 favors the apoptotic process by the activation of caspase-3 in T-2 toxin treated cells. Cell cycle analysis by flow cytometry revealed a time-dependent increase ofG1 cell population along with the significant time-dependent up-regulation of mRNA and protein expression of p16 and p21 and significant down-regulation of cyclin D1, CDK4, and p-RB levels further verify the G1 phase arrest in GH3 cells. Morphology of GH3 cells by TEM clearly showed the damage and dysfunction to mitochondria and the cell nucleus. These findings for the first time demonstrate that T-2 toxin induces G1 phase cell cycle arrest by the involvement of p16/Rb pathway, along with ROS mediated oxidative stress and DNA damage with p53 and caspase cascade interaction, resulting in apoptosis in GH3 cells.
Collapse
Affiliation(s)
- Zainab Fatima
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Pu Guo
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Deyu Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Qirong Lu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Menghong Dai
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Guyue Cheng
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Yanfei Tao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | | | | | - Muhammad Waqar Ali
- College of Plant Sciences, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China.
| |
Collapse
|
63
|
Hao S, Yan Y, Huang W, Gai F, Wang J, Liu L, Wang C. C-phycocyanin reduces inflammation by inhibiting NF-κB activity through downregulating PDCD5 in lipopolysaccharide-induced RAW 264.7 macrophages. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
64
|
Xu L, Zhang L, Zhang H, Yang Z, Qi L, Wang Y, Ren S. The participation of fibroblast growth factor 23 (FGF23) in the progression of osteoporosis via JAK/STAT pathway. J Cell Biochem 2018; 119:3819-3828. [PMID: 28782829 DOI: 10.1002/jcb.26332] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/04/2017] [Indexed: 01/09/2023]
Abstract
Osteoporosis (OP) is a major skeletal disorder for the old man. The fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced by osteoblasts and osteocytes. However, the regulatory mechanisms of FGF23 in the progression of osteoporosis remain poorly understood. This study aims to explore the downstream regulating pathway of FGF23 in postmenopausal osteoporosis. The rat model of osteoporosis was established through ovariectomy (OVX). The investigation demonstrated that the serum levels of FGF23 and the phosphorylation levels of JAK2, STAT1, and STAT3 were up-regulated in the OVX + NVP-BGJ398 group while were down-regulated in the OVX + Anti-FGF23 group than that in the OVX group. Moreover, the JAK2/STAT1/3 inhibitor, AG490 promoted the OVX-induced increase in the osteocalcin, ALP, BALP, TRAP, and CTX-I levels. Besides, AG490 enhanced cartilage lesions and increased TUNEL-positive chondrocytes in the OVX group. In addition, higher protein expression of MMP-1 and MMP-13 and lower expression of COX-II were observed in the OVX + AG490 group than that in the OVX group. Our findings suggested that FGF23 was involved in the progression of osteoporosis via the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lixia Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huijuan Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zaigang Yang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Qi
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yurong Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuxin Ren
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
65
|
Wang Z, Zhu F. The expression profiles of immune genes in Mus musculus macrophages during Staphylococcus aureus infection. PLoS One 2018; 13:e0190490. [PMID: 29304086 PMCID: PMC5755788 DOI: 10.1371/journal.pone.0190490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/17/2017] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is an important pathogen which is often the cause of major morbidity and mortality in both hospital and community settings. For this reason, we investigated the host cell early immune resoponse to S. aureus infection using genome-wide analysis. To do this, we infected Mus musculus RAW264.7 cells with S. aureus alone or in the presence of free peptidoglycan (PG), which appears in the S. aureus cell wall. Post infection, we performed a genome-wide analysis of RAW246.7 cells to identify significant changes in the gene expression profile. Further, we analyzed the infected RAW246.7 cells with transmission electron microscopy looking for the presence of bacterial cells inside the host cell. We also used flow cytometry to determine whether cells had induced apoptosis. The results showed that S. aureus induced apoptosis in the RAW246.7 cells but did not effectively clear away intracellular bacteria cells. However, S. aureus + PG treatment inhibited the apoptosis and activated the host cell inflammation response, possibly involving NF-κB and JAK-STAT pathways, as identified by genome-wide analysis, in RAW246.7 cells. Our study demonstrated for the first time that an independent application of free PG was capable of activating immune responses the host cells.
Collapse
Affiliation(s)
- Ziyan Wang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Fei Zhu
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, China
- * E-mail:
| |
Collapse
|
66
|
Huang D, Cui L, Guo P, Xue X, Wu Q, Hussain HI, Wang X, Yuan Z. Nitric oxide mediates apoptosis and mitochondrial dysfunction and plays a role in growth hormone deficiency by nivalenol in GH3 cells. Sci Rep 2017; 7:17079. [PMID: 29213091 PMCID: PMC5719085 DOI: 10.1038/s41598-017-16908-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
Nivalenol (NIV), a type B trichothecenes commonly found in cereal crops, can cause growth impairment in animals. However, limited information about its mechanisms is available. Trichothecenes have been characterized as an inhibitor of protein synthesis and induce apoptosis in cells. Oxidative stress is considered an underlying mechanism. However, whether NIV can induce oxidative stress and apoptosis in rat pituitary cells line GH3 is unclear. The present study showed that NIV significantly reduced the viability of cells and caused oxidative stress in GH3 cells. Further experiments showed that nitric oxide (NO), but not ROS, mediated NIV-induced oxidative stress. Additionally, NIV induced caspase-dependent apoptosis, decrease in mitochondrial membrane potential and mitochondrial ultrastructural changes. However, NIV-induced caspase activation, mitochondrial damage and apoptosis were partially alleviated by Z-VAD-FMK or NO scavenger hemoglobin. Finally, NIV changed the expression of growth-associated genes and pro-inflammatory cytokines. NIV also reduced the GH secretion in GH3 cells, which was reversed by hemoglobin. Taken together, these results suggested that NIV induced apoptosis in caspase-dependent mitochondrial pathway in GH3 cells, which might be an underlying mechanism of NIV-induced GH deficiency. Importantly, NO played a critical role in the induction of oxidative stress, apoptosis and GH deficiency in NIV-treated GH3 cells.
Collapse
Affiliation(s)
- Deyu Huang
- The Key Laboratory for the Detection of Veterinary Drug Residues, Ministry of Agriculture, Wuhan, P.R. China
| | - Luqing Cui
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Pu Guo
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Xijuan Xue
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P.R. China
| | - Hafiz Iftikhar Hussain
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Xu Wang
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China.
| | - Zonghui Yuan
- The Key Laboratory for the Detection of Veterinary Drug Residues, Ministry of Agriculture, Wuhan, P.R. China. .,Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China.
| |
Collapse
|
67
|
Liu X, Huang D, Guo P, Wu Q, Dai M, Cheng G, Hao H, Xie S, Yuan Z, Wang X. PKA/CREB and NF-κB pathway regulates AKNA transcription: A novel insight into T-2 toxin-induced inflammation and GH deficiency in GH3 cells. Toxicology 2017; 392:81-95. [DOI: 10.1016/j.tox.2017.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/14/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
|
68
|
Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 2017; 91:3737-3785. [PMID: 29152681 DOI: 10.1007/s00204-017-2118-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Paradoxically, trichothecenes have both immunosuppressive and immunostimulatory effects. The underlying mechanisms have not been fully explored. Early studies show that dose, exposure timing, and the time at which immune function is assessed influence whether trichothecenes act in an immunosuppressive or immunostimulatory fashion. Recent studies suggest that the immunomodulatory function of trichothecenes is also actively shaped by competing cell-survival and death-signaling pathways. Autophagy may also promote trichothecene immunosuppression, although the mechanism may be complicated. Moreover, trichothecenes may generate an "immune evasion" milieu that allows pathogens to escape host and vaccine immune defenses. Some trichothecenes, especially macrocyclic trichothecenes, also potently kill cancer cells. T-2 toxin conjugated with anti-cancer monoclonal antibodies significantly suppresses the growth of thymoma EL-4 cells and colon cancer cells. The type B trichothecene diacetoxyscirpenol specifically inhibits the tumor-promoting factor HIF-1 in cancer cells under hypoxic conditions. Trichothecin markedly inhibits the growth of multiple cancer cells with constitutively activated NF-κB. The type D macrocyclic toxin Verrucarin A is also a promising therapeutic candidate for leukemia, breast cancer, prostate cancer, and pancreatic cancer. The anti-cancer activities of trichothecenes have not been comprehensively summarized. Here, we first summarize the data on the immunomodulatory effects of trichothecenes and discuss recent studies that shed light on the underlying cellular and molecular mechanisms. These mechanisms include autophagy and major signaling pathways and their crosstalk. Second, the anti-cancer potential of trichothecenes and the underlying mechanisms will be discussed. We hope that this review will show how trichothecene bioactivities can be exploited to generate therapies against pathogens and cancer.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Dongxiao Su
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
69
|
Jahreis S, Kuhn S, Madaj AM, Bauer M, Polte T. Mold metabolites drive rheumatoid arthritis in mice via promotion of IFN-gamma- and IL-17-producing T cells. Food Chem Toxicol 2017; 109:405-413. [DOI: 10.1016/j.fct.2017.09.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 01/15/2023]
|
70
|
Gene expression profiles and molecular mechanism of cultured human chondrocytes' exposure to T-2 toxin and deoxynivalenol. Toxicon 2017; 140:38-44. [PMID: 28684119 DOI: 10.1016/j.toxicon.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
T-2 toxin and deoxynivalenol (DON) are secondary metabolites produced by Fusarium fungi and are commonly found on food and feed. Although T-2 toxin and DON have been suggested as the etiology of Kashin-Beck disease (KBD), an endemic osteochondropathy, little is known about the mechanism when human chondrocytes are exposed to T-2 toxin and DON. The purpose of this study is to identify the gene expression differences and underlying molecular changes modulated by T-2 toxin and DON in vitro in human chondrocytes. After the experiments of cell viability, the gene expression profiles were analyzed in cells that were treated with 0.01 μg/ml T-2 toxin and 1.0 μg/ml DON for 72 h by Affymetrix Human Gene Chip. The array results showed that 882 and 2118 genes were differentially expressed for T-2 toxin and DON exposure, respectively. Enrichment analysis revealed that diverse cellular processes including DNA damage, cell cycle regulation and metabolism of extracellular matrix were affected when human chondrocytes were exposed to T-2 toxin and DON. These results demonstrate the gene expression differences and molecular mechanism of cultured human chondrocytes exposure to T-2 toxin and DON, and provide a new insight into future research in the etiology of KBD.
Collapse
|
71
|
Wang X, Wang Y, Wang Y, Sun L, Gooneratne R. Preparation of T-2-glucoronide with Rat Hepatic Microsomes and Its Use along with T-2 for Activation of the JAK/STAT Signaling Pathway in RAW264.7 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4811-4818. [PMID: 28556663 DOI: 10.1021/acs.jafc.7b01250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
T-2 toxin (T-2), one of the most toxic trichothecene A-type mycotoxins, is biotransformed in animal tissues to modified T-2s (mT-2s) including T-2-glucuronide (T-2-GlcA). In this study, the optimal conditions for T-2-GlcA synthesis were established, and the JAK/STAT pathway in RAW264.7 cells was used to study the toxicity of T-2-GlcA. Because many mT-2 standards are not readily available, optimal conditions for T-2-GlcA synthesis in vitro were established by incubating T-2 with rat liver microsomes, UDPGA, and 0.2% Triton X-100 for 90 min. qRT-PCR and Western blot results showed 21- and 760-fold increases in IL-6 mRNA expression induced by T-2-GlcA and T-2, respectively. Similar differences were observed in JAK3, SOCS2/3, and CIS mRNA expression. T-2-GlcA induced a dose-responsive decrease in STAT1 mRNA expression, whereas the result with T-2 was the opposite. Moreover, the phosphorylation of STAT3 induced by T-2-GlcA was higher than that by T-2, whereas the phosphorylation of STAT1 was to the contrary. Overall, the results show that T-2-GlcA was somewhat toxic, but activation of the JAK/STAT pathway in RAW264.7 was higher by T-2.
Collapse
Affiliation(s)
- Xing Wang
- College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yapei Wang
- College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University , P.O. Box 85084, Lincoln 7647, New Zealand
| |
Collapse
|
72
|
Liu X, Guo P, Liu A, Wu Q, Xue X, Dai M, Hao H, Qu W, Xie S, Wang X, Yuan Z. Nitric oxide (NO)-mediated mitochondrial damage plays a critical role in T-2 toxin-induced apoptosis and growth hormone deficiency in rat anterior pituitary GH3 cells. Food Chem Toxicol 2017; 102:11-23. [DOI: 10.1016/j.fct.2017.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/11/2022]
|
73
|
Kim YJ, Lee JY, Kim HJ, Kim DH, Lee TH, Kang MS, Choi YK, Lee HL, Kim J, An HJ, Park W. INHIBITORY EFFECT OF EMODIN ON RAW 264.7 ACTIVATED WITH DOUBLE STRANDED RNA ANALOGUE POLY I:C. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:157-166. [PMID: 28480427 PMCID: PMC5412221 DOI: 10.21010/ajtcam.v14i3.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background: Emodin (3-methyl-1, 6, 8-trihydroxyanthraquinone) is a compound which can be found in
Polygoni Multiflori Radix (PMR). PMR is the root of Polygonum
multiflorum. PMR is used to treat dizziness, spermatorrhea, sores, and
scrofula as well as chronic malaria traditionally in China and Korea. The anti-tumor
property of emodin was already reported. However, anti-viral activity of emodin on
macrophages are not fully reported. Materials and Methods: Effects of emodin on RAW 264.7 mouse macrophages induced by polyinosinic-polycytidylic
acid (poly I:C), a synthetic analog of double-stranded RNA, were evaluated. Results: Emodin restored the cell viability in poly I: C-induced RAW 264.7 at concentrations of
up to 50 μM. Emodin significantly inhibited the production of nitric oxide,
IL-1α, IL-Ιβ, IL-6, GM-CSF, G-CSF, M-CSF, MCP-1, MIP-1a,
MIP-Ιβ, MIP-2, RANTES, and IP-10 as well as calcium release and mRNA
expression of signal transducer and activated transcription 1 (STAT1) in poly
I:C-induced RAW 264.7 (P < 0.05). Conclusion: This study shows the inhibitory effect of emodin on poly I: C-induced RAW 264.7 via
calcium-STAT pathway.
Collapse
Affiliation(s)
- Young-Jin Kim
- Department of Pathology, College of Korean Medicine, Gachon University, Seong-nam, 13120, Republic of Korea
| | - Ji Young Lee
- Department of Pathology, College of Korean Medicine, Gachon University, Seong-nam, 13120, Republic of Korea
| | - Hyun-Ju Kim
- Department of Pathology, College of Korean Medicine, Gachon University, Seong-nam, 13120, Republic of Korea
| | - Do-Hoon Kim
- Department of Korean Medical Classics and History, College of Korean Medicine, Gachon University, Seong-nam, 13120, Republic of Korea
| | - Tae Hee Lee
- Department of Formulae Pharmacology, College of Korean Medicine, Gachon University, Seong-nam, 13120, Republic of Korea
| | - Mi Suk Kang
- Department of Acupuncture & Moxibustion, College of Korean Medicine, Gachon University, Seong-nam, 13120, Republic of Korea
| | - You-Kyung Choi
- Department of Korean Internal Medicine, College of Korean Medicine, Gachon University, Seong-nam, 13120, Republic of Korea
| | - Hye Lim Lee
- College of Korean Medicine, Gachon University, Seong-nam, 13120, Republic of Korea
| | - Jaieun Kim
- Department of Pathology, College of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea
| | - Wansu Park
- Department of Pathology, College of Korean Medicine, Gachon University, Seong-nam, 13120, Republic of Korea
| |
Collapse
|
74
|
Lin HW, Liu CW, Yang DJ, Chen CC, Chen SY, Tseng JK, Chang TJ, Chang YY. Dunaliella salina alga extract inhibits the production of interleukin-6, nitric oxide, and reactive oxygen species by regulating nuclear factor-κB/Janus kinase/signal transducer and activator of transcription in virus-infected RAW264.7 cells. J Food Drug Anal 2017; 25:908-918. [PMID: 28987368 PMCID: PMC9328861 DOI: 10.1016/j.jfda.2016.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 01/01/2023] Open
Abstract
Recent investigations have demonstrated that carotenoid extract of Dunaliella salina alga (Alga) contains abundant β-carotene and has good anti-inflammatory activities. Murine macrophage (RAW264.7 cells) was used to establish as an in vitro model of pseudorabies virus-induced reactive oxygen species (ROS) response. In this study, antioxidant activities of Alga were measured based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, trolox equivalent antioxidant capacity assays, reducing power, and virus-induced ROS formation in RAW264.7 cells. Anti-inflammatory activities of Alga were assessed by its ability to inhibit the production of interleukin-6 and nitric oxide (NO) using enzyme-linked immunosorbent assay, then the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway was investigated by measuring the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-κB (p50 and p65), JAK, STAT-1/3, and suppressor of cytokine signaling 3 (SOCS3) by Western blotting. In addition, Alga inhibited virus replication by plaque assay. Our results showed that the Alga had high antioxidant activity, significantly reduced the virus-induced accumulation of ROS, and inhibited the levels of nitric oxide and interleukin-6. Further studies revealed that Alga also downregulated the gene and protein expressions of iNOS, COX-2, nuclear factor-κB (p50 and p65), and the JAK/STAT pathway. The inhibitory effects of Alga were similar to pre-treatment with specific inhibitors of JAK and STAT-3 in pseudorabies virus-infected RAW264.7 cells. Alga enhanced the expression of SOCS3 to suppress the activity of the JAK/ STAT signaling pathway in pseudorabies virus-infected RAW264.7 cells. In addition, Alga has decreased viral replication (p < 0.005) at an early stage. Therefore, our results demonstrate that Alga inhibits ROS, interleukin6, and nitric oxide production via suppression of the JAK/STAT pathways and enhanced the expression of SOCS3 in virus-infected RAW264.7 cells.
Collapse
Affiliation(s)
- Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Cheng-Wei Liu
- Department of Post-Modern Agriculture, Ming Dao University, ChangHua, Taiwan
| | - Deng-Jye Yang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | | | - Shih-Yin Chen
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jung-Kai Tseng
- Department of Optometry, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Tien-Jye Chang
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan.
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
75
|
Ahn YH, Jeon SB, Chang CY, Goh EA, Kim SS, Kim HJ, Song J, Park EJ. Glatiramer acetate attenuates the activation of CD4 + T cells by modulating STAT1 and -3 signaling in glia. Sci Rep 2017; 7:40484. [PMID: 28094337 PMCID: PMC5240344 DOI: 10.1038/srep40484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Interactions between immune effector cells of the central nervous system appear to directly or indirectly influence the progress/regression of multiple sclerosis (MS). Here, we report that glial STAT1 and -3 are distinctively phosphorylated following the interaction of activated lymphocytes and glia, and this effect is significantly inhibited by glatiramer acetate (GA), a disease-modifying drug for MS. GA also reduces the activations of STAT1 and -3 by MS-associated stimuli such as IFNγ or LPS in primary glia, but not neurons. Experiments in IFNγ- and IFNγ receptor-deficient mice revealed that GA-induced inhibitions of STAT signaling are independent of IFNγ and its receptor. Interestingly, GA induces the expression levels of suppressor of cytokine signaling-1 and -3, representative negative regulators of STAT signaling in glia. We further found that GA attenuates the LPS-triggered enhancement of IL-2, a highly produced cytokine in patients with active MS, in CD4+ T cells co-cultured with glia, but not in CD4+ T cells alone. Collectively, these results provide that activation of glial STATs is an essential event in the interaction between glia and T cells, which is a possible underlying mechanism of GA action in MS. These findings provide an insight for the development of targeted therapies against MS.
Collapse
Affiliation(s)
- Ye-Hyeon Ahn
- Cancer Immunology Branch, National Cancer Center, Goyang, South Korea
- Dept.of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sae-Bom Jeon
- Cancer Immunology Branch, National Cancer Center, Goyang, South Korea
| | - Chi Young Chang
- Cancer Immunology Branch, National Cancer Center, Goyang, South Korea
| | - Eun-Ah Goh
- Dept. of System Cancer Science, Graduate School of Cancer Science and Policy, Goyang, South Korea
| | - Sang Soo Kim
- Radiation Medicine Branch, National Cancer Center, Goyang, South Korea
| | - Ho Jin Kim
- Dept. of System Cancer Science, Graduate School of Cancer Science and Policy, Goyang, South Korea
- Dept. of Neurology, National Cancer Center, Goyang, South Korea
| | - Jaewhan Song
- Dept.of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eun Jung Park
- Cancer Immunology Branch, National Cancer Center, Goyang, South Korea
- Dept. of System Cancer Science, Graduate School of Cancer Science and Policy, Goyang, South Korea
| |
Collapse
|
76
|
Wang X, Wang Y, Qiu M, Sun L, Wang X, Li C, Xu D, Gooneratne R. Cytotoxicity of T-2 and modified T-2 toxins: induction of JAK/STAT pathway in RAW264.7 cells by hepatopancreas and muscle extracts of shrimp fed with T-2 toxin. Toxicol Res (Camb) 2017; 6:144-151. [PMID: 30090484 DOI: 10.1039/c6tx00392c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
T-2 can be biotransformed in animal tissues to modified T-2s (mT-2s). Food contaminated with T-2 and/or mT-2s is a hazard to both animals and humans, including the immune system. In this study, Litopenaeus vannamei were fed T-2 orally for 20 d, and hepatopancreas and muscle extracts, T-2, and T-2-glucuronide (T-2-GluA) were added to RAW264.7 in vitro and their effects on the JAK/STAT pathway were examined. STAT2 mRNA gene expression induced by hepatopancreas and muscle extracts was markedly higher compared with that of T-2 or T-2-GluA group. SCOSs, IL-6 and IL-1β mRNA gene expressions induced by hepatopancreas extract were greater than those induced by muscle extract. Muscle extract significantly activated STAT3 phosphorylation but inhibited STAT1 phosphorylation. Activation of the JAK/STAT pathway by hepatopancreas mT-2s was significantly higher than that by muscle extracts. Muscle and hepatopancreas extracts and T-2 also significantly induced IL-6 mRNA gene expression. With reference to phosphorylation levels, significant activation of JAK1 and STAT2 occurred with T-2 and JAK3 by muscle extract, JAK2 by hepatopancreas extract and STAT1 by T-2-GluA. This study showed that both T-2 and mT-2s are cytotoxic but the activation of the JAK/STAT pathway in RAW264.7 cells by T-2 was greater than that by mT-2s in hepatopancreas and muscle extracts from T-2-fed Litopenaeus vannamei.
Collapse
Affiliation(s)
- Xing Wang
- College of Food Science and Technology , Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety , Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Yaling Wang
- College of Food Science and Technology , Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety , Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Mei Qiu
- College of Food Science and Technology , Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety , Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China.,National Marine Products Quality Supervision & Inspection Center , Zhanjiang 524000 , China
| | - Lijun Sun
- College of Food Science and Technology , Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety , Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Xiaobo Wang
- College of Food Science and Technology , Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety , Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Caihong Li
- Institute of Biochemistry and Molecular Biology of Guangdong Medical University , Dongguan , 523808 , China
| | - Defeng Xu
- College of Food Science and Technology , Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety , Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Ravi Gooneratne
- Centre for Food Research and Innovation Centre for Food Research and Innovations , PO Box 85084 , Lincoln University , Lincoln 7647 , New Zealand
| |
Collapse
|
77
|
Zhang ZQ, Wang SB, Wang RG, Zhang W, Wang PL, Su XO. Phosphoproteome Analysis Reveals the Molecular Mechanisms Underlying Deoxynivalenol-Induced Intestinal Toxicity in IPEC-J2 Cells. Toxins (Basel) 2016; 8:toxins8100270. [PMID: 27669298 PMCID: PMC5086631 DOI: 10.3390/toxins8100270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022] Open
Abstract
Deoxynivalenol (DON) is a widespread trichothecene mycotoxin that commonly contaminates cereal crops and has various toxic effects in animals and humans. DON primarily targets the gastrointestinal tract, the first barrier against ingested food contaminants. In this study, an isobaric tag for relative and absolute quantitation (iTRAQ)-based phosphoproteomic approach was employed to elucidate the molecular mechanisms underlying DON-mediated intestinal toxicity in porcine epithelial cells (IPEC-J2) exposed to 20 μM DON for 60 min. There were 4153 unique phosphopeptides, representing 389 phosphorylation sites, detected in 1821 phosphoproteins. We found that 289 phosphopeptides corresponding to 255 phosphoproteins were differentially phosphorylated in response to DON. Comprehensive Gene Ontology (GO) analysis combined with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed that, in addition to previously well-characterized mitogen-activated protein kinase (MAPK) signaling, DON exposure altered phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and Janus kinase/signal transducer, and activator of transcription (JAK/STAT) pathways. These pathways are involved in a wide range of biological processes, including apoptosis, the intestinal barrier, intestinal inflammation, and the intestinal absorption of glucose. DON-induced changes are likely to contribute to the intestinal dysfunction. Overall, identification of relevant signaling pathways yielded new insights into the molecular mechanisms underlying DON-induced intestinal toxicity, and might help in the development of improved mechanism-based risk assessments in animals and humans.
Collapse
Affiliation(s)
- Zhi-Qi Zhang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Song-Bo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Rui-Guo Wang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Wei Zhang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Pei-Long Wang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Xiao-Ou Su
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
78
|
Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5739434. [PMID: 27703487 PMCID: PMC5040804 DOI: 10.1155/2016/5739434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs) stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation.
Collapse
|
79
|
The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 2016; 90:1817-40. [PMID: 27259333 DOI: 10.1007/s00204-016-1744-5] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/24/2016] [Indexed: 12/15/2022]
Abstract
Spirulina is a species of filamentous cyanobacteria that has long been used as a food supplement. In particular, Spirulina platensis and Spirulina maxima are the most important. Thanks to a high protein and vitamin content, Spirulina is used as a nutraceutical food supplement, although its other potential health benefits have attracted much attention. Oxidative stress and dysfunctional immunity cause many diseases in humans, including atherosclerosis, cardiac hypertrophy, heart failure, and hypertension. Thus, the antioxidant, immunomodulatory, and anti-inflammatory activities of these microalgae may play an important role in human health. Here, we discuss the antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina in both animals and humans, along with the underlying mechanisms. In addition, its commercial and regulatory status in different countries is discussed as well. Spirulina activates cellular antioxidant enzymes, inhibits lipid peroxidation and DNA damage, scavenges free radicals, and increases the activity of superoxide dismutase and catalase. Notably, there appears to be a threshold level above which Spirulina will taper off the antioxidant activity. Clinical trials show that Spirulina prevents skeletal muscle damage under conditions of exercise-induced oxidative stress and can stimulate the production of antibodies and up- or downregulate the expression of cytokine-encoding genes to induce immunomodulatory and anti-inflammatory responses. The molecular mechanism(s) by which Spirulina induces these activities is unclear, but phycocyanin and β-carotene are important molecules. Moreover, Spirulina effectively regulates the ERK1/2, JNK, p38, and IκB pathways. This review provides new insight into the potential therapeutic applications of Spirulina and may provide new ideas for future studies.
Collapse
|
80
|
Wang C, Wang W, Jin X, Shen J, Hu W, Jiang T. Puerarin attenuates inflammation and oxidation in mice with collagen antibody-induced arthritis via TLR4/NF-κB signaling. Mol Med Rep 2016; 14:1365-70. [DOI: 10.3892/mmr.2016.5357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 05/05/2016] [Indexed: 11/06/2022] Open
|
81
|
Han J, Wang QC, Zhu CC, Liu J, Zhang Y, Cui XS, Kim NH, Sun SC. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation. Toxicol Appl Pharmacol 2016; 300:70-76. [DOI: 10.1016/j.taap.2016.03.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 11/26/2022]
|
82
|
Li H, Li Q, Yu Z, Zhou M, Xie J. Mycobacterium tuberculosis PE13 (Rv1195) manipulates the host cell fate via p38-ERK-NF-κB axis and apoptosis. Apoptosis 2016; 21:795-808. [DOI: 10.1007/s10495-016-1249-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
83
|
Wang X, Yang P, Li J, Ihsan A, Liu Q, Cheng G, Tao Y, Liu Z, Yuan Z. Genotoxic risk of quinocetone and its possible mechanism in in vitro studies. Toxicol Res (Camb) 2016; 5:446-460. [PMID: 30090359 PMCID: PMC6062406 DOI: 10.1039/c5tx00341e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/18/2015] [Indexed: 12/14/2022] Open
Abstract
Quinoxalines possessing the quinoxaline-1,4-dioxide (QdNOs) basic structure are used for their antibacterial action, although their mechanism of genotoxicity is not clear. After comparing the sensitivity of V79 cells and HepG2 cells to quinocetone (QCT) and other QdNOs, it was found that HepG2 cells are more sensitive. The results show that QCT induces the generation of O2˙- and OH˙ during metabolism. Free radicals could then attack guanine and induce 8-hydroxy-deoxyguanine (8-OHdG) generation, causing DNA strand breakage, the inhibition of topoisomerase II (topo II) activity, and alter PCNA, Gadd45 and topo II gene expression. QCT also caused mutations in the mtDNA genes COX1, COX3 and ATP6, which might affect the function of the mitochondrial respiratory chain and increase the production of reactive oxygen species (ROS). Nuclear extracts from HepG2 cells treated with QCT had markedly reduced topo II activity, as judged by the inability to convert pBR322 DNA from the catenated to the decatenated form by producing stable DNA-topo II complexes. This study suggests that QCT electrostatically bound to DNA in a groove, affecting the dissociation of topo II from DNA and impacting DNA replication. Taken together, these data reveal that DNA damage induced by QCT resulted from O2˙- and OH˙ generated in the metabolism process. This data throws new light onto the genotoxicity of quinoxalines.
Collapse
Affiliation(s)
- Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues , Wuhan , Hubei 430070 , China . ; ; Tel: +86-27-87287186
| | - Panpan Yang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Juan Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Awais Ihsan
- Department of Biosciences , COMSATS Institute of Information Technology , Sahiwal , Pakistan
| | - Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Yanfei Tao
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| | - Zhengli Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues , Wuhan , Hubei 430070 , China . ; ; Tel: +86-27-87287186
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| |
Collapse
|
84
|
Wang X, Yang C, Ihsan A, Luo X, Guo P, Cheng G, Dai M, Chen D, Liu Z, Yuan Z. High risk of adrenal toxicity of N1-desoxy quinoxaline 1,4-dioxide derivatives and the protection of oligomeric proanthocyanidins (OPC) in the inhibition of the expression of aldosterone synthetase in H295R cells. Toxicology 2016; 341-343:1-16. [PMID: 26802905 DOI: 10.1016/j.tox.2016.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Quinoxaline 1,4-dioxide derivatives (QdNOs) with a wide range of biological activities are used in animal husbandry worldwide. It was found that QdNOs significantly inhibited the gene expression of CYP11B1 and CYP11B2, the key aldosterone synthases, and thus reduced aldosterone levels. However, whether the metabolites of QdNOs have potential adrenal toxicity and the role of oxidative stress in the adrenal toxicity of QdNOs remains unclear. The relatively new QdNOs, cyadox (CYA), mequindox (MEQ), quinocetone (QCT) and their metabolites, were selected for elucidation of their toxic mechanisms in H295R cells. Interestingly, the results showed that the main toxic metabolites of QCT, MEQ, and CYA were their N1-desoxy metabolites, which were more harmful than other metabolites and evoked dose and time-dependent cell damage on adrenal cells and inhibited aldosterone production. Gene and protein expression of CYP11B1 and CYP11B2 and mRNA expression of transcription factors, such as NURR1, NGFIB, CREB, SF-1, and ATF-1, were down regulated by N1-desoxy QdNOs. The natural inhibitors of oxidant stress, oligomeric proanthocyanidins (OPC), could upregulate the expression of diverse transcription factors, including CYP11B1 and CYP11B2, and elevated aldosterone levels to reduce adrenal toxicity. This study demonstrated for the first time that N1-desoxy QdNOs have the potential to be the major toxic metabolites in adrenal toxicity, which may shed new light on the adrenal toxicity of these fascinating compounds and help to provide a basic foundation for the formulation of safety controls for animal products and the design of new QdNOs with less harmful effects.
Collapse
Affiliation(s)
- Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Chunhui Yang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Xun Luo
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Pu Guo
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Guyue Cheng
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Zhenli Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| |
Collapse
|
85
|
Jha MK, Lee WH, Suk K. Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders. Biochem Pharmacol 2015; 103:1-16. [PMID: 26556658 DOI: 10.1016/j.bcp.2015.11.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022]
Abstract
Recent neuroscience research has established the adult brain as a dynamic organ having a unique ability to undergo changes with time. Neuroglia, especially microglia and astrocytes, provide dynamicity to the brain. Activation of these glial cells is a major component of the neuroinflammatory responses underlying brain injury and neurodegeneration. Glial cells execute functional reaction programs in response to diverse microenvironmental signals manifested by neuropathological conditions. Activated microglia exist along a continuum of two functional states of polarization namely M1-type (classical/proinflammatory activation) and M2-type (alternative/anti-inflammatory activation) as in macrophages. The balance between classically and alternatively activated microglial phenotypes influences disease progression in the CNS. The classically activated state of microglia drives the neuroinflammatory response and mediates the detrimental effects on neurons, whereas in their alternative activation state, which is apparently a beneficial activation state, the microglia play a crucial role in tissue maintenance and repair. Likewise, in response to immune or inflammatory microenvironments astrocytes also adopt neurotoxic or neuroprotective phenotypes. Reactive astrocytes exhibit two distinctive functional phenotypes defined by pro- or anti-inflammatory gene expression profile. In this review, we have thoroughly covered recent advances in the understanding of the functional polarization of brain and peripheral glia and its implications in neuroinflammation and neurological disorders. The identifiable phenotypes adopted by neuroglia in response to specific insult or injury can be exploited as promising diagnostic markers of neuroinflammatory diseases. Furthermore, harnessing the beneficial effects of the polarized glia could undoubtedly pave the way for the formulation of novel glia-based therapeutic strategies for diverse neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
86
|
Wan D, Wang X, Wu Q, Lin P, Pan Y, Sattar A, Huang L, Ahmad I, Zhang Y, Yuan Z. Integrated Transcriptional and Proteomic Analysis of Growth Hormone Suppression Mediated by Trichothecene T-2 Toxin in Rat GH3 Cells. Toxicol Sci 2015; 147:326-38. [PMID: 26141394 DOI: 10.1093/toxsci/kfv131] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Chronic exposure to trichothecenes is known to disturb insulin-like growth factor 1 and signaling of insulin and leptin hormones and causes considerable growth retardation in animals. However, limited information was available on mechanisms underlying trichothecene-induced growth retardation. In this study, we employed an integrated transcriptomics, proteomics, and RNA interference (RNAi) approach to study the molecular mechanisms underlying trichothecene cytotoxicity in rat pituitary adenoma GH3 cells. Our results showed that trichothecenes suppressed the synthesis of growth hormone 1 (Gh1) and inhibited the eukaryotic transcription and translation initiation by suppressing aminoacyl-tRNA synthetases transcription, inducing eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) and reducing eukaryotic translation initiation factor 5 a. The sulfhydryl oxidases , protein disulfide isomerase,and heat shock protein 90 (were greatly reduced, which resulted in adverse regulation of protein processing and folding. Differential genes and proteins associated with a decline in energy metabolism and cell cycle arrest were also found in our study. However, use of RNAi to interfere with hemopoietic cell kinase (Hck) and EIF2AK2 transcriptions or use of chemical inhibitors of MAPK, p38, Ras, and JNK partially reversed the reduction of Gh1 levels induced by trichothecenes. It indicated that the activation of MAPKs, Hck, and EIF2AK2 were important for trichothecene-induced growth hormone suppression. Considering the potential hazards of exposure to trichothecenes, our findings could help to improve our understanding regarding human and animal health implications.
Collapse
Affiliation(s)
- Dan Wan
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China; Research Center of Healthy Livestock Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xu Wang
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Qinghua Wu
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; College of Life Science, Yangtze University, Jingzhou, Hubei, China; and Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pingping Lin
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Yuanhu Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Adeel Sattar
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Lingli Huang
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University
| | - Ijaz Ahmad
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Yuanyuan Zhang
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University
| | - Zonghui Yuan
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China;
| |
Collapse
|
87
|
Wang X, Wu Q, Wan D, Liu Q, Chen D, Liu Z, Martínez-Larrañaga MR, Martínez MA, Anadón A, Yuan Z. Fumonisins: oxidative stress-mediated toxicity and metabolism in vivo and in vitro. Arch Toxicol 2015; 90:81-101. [PMID: 26419546 DOI: 10.1007/s00204-015-1604-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Fumonisins (FBs) are widespread Fusarium toxins commonly found as corn contaminants. FBs could cause a variety of diseases in animals and humans, such as hepatotoxic, nephrotoxic, hepatocarcinogenic and cytotoxic effects in mammals. To date, almost no review has addressed the toxicity of FBs in relation to oxidative stress and their metabolism. The focus of this article is primarily intended to summarize the progress in research associated with oxidative stress as a plausible mechanism for FB-induced toxicity as well as the metabolism. The present review showed that studies have been carried out over the last three decades to elucidate the production of reactive oxygen species (ROS) and oxidative stress as a result of FBs treatment and have correlated them with various types of FBs toxicity, indicating that oxidative stress plays critical roles in the toxicity of FBs. The major metabolic pathways of FBs are hydrolysis, acylation and transamination. Ceramide synthase, carboxylesterase FumD and aminotransferase FumI could degrade FB1 and FB2. The cecal microbiota of pigs and alkaline processing such as nixtamalization can also transform FB1 into metabolites. Most of the metabolites of FB1 were less toxic than FB1, except its partial (pHFB1) metabolites. Further understanding of the role of oxidative stress in FB-induced toxicity will throw new light on the use of antioxidants, scavengers of ROS, as well as on the blind spots of metabolism and the metabolizing enzymes of FBs. The present review might contribute to reveal the toxicity of FBs and help to protect against their oxidative damage.
Collapse
Affiliation(s)
- Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Dan Wan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhenli Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - María Rosa Martínez-Larrañaga
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María Aránzazu Martínez
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Arturo Anadón
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| |
Collapse
|
88
|
Wang X, Wan D, Ihsan A, Liu Q, Cheng G, Li J, Liu Z, Yuan Z. Mechanism of adrenocortical toxicity induced by quinocetone and its bidesoxy-quinocetone metabolite in porcine adrenocortical cells in vitro. Food Chem Toxicol 2015; 84:115-24. [PMID: 26296292 DOI: 10.1016/j.fct.2015.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/21/2015] [Accepted: 08/15/2015] [Indexed: 11/17/2022]
Abstract
Quinocetone (QCT) is a new feeding antibacterial agent in the QdNOs family. The mechanism of its adrenal toxicity is far from clear. This study was conducted to estimate the adrenal cell damage induced by QCT and its bidesoxy-quinocetone (B-QCT) metabolite and to further investigate their mechanisms. Following doses of QCT increasing from 5 to 50 μM, cell apoptosis and necrosis, mitochondrial dysfunction and redox imbalance were observed in porcine adrenocortical cells. The mRNA levels of the six components of intermediary enzymes and the adrenal renin-angiotensin-aldosterone system (RAAS) displayed a dysregulation induced by QCT, indicating that QCT might influence aldosterone secretion not only through the upstream of the production but also through the downstream of the adrenal RAAS pathway. In contrast, B-QCT had few toxic effects on the cell apoptosis, mitochondrial dysfunction and redox imbalance. Moreover, LCMS-IT-TOF analysis showed that no desoxy metabolites of QCT were found in either cell lysate or supernatant samples. In conclusion, we reported on the cytotoxicity in porcine adrenocortical cells exposed to QCT via oxidative stress, which raised awareness that its toxic effects resulted from N→O groups, and its toxic mechanism might involve the interference of the steroid hormone biosynthesis pathway.
Collapse
Affiliation(s)
- Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Dan Wan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Juan Li
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Zhenli Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| |
Collapse
|
89
|
Mishra S, Dwivedi PD, Pandey HP, Das M. Role of oxidative stress in Deoxynivalenol induced toxicity. Food Chem Toxicol 2014; 72:20-9. [DOI: 10.1016/j.fct.2014.06.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
|
90
|
Wu Q, Wang X, Wan D, Li J, Yuan Z. Crosstalk of JNK1-STAT3 is critical for RAW264.7 cell survival. Cell Signal 2014; 26:2951-60. [PMID: 25269780 DOI: 10.1016/j.cellsig.2014.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/07/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023]
Abstract
T-2 toxin, a major compound of trichothecenes, inhibits protein synthesis and induces inflammation and cell apoptosis through the activation of MAPK pathway. The JAK/STAT pathway has recently been shown to be downstream targets of trichothecenes. However, whether there is any crosstalk between JNK and JAK/STAT pathways in trichothecene toxicity has not been studied. In the present study, we explored this potential in RAW264.7 cells treated with T-2 toxin. Our results revealed a crosstalk between JNK1 and STAT3 after T-2 toxin treatment, which was mediated by K-Ras. T-2 toxin treatment resulted in rapid phosphorylation, and more importantly, JNK1-STAT3 signaling pathway was shown to maintain the normal function of the mitochondria and to inhibit T-2 toxin-induced apoptosis. Therefore, this pathway was considered to be a potential cell survival pathway. Breakdown and degranulation of ribosomes in the rough endoplasmic reticulum and swelling of mitochondria were clearly visible after the cells had been incubated with T-2 toxin for 12h. Our data suggest that T-2 toxin had a Janus face: it induced both apoptotic and cell survival pathways. These results suggest that the crosstalk and the balance between MAPK and JAK/STAT pathway might be involved in T-2 toxin-induced apoptosis in RAW264.7 cells.
Collapse
Affiliation(s)
- Qinghua Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dan Wan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Juan Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
91
|
Deoxynivalenol: signaling pathways and human exposure risk assessment—an update. Arch Toxicol 2014; 88:1915-28. [DOI: 10.1007/s00204-014-1354-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
92
|
Salimian J, Arefpour MA, Riazipour M, Poursasan N. Immunomodulatory effects of selenium and vitamin E on alterations in T lymphocyte subsets induced by T-2 toxin. Immunopharmacol Immunotoxicol 2014; 36:275-81. [PMID: 24953123 DOI: 10.3109/08923973.2014.931420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED Abstract Context: T-2 toxin, a potent mycotoxin, has serious effects on immune system. OBJECTIVE Here, the effects of a sublethal dose of this toxin on T lymphocyte sub-population levels and the potential protective effects from treatment with selenium or vitamin E were studied. MATERIALS AND METHODS After having determined the sublethal dose of the T-2 toxin in Balb/c mice hosts, the post-injection kinetics of changes in T lymphocyte sub-population (CD3(+), CD4(+) and CD8(+) cells) profiles were analyzed via flow cytometry. For these studies, the selenium and vitamin E were either provided to the mice before or concurrent with the toxin. RESULTS The results show that after a sublethal dose of T-2 alone, the number of CD8(+) T-lymphocytes was significantly decreased at 12 h and normalized at 48 h. In contrast, level of CD3(+) and CD4(+) T-lymphocytes were significantly increased at 24 h and returned to normal after 48 h. When selenium was injected into the mice 24 h before or concurrent with the T-2, the effects on CD8(+) cells were mitigated. Oddly, only when the selenium was given with the toxin could the effects on the CD3(+) and CD4(+) cells be altered. Vitamin E, when injected 24 h before or concurrent with the T-2 toxin, was only able to impact upon the CD8(+) lymphocyte alterations induced by the toxin. CONCLUSIONS Compared with vitamin E, it seems that selenium could assert an important effect against the immunotoxic effects of T-2 toxin against T lymphocytes.
Collapse
Affiliation(s)
- Jafar Salimian
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | | | | | | |
Collapse
|
93
|
Choi Y, Kim JK, Yoo JY. NFκB and STAT3 synergistically activate the expression of FAT10, a gene counteracting the tumor suppressor p53. Mol Oncol 2014; 8:642-55. [PMID: 24518302 DOI: 10.1016/j.molonc.2014.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation is one of the main causes of cancer, yet the molecular mechanism underlying this effect is not fully understood. In this study, we identified FAT10 as a potential target gene of STAT3, the expression of which is synergistically induced by NFκB co-stimulation. STAT3 binding stabilizes NFκB on the FAT10 promoter and leads to maximum induction of FAT10 gene expression. Increased FAT10 represses the transcriptional activity of the tumor suppressor p53, a protein that accelerates the protein degradation of FAT10. This FAT10-p53 double-negative regulation is critical in the control of tumorigenesis, as overexpressed FAT10 facilitates the tumor progression in the solid tumor model. In conclusion, transcriptional synergy between STAT3 and NFκB functions to put weight on FAT10 in the mutually inhibitory FAT10-p53 regulatory loop and thus favors tumorigenesis under inflammatory conditions.
Collapse
Affiliation(s)
- Yongwook Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jong Kyoung Kim
- European Bioinformatics Institute, Wellcome Trust Genome Sciences Campus, Cambridge, UK
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
94
|
Zhuang Z, Yang D, Huang Y, Wang S. Study on the apoptosis mechanism induced by T-2 toxin. PLoS One 2013; 8:e83105. [PMID: 24386148 PMCID: PMC3873290 DOI: 10.1371/journal.pone.0083105] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/30/2013] [Indexed: 12/28/2022] Open
Abstract
T-2 toxin is known to induce apoptosis in mammalian cells. The mechanism of apoptosis induced by T-2 toxin has been proposed to be linked with oxidative stress and mitochondrial pathway. In the current study, the toxic effect of T-2 on Hela, Bel-7402, and Chang liver cells was examined in dose-dependent and time-dependent manner by MTT assay. Caspase-3 was found to be up-regulated under T-2 toxin stress, which suggested that T-2 toxin induced cell apoptosis. Endogenous GSH and MDA levels in all three cell lines were found down- and up-regulated respectively, which indicated the link between toxic effect of T-2 toxin and intracellular oxidative stress. It was also found by MTT assay that NAC, which maintained the level of GSH in cells, could protect cells from death. Western-blot result showed that the level of both activated Caspase-8 and Caspase-9 increased when cells were treated by T-2 toxin. Caspase-9 was found to be activated earlier than Caspase-8. It was also found that p53 was up-regulated under T-2 toxin stress in the study. These results implied that the effect of T-2 toxin on cells was apoptosis rather than necrosis, and it was probably induced through mitochondrial pathway. To the best of our knowledge, the present study is the first to show that JunD is down-regulated in T-2 toxin induced apoptosis. By construction of an over-expression vector for the JunD gene, we observed that the survival ratio of JunD over-expressed cells obviously increased under T-2 toxin stress. These results suggested that the mechanism of T-2 induced cell death was closely connected with oxidative stress, and that JunD plays an important role in the defensive process against T-2 toxin stress.
Collapse
Affiliation(s)
- Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daibin Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaling Huang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail:
| |
Collapse
|
95
|
Thomas J, Garg ML, Smith DW. Dietary resveratrol supplementation normalizes gene expression in the hippocampus of streptozotocin-induced diabetic C57Bl/6 mice. J Nutr Biochem 2013; 25:313-8. [PMID: 24456733 DOI: 10.1016/j.jnutbio.2013.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/09/2013] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with cognitive impairment and brain aging, with alterations in hippocampal neurogenesis and synaptic plasticity implicated in these changes. As the prevalence of diabetes continues to rise, readily implemented strategies are increasingly needed in order to protect the brain's cognitive functions. One possibility is resveratrol (RES) (3,5,4- trihydroxystilbene), a polyphenol of the phytoalexin family that has been shown to be protective in a number of neuropathology paradigms. In the present study, we sought to determine whether dietary supplementation with RES has potential for the protection of cognitive functions in diabetes. Diabetes was induced using streptozotocin, and once stable, animals received AIN93G rodent diet supplemented with RES for 6 weeks. Genome-wide expression analysis was conducted on the hippocampus and genes of interest were confirmed by quantitative, real-time polymerase chain reaction. Genome-wide gene expression analysis of the hippocampus revealed that RES supplementation of the diabetic group resulted in 481 differentially expressed genes compared to non-supplemented diabetic mice. Intriguingly, gene expression that was previously found significantly altered in the hippocampus of diabetic mice, and that is implicated in neurogenesis and synaptic plasticity (Hdac4, Hat1, Wnt7a, ApoE), was normalized following RES supplementation. In addition, pathway analysis revealed Jak-Stat signaling was the most significantly enriched pathway. The Jak-Stat pathway induces a pro-inflammatory signaling cascade, and we found most genes involved in this cascade (e.g. Il15, Il22, Socs2, Socs5) had significantly lower expression following RES supplementation. These data indicate RES could be neuroprotective and beneficial for the maintenance of cognitive function in diabetes.
Collapse
Affiliation(s)
- Jency Thomas
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia; Nutraceuticals Research Group, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Manohar Lal Garg
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia; Nutraceuticals Research Group, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Doug William Smith
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Research Centre for Translational Neuroscience and Mental Health, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
96
|
Cho SO, Lim JW, Kim H. Red ginseng extract inhibits the expression of MCP-1 and iNOS in Helicobacter pylori-infected gastric epithelial cells by suppressing the activation of NADPH oxidase and Jak2/Stat3. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:761-764. [PMID: 24055641 DOI: 10.1016/j.jep.2013.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMCOLOGICAL RELEVANCE Helicobacter pylori induced oxidative stress represents an important mechanism leading to expression of inflammatory mediators. Korean red ginseng is used in traditional medicine to inhibit inflammation. However, the anti-inflammatory mechanism of red ginseng is still under investigation. Thus, we investigated whether Korean red ginseng extract (RGE) inhibits NADPH oxidase, a source of reactive oxygen species (ROS), and the Jak2/Stat3 pathway, which mediates the expression of inflammatory mediators, in Helicobacter pylori-infected gastric epithelial cells. MATERIALS AND METHODS A standardized RGE was supplied by the Korea Ginseng Corporation. Human gastric epithelial cells (AGS) were treated with RGE and stimulated with Helicobacter pylori. NADPH oxidase activity, ROS levels, activation of Jak2/Stat3, and induction of MCP-1 and iNOS were determined. RESULTS Helicobacter pylori infection resulted in an increase in ROS and activation of NADPH oxidase and Jak2/Stat3, which induced the expression of MCP-1 and iNOS in AGS cells. The induction of MCP-1 and iNOS was inhibited by both the Jak2/Stat3 inhibitor AG490 and RGE in Helicobacter pylori-infected cells. RGE suppressed NADPH oxidase activity by inhibiting translocation of cytosolic subunits p67phox and p47phox to the membrane and reduced ROS levels in Helicobacter pylori-infected cells. CONCLUSION RGE inhibits the expression of MCP-1 and iNOS by suppressing the activation of NADPH oxidase and Jak2/Stat3 in Helicobacter pylori-infected gastric epithelial cells.
Collapse
Affiliation(s)
- Soon Ok Cho
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | |
Collapse
|
97
|
Wang X, Wang W, Cheng G, Huang L, Chen D, Tao Y, Pan Y, Hao H, Wu Q, Wan D, Liu Z, Wang Y, Yuan Z. High Risk of Embryo-Fetal Toxicity: Placental Transfer of T-2 Toxin and Its Major Metabolite HT-2 Toxin in BeWo Cells. Toxicol Sci 2013; 137:168-78. [DOI: 10.1093/toxsci/kft233] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
98
|
Li SJ, Pasmans F, Croubels S, Verbrugghe E, Van Waeyenberghe L, Yang Z, Haesebrouck F, Martel A. T-2 toxin impairs antifungal activities of chicken macrophages against Aspergillus fumigatus conidia but promotes the pro-inflammatory responses. Avian Pathol 2013; 42:457-63. [PMID: 23930935 DOI: 10.1080/03079457.2013.822958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aspergillosis is the most common fungal disease of the avian respiratory tract and is caused primarily by Aspergillus fumigatus. The respiratory macrophages provide important defence against aspergillosis. T-2 toxin (T-2), a trichothecene mycotoxin produced by Fusarium spp. in improperly stored agricultural products, has immunomodulatory effects. We studied the impact of T-2 on the antifungal response of the chicken macrophage cell line HD-11 against A. fumigatus infection. The macrophages were first exposed to 0.5 to 10 ng/ml T-2 for 24 h, and then their viability, antifungal activity, and cytokine expression in response to A. fumigatus conidial infection were determined. The viability of macrophages decreased when exposed to T-2 at concentrations higher than 1 ng/ml. One hour after conidial infection, phagocytosed conidia were observed in 30% of the non-T-2-exposed macrophages, but in only 5% of the macrophages exposed to 5 ng/ml T-2. Seven hours after infection, 24% of the conidia associated with non-T-2-exposed macrophages germinated, in contrast to 75% of those with macrophages exposed to 5 ng/ml T-2. A. fumigatus infection induced upregulation of interleukin (IL)-1β, CXCLi1, CXCLi2 and IL-12β, and downregulation of transforming growth factor-β4 in macrophages. Exposure of A. fumigatus-infected macrophages to T-2 at 1 to 5 ng/ml further upregulated the expression of IL-1β, IL-6, CCLi2, CXCLi1, CXCLi2, IL-18 (at 1 and 2 ng/ml) and IL-12β, and further downregulated that of transforming growth factor-β4 (at 5 ng/ml). In conclusion, T-2 impaired the antifungal activities of chicken macrophages against A. fumigatus conidia, but might stimulate immune response by upregulating the expression of pro-inflammatory cytokines, chemokines and T-helper 1 cytokines.
Collapse
Affiliation(s)
- Shao-Ji Li
- a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Thomas J, Garg ML, Smith DW. Dietary supplementation with resveratrol and/or docosahexaenoic acid alters hippocampal gene expression in adult C57Bl/6 mice. J Nutr Biochem 2013; 24:1735-40. [PMID: 23746933 DOI: 10.1016/j.jnutbio.2013.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 03/06/2013] [Indexed: 12/27/2022]
Abstract
The hippocampus is an important brain structure for multiple cognitive functions, including memory formation. It is particularly sensitive to insults, such as stress, ischemia, and aging; all of these can affect hippocampal and therefore cognitive function. To understand the potential of diet for the preservation of hippocampal function, we investigated the effects of dietary supplementation with resveratrol (RES) or docosahexaenoic acid (DHA), or their combination, on hippocampal gene expression in adult C57BL/6 mice. Animals in the supplemented group received either 50 mg/kg/day of RES or DHA, while the combination group received 50 mg/kg/day of each supplement. Dietary supplements were mixed with the AIN93G diet, and supplementation lasted 6 weeks. The control group received AIN93G diet alone for the same period. At the end of the experiment, the hippocampi were processed for genome-wide gene expression and pathway analyses. Most of the genes that were significantly altered were associated with inflammatory responses as determined by pathway analysis. RES-supplemented animals showed decreased expression of IL-6 (P=.001), MAPKapk2 (P=.015), and increased expression for PI3KR2 (P=.034) and Wnt7a (P=.004) expression. DHA-supplemented animals showed a decreased IL-6 (P=.003) and an increased Wnt7a (P=.003) expression. Animals on the combination diet showed a decreased IL-6 (P=.005) and Apolipoprotien E (ApoE) (P=.035) expression. Our findings demonstrate that hippocampal gene expression is significantly altered by all three dietary supplementation regimes. Moreover, our analysis indicates that RES and DHA likely exert their beneficial effects through antiinflammatory mechanisms.
Collapse
Affiliation(s)
- Jency Thomas
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia; Nutraceuticals Research Group, University of Newcastle, Callaghan, NSW-2308, Australia
| | | | | |
Collapse
|
100
|
From the gut to the brain: journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins (Basel) 2013; 5:784-820. [PMID: 23612752 PMCID: PMC3705292 DOI: 10.3390/toxins5040784] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 12/13/2022] Open
Abstract
Mycotoxins are fungal secondary metabolites contaminating food and causing toxicity to animals and humans. Among the various mycotoxins found in crops used for food and feed production, the trichothecene toxin deoxynivalenol (DON or vomitoxin) is one of the most prevalent and hazardous. In addition to native toxins, food also contains a large amount of plant and fungal derivatives of DON, including acetyl-DON (3 and 15ADON), glucoside-DON (D3G), and potentially animal derivatives such as glucuronide metabolites (D3 and D15GA) present in animal tissues (e.g., blood, muscle and liver tissue). The present review summarizes previous and very recent experimental data collected in vivo and in vitro regarding the transport, detoxification/metabolism and physiological impact of DON and its derivatives on intestinal, immune, endocrine and neurologic functions during their journey from the gut to the brain.
Collapse
|