51
|
Kema GHJ, Mirzadi Gohari A, Aouini L, Gibriel HAY, Ware SB, van den Bosch F, Manning-Smith R, Alonso-Chavez V, Helps J, Ben M'Barek S, Mehrabi R, Diaz-Trujillo C, Zamani E, Schouten HJ, van der Lee TAJ, Waalwijk C, de Waard MA, de Wit PJGM, Verstappen ECP, Thomma BPHJ, Meijer HJG, Seidl MF. Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance. Nat Genet 2018; 50:375-380. [PMID: 29434356 DOI: 10.1038/s41588-018-0052-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/06/2018] [Indexed: 11/09/2022]
Abstract
Host resistance and fungicide treatments are cornerstones of plant-disease control. Here, we show that these treatments allow sex and modulate parenthood in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that the Z. tritici-wheat interaction complies with the gene-for-gene model by identifying the effector AvrStb6, which is recognized by the wheat resistance protein Stb6. Recognition triggers host resistance, thus implying removal of avirulent strains from pathogen populations. However, Z. tritici crosses on wheat show that sex occurs even with an avirulent parent, and avirulence alleles are thereby retained in subsequent populations. Crossing fungicide-sensitive and fungicide-resistant isolates under fungicide pressure results in a rapid increase in resistance-allele frequency. Isolates under selection always act as male donors, and thus disease control modulates parenthood. Modeling these observations for agricultural and natural environments reveals extended durability of host resistance and rapid emergence of fungicide resistance. Therefore, fungal sex has major implications for disease control.
Collapse
Affiliation(s)
- Gerrit H J Kema
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands. .,Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands.
| | - Amir Mirzadi Gohari
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands.,Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Lamia Aouini
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Hesham A Y Gibriel
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Sarah B Ware
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands.,Department of Biological Sciences, Benedictine University, Lisle, IL, USA
| | | | | | | | | | - Sarrah Ben M'Barek
- Laboratory of Molecular Plant Physiology, Biotechnology Center of Borj Cedria (CBBC), Hammam-Lif, Tunisia
| | - Rahim Mehrabi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Caucasella Diaz-Trujillo
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands.,Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Elham Zamani
- Department of Plant Pathology, Tarbiat Modares University, Tehran, Iran
| | - Henk J Schouten
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Theo A J van der Lee
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Cees Waalwijk
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Maarten A de Waard
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Els C P Verstappen
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Harold J G Meijer
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
52
|
Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat Genet 2018; 50:368-374. [PMID: 29434355 DOI: 10.1038/s41588-018-0051-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023]
Abstract
Deployment of fast-evolving disease-resistance genes is one of the most successful strategies used by plants to fend off pathogens1,2. In gene-for-gene relationships, most cloned disease-resistance genes encode intracellular nucleotide-binding leucine-rich-repeat proteins (NLRs) recognizing pathogen-secreted isolate-specific avirulence (Avr) effectors delivered to the host cytoplasm3,4. This process often triggers a localized hypersensitive response, which halts further disease development 5 . Here we report the map-based cloning of the wheat Stb6 gene and demonstrate that it encodes a conserved wall-associated receptor kinase (WAK)-like protein, which detects the presence of a matching apoplastic effector6-8 and confers pathogen resistance without a hypersensitive response 9 . This report demonstrates gene-for-gene disease resistance controlled by this class of proteins in plants. Moreover, Stb6 is, to our knowledge, the first cloned gene specifying resistance to Zymoseptoria tritici, an important foliar fungal pathogen affecting wheat and causing economically damaging septoria tritici blotch (STB) disease10-12.
Collapse
|
53
|
Kettles GJ, Bayon C, Sparks CA, Canning G, Kanyuka K, Rudd JJ. Characterization of an antimicrobial and phytotoxic ribonuclease secreted by the fungal wheat pathogen Zymoseptoria tritici. THE NEW PHYTOLOGIST 2018; 217:320-331. [PMID: 28895153 PMCID: PMC5724701 DOI: 10.1111/nph.14786] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/11/2017] [Indexed: 05/19/2023]
Abstract
The fungus Zymoseptoria tritici is the causal agent of Septoria Tritici Blotch (STB) disease of wheat leaves. Zymoseptoria tritici secretes many functionally uncharacterized effector proteins during infection. Here, we characterized a secreted ribonuclease (Zt6) with an unusual biphasic expression pattern. Transient expression systems were used to characterize Zt6, and mutants thereof, in both host and non-host plants. Cell-free protein expression systems monitored the impact of Zt6 protein on functional ribosomes, and in vitro assays of cells treated with recombinant Zt6 determined toxicity against bacteria, yeasts and filamentous fungi. We demonstrated that Zt6 is a functional ribonuclease and that phytotoxicity is dependent on both the presence of a 22-amino-acid N-terminal 'loop' region and its catalytic activity. Zt6 selectively cleaves both plant and animal rRNA species, and is toxic to wheat, tobacco, bacterial and yeast cells, but not to Z. tritici itself. Zt6 is the first Z. tritici effector demonstrated to have a likely dual functionality. The expression pattern of Zt6 and potent toxicity towards microorganisms suggest that, although it may contribute to the execution of wheat cell death, it is also likely to have an important secondary function in antimicrobial competition and niche protection.
Collapse
Affiliation(s)
- Graeme J. Kettles
- Biointeractions & Crop ProtectionRothamsted ResearchHarpendenAL5 2JQUK
| | - Carlos Bayon
- Biointeractions & Crop ProtectionRothamsted ResearchHarpendenAL5 2JQUK
| | | | - Gail Canning
- Biointeractions & Crop ProtectionRothamsted ResearchHarpendenAL5 2JQUK
| | - Kostya Kanyuka
- Biointeractions & Crop ProtectionRothamsted ResearchHarpendenAL5 2JQUK
| | - Jason J. Rudd
- Biointeractions & Crop ProtectionRothamsted ResearchHarpendenAL5 2JQUK
| |
Collapse
|
54
|
Fones HN, Littlejohn GR. From Sample to Data: Preparing, Obtaining, and Analyzing Images of Plant-Pathogen Interactions Using Confocal Microscopy. Methods Mol Biol 2018; 1734:257-262. [PMID: 29288460 DOI: 10.1007/978-1-4939-7604-1_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This chapter describes the steps needed to inoculate host plants with a fungus of interest, and subsequently to visualize the infection using confocal microscopy. As an exemplar, we consider the interaction between wheat and the Septoria leaf blotch fungus, Zymoseptoria tritici. This method is easiest when a GFP- or other fluorophore-tagged strain of the studied fungus is available, but notes are also provided which describe possible staining techniques which may be employed if fluorescent fungus is unavailable in your system.
Collapse
|
55
|
Mohammadi N, Mehrabi R, Mirzadi Gohari A, Mohammadi Goltapeh E, Safaie N, Kema GHJ. The ZtVf1 transcription factor regulates development and virulence in the foliar wheat pathogen Zymoseptoria tritici. Fungal Genet Biol 2017; 109:26-35. [PMID: 29031630 DOI: 10.1016/j.fgb.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
The dimorphic fungal pathogen, Zymoseptoria tritici undergoes discrete developmental changes to complete its life cycle on wheat. Molecular mechanisms underlying morphogenesis during infection process of Z. tritici are poorly understood. In this study, we have investigated the role of ZtVf1 gene encoding a transcription factor belonging to C2-H2 subfamily. In planta assays revealed that ZtVf1 is required for virulence. Reduced necrotic lesions and low pycnidia density within the lesions resulted in significantly reduced virulence of ZtVf1 mutants. Cytological analysis showed that the impaired virulence of ZtVf1 mutants attributed to reduced penetration and colonization along with hampered pycnidia differentiation. In vitro phenotyping showed that ZtVf1 deletion affects hyphal branching and biomass production suggesting that the reduced tissue colonization by the ZtVf1 mutant might be due to lower hyphal branching and less fungal biomass production. In addition, the majority of infected substomatal cavities by the ZtVf1 mutant filled with compacted mycelia mat that did not differentiate to mature pycnidia indicating that the impaired melanization negatively affected pycnidia formation and maturation. The ZtVf1 might target multiple genes belonging to different cellular processes whose identification is of eminent interest to increase our understanding of this pathosystem. Overall, the data provided in this study indicates that attenuated pathogenicity of ZtVf1 mutant is due to involvement of this gene in the regulation of both early and late stages of infection.
Collapse
Affiliation(s)
- Naser Mohammadi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran; Dryland Agricultural Research Institute, Agricultural Research, Education & Extension Organization (ARREO), Maragheh, Iran
| | - Rahim Mehrabi
- Seed & Plant Improvement Institute, Agricultural Research, Education & Extension Organization (ARREO), P.O. Box 31585-4119, Karaj, Iran; Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Amir Mirzadi Gohari
- Department of Plant Pathology, Faculty of Agricultural Sciences and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ebrahim Mohammadi Goltapeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Gert H J Kema
- Laboratory of Phytopathology, Wageningen University and Research, 6700AA Wageningen, The Netherlands; Wageningen University and Research, Wageningen Plant Research, P.O. Box 16, 6700AA Wageningen, The Netherlands
| |
Collapse
|
56
|
King R, Urban M, Lauder RP, Hawkins N, Evans M, Plummer A, Halsey K, Lovegrove A, Hammond-Kosack K, Rudd JJ. A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces. PLoS Pathog 2017; 13:e1006672. [PMID: 29020037 PMCID: PMC5653360 DOI: 10.1371/journal.ppat.1006672] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/23/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022] Open
Abstract
Pathogenic fungi must extend filamentous hyphae across solid surfaces to cause diseases of plants. However, the full inventory of genes which support this is incomplete and many may be currently concealed due to their essentiality for the hyphal growth form. During a random T-DNA mutagenesis screen performed on the pleomorphic wheat (Triticum aestivum) pathogen Zymoseptoria tritici, we acquired a mutant unable to extend hyphae specifically when on solid surfaces. In contrast "yeast-like" growth, and all other growth forms, were unaffected. The inability to extend surface hyphae resulted in a complete loss of virulence on plants. The affected gene encoded a predicted type 2 glycosyltransferase (ZtGT2). Analysis of >800 genomes from taxonomically diverse fungi highlighted a generally widespread, but discontinuous, distribution of ZtGT2 orthologues, and a complete absence of any similar proteins in non-filamentous ascomycete yeasts. Deletion mutants of the ZtGT2 orthologue in the taxonomically un-related fungus Fusarium graminearum were also severely impaired in hyphal growth and non-pathogenic on wheat ears. ZtGT2 expression increased during filamentous growth and electron microscopy on deletion mutants (ΔZtGT2) suggested the protein functions to maintain the outermost surface of the fungal cell wall. Despite this, adhesion to leaf surfaces was unaffected in ΔZtGT2 mutants and global RNAseq-based gene expression profiling highlighted that surface-sensing and protein secretion was also largely unaffected. However, ΔZtGT2 mutants constitutively overexpressed several transmembrane and secreted proteins, including an important LysM-domain chitin-binding virulence effector, Zt3LysM. ZtGT2 likely functions in the synthesis of a currently unknown, potentially minor but widespread, extracellular or outer cell wall polysaccharide which plays a key role in facilitating many interactions between plants and fungi by enabling hyphal growth on solid matrices.
Collapse
Affiliation(s)
- Robert King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Martin Urban
- Wheat Pathogenomics Team, Department of BioInteractions and Crop Protection, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Rebecca P. Lauder
- Rothamsted Centre for Bioimaging, Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Nichola Hawkins
- Fungicide resistance group, Department of BioInteractions and Crop Protection, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Matthew Evans
- Cereal cell walls group, Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Amy Plummer
- Cereal cell walls group, Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Kirstie Halsey
- Rothamsted Centre for Bioimaging, Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Alison Lovegrove
- Cereal cell walls group, Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Kim Hammond-Kosack
- Wheat Pathogenomics Team, Department of BioInteractions and Crop Protection, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Jason J. Rudd
- Wheat Pathogenomics Team, Department of BioInteractions and Crop Protection, Rothamsted Research, Harpenden, Herts, United Kingdom
- * E-mail:
| |
Collapse
|
57
|
Fones HN, Eyles CJ, Kay W, Cowper J, Gurr SJ. A role for random, humidity-dependent epiphytic growth prior to invasion of wheat by Zymoseptoria tritici. Fungal Genet Biol 2017; 106:51-60. [PMID: 28694096 PMCID: PMC5556705 DOI: 10.1016/j.fgb.2017.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/02/2022]
Abstract
Zymoseptoria tritici causes Septoria leaf blotch of wheat. The prevailing paradigm of the Z. tritici-wheat interaction assumes fungal ingress through stomata within 24-48h, followed by days of symptomless infection. This is extrapolated from studies testing the mode of fungal ingress under optimal infection conditions. Here, we explicitly assess the timing of entry, using GFP-tagged Z. tritici. We show that early entry is comparatively rare, and extended epiphytic growth possible. We test the hypotheses that our data diverge from earlier studies due to: i. random ingress of Z. tritici into the leaf, with some early entry events; ii. previous reliance upon fungal stains, combined with poor attachment of Z. tritici to the leaf, leading to increased likelihood of observing internal versus external growth, compared to using GFP; iii. use of exceptionally high humidity to promote entry in previous studies. We combine computer simulation of leaf-surface growth with thousands of in planta observations to demonstrate that while spores germinate rapidly on the leaf, over 95% of fungi remain epiphytic, growing randomly over the leaf for ten days or more. We show that epiphytic fungi are easily detached from leaves by rinsing and that humidity promotes epiphytic growth, increasing infection rates. Together, these results explain why epiphytic growth has been dismissed and early ingress assumed. The prolonged epiphytic phase should inform studies of pathogenicity and virulence mutants, disease control strategies, and interpretation of the observed low in planta growth, metabolic quiescence and evasion of plant defences by Zymoseptoria during symptomless infection.
Collapse
Affiliation(s)
- Helen N Fones
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Chris J Eyles
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - William Kay
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Josh Cowper
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Sarah J Gurr
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK; Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK; Donder's Hon Chair, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
58
|
Cairns T, Meyer V. In silico prediction and characterization of secondary metabolite biosynthetic gene clusters in the wheat pathogen Zymoseptoria tritici. BMC Genomics 2017; 18:631. [PMID: 28818040 PMCID: PMC5561558 DOI: 10.1186/s12864-017-3969-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/31/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Fungal pathogens of plants produce diverse repertoires of secondary metabolites, which have functions ranging from iron acquisition, defense against immune perturbation, to toxic assaults on the host. The wheat pathogen Zymoseptoria tritici causes Septoria tritici blotch, a foliar disease which is a significant threat to global food security. Currently, there is limited knowledge of the secondary metabolite arsenal produced by Z. tritici, which significantly restricts mechanistic understanding of infection. In this study, we analyzed the genome of Z. tritici isolate IP0323 to identify putative secondary metabolite biosynthetic gene clusters, and used comparative genomics to predict their encoded products. RESULTS We identified 32 putative secondary metabolite clusters. These were physically enriched at subtelomeric regions, which may facilitate diversification of cognate products by rapid gene rearrangement or mutations. Comparative genomics revealed a four gene cluster with significant similarity to the ferrichrome-A biosynthetic locus of the maize pathogen Ustilago maydis, suggesting this siderophore is deployed by Z. tritici to acquire iron. The Z. tritici genome also contains several isoprenoid biosynthetic gene clusters, including one with high similarity to a carotenoid/opsin producing locus in several fungi. Furthermore, we identify putative phytotoxin biosynthetic clusters, suggesting Z. tritici can produce an epipolythiodioxopiperazine, and a polyketide and non-ribosomal peptide with predicted structural similarities to fumonisin and the Alternaria alternata AM-toxin, respectively. Interrogation of an existing transcriptional dataset suggests stage specific deployment of numerous predicted loci during infection, indicating an important role of these secondary metabolites in Z. tritici disease. CONCLUSIONS We were able to assign putative biosynthetic products to numerous clusters based on conservation amongst other fungi. However, analysis of the majority of secondary metabolite loci did not enable prediction of a cluster product, and consequently the capacity of these loci to play as yet undetermined roles in disease or other stages of the Z. tritici lifecycle is significant. These data will drive future experimentation for determining the role of these clusters and cognate secondary metabolite products in Z. tritici virulence, and may lead to discovery of novel bioactive molecules.
Collapse
Affiliation(s)
- Timothy Cairns
- Institute of Biotechnology, Department of Applied and Molecular Microbiology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| | - Vera Meyer
- Institute of Biotechnology, Department of Applied and Molecular Microbiology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| |
Collapse
|
59
|
Kuzdraliński A, Kot A, Szczerba H, Nowak M, Muszyńska M. A Review of Conventional PCR Assays for the Detection of Selected Phytopathogens of Wheat. J Mol Microbiol Biotechnol 2017; 27:175-189. [DOI: 10.1159/000477544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/30/2017] [Indexed: 11/19/2022] Open
Abstract
Infection of phyllosphere (stems, leaves, husks, and grains) by pathogenic fungi reduces the wheat yield and grain quality. Detection of the main wheat pathogenic fungi provides information about species composition and allows effective and targeted plant treatment. Since conventional procedures for the detection of these organisms are unreliable and time consuming, diagnostic DNA-based methods are required. Nucleic acid amplification technologies are independent of the morphological and biochemical characteristics of fungi. Microorganisms do not need to be cultured. Therefore, a number of PCR-based methodologies have been developed for the identification of key pathogenic fungi, such as <i>Fusarium</i> spp., <i>Puccinia</i> spp., <i>Zymoseptoria tritici</i>, <i>Parastagonospora nodorum</i>,<i> Blumeria graminis </i>f. sp.<i> tritici</i>, and<i> Pyrenophora tritici-repentis</i>. This article reviews frequently used DNA regions for fungus identification and discusses already known PCR assays for detection of the aforementioned wheat pathogens. We demonstrate that PCR-based wheat pathogen identification assays require further research. In particular, the number of diagnostic tests for <i>Fusarium graminearum</i>, <i>Puccinia</i> spp., and <i>P. tritici-repentis</i> are insufficient.
Collapse
|
60
|
Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, Ducasse A, Confais J, Compain J, Lapalu N, Amselem J, McDonald BA, Croll D, Palma-Guerrero J. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. THE NEW PHYTOLOGIST 2017; 214:619-631. [PMID: 28164301 DOI: 10.1111/nph.14434] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/09/2016] [Indexed: 05/06/2023]
Abstract
Zymoseptoria tritici is the causal agent of Septoria tritici blotch, a major pathogen of wheat globally and the most damaging pathogen of wheat in Europe. A gene-for-gene (GFG) interaction between Z. tritici and wheat cultivars carrying the Stb6 resistance gene has been postulated for many years, but the genes have not been identified. We identified AvrStb6 by combining quantitative trait locus mapping in a cross between two Swiss strains with a genome-wide association study using a natural population of c. 100 strains from France. We functionally validated AvrStb6 using ectopic transformations. AvrStb6 encodes a small, cysteine-rich, secreted protein that produces an avirulence phenotype on wheat cultivars carrying the Stb6 resistance gene. We found 16 nonsynonymous single nucleotide polymorphisms among the tested strains, indicating that AvrStb6 is evolving very rapidly. AvrStb6 is located in a highly polymorphic subtelomeric region and is surrounded by transposable elements, which may facilitate its rapid evolution to overcome Stb6 resistance. AvrStb6 is the first avirulence gene to be functionally validated in Z. tritici, contributing to our understanding of avirulence in apoplastic pathogens and the mechanisms underlying GFG interactions between Z. tritici and wheat.
Collapse
Affiliation(s)
- Ziming Zhong
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Thierry C Marcel
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Fanny E Hartmann
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Xin Ma
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Clémence Plissonneau
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Marcello Zala
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Aurélie Ducasse
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Johann Confais
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Jérôme Compain
- UR URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Nicolas Lapalu
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
- UR URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Joëlle Amselem
- UR URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Bruce A McDonald
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Daniel Croll
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
- Laboratory of Evolutionary Genetics, University of Neuchâtel Institute of Biology Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
| | | |
Collapse
|
61
|
Lightfoot DJ, Mcgrann GRD, Able AJ. The role of a cytosolic superoxide dismutase in barley-pathogen interactions. MOLECULAR PLANT PATHOLOGY 2017; 18:323-335. [PMID: 26992055 PMCID: PMC6638290 DOI: 10.1111/mpp.12399] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Reactive oxygen species (ROS), including superoxide ( O2·-/ HO2·) and hydrogen peroxide (H2 O2 ), are differentially produced during resistance responses to biotrophic pathogens and during susceptible responses to necrotrophic and hemi-biotrophic pathogens. Superoxide dismutase (SOD) is responsible for the catalysis of the dismutation of O2·-/ HO2· to H2 O2 , regulating the redox status of plant cells. Increased SOD activity has been correlated previously with resistance in barley to the hemi-biotrophic pathogen Pyrenophora teres f. teres (Ptt, the causal agent of the net form of net blotch disease), but the role of individual isoforms of SOD has not been studied. A cytosolic CuZnSOD, HvCSD1, was isolated from barley and characterized as being expressed in tissue from different developmental stages. HvCSD1 was up-regulated during the interaction with Ptt and to a greater extent during the resistance response. Net blotch disease symptoms and fungal growth were not as pronounced in transgenic HvCSD1 knockdown lines in a susceptible background (cv. Golden Promise), when compared with wild-type plants, suggesting that cytosolic O2·-/ HO2· contributes to the signalling required to induce a defence response to Ptt. There was no effect of HvCSD1 knockdown on infection by the hemi-biotrophic rice blast pathogen Magnaporthe oryzae or the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei, but HvCSD1 also played a role in the regulation of lesion development by methyl viologen. Together, these results suggest that HvCSD1 could be important in the maintenance of the cytosolic redox status and in the differential regulation of responses to pathogens with different lifestyles.
Collapse
Affiliation(s)
- Damien J. Lightfoot
- School of Agriculture, Food and WineThe University of AdelaideWaite Research Institute, PMB 1Glen OsmondSA5064Australia
- Present address:
Biological and Environmental Sciences & Engineering DivisionKing Abdullah University of Science and TechnologyThuwal, 23955–6900 Saudi Arabia
| | - Graham R. D. Mcgrann
- Department of Crop GeneticsJohn Innes CentreNorwichNR4 7UHUK
- Present address:
Crop Protection Team, Crop and Soil Systems Group, SRUCEdinburghEH9 3JGUK
| | - Amanda J. Able
- School of Agriculture, Food and WineThe University of AdelaideWaite Research Institute, PMB 1Glen OsmondSA5064Australia
| |
Collapse
|
62
|
Orton ES, Rudd JJ, Brown JKM. Early molecular signatures of responses of wheat to Zymoseptoria tritici in compatible and incompatible interactions. PLANT PATHOLOGY 2017; 66:450-459. [PMID: 28356604 PMCID: PMC5349288 DOI: 10.1111/ppa.12633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 05/07/2023]
Abstract
Zymoseptoria tritici, the causal agent of septoria tritici blotch, a serious foliar disease of wheat, is a necrotrophic pathogen that undergoes a long latent period. Emergence of insensitivity to fungicides, and pesticide reduction policies, mean there is a pressing need to understand septoria and control it through greater varietal resistance. Stb6 and Stb15, the most common qualitative resistance genes in modern wheat cultivars, determine specific resistance to avirulent fungal genotypes following a gene-for-gene relationship. This study investigated compatible and incompatible interactions of wheat with Z. tritici using eight combinations of cultivars and isolates, with the aim of identifying molecular responses that could be used as markers for disease resistance during the early, symptomless phase of colonization. The accumulation of TaMPK3 was estimated using western blotting, and the expression of genes implicated in gene-for-gene interactions of plants with a wide range of other pathogens was measured by qRT-PCR during the presymptomatic stages of infection. Production of TaMPK3 and expression of most of the genes responded to inoculation with Z. tritici but varied considerably between experimental replicates. However, there was no significant difference between compatible and incompatible interactions in any of the responses tested. These results demonstrate that the molecular biology of the gene-for-gene interaction between wheat and Zymoseptoria is unlike that in many other plant diseases, indicate that environmental conditions may strongly influence early responses of wheat to infection by Z. tritici, and emphasize the importance of including both compatible and incompatible interactions when investigating the biology of this complex pathosystem.
Collapse
Affiliation(s)
- E. S. Orton
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | | | |
Collapse
|
63
|
Kettles GJ, Bayon C, Canning G, Rudd JJ, Kanyuka K. Apoplastic recognition of multiple candidate effectors from the wheat pathogen Zymoseptoria tritici in the nonhost plant Nicotiana benthamiana. THE NEW PHYTOLOGIST 2017; 213:338-350. [PMID: 27696417 PMCID: PMC5132004 DOI: 10.1111/nph.14215] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/19/2016] [Indexed: 05/18/2023]
Abstract
The fungus Zymoseptoria tritici is a strictly apoplastic, host-specific pathogen of wheat leaves and causal agent of septoria tritici blotch (STB) disease. All other plants are considered nonhosts, but the mechanism of nonhost resistance (NHR) to Z. tritici has not been addressed previously. We sought to develop Nicotiana benthamiana as a system to study NHR against Z. tritici. Fluorescence microscopy and quantitative reverse transcription polymerase chain reactions were used to establish the interaction between Z. tritici and N. benthamiana. Agrobacterium-mediated transient expression was used to screen putative Z. tritici effector genes for recognition in N. benthamiana, and virus-induced gene silencing (VIGS) was employed to determine the role of two receptor-like kinases (RLKs), NbBAK1 and NbSOBIR1, in Z. tritici effector recognition. Numerous Z. tritici putative effectors (14 of 63 tested) induced cell death or chlorosis in N. benthamiana. For most, phenotypes were light-dependent and required effector secretion to the leaf apoplastic space. Moreover, effector-induced host cell death was dependent on NbBAK1 and NbSOBIR1. Our results indicate widespread recognition of apoplastic effectors from a wheat-infecting fungal pathogen in a taxonomically distant nonhost plant species presumably by cell surface immune receptors. This suggests that apoplastic recognition of multiple nonadapted pathogen effectors may contribute to NHR.
Collapse
Affiliation(s)
- Graeme J. Kettles
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Carlos Bayon
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Gail Canning
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Jason J. Rudd
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Kostya Kanyuka
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| |
Collapse
|
64
|
Wang R, Ning Y, Shi X, He F, Zhang C, Fan J, Jiang N, Zhang Y, Zhang T, Hu Y, Bellizzi M, Wang GL. Immunity to Rice Blast Disease by Suppression of Effector-Triggered Necrosis. Curr Biol 2016; 26:2399-2411. [DOI: 10.1016/j.cub.2016.06.072] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022]
|
65
|
The genome of the emerging barley pathogen Ramularia collo-cygni. BMC Genomics 2016; 17:584. [PMID: 27506390 PMCID: PMC4979122 DOI: 10.1186/s12864-016-2928-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 07/12/2016] [Indexed: 12/24/2022] Open
Abstract
Background Ramularia collo-cygni is a newly important, foliar fungal pathogen of barley that causes the disease Ramularia leaf spot. The fungus exhibits a prolonged endophytic growth stage before switching life habit to become an aggressive, necrotrophic pathogen that causes significant losses to green leaf area and hence grain yield and quality. Results The R. collo-cygni genome was sequenced using a combination of Illumina and Roche 454 technologies. The draft assembly of 30.3 Mb contained 11,617 predicted gene models. Our phylogenomic analysis confirmed the classification of this ascomycete fungus within the family Mycosphaerellaceae, order Capnodiales of the class Dothideomycetes. A predicted secretome comprising 1053 proteins included redox-related enzymes and carbohydrate-modifying enzymes and proteases. The relative paucity of plant cell wall degrading enzyme genes may be associated with the stealth pathogenesis characteristic of plant pathogens from the Mycosphaerellaceae. A large number of genes associated with secondary metabolite production, including homologs of toxin biosynthesis genes found in other Dothideomycete plant pathogens, were identified. Conclusions The genome sequence of R. collo-cygni provides a framework for understanding the genetic basis of pathogenesis in this important emerging pathogen. The reduced complement of carbohydrate-degrading enzyme genes is likely to reflect a strategy to avoid detection by host defences during its prolonged asymptomatic growth. Of particular interest will be the analysis of R. collo-cygni gene expression during interactions with the host barley, to understand what triggers this fungus to switch from being a benign endophyte to an aggressive necrotroph. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2928-3) contains supplementary material, which is available to authorized users.
Collapse
|
66
|
Palma-Guerrero J, Torriani SFF, Zala M, Carter D, Courbot M, Rudd JJ, McDonald BA, Croll D. Comparative transcriptomic analyses of Zymoseptoria tritici strains show complex lifestyle transitions and intraspecific variability in transcription profiles. MOLECULAR PLANT PATHOLOGY 2016; 17:845-59. [PMID: 26610174 PMCID: PMC6638511 DOI: 10.1111/mpp.12333] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 05/03/2023]
Abstract
Zymoseptoria tritici causes Septoria tritici blotch (STB) on wheat. The disease interaction is characterized by clearly defined temporal phases of infection, ultimately resulting in the death of host tissue. Zymoseptoria tritici is a highly polymorphic species with significant intraspecific variation in virulence profiles. We generated a deep transcriptomic sequencing dataset spanning the entire time course of an infection using a previously uncharacterized, highly virulent Z. tritici strain isolated from a Swiss wheat field. We found that seven clusters of gene transcription profiles explained the progression of the infection. The earliest highly up-regulated genes included chloroperoxidases, which may help the fungus cope with plant defences. The onset of necrotrophy was characterized by a concerted up-regulation of proteases, plant cell wall-degrading enzymes and lipases. Functions related to nutrition and growth characterized late necrotrophy and the transition to saprotrophic growth on dead plant tissue. We found that the peak up-regulation of genes essential for mating coincided with the necrotrophic phase. We performed an intraspecies comparative transcriptomics analysis using a comparable time course infection experiment of the genome reference isolate IPO323. Major components of the fungal infection transcriptome were conserved between the two strains. However, individual small, secreted proteins, proteases and cell wall-degrading enzymes showed strongly differentiated transcriptional profiles between isolates. Our analyses illustrate that successful STB infections involve complex transcriptomic remodelling to up-regulate distinct gene functions. Heterogeneity in transcriptomes among isolates may explain some of the considerable variation in virulence and host specialization found within the species.
Collapse
Affiliation(s)
- Javier Palma-Guerrero
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Stefano F F Torriani
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
- Syngenta Crop Protection AG, Schaffhauserstrasse, 4332, Stein, Switzerland
| | - Marcello Zala
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Dee Carter
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Mikaël Courbot
- Syngenta Crop Protection AG, Schaffhauserstrasse, 4332, Stein, Switzerland
| | - Jason J Rudd
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Daniel Croll
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
67
|
Orton ES, Brown JKM. Reduction of Growth and Reproduction of the Biotrophic Fungus Blumeria graminis in the Presence of a Necrotrophic Pathogen. FRONTIERS IN PLANT SCIENCE 2016; 7:742. [PMID: 27303429 PMCID: PMC4885842 DOI: 10.3389/fpls.2016.00742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/16/2016] [Indexed: 05/04/2023]
Abstract
Crops are attacked by many potential pathogens with differing life-history traits, which raises the question of whether or not the outcome of infection by one pathogen may be modulated by a change in the host environment brought on by infection by another pathogen. We investigated the host-mediated interaction between the biotroph Blumeria graminis f.sp. tritici (Bgt), the powdery mildew pathogen of wheat, and the necrotroph Zymoseptoria tritici, which has a long latent, endophytic phase following which it switches to a necrotrophic phase, resulting in the disease symptoms of Septoria tritici blotch. Both diseases are potentially severe in humid temperate climates and are controlled by fungicides and by growing wheat varieties with partial resistance. The compatible interaction between Z. tritici and the host reduced the number, size, and reproductive capacity of mildew colonies that a normally virulent Bgt isolate would produce but did not significantly alter the early development of Bgt on the leaf. The effect on virulent Bgt was elicited only by viable spores of Z. tritici. Notably, this effect was seen before the necrotic foliar symptoms induced by Z. tritici were visible, which implies there is a physiological interaction during the latent, endophytic period of Z. tritici, which either takes place directly between this fungus and Bgt or is mediated by the wheat leaf. Information on how different pathogens interact in host plants may allow plant breeders and others to improve the design of screening trials and selection of germplasm.
Collapse
|
68
|
Utilizing Gene Tree Variation to Identify Candidate Effector Genes in Zymoseptoria tritici. G3-GENES GENOMES GENETICS 2016; 6:779-91. [PMID: 26837952 PMCID: PMC4825649 DOI: 10.1534/g3.115.025197] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Zymoseptoria tritici is a host-specific, necrotrophic pathogen of wheat. Infection by Z. tritici is characterized by its extended latent period, which typically lasts 2 wks, and is followed by extensive host cell death, and rapid proliferation of fungal biomass. This work characterizes the level of genomic variation in 13 isolates, for which we have measured virulence on 11 wheat cultivars with differential resistance genes. Between the reference isolate, IPO323, and the 13 Australian isolates we identified over 800,000 single nucleotide polymorphisms, of which ∼10% had an effect on the coding regions of the genome. Furthermore, we identified over 1700 probable presence/absence polymorphisms in genes across the Australian isolates using de novo assembly. Finally, we developed a gene tree sorting method that quickly identifies groups of isolates within a single gene alignment whose sequence haplotypes correspond with virulence scores on a single wheat cultivar. Using this method, we have identified < 100 candidate effector genes whose gene sequence correlates with virulence toward a wheat cultivar carrying a major resistance gene.
Collapse
|
69
|
Ben M'Barek S, Cordewener JHG, van der Lee TAJ, America AHP, Mirzadi Gohari A, Mehrabi R, Hamza S, de Wit PJGM, Kema GHJ. Proteome catalog of Zymoseptoria tritici captured during pathogenesis in wheat. Fungal Genet Biol 2016; 79:42-53. [PMID: 26092789 DOI: 10.1016/j.fgb.2015.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 11/30/2022]
Abstract
Zymoseptoria tritici is an economically important pathogen of wheat. However, the molecular basis of pathogenicity on wheat is still poorly understood. Here, we present a global survey of the proteins secreted by this fungus in the apoplast of resistant (cv. Shafir) and susceptible (cv. Obelisk) wheat cultivars after inoculation with reference Z. tritici strain IPO323. The fungal proteins present in apoplastic fluids were analyzed by gel electrophoresis and by data-independent acquisition liquid chromatography/mass spectrometry (LC/MS(E)) combined with data-dependent acquisition LC-MS/MS. Subsequent mapping mass spectrometry-derived peptide sequence data against the genome sequence of strain IPO323 identified 665 peptides in the MS(E) and 93 in the LC-MS/MS mode that matched to 85 proteins. The identified fungal proteins, including cell-wall degrading enzymes and proteases, might function in pathogenicity, but the functions of many remain unknown. Most fungal proteins accumulated in cv. Obelisk at the onset of necrotrophy. This inventory provides an excellent basis for future detailed studies on the role of these genes and their encoded proteins during pathogenesis in wheat.
Collapse
Affiliation(s)
- Sarrah Ben M'Barek
- Wageningen University & Research Center, Plant Research International, 6708PB Wageningen, The Netherlands; Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, BP 901 Hammam-Lif-2050, Tunisia
| | - Jan H G Cordewener
- Wageningen University & Research Center, Plant Research International, 6708PB Wageningen, The Netherlands; Center for BioSystems and Genomics, 6700AA Wageningen, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Theo A J van der Lee
- Wageningen University & Research Center, Plant Research International, 6708PB Wageningen, The Netherlands
| | - Antoine H P America
- Wageningen University & Research Center, Plant Research International, 6708PB Wageningen, The Netherlands; Center for BioSystems and Genomics, 6700AA Wageningen, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Amir Mirzadi Gohari
- Wageningen University & Research Center, Plant Research International, 6708PB Wageningen, The Netherlands; Department of Plant Protection, College of Agriculture, University of Tehran, Plant Pathology Building, Karaj, Iran
| | - Rahim Mehrabi
- Wageningen University & Research Center, Plant Research International, 6708PB Wageningen, The Netherlands; Cereal Research Department, Seed and Plant Improvement Institute, Karaj, Iran
| | - Sonia Hamza
- Laboratory of genetics, National Agronomic Institute of Tunisia, 43 Avenue Charles Nicolle, 1082 Tunis, Tunisia
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Gerrit H J Kema
- Wageningen University & Research Center, Plant Research International, 6708PB Wageningen, The Netherlands.
| |
Collapse
|
70
|
Fones H, Gurr S. The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fungal Genet Biol 2016; 79:3-7. [PMID: 26092782 PMCID: PMC4502551 DOI: 10.1016/j.fgb.2015.04.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 01/02/2023]
Abstract
Zymospetoria tritici is a threat to wheat production in the EU Z.t.’s plastic genome increases the potential severity of this threat in the future. Climate change may also affect the risk from Z.t. We estimate the spore numbers produced by Z.t. during each infection cycle. We calculate 1) the economic value of wheat in the three main EU producers 2) the cost of and economic return for fungicide treatment of wheat vs Z.t.
Zymoseptoria tritici is the causal agent of one of the European Union’s most devastating foliar diseases of wheat: Septoria tritici Blotch (STB). It is also a notable pathogen of wheat grown in temperate climates throughout the world. In this commentary, we highlight the importance of STB on wheat in the EU. To better understand STB, it is necessary to consider the host crop, the fungal pathogen and their shared environment. Here, we consider the fungus per se and its interaction with its host and then focus on a more agricultural overview of the impact STB on wheat. We consider the climatic and weather factors which influence its spread and severity, allude to the agricultural practices which may mitigate or enhance its impact on crop yields, and evaluate the economic importance of wheat as a food and animal feed crop in the UK and EU. Finally, we estimate the cost of STB disease to EU agriculture.
Collapse
Affiliation(s)
- Helen Fones
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Sarah Gurr
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
71
|
Cell biology of Zymoseptoria tritici: Pathogen cell organization and wheat infection. Fungal Genet Biol 2016; 79:17-23. [PMID: 26092785 PMCID: PMC4502449 DOI: 10.1016/j.fgb.2015.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/27/2015] [Accepted: 04/02/2015] [Indexed: 01/26/2023]
Abstract
Cell biology of the infection begins to shed light on the host–pathogen interaction. The cell biology of the fungal pathogen is highly understudied. Intensified cell biology research promises new fungicide targets and will help mode-of-action studies.
Cell biological research in the wheat pathogen Zymoseptoria tritici (formerly Mycosphaerella graminicola) has led to a good understanding of the histology of the infection process. Expression profiling and bioinformatic approaches, combined with molecular studies on signaling pathways, effectors and potential necrosis factors provides first insight into the complex interplay between the host and the pathogen. Cell biological studies will help to further our understanding of the infection strategy of the fungus. The cellular organization and intracellular dynamics of the fungus itself is largely unexplored. Insight into essential cellular processes within the pathogen will expand our knowledge of the basic biology of Z. tritici, thereby providing putative new anti-fungal targets.
Collapse
|
72
|
Choi YE, Lee C, Goodwin SB. Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola. MYCOBIOLOGY 2016; 44:38-47. [PMID: 27103853 PMCID: PMC4838590 DOI: 10.5941/myco.2016.44.1.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/12/2016] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola.
Collapse
Affiliation(s)
- Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Changsu Lee
- Department of Bioprocess Engineering, Chonbuk National University, Jeonju 54896, Korea
| | - Stephen B Goodwin
- USDA-Agricultural Research Service, 915 West State Street, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
73
|
Kettles GJ, Kanyuka K. Dissecting the Molecular Interactions between Wheat and the Fungal Pathogen Zymoseptoria tritici. FRONTIERS IN PLANT SCIENCE 2016; 7:508. [PMID: 27148331 PMCID: PMC4832604 DOI: 10.3389/fpls.2016.00508] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/30/2016] [Indexed: 05/10/2023]
Abstract
The Dothideomycete fungus Zymoseptoria tritici (previously known as Mycosphaerella graminicola and Septoria tritici) is the causative agent of Septoria tritici leaf blotch (STB) disease of wheat (Triticum aestivum L.). In Europe, STB is the most economically damaging disease of wheat, with an estimated ∼€1 billion per year in fungicide expenditure directed toward its control. Here, an overview of our current understanding of the molecular events that occur during Z. tritici infection of wheat leaves is presented. On the host side, this includes the contribution of (1) the pathogen-associated molecular pattern-triggered immunity (PTI) layer of plant defense, and (2) major Stb loci for resistance against Z. tritici. On the pathogen side of the interaction, we consolidate evidence from recent bioinformatic, transcriptomic and proteomic studies that begin to explain the contribution of Z. tritici effector proteins to the biphasic lifestyle of the fungus. This includes the discovery of chitin-binding proteins in the Z. tritici secretome, which contribute to evasion of immune surveillance by this pathogen, and the possible existence of 'necrotrophic' effectors from Z. tritici, which may actively stimulate host recognition in a manner similar to related necrotrophic fungal pathogens. We finish by speculating on how some of these recent fundamental discoveries might be harnessed to help improve resistance to STB in the world's second largest food crop.
Collapse
|
74
|
Mirzadi Gohari A, Ware SB, Wittenberg AHJ, Mehrabi R, Ben M'Barek S, Verstappen ECP, van der Lee TAJ, Robert O, Schouten HJ, de Wit PPJGM, Kema GHJ. Effector discovery in the fungal wheat pathogen Zymoseptoria tritici. MOLECULAR PLANT PATHOLOGY 2015; 16:931-45. [PMID: 25727413 PMCID: PMC6638447 DOI: 10.1111/mpp.12251] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Fungal plant pathogens, such as Zymoseptoria tritici (formerly known as Mycosphaerella graminicola), secrete repertoires of effectors to facilitate infection or trigger host defence mechanisms. The discovery and functional characterization of effectors provides valuable knowledge that can contribute to the design of new and effective disease management strategies. Here, we combined bioinformatics approaches with expression profiling during pathogenesis to identify candidate effectors of Z. tritici. In addition, a genetic approach was conducted to map quantitative trait loci (QTLs) carrying putative effectors, enabling the validation of both complementary strategies for effector discovery. In planta expression profiling revealed that candidate effectors were up-regulated in successive waves corresponding to consecutive stages of pathogenesis, contrary to candidates identified by QTL mapping that were, overall, expressed at low levels. Functional analyses of two top candidate effectors (SSP15 and SSP18) showed their dispensability for Z. tritici pathogenesis. These analyses reveal that generally adopted criteria, such as protein size, cysteine residues and expression during pathogenesis, may preclude an unbiased effector discovery. Indeed, genetic mapping of genomic regions involved in specificity render alternative effector candidates that do not match the aforementioned criteria, but should nevertheless be considered as promising new leads for effectors that are crucial for the Z. tritici-wheat pathosystem.
Collapse
Affiliation(s)
- Amir Mirzadi Gohari
- Wageningen University and Research Centre, Plant Research International, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
- Department of Plant Protection, College of Agriculture, University of Tehran, Plant Pathology Building, Karaj, Iran
| | - Sarah B Ware
- Wageningen University and Research Centre, Plant Research International, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Alexander H J Wittenberg
- Laboratory of Plant Breeding, Department of Plant Sciences, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Rahim Mehrabi
- Cereal Research Department, Seed and Plant Improvement Institute, PO Box 31585-4119, Karaj, Iran
| | - Sarrah Ben M'Barek
- Wageningen University and Research Centre, Plant Research International, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
- Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif, 2050, Tunisia
| | - Els C P Verstappen
- Wageningen University and Research Centre, Plant Research International, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Theo A J van der Lee
- Wageningen University and Research Centre, Plant Research International, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Olivier Robert
- Bioplante, Florimond Desprez, BP41, 59242, Cappelle-en-Pévèle, France
| | - Henk J Schouten
- Laboratory of Plant Breeding, Department of Plant Sciences, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Pierre P J G M de Wit
- Wageningen University and Research Centre, Laboratory of Phytopathology, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Gert H J Kema
- Wageningen University and Research Centre, Plant Research International, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| |
Collapse
|
75
|
Derbyshire MC, Michaelson L, Parker J, Kelly S, Thacker U, Powers SJ, Bailey A, Hammond-Kosack K, Courbot M, Rudd J. Analysis of cytochrome b(5) reductase-mediated metabolism in the phytopathogenic fungus Zymoseptoria tritici reveals novel functionalities implicated in virulence. Fungal Genet Biol 2015; 82:69-84. [PMID: 26074495 PMCID: PMC4557397 DOI: 10.1016/j.fgb.2015.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/15/2022]
Abstract
Septoria tritici blotch (STB) caused by the Ascomycete fungus Zymoseptoria tritici is one of the most economically damaging diseases of wheat worldwide. Z. tritici is currently a major target for agricultural fungicides, especially in temperate regions where it is most prevalent. Many fungicides target electron transfer enzymes because these are often important for cell function. Therefore characterisation of genes encoding such enzymes may be important for the development of novel disease intervention strategies. Microsomal cytochrome b5 reductases (CBRs) are an important family of electron transfer proteins which in eukaryotes are involved in the biosynthesis of fatty acids and complex lipids including sphingolipids and sterols. Unlike the model yeast Saccharomyces cerevisiae which possesses only one microsomal CBR, the fully sequenced genome of Z. tritici bears three possible microsomal CBRs. RNA sequencing analysis revealed that ZtCBR1 is the most highly expressed of these genes under all in vitro and in planta conditions tested, therefore ΔZtCBR1 mutant strains were generated through targeted gene disruption. These strains exhibited delayed disease symptoms on wheat leaves and severely limited asexual sporulation. ΔZtCBR1 strains also exhibited aberrant spore morphology and hyphal growth in vitro. These defects coincided with alterations in fatty acid, sphingolipid and sterol biosynthesis observed through GC-MS and HPLC analyses. Data is presented which suggests that Z. tritici may use ZtCBR1 as an additional electron donor for key steps in ergosterol biosynthesis, one of which is targeted by azole fungicides. Our study reports the first functional characterisation of CBR gene family members in a plant pathogenic filamentous fungus. This also represents the first direct observation of CBR functional ablation impacting upon fungal sterol biosynthesis.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK.
| | - Louise Michaelson
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Josie Parker
- Centre for Cytochrome P450 Diversity, Institute of Life Science, College of Medicine, Swansea University Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Steven Kelly
- Centre for Cytochrome P450 Diversity, Institute of Life Science, College of Medicine, Swansea University Singleton Park, Swansea SA2 8PP, Wales, UK
| | | | - Stephen J Powers
- Department of Computational and Systems Biology, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Andy Bailey
- Bristol University, Senate House, Tyndall Avenue, Bristol BS8 1TH, UK
| | - Kim Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Mikael Courbot
- Syngenta, Syngenta AG, Schaffhauserstrasse, CH-4332 Stein, Switzerland
| | - Jason Rudd
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK.
| |
Collapse
|
76
|
Genome-wide analysis of small RNAs in the wheat pathogenic fungus Zymoseptoria tritici. Fungal Biol 2015; 119:631-40. [DOI: 10.1016/j.funbio.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/08/2015] [Accepted: 03/30/2015] [Indexed: 11/23/2022]
|
77
|
FPLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen Zymoseptoria tritici. Fungal Genet Biol 2015; 79:54-62. [DOI: 10.1016/j.fgb.2015.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 11/18/2022]
|
78
|
Rudd JJ. Previous bottlenecks and future solutions to dissecting the Zymoseptoria tritici-wheat host-pathogen interaction. Fungal Genet Biol 2015; 79:24-8. [PMID: 26092786 PMCID: PMC4502452 DOI: 10.1016/j.fgb.2015.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022]
Abstract
Zymoseptoria tritici (previously Mycosphaerella graminicola, teleomorph, Septoria tritici, anamorph) causes Septoria tritici blotch, one of the most economically important diseases of wheat (Triticum aestivum). The host pathogenic interaction, as currently understood, is intriguing, and may distinguish Z. tritici from many of the current models for plant pathogenic fungi. Many important questions remain which require a deeper understanding including; the nature and biological significance of the characteristic long latent periods of symptomless plant infection; how/why the fungus then effectively transitions from this to cause disease and reproduce? Elements of this transition currently resemble a putative "hijack" on plant defence but how is Z. tritici able to do this without any form of plant cell penetration? This commentary provides a summary of the recent history of research into the host-pathogen interaction, whilst highlighting some of the challenges going forwards, which will be faced by improved technologies and a growing research community.
Collapse
Affiliation(s)
- Jason J Rudd
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK.
| |
Collapse
|
79
|
Sánchez-Vallet A, McDonald MC, Solomon PS, McDonald BA. Is Zymoseptoria tritici a hemibiotroph? Fungal Genet Biol 2015; 79:29-32. [DOI: 10.1016/j.fgb.2015.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/21/2022]
|
80
|
Yang F, Li W, Derbyshire M, Larsen MR, Rudd JJ, Palmisano G. Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics. BMC Genomics 2015; 16:362. [PMID: 25952551 PMCID: PMC4423625 DOI: 10.1186/s12864-015-1549-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/17/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. RESULTS The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici, but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. CONCLUSIONS The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction.
Collapse
Affiliation(s)
- Fen Yang
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | | | - Mark Derbyshire
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| | - Jason J Rudd
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Giuseppe Palmisano
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark.
- Present address: Institute of Biomedical Science, Department of Parasitology, University of São Paulo, 05508-900, São Paulo, Brazil.
| |
Collapse
|
81
|
Lee WS, Devonshire BJ, Hammond-Kosack KE, Rudd JJ, Kanyuka K. Deregulation of Plant Cell Death Through Disruption of Chloroplast Functionality Affects Asexual Sporulation of Zymoseptoria tritici on Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:590-604. [PMID: 25496594 DOI: 10.1094/mpmi-10-14-0346-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chloroplasts have a critical role in plant defense as sites for the biosynthesis of the signaling compounds salicylic acid (SA), jasmonic acid (JA), and nitric oxide (NO) and as major sites of reactive oxygen species production. Chloroplasts, therefore, regarded as important players in the induction and regulation of programmed cell death (PCD) in response to abiotic stresses and pathogen attack. The predominantly foliar pathogen of wheat Zymoseptoria tritici is proposed to exploit the plant PCD, which is associated with the transition in the fungus to the necrotrophic phase of infection. In this study virus-induced gene silencing was used to silence two key genes in carotenoid and chlorophyll biosynthesis, phytoene desaturase (PDS) and Mg-chelatase H subunit (ChlH). The chlorophyll-deficient, PDS- and ChlH-silenced leaves of susceptible plants underwent more rapid pathogen-induced PCD but were significantly less able to support the subsequent asexual sporulation of Z. tritici. Conversely, major gene (Stb6)-mediated resistance to Z. tritici was partially compromised in PDS- and ChlH-silenced leaves. Chlorophyll-deficient wheat ears also displayed increased Z. tritici disease lesion formation accompanied by increased asexual sporulation. These data highlight the importance of chloroplast functionality and its interaction with regulated plant cell death in mediating different genotype and tissue-specific interactions between Z. tritici and wheat.
Collapse
Affiliation(s)
- Wing-Sham Lee
- 1Wheat Pathogenomics Team, Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, U.K
| | - B Jean Devonshire
- 2Bioimaging, Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, U.K
| | - Kim E Hammond-Kosack
- 1Wheat Pathogenomics Team, Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, U.K
| | - Jason J Rudd
- 1Wheat Pathogenomics Team, Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, U.K
| | - Kostya Kanyuka
- 1Wheat Pathogenomics Team, Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, U.K
| |
Collapse
|
82
|
O'Driscoll A, Doohan F, Mullins E. Exploring the utility of Brachypodium distachyon as a model pathosystem for the wheat pathogen Zymoseptoria tritici. BMC Res Notes 2015; 8:132. [PMID: 25888730 PMCID: PMC4397700 DOI: 10.1186/s13104-015-1097-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zymoseptoria tritici, the causative organism of Septoria tritici blotch disease is a prevalent biotic stressor of wheat production, exerting substantial economic constraints on farmers, requiring intensive chemical control to protect yields. A hemibiotrophic pathogen with a long asymptomless phase of up to 11 days post inoculation (dpi) before a rapid switch to necrotrophy; a deficit exists in our understanding of the events occurring within the host during the two phases of infection. Brachypodium distachyon has demonstrated its potential as a model species for the investigation of fungal disease resistance in cereal and grass species. The aim of this study was to assess the physical interaction between Z. tritici (strain IPO323) and B. distachyon and examine its potential as a model pathosystem for Z. tritici. RESULTS Septoria tritici blotch symptoms developed on the wheat cultivar Riband from 12 dpi with pycnidial formation abundant by 20 dpi. Symptoms on B. distachyon ecotype Bd21-1 were visible from 1 dpi: characteristic pale, water soaked lesions which developed into blotch-like lesions by 4 dpi. These lesions then became necrotic with chlorotic regions expanding up to 7 dpi. Sporulation on B. distachyon tissues was not observed and no evidence of fungal penetration could be obtained, indicating that Z. tritici was unable to complete its life cycle within B. distachyon ecotypes. However, observation of host responses to the Z. tritici strain IPO323 in five B. distachyon ecotypes revealed a variation in resistance responses, ranging from immunity to a chlorotic/necrotic phenotype. CONCLUSIONS The observed interactions suggest that B. distachyon is an incompatible host for Z. tritici infection, with STB symptom development on B. distachyon comparable to that observed during the early infection stages on the natural host, wheat. However first visible symptoms occurred more rapidly on B. distachyon; from 1 dpi in comparison to 12 dpi in wheat. Consequently, we propose that the interaction between B. distachyon and Z. tritici as observed in this study could serve as a suitable model pathosystem with which to investigate mechanisms underpinning an incompatible host response to Z. tritici.
Collapse
Affiliation(s)
- Aoife O'Driscoll
- Department of Crop Science, Teagasc Research Centre, Oak Park, Carlow, Ireland.
- UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Fiona Doohan
- UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ewen Mullins
- Department of Crop Science, Teagasc Research Centre, Oak Park, Carlow, Ireland.
| |
Collapse
|
83
|
Lee J, Orosa B, Millyard L, Edwards M, Kanyuka K, Gatehouse A, Rudd J, Hammond-Kosack K, Pain N, Sadanandom A. Functional analysis of a Wheat Homeodomain protein, TaR1, reveals that host chromatin remodelling influences the dynamics of the switch to necrotrophic growth in the phytopathogenic fungus Zymoseptoria tritici. THE NEW PHYTOLOGIST 2015; 206:598-605. [PMID: 25639381 DOI: 10.1111/nph.13323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/13/2015] [Indexed: 06/04/2023]
Abstract
A distinguishing feature of Septoria leaf blotch disease in wheat is the long symptomless growth of the fungus amongst host cells followed by a rapid transition to necrotrophic growth resulting in disease lesions. Global reprogramming of host transcription marks this switch to necrotrophic growth. However no information exists on the components that bring about host transcriptional reprogramming. Gene-silencing, confocal-imaging and protein-protein interaction assays where employed to identify a plant homeodomain (PHD) protein, TaR1 in wheat that plays a critical role during the transition from symptomless to necrotrophic growth of Septoria. TaR1-silenced wheat show earlier symptom development upon Septoria infection but reduced fungal sporulation indicating that TaR1 is key for prolonging the symptomless phase and facilitating Septoria asexual reproduction. TaR1 is localized to the nucleus and binds to wheat Histone 3. Trimethylation of Histone 3 at lysine 4 (H3K4) and lysine 36 (H3K36) are found on open chromatin with actively transcribed genes, whereas methylation of H3K27 and H3K9 are associated with repressed loci. TaR1 specifically recognizes dimethylated and trimethylated H3K4 peptides suggesting that it regulates transcriptional activation at open chromatin. We conclude that TaR1 is an important component for the pathogen life cycle in wheat that promotes successful colonization by Septoria.
Collapse
Affiliation(s)
- Jack Lee
- Durham Centre for Crop Improvement Technology, School of Biology and Biomedical Sciences, University of Durham, Durham, DH1 3LE, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, Lysenko A, Saqi M, Desai NM, Powers SJ, Hooper J, Ambroso L, Bharti A, Farmer A, Hammond-Kosack KE, Dietrich RA, Courbot M. Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. PLANT PHYSIOLOGY 2015; 167:1158-85. [PMID: 25596183 PMCID: PMC4348787 DOI: 10.1104/pp.114.255927] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/16/2015] [Indexed: 05/17/2023]
Abstract
The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z. tritici on wheat leaves. Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated. Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes. Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves. There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z. tritici, which may instead be utilizing lipid and fatty acid stores for growth. However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction. This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses. Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence. The pathogenic lifestyle of Z. tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection.
Collapse
Affiliation(s)
- Jason J Rudd
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Kostya Kanyuka
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Keywan Hassani-Pak
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Mark Derbyshire
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Ambrose Andongabo
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Jean Devonshire
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Artem Lysenko
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Mansoor Saqi
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Nalini M Desai
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Stephen J Powers
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Juliet Hooper
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Linda Ambroso
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Arvind Bharti
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Andrew Farmer
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Kim E Hammond-Kosack
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Robert A Dietrich
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Mikael Courbot
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| |
Collapse
|
85
|
Vleeshouwers VGAA, Oliver RP. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:40-50. [PMID: 27839074 DOI: 10.1094/mpmi-10-13-0313-ta.testissue] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
Affiliation(s)
- Vivianne G A A Vleeshouwers
- 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard P Oliver
- 2 Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
86
|
McDonald MC, McDonald BA, Solomon PS. Recent advances in the Zymoseptoria tritici-wheat interaction: insights from pathogenomics. FRONTIERS IN PLANT SCIENCE 2015; 6:102. [PMID: 25759705 PMCID: PMC4338680 DOI: 10.3389/fpls.2015.00102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/08/2015] [Indexed: 05/02/2023]
Abstract
We examine the contribution of next generation sequencing (NGS) to our understanding of the interaction between the fungal pathogen Zymoseptoria tritici and its wheat host. Recent interspecific whole genome comparisons between Z. tritici and its close relatives provide evidence that Z. tritici has undergone strong adaptive evolution, which is attributed to specialization by Z. tritici on wheat. We also assess the contribution of recent RNA sequencing datasets toward identifying pathogen genes and mechanisms critical for disease. While these studies have yet to report a major effector gene, they illustrate that assembling reads to the reference genome is a robust method to identify fungal transcripts from in planta infections. They also highlight the strong influence that the wheat cultivar has on effector gene expression. Lastly, we suggest future directions for NGS-guided approaches to address largely unanswered questions related to cultivar and lifecycle dependent gene expression and propose that future experiments with Z. tritici be conducted on a single wheat cultivar to enable comparisons across experiments.
Collapse
Affiliation(s)
- Megan C. McDonald
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Bruce A. McDonald
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Peter S. Solomon
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- *Correspondence: Peter S. Solomon, Plant Sciences Division, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, Canberra, ACT 2601, Australia e-mail:
| |
Collapse
|
87
|
Vleeshouwers VGAA, Oliver RP. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:17-27. [PMID: 27839075 DOI: 10.1094/mpmi-10-13-0313-cr.testissue] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
Affiliation(s)
- Vivianne G A A Vleeshouwers
- 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard P Oliver
- 2 Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
88
|
O'Driscoll A, Kildea S, Doohan F, Spink J, Mullins E. The wheat-Septoria conflict: a new front opening up? TRENDS IN PLANT SCIENCE 2014; 19:602-10. [PMID: 24957882 DOI: 10.1016/j.tplants.2014.04.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/14/2014] [Accepted: 04/24/2014] [Indexed: 05/06/2023]
Abstract
In the utopic absence of abiotic and/or biotic stressors, attaining the predicted increase (up to 70%) in wheat demand by 2050 in response to global population trends is a challenge. This objective becomes daunting, however, when one factors in the continuous constraint on global wheat production posed by Septoria tritici blotch (STB) disease. This is because, despite resistant loci being identified, a deficit of commercially relevant STB-resistant wheat germplasm remains. The issue is further compounded for growers by the emergence and prevalence of fungicide-resistant/insensitive strains of the causative pathogen Zymoseptoria tritici (formerly known as Mycosphaerella graminicola/Septoria tritici). However, biotechnology-based research is providing new opportunities in this struggle. As the exome response of wheat to STB attack begins to be deciphered, genes intrinsic to resistant and susceptible phenotypes will be identified. Combined with the application of genome-editing techniques and a growing appreciation of the complexity of wheat's and the dynamism of Z. tritici's genome, the generation of resulting STB-resistant wheat varieties will counter the prevalent threat of STB disease in wheat-production systems.
Collapse
Affiliation(s)
- Aoife O'Driscoll
- Crop Science Department, Teagasc Oak Park, Carlow, Ireland; UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven Kildea
- Crop Science Department, Teagasc Oak Park, Carlow, Ireland
| | - Fiona Doohan
- UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - John Spink
- Crop Science Department, Teagasc Oak Park, Carlow, Ireland
| | - Ewen Mullins
- Crop Science Department, Teagasc Oak Park, Carlow, Ireland.
| |
Collapse
|
89
|
Stotz HU, Mitrousia GK, de Wit PJGM, Fitt BDL. Effector-triggered defence against apoplastic fungal pathogens. TRENDS IN PLANT SCIENCE 2014; 19:491-500. [PMID: 24856287 PMCID: PMC4123193 DOI: 10.1016/j.tplants.2014.04.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/07/2014] [Accepted: 04/23/2014] [Indexed: 05/18/2023]
Abstract
R gene-mediated host resistance against apoplastic fungal pathogens is not adequately explained by the terms pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) or effector-triggered immunity (ETI). Therefore, it is proposed that this type of resistance is termed 'effector-triggered defence' (ETD). Unlike PTI and ETI, ETD is mediated by R genes encoding cell surface-localised receptor-like proteins (RLPs) that engage the receptor-like kinase SOBIR1. In contrast to this extracellular recognition, ETI is initiated by intracellular detection of pathogen effectors. ETI is usually associated with fast, hypersensitive host cell death, whereas ETD often triggers host cell death only after an elapsed period of endophytic pathogen growth. In this opinion, we focus on ETD responses against foliar fungal pathogens of crops.
Collapse
Affiliation(s)
- Henrik U Stotz
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Georgia K Mitrousia
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Pierre J G M de Wit
- Wageningen University and Research Centre, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bruce D L Fitt
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| |
Collapse
|
90
|
Mirzadi Gohari A, Mehrabi R, Robert O, Ince IA, Boeren S, Schuster M, Steinberg G, de Wit PJGM, Kema GHJ. Molecular characterization and functional analyses of ZtWor1, a transcriptional regulator of the fungal wheat pathogen Zymoseptoria tritici. MOLECULAR PLANT PATHOLOGY 2014; 15:394-405. [PMID: 24341593 PMCID: PMC6638687 DOI: 10.1111/mpp.12102] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Zymoseptoria tritici causes the major fungal wheat disease septoria tritici blotch, and is increasingly being used as a model for transmission and population genetics, as well as host-pathogen interactions. Here, we study the biological function of ZtWor1, the orthologue of Wor1 in the fungal human pathogen Candida albicans, as a representative of a superfamily of regulatory proteins involved in dimorphic switching. In Z. tritici, this gene is pivotal for pathogenesis, as ZtWor1 mutants were nonpathogenic and complementation restored the wild-type phenotypes. In planta expression analyses showed that ZtWor1 is up-regulated during the initiation of colonization and fructification, and regulates candidate effector genes, including one that was discovered after comparative proteome analysis of the Z. tritici wild-type strain and the ZtWor1 mutant, which was particularly expressed in planta. Cell fusion and anastomosis occur frequently in ZtWor1 mutants, reminiscent of mutants of MgGpb1, the β-subunit of the heterotrimeric G protein. Comparative expression of ZtWor1 in knock-out strains of MgGpb1 and MgTpk2, the catalytic subunit of protein kinase A, suggests that ZtWor1 is downstream of the cyclic adenosine monophosphate (cAMP) pathway that is crucial for pathogenesis in many fungal plant pathogens.
Collapse
Affiliation(s)
- Amir Mirzadi Gohari
- Plant Science Group, Plant Research International BV, Wageningen University, Droevendaalsesteeg 1, 06708 PB, Wageningen, The Netherlands; Department of Plant Protection, College of Agriculture, University of Tehran, Plant Pathology Building, Karaj, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Xu YJ, Wang C, Ho WE, Ong CN. Recent developments and applications of metabolomics in microbiological investigations. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
92
|
Vleeshouwers VGAA, Oliver RP. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:196-206. [PMID: 24405032 DOI: 10.1094/mpmi-10-13-0313-ia] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
|
93
|
Lee WS, Rudd JJ, Hammond-Kosack KE, Kanyuka K. Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:236-43. [PMID: 24073880 DOI: 10.1094/mpmi-07-13-0201-r] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fungal cell-wall chitin is a well-recognized pathogen-associated molecular pattern. Recognition of chitin in plants by pattern recognition receptors activates pathogen-triggered immunity (PTI). In Arabidopsis, this process is mediated by a plasma membrane receptor kinase, CERK1, whereas in rice, a receptor-like protein, CEBiP, in addition to CERK1 is required. Secreted chitin-binding lysin motif (LysM) containing fungal effector proteins, such as Ecp6 from the biotrophic fungus Cladosporium fulvum, have been reported to interfere with PTI. Here, we identified wheat homologues of CERK1 and CEBiP and investigated their role in the interaction with the nonbiotrophic pathogen of wheat Mycosphaerella graminicola (synonym Zymoseptoria tritici). We show that silencing of either CERK1 or CEBiP in wheat, using Barley stripe mosaic virus-mediated virus-induced gene silencing, is sufficient in allowing leaf colonization by the normally nonpathogenic M. graminicola Mg3LysM (homologue of Ecp6) deletion mutant, while the Mg1LysM deletion mutant was fully pathogenic toward both silenced and wild-type wheat leaves. These data indicate that Mg3LysM is important for fungal evasion of PTI in wheat leaf tissue and that both CERK1 and CEBiP are required for activation of chitin-induced defenses, a feature conserved between rice and wheat, and perhaps, also in other cereal species.
Collapse
|
94
|
Yang F, Li W, Jørgensen HJL. Transcriptional reprogramming of wheat and the hemibiotrophic pathogen Septoria tritici during two phases of the compatible interaction. PLoS One 2013; 8:e81606. [PMID: 24303057 PMCID: PMC3841193 DOI: 10.1371/journal.pone.0081606] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023] Open
Abstract
The disease septoria leaf blotch of wheat, caused by fungal pathogen Septoria tritici, is of worldwide concern. The fungus exhibits a hemibiotrophic lifestyle, with a long symptomless, biotrophic phase followed by a sudden transition to necrotrophy associated with host necrosis. Little is known about the systematic interaction between fungal pathogenicity and host responses at specific growth stages and the factors triggering the transition. In order to gain some insights into global transcriptome alterations in both host and pathogen during the two phases of the compatible interaction, disease transition was monitored using pathogenesis-related gene markers and H2O2 signature prior to RNA-Seq. Transcriptome analysis revealed that the slow symptomless growth was accompanied by minor metabolic responses and slightly suppressed defences in the host, whereas necrotrophic growth was associated with enhanced host responses involving energy metabolism, transport, signalling, defence and oxidative stress as well as a decrease in photosynthesis. The fungus expresses distinct classes of stage-specific genes encoding potential effectors, probably first suppressing plant defence responses/facilitating the symptomless growth and later triggering life style transition and inducing host necrosis/facilitating the necrotrophic growth. Transport, signalling, anti-oxidative stress mechanisms and apoplastic nutrient acquisition play important roles in the entire infection process of S. tritici. Our findings uncover systematic S. tritici-induced expression profiles of wheat related to specific fungal infection strategies and provide a transcriptome resource for studying both hosts and pathogens in plant-Dothideomycete interactions.
Collapse
Affiliation(s)
- Fen Yang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| | | | - Hans J. L. Jørgensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
95
|
Wu L, Wang X, Xu R, Li H. Difference between resistant and susceptible maize to systematic colonization as revealed by DsRed-labeled Fusarium verticillioides. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.cj.2013.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
96
|
Gilbert BM, Wolpert TJ. Characterization of the LOV1-mediated, victorin-induced, cell-death response with virus-induced gene silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:903-17. [PMID: 23634836 DOI: 10.1094/mpmi-01-13-0014-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Victoria blight, caused by Cochliobolus victoriae, is a disease originally described on oat and recapitulated on Arabidopsis. C. victoriae pathogenesis depends upon production of the toxin victorin. In oat, victorin sensitivity is conferred by the Vb gene, which is genetically inseparable from the Pc2 resistance gene. Concurrently, in Arabidopsis, sensitivity is conferred by the LOCUS ORCHESTRATING VICTORIN EFFECTS1 (LOV1) gene. LOV1 encodes a nucleotide-binding site leucine-rich repeat protein, a type of protein commonly associated with disease resistance, and LOV1 "guards" the defense thioredoxin, TRX-h5. Expression of LOV1 and TRX-h5 in Nicotiana benthamiana is sufficient to confer victorin sensitivity. Virus-induced gene silencing was used to characterize victorin-induced cell death in N. benthamiana. We determined that SGT1 is required for sensitivity and involved in LOV1 protein accumulation. We screened a normalized cDNA library and identified six genes that, when silenced, suppressed LOV1-mediated, victorin-induced cell death and cell death induced by expression of the closely related RPP8 resistance gene: a mitochondrial phosphate transporter, glycolate oxidase, glutamine synthetase, glyceraldehyde 3-phosphate dehydrogenase, and the P- and T-protein of the glycine decarboxylase complex. Silencing the latter four also inhibited cell death and disease resistance mediated by the PTO resistance gene. Together, these results provide evidence that the victorin response mediated by LOV1 is a defense response.
Collapse
Affiliation(s)
- Brian M Gilbert
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
97
|
Yang F, Melo-Braga MN, Larsen MR, Jørgensen HJL, Palmisano G. Battle through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics. Mol Cell Proteomics 2013; 12:2497-508. [PMID: 23722186 DOI: 10.1074/mcp.m113.027532] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The fungus Septoria tritici causes the disease septoria tritici blotch in wheat, one of the most economically devastating foliar diseases in this crop. To investigate signaling events and defense responses in the wheat-S. tritici interaction, we performed a time-course study of S. tritici infection in resistant and susceptible wheat using quantitative proteomics and phosphoproteomics, with special emphasis on the initial biotrophic phase of interactions. Our study revealed an accumulation of defense and stress-related proteins, suppression of photosynthesis, and changes in sugar metabolism during compatible and incompatible interactions. However, differential regulation of the phosphorylation status of signaling proteins, transcription and translation regulators, and membrane-associated proteins was observed between two interactions. The proteomic data were correlated with a more rapid or stronger accumulation of signal molecules, including calcium, H2O2, NO, and sugars, in the resistant than in the susceptible cultivar in response to the infection. Additionally, 31 proteins and 5 phosphoproteins from the pathogen were identified, including metabolic proteins and signaling proteins such as GTP-binding proteins, 14-3-3 proteins, and calcium-binding proteins. Quantitative PCR analysis showed the expression of fungal signaling genes and genes encoding a superoxide dismutase and cell-wall degrading enzymes. These results indicate roles of signaling, antioxidative stress mechanisms, and nutrient acquisition in facilitating the initial symptomless growth. Taken in its entirety, our dataset suggests interplay between the plant and S. tritici through complex signaling networks and downstream molecular events. Resistance is likely related to several rapidly and intensively triggered signal transduction cascades resulting in a multiple-level activation of transcription and translation processes of defense responses. Our sensitive approaches and model provide a comprehensive (phospho)proteomics resource for studying signaling from the point of view of both host and pathogen during a plant-pathogen interaction.
Collapse
Affiliation(s)
- Fen Yang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
98
|
Morais do Amaral A, Antoniw J, Rudd JJ, Hammond-Kosack KE. Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola. PLoS One 2012; 7:e49904. [PMID: 23236356 PMCID: PMC3517617 DOI: 10.1371/journal.pone.0049904] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/15/2012] [Indexed: 01/16/2023] Open
Abstract
The Dothideomycete fungus Mycosphaerella graminicola is the causal agent of Septoria tritici blotch, a devastating disease of wheat leaves that causes dramatic decreases in yield. Infection involves an initial extended period of symptomless intercellular colonisation prior to the development of visible necrotic disease lesions. Previous functional genomics and gene expression profiling studies have implicated the production of secreted virulence effector proteins as key facilitators of the initial symptomless growth phase. In order to identify additional candidate virulence effectors, we re-analysed and catalogued the predicted protein secretome of M. graminicola isolate IPO323, which is currently regarded as the reference strain for this species. We combined several bioinformatic approaches in order to increase the probability of identifying truly secreted proteins with either a predicted enzymatic function or an as yet unknown function. An initial secretome of 970 proteins was predicted, whilst further stringent selection criteria predicted 492 proteins. Of these, 321 possess some functional annotation, the composition of which may reflect the strictly intercellular growth habit of this pathogen, leaving 171 with no functional annotation. This analysis identified a protein family encoding secreted peroxidases/chloroperoxidases (PF01328) which is expanded within all members of the family Mycosphaerellaceae. Further analyses were done on the non-annotated proteins for size and cysteine content (effector protein hallmarks), and then by studying the distribution of homologues in 17 other sequenced Dothideomycete fungi within an overall total of 91 predicted proteomes from fungal, oomycete and nematode species. This detailed M. graminicola secretome analysis provides the basis for further functional and comparative genomics studies.
Collapse
|
99
|
Sarkar P, Gladish DK. Hypoxic stress triggers a programmed cell death pathway to induce vascular cavity formation in Pisum sativum roots. PHYSIOLOGIA PLANTARUM 2012; 146:413-26. [PMID: 22486732 DOI: 10.1111/j.1399-3054.2012.01632.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Flooding at warm temperatures induces hypoxic stress in Pisum sativum seedling roots. In response, some undifferentiated cells in the primary root vascular cylinder start degenerating and form a longitudinal vascular cavity. Changes in cellular morphology and cell wall ultrastructure detected previously in the late stages of cavity formation suggest possible involvement of programmed cell death (PCD). In this study, cytological events occurring in the early stages of cavity formation were investigated. Systematic DNA fragmentation, a feature of many PCD pathways, was detected in the cavity-forming roots after 3 h of flooding in situ by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and in isolated total DNA by gel electrophoresis. High molecular weight DNA fragments of about 20-30 kb were detected by pulse-field gel electrophoresis, but no low-molecular weight internucleosomal DNA fragments were detected by conventional gel electrophoresis. Release of mitochondrial cytochrome c protein into the cytosol, an integral part of mitochondria-dependent PCD pathways, was detected in the cavity-forming roots within 2 h of flooding by fluorescence microscopy of immunolabeled cytochrome c in situ and in isolated mitochondrial and cytosolic protein fractions by western blotting. DNA fragmentation and cytochrome c release remained confined to the undifferentiated cells in center of the root vascular cylinders, even after 24 h of flooding, while outer vascular cylinder cells and cortical cells maintained cellular integrity and normal activity. These findings confirm that hypoxia-induced vascular cavity formation in P. sativum roots involves PCD, and provides a chronological model of cytological events involved in this rare and understudied PCD system.
Collapse
Affiliation(s)
- Purbasha Sarkar
- Department of Botany, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
100
|
Avrova A, Knogge W. Rhynchosporium commune: a persistent threat to barley cultivation. MOLECULAR PLANT PATHOLOGY 2012; 13:986-97. [PMID: 22738626 PMCID: PMC6638709 DOI: 10.1111/j.1364-3703.2012.00811.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rhynchosporium commune is a haploid fungus causing scald or leaf blotch on barley, other Hordeum spp. and Bromus diandrus. TAXONOMY Rhynchosporium commune is an anamorphic Ascomycete closely related to the teleomorph Helotiales genera Oculimacula and Pyrenopeziza. DISEASE SYMPTOMS Rhynchosporium commune causes scald-like lesions on leaves, leaf sheaths and ears. Early symptoms are generally pale grey oval lesions. With time, the lesions acquire a dark brown margin with the centre of the lesion remaining pale green or pale brown. Lesions often merge to form large areas around which leaf yellowing is common. Infection frequently occurs in the leaf axil, which can lead to chlorosis and eventual death of the leaf. LIFE CYCLE Rhynchosporium commune is seed borne, but the importance of this phase of the disease is not fully understood. Debris from previous crops and volunteers, infected from the stubble from previous crops, are considered to be the most important sources of the disease. Autumn-sown crops can become infected very soon after sowing. Secondary spread of disease occurs mainly through splash dispersal of conidia from infected leaves. Rainfall at the stem extension growth stage is the major environmental factor in epidemic development. DETECTION AND QUANTIFICATION: Rhynchosporium commune produces unique beak-shaped, one-septate spores both on leaves and in culture. The development of a specific polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) has allowed the identification of asymptomatic infection in seeds and during the growing season. DISEASE CONTROL The main measure for the control of R. commune is the use of fungicides with different modes of action, in combination with the use of resistant cultivars. However, this is constantly under review because of the ability of the pathogen to adapt to host plant resistance and to develop fungicide resistance.
Collapse
Affiliation(s)
- Anna Avrova
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | | |
Collapse
|