51
|
Aghaie P, Tafreshi SAH. Central role of 70-kDa heat shock protein in adaptation of plants to drought stress. Cell Stress Chaperones 2020; 25:1071-1081. [PMID: 32720054 PMCID: PMC7591640 DOI: 10.1007/s12192-020-01144-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 11/30/2022] Open
Abstract
The 70-kDa heat shock proteins (HSP70s) are a conserved class of chaperones that play critical roles during the normal life cycle of plants. HSP70s are particularly involved in the regulation of biotic and abiotic stress responses. In this paper, the potential roles of this protein were investigated. A reverse genetic approach was employed for transient silencing of hsp70 gene in tomato (Solanum lycopersicum L.) to evaluate different growth and physiological parameters under normal conditions and during the response to drought stress. A combined ANOVA (analysis of variance) and HCA (hierarchical clustering analysis) showed that hsp70 silencing led to severe growth retardation and mortality, significant membrane damage and leakage, decline in relative water content, low rate of pigment accumulation, and reduced antioxidant enzyme activity under normal and drought stress conditions. Among the different parameters, proline was the only trait that was unaffected by gene silencing and accumulated by similar amounts to that of nonsilent plants. In conclusion, HSP70 played critical roles in maintaining the cellular homeostasis of plants during adaptation to drought and under normal plant life conditions. It was speculated that proline was, to some extent, involved in improving the loss of protein folding or function resulting from HSP70 deficiency, and played a crucial role in the adaptation of plants on exposure to stress.
Collapse
Affiliation(s)
- Peyman Aghaie
- Department of Biology, Faculty of Science, Payame Noor University, PO Box 19395-3697, Tehran, Iran
| | - Seyed Ali Hosseini Tafreshi
- Biotechnology Division, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, 8731753153, Iran.
| |
Collapse
|
52
|
Funck D, Baumgarten L, Stift M, von Wirén N, Schönemann L. Differential Contribution of P5CS Isoforms to Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:565134. [PMID: 33101333 PMCID: PMC7545825 DOI: 10.3389/fpls.2020.565134] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/09/2020] [Indexed: 05/24/2023]
Abstract
Proline accumulation is a widespread response of plants to salt stress as well as drought and cold stress. In most plant species, two isoforms of pyrroline-5-carboxylate synthetase (P5CS) catalyze the first step in proline biosynthesis from glutamate. In Arabidopsis, these isoforms differ in their spatial and temporal expression patterns, suggesting sub-functionalization. P5CS1 has been identified as the major contributor to stress-induced proline accumulation, whereas P5CS2 has been considered important for embryo development and growth. In contrast to previous results, our analysis of P5CS1- and P5CS2-GFP fusion proteins indicates that both enzymes were exclusively localized in the cytosol. The comparison of the susceptibility of p5cs1 and p5cs2 mutants to infection with Pseudomonas syringae and salt stress provided novel information on the contribution of the two P5CS isoforms to proline accumulation and stress tolerance. In agreement with previous studies, salt-stressed p5cs1 mutants accumulated very little proline, indicating that P5CS1 contributed more to stress-induced proline accumulation, whereas its impact on stress tolerance was rather weak. Germination and establishment of p5cs2 mutants were impaired under ambient conditions, further supporting that P5CS2 is most important for growth and development, whereas its contribution to stress-induced proline accumulation was smaller than that of P5CS1. In contrast to p5cs1 mutants or wildtype plants, p5cs2 mutants were only weakly affected by sudden exposure to a high NaCl concentration. These findings show that proline content, which was intermediate in leaves of p5cs2 mutants, was not directly correlated with stress tolerance in our experiments. In rosettes of NaCl-exposed p5cs2 mutants, nearly no accumulation of Na+ was observed, and the plants showed neither chlorosis nor reduction of photosynthesis. Based on these data, we suggest a function of P5CS2 or P5CS2-mediated proline synthesis in regulating Na+ accumulation in leaves and thereby salt stress tolerance.
Collapse
Affiliation(s)
- Dietmar Funck
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lukas Baumgarten
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marc Stift
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Luise Schönemann
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
53
|
Li Z, Li R, Li Q, Zhou J, Wang G. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. CHEMOSPHERE 2020; 255:127041. [PMID: 32679635 DOI: 10.1016/j.chemosphere.2020.127041] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/01/2020] [Accepted: 05/09/2020] [Indexed: 05/07/2023]
Abstract
Microplastics pollution in farmlands has become a major concern. However, few studies have assessed the effects of microplastics on higher plants. In this study, we investigated the influence of polystyrene nanoplastics (PSNPs, 50 mg L-1), with four different particle sizes (100, 300, 500, and 700 nm), on the physiological and biochemical indexes of cucumber leaves. The biomass of cucumber plants significantly decreased after exposure to 300 nm PSNPs. Similarly, the chlorophyll a, chlorophyll b, soluble sugar, carotenoid, and proline content, as well as the fluorescence of cucumber leaves were significantly reduced by 100 nm PSNPs. Malondialdehyde, proline, peroxidase gene expression and enzyme activity, and hydrogen peroxide content significantly increased in cucumber leaves exposed to 700 nm PSNPs. In addition, increasing PSNPs particle size led to decreased relative expression levels and activities of the major antioxidant enzymes superoxide dismutase and catalase, while vitamin C and soluble protein content significantly increased. Overall, our results indicated that PSNPs affect the photosynthetic, antioxidant, and sugar metabolism systems of cucumber leaves, with the latter clearly affecting the total biomass of cucumber plants. The benzene ring resulting from the degradation of PSNPs in cucumber leaves may be the main factor affecting chlorophyll metabolism and sugar metabolism. Our findings provide a scientific basis for the risk assessment of PSNPs exposure in soil-plant systems.
Collapse
Affiliation(s)
- Zhenxia Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, 453003, China.
| | - Ruijing Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Qingfei Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, 453003, China
| | - Junguo Zhou
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, 453003, China
| | - Guangyin Wang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, 453003, China
| |
Collapse
|
54
|
Zhao H, Zhong S, Sang L, Zhang X, Chen Z, Wei Q, Chen G, Liu J, Yu Y. PaACL silencing accelerates flower senescence and changes the proteome to maintain metabolic homeostasis in Petunia hybrida. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4858-4876. [PMID: 32364241 PMCID: PMC7475263 DOI: 10.1093/jxb/eraa208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/25/2020] [Indexed: 06/07/2023]
Abstract
Cytosolic acetyl-CoA is an intermediate of the synthesis of most secondary metabolites and the source of acetyl for protein acetylation. The formation of cytosolic acetyl-CoA from citrate is catalysed by ATP-citrate lyase (ACL). However, the function of ACL in global metabolite synthesis and global protein acetylation is not well known. Here, four genes, PaACLA1, PaACLA2, PaACLB1, and PaACLB2, which encode the ACLA and ACLB subunits of ACL in Petunia axillaris, were identified as the same sequences in Petunia hybrida 'Ultra'. Silencing of PaACLA1-A2 and PaACLB1-B2 led to abnormal leaf and flower development, reduced total anthocyanin content, and accelerated flower senescence in petunia 'Ultra'. Metabolome and acetylome analysis revealed that PaACLB1-B2 silencing increased the content of many downstream metabolites of acetyl-CoA metabolism and the levels of acetylation of many proteins in petunia corollas. Mechanistically, the metabolic stress induced by reduction of acetyl-CoA in PaACL-silenced petunia corollas caused global and specific changes in the transcriptome, the proteome, and the acetylome, with the effect of maintaining metabolic homeostasis. In addition, the global proteome and acetylome were negatively correlated under acetyl-CoA deficiency. Together, our results suggest that ACL acts as an important metabolic regulator that maintains metabolic homeostasis by promoting changes in the transcriptome, proteome. and acetylome.
Collapse
Affiliation(s)
- Huina Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Shiwei Zhong
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Lina Sang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xinyou Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zeyu Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Qian Wei
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Guoju Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yixun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| |
Collapse
|
55
|
Zhang W, Jiang L, Huang J, Ding Y, Liu Z. Loss of proton/calcium exchange 1 results in the activation of plant defense and accelerated senescence in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110472. [PMID: 32540002 DOI: 10.1016/j.plantsci.2020.110472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
Cytosolic Ca2+ increases in response to many stimuli. CAX1 (H+/Ca2+ exchanger 1) maintains calcium homeostasis by transporting calcium from the cytosol to vacuoles. Here, we determined that the cax1 mutant exhibits enhanced resistance against both an avirulent biotrophic pathogen Pst-avrRpm1 (Pseudomonas syringae pv tomato DC3000 avrRpm1), and a necrotrophic pathogen, B. cinerea (Botrytis cinerea). The defense hormone SA (salicylic acid) and phytoalexin scopoletin, which fight against biotrophs and necrotrophs respectively, accumulated more in cax1 than wild-type. Moreover, the cax1 mutant exhibited early senescence after exogenous Ca2+ application. The accelerated senescence in the cax1 mutant was dependent on SID2 (salicylic acid induction deficient 2) but not on NPR1 (nonexpressor of pathogenesis-related genes1). Additionally, the introduction of CAX1 into the cax1 mutant resulted in phenotypes similar to that of wild-type in terms of Ca2+-conditioned senescence and Pst-avrRpm1 and B. cinerea infections. However, disruption of CAX3, the homolog of CAX1, did not produce an obvious phenotype. Moreover, exogenous Ca2+ application on plants resulted in increased resistance to both Pst-avrRpm1 and B. cinerea. Therefore, we conclude that the disruption of CAX1, but not CAX3, causes the activation of pathogen defense mechanisms, probably through the manipulation of calcium homeostasis or other signals.
Collapse
Affiliation(s)
- Wei Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan, China
| | - Lihui Jiang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan, China
| | - Jin Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yongqiang Ding
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
56
|
Kumari M, Joshi R, Kumar R. Metabolic signatures provide novel insights to Picrorhiza kurroa adaptation along the altitude in Himalayan region. Metabolomics 2020; 16:77. [PMID: 32577832 DOI: 10.1007/s11306-020-01698-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/15/2020] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Along the altitude, environmental conditions vary significantly that might influence plant performance and distribution. Adaptation to these changing conditions is a complex biological process that involves reprogramming of genes, proteins and metabolites. The metabolic response of medicinal plants along the altitude has been less explored yet. OBJECTIVES In the present study, we investigated the adaptation strategies of Picrorhiza kurroa Royle ex Benth. along the altitude in organ specific manner using metabolomic approach. METHODS Picrorhiza kurroa plants at flowering stage were randomly sampled from three altitudes viz. 3400, 3800 and 4100 masl in the Himalayan region. Leaf, root and rhizome were used for LC-MS based non-targeted metabolite profiling and targeted analysis of sugars, amino acids, picrosides and their corresponding phenolic acids. RESULTS A total of 220, primary and secondary metabolites (SMs) were identified (p < 0.05) representing an extensive inventory of metabolites and their spatial distribution in P. kurroa. Differential accumulation of metabolites suggests source-sink carbon partitioning, occurrence of partial TCA cycle, ascorbate metabolism, purine catabolism and salvage route, pyrimidine synthesis, lipid alteration besides gibberellins and cytokinin inhibition might be an adaptive strategy to alpine environmental stress along the altitude. Further, marked differences of organ and altitude specific SMs reflect alteration in secondary metabolic pathways. Significant accumulation of picrosides suggests their probable role in P. kurroa adaptation. CONCLUSION This study provides a platform that would be useful in deciphering the role of metabolites considered to be involved in plant adaptation.
Collapse
Affiliation(s)
- Manglesh Kumari
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Robin Joshi
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
| | - Rajiv Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India.
| |
Collapse
|
57
|
Furlan AL, Bianucci E, Giordano W, Castro S, Becker DF. Proline metabolic dynamics and implications in drought tolerance of peanut plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:566-578. [PMID: 32320942 DOI: 10.1016/j.plaphy.2020.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 05/25/2023]
Abstract
Proline accumulation and metabolism are associated with mechanisms of abiotic stress avoidance in plants. Proline accumulation generally improves osmotic stress tolerance whereas proline metabolism can have varying effects from ATP generation to the formation of reactive oxygen species. To further understand the roles of proline in stress protection, two peanut cultivars with contrasting tolerance to drought were examined by transcriptional and biochemical analyses during water stress. Plants exposed to polyethylene glycol had diminished relative water content and increased proline content; while, only the drought sensitive plants, cultivar Granoleico, showed lipid oxidative damage (measured as thiobarbituric acid reactive substances). The expression of proline biosynthesis genes (P5CS1, P5CS2a, P5CS2b, P5CR) was increased in both cultivars upon exposure to water stress. However, the relative expression of proline catabolism genes (ProDH1, ProDH2) was increased only in the sensitive cultivar during stress. Exogenous addition of proline and the proline analogue thiazolidine-4-carboxylic acid (T4C), both substrates of proline dehydrogenase, was also used to exacerbate and identify plant responses. Pretreatment of plants with T4C induced unique changes in the drought tolerant EC-98 cultivar such as higher mRNA levels of proline biosynthetic and catabolic ProDH genes, even in the absence of water stress. The increased levels of ProDH gene expression, potentially associated with higher T4C conversion to cysteine, may contribute to the tolerant phenotype.
Collapse
Affiliation(s)
- Ana Laura Furlan
- Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800, Río Cuarto, Córdoba, Argentina; Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Eliana Bianucci
- Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Walter Giordano
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Stella Castro
- Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Donald F Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
58
|
PGPR Modulation of Secondary Metabolites in Tomato Infested with Spodoptera litura. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060778] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The preceding climate change demonstrates overwintering of pathogens that lead to increased incidence of insects and pest attack. Integration of ecological and physiological/molecular approaches are imperative to encounter pathogen attack in order to enhance crop yield. The present study aimed to evaluate the effects of two plant growth promoting rhizobacteria (Bacillus endophyticus and Pseudomonas aeruginosa) on the plant physiology and production of the secondary metabolites in tomato plants infested with Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). The surface sterilized seeds of tomato were inoculated with plant growth promoting rhizobacteria (PGPR) for 3–4 h prior to sowing. Tomato leaves at 6 to 7 branching stage were infested with S. litura at the larval stage of 2nd instar. Identification of secondary metabolites and phytohormones were made from tomato leaves using thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC) and fourier-transform infrared spectroscopy (FTIR). Infestation with S. litura significantly decreased plant growth and yield. The PGPR inoculations alleviated the adverse effects of insect infestation on plant growth and fruit yield. An increased level of protein, proline and sugar contents and enhanced activity of superoxide dismutase (SOD) was noticed in infected tomato plants associated with PGPR. Moreover, p-kaempferol, rutin, caffeic acid, p-coumaric acid and flavonoid glycoside were also detected in PGPR inoculated infested plants. The FTIR spectra of the infected leaf samples pre-treated with PGPR revealed the presence of aldehyde. Additionally, significant amounts of indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) were detected in the leaf samples. From the present results, we conclude that PGPR can promote growth and yield of tomatoes under attack and help the host plant to combat infestation via modulation in IAA, SA, ABA and other secondary metabolites.
Collapse
|
59
|
Characterisation of antagonistic Bacillus paralicheniformis (strain EAL) by LC-MS, antimicrobial peptide genes, and ISR determinants. Antonie Van Leeuwenhoek 2020; 113:1167-1177. [PMID: 32410087 DOI: 10.1007/s10482-020-01423-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Plants have their own defense mechanisms such as induced systemic resistance (ISR) and systemic-acquired resistance. Bacillus spp. are familiar biocontrol agents that trigger ISR against various phytopathogens by eliciting various metabolites and producing defense enzyme in the host plant. In this study, B. paralicheniformis (strain EAL) was isolated from the medicinal plant Enicostema axillare. Butanol extract of B. paralicheniformis showed potential antagonism against Fusarium oxysporum compared to control well (sterile distilled water) A liquid chromatography mass spectrometry analysis showed 80 different compounds. Among the 80 compounds, we selected citrulline, carnitine, and indole-3-ethanol based on mass-to-charge ratio, database difference, and resolution of mass spectrum. The synthetic form of the above compounds showed biocontrol activity against F. oxysporum under in vitro condition in combination, not as individual compounds. However, the PCR amplification of 11 antimicrobial peptide genes showed that none of the genes amplified in the strain. B. paralicheniformis inoculation challenged with F. oxysporum on tomato plants enhanced production of defense enzymes such as peroxidase (POD), superoxide dismutase (SOD), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and proline compared to control plants (without inoculation of B. paralicheniformis) at significant level (p < 0.005). Stem of tomato plants expressed higher POD (2.2-fold), SOD (2.2-fold), PPO (1.9-fold), and PAL (1.3-fold) contents followed by the leaf and root. Elevated proline accumulation was observed in the leaf (1.8-fold) of tomato plants. Thus, results clearly showed potentiality of B. paralicheniformis (EAL) in activation of antioxidant defense enzyme against F. oxysporum-infected tomato plants and prevention of oxidative damage though hydroxyl radicals scavenging activities that suppress the occurrence of wilt diseases.
Collapse
|
60
|
Xiao Y, Wu X, Liu D, Yao J, Liang G, Song H, Ismail AM, Luo JS, Zhang Z. Cell Wall Polysaccharide-Mediated Cadmium Tolerance Between Two Arabidopsis thaliana Ecotypes. FRONTIERS IN PLANT SCIENCE 2020; 11:473. [PMID: 32477379 PMCID: PMC7239314 DOI: 10.3389/fpls.2020.00473] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/30/2020] [Indexed: 05/07/2023]
Abstract
Cadmium (Cd) is a toxic metal element and the mechanism(s) underlying Cd tolerance in plants are still unclear. Increasingly more studies have been conducted on Cd binding to plant cell walls (CW) but most of them have focused on Cd fixation by CW pectin, and few studies have examined Cd binding to cellulose and hemicellulose. Here we found that Cd binding to CW pectin, cellulose, and hemicellulose was significantly higher in Tor-1, a Cd tolerant A. thaliana ecotype, than in Ph2-23, a sensitive ecotype, as were the concentrations of pectin, cellulose, and hemicellulose. Transcriptome analysis revealed that the genes regulating CW pectin, cellulose, and hemicellulose polysaccharide concentrations in Tor-1 differed significantly from those in Ph2-23. The expressions of most genes such as pectin methyl esterase inhibitors (PMEIs), pectin lyases, xyloglucan endotransglucosylase/hydrolase, expansins (EXPAs), and cellulose hydrolase were higher in Ph2-23, while the expressions of cellulose synthase-like glycosyltransferase 3 (CSLG3) and pectin ethyl esterase 4 (PAE4) were higher in Tor-1. The candidate genes identified here seem to regulate CW Cd fixation by polysaccharides. In conclusion, an increase in pectin demethylation activity, the higher concentration of cellulose and hemicellulose, regulated by related genes, in Tor-1 than in Ph2-23 are likely involved in enhanced Cd CW retention and reduce Cd toxicity.
Collapse
Affiliation(s)
- Yan Xiao
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | - Xiuwen Wu
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | - Dong Liu
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | - Junyue Yao
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | - Guihong Liang
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | - Haixing Song
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | | | - Jin-Song Luo
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| |
Collapse
|
61
|
Cao X, Wu L, Wu M, Zhu C, Jin Q, Zhang J. Abscisic acid mediated proline biosynthesis and antioxidant ability in roots of two different rice genotypes under hypoxic stress. BMC PLANT BIOLOGY 2020; 20:198. [PMID: 32384870 PMCID: PMC7206686 DOI: 10.1186/s12870-020-02414-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/29/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Abscisic acid (ABA) and proline play important roles in rice acclimation to different stress conditions. To study whether cross-talk exists between ABA and proline, their roles in rice acclimation to hypoxia, rice growth, root oxidative damage and endogenous ABA and proline accumulation were investigated in two different rice genotypes ('Nipponbare' (Nip) and 'Upland 502' (U502)). RESULTS Compared with U502 seedlings, Nip seedlings were highly tolerant to hypoxic stress, with increased plant biomass and leaf photosynthesis and decreased root oxidative damage. Hypoxia significantly stimulated the accumulation of proline and ABA in the roots of both cultivars, with a higher ABA level observed in Nip than in U502, whereas the proline levels showed no significant difference in the two cultivars. The time course variation showed that the root ABA and proline contents under hypoxia increased 1.5- and 1.2-fold in Nip, and 2.2- and 0.7-fold in U502, respectively, within the 1 d of hypoxic stress, but peak ABA production (1 d) occurred before proline accumulation (5 d) in both cultivars. Treatment with an ABA synthesis inhibitor (norflurazon, Norf) inhibited proline synthesis and simultaneously aggravated hypoxia-induced oxidative damage in the roots of both cultivars, but these effects were reversed by exogenous ABA application. Hypoxia plus Norf treatment also induced an increase in glutamate (the main precursor of proline). This indicates that proline accumulation is regulated by ABA-dependent signals under hypoxic stress. Moreover, genes involved in proline metabolism were differentially expressed between the two genotypes, with expression mediated by ABA under hypoxic stress. In Nip, hypoxia-induced proline accumulation in roots was attributed to the upregulation of OsP5CS2 and downregulation of OsProDH, whereas upregulation of OsP5CS1 combined with downregulation of OsProDH enhanced the proline level in U502. CONCLUSION These results suggest that the high tolerance of the Nip cultivar is related to the high ABA level and ABA-mediated antioxidant capacity in roots. ABA acts upstream of proline accumulation by regulating the expression of genes encoding the key enzymes in proline biosynthesis, which also partly improves rice acclimation to hypoxic stress. However, other signaling pathways enhancing tolerance to hypoxia in the Nip cultivar still need to be elucidated.
Collapse
Affiliation(s)
- Xiaochuang Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Longlong Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Meiyan Wu
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 Hubei China
| | - Chunquan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Qianyu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Junhua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| |
Collapse
|
62
|
Tarkowski ŁP, Signorelli S, Höfte M. γ-Aminobutyric acid and related amino acids in plant immune responses: Emerging mechanisms of action. PLANT, CELL & ENVIRONMENT 2020; 43:1103-1116. [PMID: 31997381 DOI: 10.1111/pce.13734] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The entanglement between primary metabolism regulation and stress responses is a puzzling and fascinating theme in plant sciences. Among the major metabolites found in plants, γ-aminobutyric acid (GABA) fulfils important roles in connecting C and N metabolic fluxes through the GABA shunt. Activation of GABA metabolism is known since long to occur in plant tissues following biotic stresses, where GABA appears to have substantially different modes of action towards different categories of pathogens and pests. While it can harm insects thanks to its inhibitory effect on the neuronal transmission, its capacity to modulate the hypersensitive response in attacked host cells was proven to be crucial for host defences in several pathosystems. In this review, we discuss how plants can employ GABA's versatility to effectively deal with all the major biotic stressors, and how GABA can shape plant immune responses against pathogens by modulating reactive oxygen species balance in invaded plant tissues. Finally, we discuss the connections between GABA and other stress-related amino acids such as BABA (β-aminobutyric acid), glutamate and proline.
Collapse
Affiliation(s)
- Łukasz P Tarkowski
- Seed Metabolism and Stress Team, INRAE Angers, UMR1345 Institut de Recherche en Horticulture et Semences, Bâtiment A, Beaucouzé cedex, France
| | - Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Sayago CP, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley CP, WA, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley CP, WA, Australia
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
63
|
Dellero Y, Clouet V, Marnet N, Pellizzaro A, Dechaumet S, Niogret MF, Bouchereau A. Leaf status and environmental signals jointly regulate proline metabolism in winter oilseed rape. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2098-2111. [PMID: 31807778 PMCID: PMC7242077 DOI: 10.1093/jxb/erz538] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 05/03/2023]
Abstract
Proline metabolism is an essential component of plant adaptation to multiple environmental stress conditions that is also known to participate in specific developmental phases, particularly in reproductive organs. Recent evidence suggested a possible role for proline catabolism in Brassica napus for nitrogen remobilization processes from source leaves at the vegetative stage. Here, we investigate transcript levels of Δ1-PYRROLINE-5-CARBOXYLATE SYNTHASE (P5CS) and PROLINE DEHYDROGENASE (ProDH) genes at the vegetative stage with respect to net proline biosynthesis and degradation fluxes in leaves having a different sink/source balance. We showed that the underexpression of three P5CS1 genes in source leaves was accompanied by a reduced commitment of de novo assimilated 15N towards proline biosynthesis and an overall depletion of free proline content. We found that the expression of ProDH genes was strongly induced by carbon starvation conditions (dark-induced senescence) compared with early senescing leaves. Our results suggested a role for proline catabolism in B. napus, but acting only at a late stage of senescence. In addition, we also identified some P5CS and ProDH genes that were differentially expressed during multiple processes (leaf status, dark to light transition, and stress response).
Collapse
Affiliation(s)
- Younes Dellero
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
- Correspondence:
| | - Vanessa Clouet
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Nathalie Marnet
- Plateau de Profilage Métabolique et Métabolique (P2M2), INRA-IGEPP and INRA-BIA, Le Rheu, France
| | - Anthoni Pellizzaro
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Sylvain Dechaumet
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Marie-Françoise Niogret
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Alain Bouchereau
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| |
Collapse
|
64
|
Chen L, Wu Q, He T, Lan J, Ding L, Liu T, Wu Q, Pan Y, Chen T. Transcriptomic and Metabolomic Changes Triggered by Fusarium solani in Common Bean ( Phaseolus vulgaris L.). Genes (Basel) 2020; 11:E177. [PMID: 32046085 PMCID: PMC7073522 DOI: 10.3390/genes11020177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Common bean (Phaseolus vulgaris L.) is a major legume and is frequently attacked by fungal pathogens, including Fusarium solani f. sp. phaseoli (FSP), which cause Fusarium root rot. FSP substantially reduces common bean yields across the world, including China, but little is known about how common bean plants defend themselves against this fungal pathogen. In the current study, we combined next-generation RNA sequencing and metabolomics techniques to investigate the changes in gene expression and metabolomic processes in common bean infected with FSP. There were 29,722 differentially regulated genes and 300 differentially regulated metabolites between control and infected plants. The combined omics approach revealed that FSP is perceived by PAMP-triggered immunity and effector-triggered immunity. Infected seedlings showed that common bean responded by cell wall modification, ROS generation, and a synergistic hormone-driven defense response. Further analysis showed that FSP induced energy metabolism, nitrogen mobilization, accumulation of sugars, and arginine and proline metabolism. Importantly, metabolic pathways were most significantly enriched, which resulted in increased levels of metabolites that were involved in the plant defense response. A correspondence between the transcript pattern and metabolite profile was observed in the discussed pathways. The combined omics approach enhances our understanding of the less explored pathosystem and will provide clues for the development of common bean cultivars' resistant to FSP.
Collapse
Affiliation(s)
- Limin Chen
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China; (L.C.); (T.H.); (T.L.); (Y.P.)
| | - Quancong Wu
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China; (L.C.); (T.H.); (T.L.); (Y.P.)
| | - Tianjun He
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China; (L.C.); (T.H.); (T.L.); (Y.P.)
| | - Jianjun Lan
- Plant Protection Station of Songyang County, Lishui 323400, China;
| | - Li Ding
- Weihai Academy of Agricultural Sciences, No. 411, Tongyi Road, Weihai 311300, China;
| | - Tingfu Liu
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China; (L.C.); (T.H.); (T.L.); (Y.P.)
| | - Qianqian Wu
- School of Agricultural and Food Science, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yiming Pan
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China; (L.C.); (T.H.); (T.L.); (Y.P.)
| | - Tingting Chen
- College of Ecology, Lishui University, Lishui, Zhejiang 323000, China;
| |
Collapse
|
65
|
Govindasamy V, George P, Kumar M, Aher L, Raina SK, Rane J, Annapurna K, Minhas PS. Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [ Sorghum bicolor (L.) Moench]. 3 Biotech 2020; 10:13. [PMID: 31879577 DOI: 10.1007/s13205-019-2001-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022] Open
Abstract
Root-tissue colonizing bacteria demonstrated with multiple PGP traits from sorghum plants were identified as Ochrobactrum sp. EB-165, Microbacterium sp. EB-65, Enterobacter sp. EB-14 and Enterobacter cloacae strain EB-48 on the basis of 16S rRNA gene sequencing. Here, the in vivo experiments using ½-MS media and ½-MS media + 15% PEG 8000 (for inducing drought stress) indicated stress tolerance imparting ability of these rhizobacterial endophytes in a non-stay green and senescent genotype (R-16) of sorghum. In the experiment with sterile soilrite mix base, seed bacterization with these isolates showed improved plant growth specifically the roots, in terms of root length (~ 44.2 to 50.8% over controls), root dry weight (~ 91.3 to 99.8% over controls) and root surface area (~ 1 to 1.5 fold over controls) under drought stress. Rhizobacterial endophytes were successful, not only in providing better cellular osmotic adjustment in leaves (≥ 1-fold increase in proline accumulation over controls), but favorable physiological responses like Relative Water Content (RWC) and cell Membrane Stability Index (MSI) in the inoculated plants during the drought stress induction. Up-regulation of drought responsive genes like sbP5CS2 and sbP5CS1 was observed in these endophytes-treated plants as compared to untreated control and Escherichia coli DH5α (negative control)-treated plants. Interestingly, the stress imparting traits of rhizobacterial endophytes, including up-regulation of specific genes, were observed during sorghum seedling growth only under drought stresses. The results of this study lead to the conclusion that the potential endophytic rhizobacterial interactions can contribute to plant growth promotion as well as induced stress tolerance in sorghum.
Collapse
Affiliation(s)
- Venkadasamy Govindasamy
- 1School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra 413115 India
- 2Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Priya George
- 1School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra 413115 India
| | - Mahesh Kumar
- 1School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra 413115 India
| | - Lalitkumar Aher
- 1School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra 413115 India
| | - Susheel Kumar Raina
- 1School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra 413115 India
- 3ICAR-National Bureau of Plant Genetic Resources, Regional Station, Srinagar, Jammu & Kashmir 190007 India
| | - Jagadish Rane
- 1School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra 413115 India
| | - Kannepalli Annapurna
- 2Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Paramjit Singh Minhas
- 1School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra 413115 India
| |
Collapse
|
66
|
Xu Y, Jiao X, Wang X, Zhang H, Wang B, Yuan F. Importin-β From the Recretohalophyte Limonium bicolor Enhances Salt Tolerance in Arabidopsis thaliana by Reducing Root Hair Development and Abscisic Acid Sensitivity. FRONTIERS IN PLANT SCIENCE 2020; 11:582459. [PMID: 33519843 PMCID: PMC7838111 DOI: 10.3389/fpls.2020.582459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/02/2020] [Indexed: 05/17/2023]
Abstract
AIMS To elucidate the genetics underlying salt tolerance in recretohalophytes and assess its relevance to non-halophytes, we cloned the Limonium bicolor homolog of Arabidopsis thaliana (Arabidopsis) SUPER SENSITIVE TO ABA AND DROUGHT2 (AtSAD2) and named it LbSAD2, an importin-β gene associated with trichome initiation and reduced abscisic acid (ABA) sensitivity, and then we assessed the heterologously expressed LbSAD2 in Arabidopsis. METHODS We examined LbSAD2 expression and assessed the effect of heterologous LbSAD2 expression in Arabidopsis on root hair/trichome induction; the expression levels of possible related genes in trichome/root hair development; some physiological parameters involved in salt tolerance including germination rate, root length, and contents of Na+, proline, and malondialdehyde; and the response of ABA at the germination stage. RESULTS The LbSAD2 gene is highly expressed in the salt gland development stage and salt treatment, especially located in the salt gland by in situ hybridization, and the LbSAD2 protein contains some special domains compared with AtSAD2, which may suggest the involvement of LbSAD2 in salt tolerance. Compared with the SAD2/GL1 mutant CS65878, which lacks trichomes, CS65878-35S:LbSAD2 had higher trichome abundance but lower root hair abundance. Under 100 mM NaCl treatment, CS65878-35S:LbSAD2 showed enhanced germination and root lengths; improved physiological parameters, including high proline and low contents of Na+ and malondialdehyde; higher expression of the salt-tolerance genes Δ1-PYRROLINE-5-CARBOXYLATE SYNTHETASE 1 (P5CS1) and GST CLASS TAU 5 (GSTU5); reduced ABA sensitivity; and increased expression of the ABA signaling genes RESPONSIVE TO ABA 18 (RAB18) and SNF1-RELATED PROTEIN KINASE 2 (SRK2E), but not of the ABA biosynthesis gene 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3). CONCLUSION LbSAD2 enhances salt tolerance in Arabidopsis by specifically reducing root hair development, Na+ accumulation, and ABA sensitivity.
Collapse
|
67
|
Verma D, Jalmi SK, Bhagat PK, Verma N, Sinha AK. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. FEBS J 2019; 287:2560-2576. [PMID: 31782895 DOI: 10.1111/febs.15157] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/26/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
Abstract
MYC2, a bHLH TF, acts as regulatory hub within several signaling pathways by integration of various endogenous and exogenous signals which shape plant growth and development. However, its involvement in salt stress regulation is still elusive. This study has deciphered a novel role of MYC2 in imparting salt stress intolerance by regulating delta1 -pyrroline-5-carboxylate synthase1 (P5CS1) gene and hence proline synthesis. P5CS1 is a rate-limiting enzyme in the biosynthesis of proline. Y-1-H and EMSA studies confirmed the binding of MYC2 with the 5'UTR region of P5CS1. Transcript and biochemical studies have revealed MYC2 as a negative regulator of proline biosynthesis. Proline is necessary for imparting tolerance toward abiotic stress; however, its overaccumulation is toxic for the plants. Hence, studying the regulation of proline biosynthesis is requisite to understand the mechanism of stress tolerance. We have also studied that MYC2 is regulated by mitogen-activated protein kinase (MAPK) cascade mitogen-activated protein kinase kinase 3-MPK6 and vice versa. Altogether, this study demonstrates salt stress-mediated activation of MYC2 by MAPK cascade, regulating proline biosynthesis and thus salt stress.
Collapse
Affiliation(s)
| | | | | | - Neetu Verma
- National Institute of Plant Genome Research, New Delhi, India
| | | |
Collapse
|
68
|
Yuan L, Wang J, Xie S, Zhao M, Nie L, Zheng Y, Zhu S, Hou J, Chen G, Wang C. Comparative Proteomics Indicates That Redox Homeostasis Is Involved in High- and Low-Temperature Stress Tolerance in a Novel Wucai ( Brassica campestris L.) Genotype. Int J Mol Sci 2019; 20:ijms20153760. [PMID: 31374822 PMCID: PMC6696267 DOI: 10.3390/ijms20153760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
The genotype WS-1, previously identified from novel wucai germplasm, is tolerant to both low-temperature (LT) and high-temperature (HT) stress. However, it is unclear which signal transduction pathway or acclimation mechanisms are involved in the temperature-stress response. In this study, we used the proteomic method of tandem mass tag (TMT) coupled with liquid chromatography-mass spectrometry (LC-MS/MS) to identify 1022 differentially expressed proteins (DEPs) common to WS-1, treated with either LT or HT. Among these 1022 DEPs, 172 were upregulated in response to both LT and HT, 324 were downregulated in response to both LT and HT, and 526 were upregulated in response to one temperature stress and downregulated in response to the other. To illustrate the common regulatory pathway in WS-1, 172 upregulated DEPs were further analyzed. The redox homeostasis, photosynthesis, carbohydrate metabolism, heat-shockprotein, and chaperones and signal transduction pathways were identified to be associated with temperature stress tolerance in wucai. In addition, 35S:BcccrGLU1 overexpressed in Arabidopsis, exhibited higher reduced glutathione (GSH) content and reduced glutathione/oxidized glutathione (GSH/GSSG) ratio and less oxidative damage under temperature stress. This result is consistent with the dynamic regulation of the relevant proteins involved in redox homeostasis. These data demonstrate that maintaining redox homeostasis is an important common regulatory pathway for tolerance to temperature stress in novel wucai germplasm.
Collapse
Affiliation(s)
- Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jie Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shilei Xie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Mengru Zhao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Libing Nie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Yushan Zheng
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China.
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China.
| |
Collapse
|
69
|
Seneviratne M, Rajakaruna N, Rizwan M, Madawala HMSP, Ok YS, Vithanage M. Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1813-1831. [PMID: 28702790 DOI: 10.1007/s10653-017-0005-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/26/2017] [Indexed: 05/07/2023]
Abstract
Heavy metal contamination in soils can influence plants and animals, often leading to toxicosis. Heavy metals can impact various biochemical processes in plants, including enzyme and antioxidant production, protein mobilization and photosynthesis. Hydrolyzing enzymes play a major role in seed germination. Enzymes such as acid phosphatases, proteases and α-amylases are known to facilitate both seed germination and seedling growth via mobilizing nutrients in the endosperm. In the presence of heavy metals, starch is immobilized and nutrient sources become limited. Moreover, a reduction in proteolytic enzyme activity and an increase in protein and amino acid content can be observed under heavy metal stress. Proline, is an amino acid which is essential for cellular metabolism. Numerous studies have shown an increase in proline content under oxidative stress in higher plants. Furthermore, heat shock protein production has also been observed under heavy metal stress. The chloroplast small heat shock proteins (Hsp) reduce photosynthesis damage, rather than repair or help to recover from heavy metal-induced damage. Heavy metals are destructive substances for photosynthesis. They are involved in destabilizing enzymes, oxidizing photosystem II (PS II) and disrupting the electron transport chain and mineral metabolism. Although the physiological effects of Cd have been investigated thoroughly, other metals such as As, Cr, Hg, Cu and Pb have received relatively little attention. Among agricultural plants, rice has been studied extensively; additional studies are needed to characterize toxicities of different heavy metals on other crops. This review summarizes the current state of our understanding of the effects of heavy metal stress on seed germination and seedling development and highlights informational gaps and areas for future research.
Collapse
Affiliation(s)
- Mihiri Seneviratne
- Department of Botany, Faculty of Natural Sciences, Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Nishanta Rajakaruna
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - H M S P Madawala
- Department of Botany, University of Peradeniya, Peradeniya, Sri Lanka
| | - Yong Sik Ok
- Korea Biochar Research Center & School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, 24341, Korea.
| | - Meththika Vithanage
- Environmental Chemodynamics Project, National Institute of Fundamental Studies, Kandy, Sri Lanka.
- Office of the Dean, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
70
|
Tarkowski ŁP, Van de Poel B, Höfte M, Van den Ende W. Sweet Immunity: Inulin Boosts Resistance of Lettuce ( Lactuca sativa) against Grey Mold ( Botrytis cinerea) in an Ethylene-Dependent Manner. Int J Mol Sci 2019; 20:E1052. [PMID: 30823420 PMCID: PMC6429215 DOI: 10.3390/ijms20051052] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 11/17/2022] Open
Abstract
The concept of "Sweet Immunity" postulates that sugar metabolism and signaling influence plant immune networks. In this study, we tested the potential of commercially available inulin-type fructans to limit disease symptoms caused by Botrytis cinerea in lettuce. Spraying mature lettuce leaves, with inulin-type fructans derived from burdock or chicory was as effective in reducing grey mold disease symptoms caused by Botrytis cinerea as spraying with oligogalacturonides (OGs). OGs are well-known defense elicitors in several plant species. Spraying with inulin and OGs induced accumulation of hydrogen peroxide and levels further increased upon pathogen infection. Inulin and OGs were no longer able to limit Botrytis infection when plants were treated with the ethylene signaling inhibitor 1-methylcyclopropene (1-MCP), indicating that a functional ethylene signaling pathway is needed for the enhanced defense response. Soluble sugars accumulated in leaves primed with OGs, while 1-MCP treatment had an overall negative effect on the sucrose pool. Accumulation of γ-aminobutyric acid (GABA), a stress-associated non-proteinogenic amino acid and possible signaling compound, was observed in inulin-treated samples after infection and negatively affected by the 1-MCP treatment. We have demonstrated for the first time that commercially available inulin-type fructans and OGs can improve the defensive capacity of lettuce, an economically important species. We discuss our results in the context of a possible recognition of fructans as Damage or Microbe Associated Molecular Patterns.
Collapse
Affiliation(s)
- Łukasz Paweł Tarkowski
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| | - Bram Van de Poel
- Laboratory of Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, UGhent, 9000 Ghent, Belgium.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| |
Collapse
|
71
|
Boccardo NA, Segretin ME, Hernandez I, Mirkin FG, Chacón O, Lopez Y, Borrás-Hidalgo O, Bravo-Almonacid FF. Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials. Sci Rep 2019; 9:2791. [PMID: 30808937 PMCID: PMC6391382 DOI: 10.1038/s41598-019-39568-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/25/2019] [Indexed: 01/18/2023] Open
Abstract
Plants are continuously challenged by pathogens, affecting most staple crops compromising food security. They have evolved different mechanisms to counterattack pathogen infection, including the accumulation of pathogenesis-related (PR) proteins. These proteins have been implicated in active defense, and their overexpression has led to enhanced resistance in nuclear transgenic plants, although in many cases constitutive expression resulted in lesion-mimic phenotypes. We decided to evaluate plastid transformation as an alternative to overcome limitations observed for nuclear transgenic technologies. The advantages include the possibilities to express polycistronic RNAs, to obtain higher protein expression levels, and the impeded gene flow due to the maternal inheritance of the plastome. We transformed Nicotiana tabacum plastids to co-express the tobacco PR proteins AP24 and β-1,3-glucanase. Transplastomic tobacco lines were characterized and subsequently challenged with Rhizoctonia solani, Peronospora hyoscyami f.sp. tabacina and Phytophthora nicotianae. Results showed that transplastomic plants expressing AP24 and β-1,3-glucanase are resistant to R. solani in greenhouse conditions and, furthermore, they are protected against P.hyoscyami f.sp. tabacina and P. nicotianae in field conditions under high inoculum pressure. Our results suggest that plastid co- expression of PR proteins AP24 and β-1,3-glucanase resulted in enhanced resistance against filamentous pathogens.
Collapse
Affiliation(s)
- Noelia Ayelen Boccardo
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), (C1428ADN), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Eugenia Segretin
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), (C1428ADN), Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ingrid Hernandez
- Centro de Ingeniería Genética y Biotecnología (CIGB), (10600), La Habana, Cuba
| | - Federico Gabriel Mirkin
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), (C1428ADN), Ciudad Autónoma de Buenos Aires, Argentina
| | - Osmani Chacón
- Centro de Ingeniería Genética y Biotecnología (CIGB), (10600), La Habana, Cuba
| | - Yunior Lopez
- Centro de Ingeniería Genética y Biotecnología (CIGB), (10600), La Habana, Cuba
| | - Orlando Borrás-Hidalgo
- Centro de Ingeniería Genética y Biotecnología (CIGB), (10600), La Habana, Cuba
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biotechnology, Qi Lu University of Technology, Jinan, (250353), P.R. China
| | - Fernando Félix Bravo-Almonacid
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), (C1428ADN), Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, (B1876BXD), Argentina.
| |
Collapse
|
72
|
Wang M, Gu Z, Wang R, Guo J, Ling N, Firbank LG, Guo S. Plant Primary Metabolism Regulated by Nitrogen Contributes to Plant-Pathogen Interactions. PLANT & CELL PHYSIOLOGY 2019; 60:329-342. [PMID: 30388252 DOI: 10.1093/pcp/pcy211] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/27/2018] [Indexed: 06/08/2023]
Abstract
Nitrogen contributes to plant defense responses by the regulation of plant primary metabolism during plant-pathogen interactions. Based on biochemical, physiological, bioinformatic and transcriptome approaches, we investigated how different nitrogen forms (ammonium vs. nitrate) regulate the physiological response of cucumber (Cucumis sativus) to Fusarium oxysporum f. sp. cucumerinum (FOC) infection. The metabolic profile revealed that nitrate-grown plants accumulated more organic acids, while ammonium-grown plants accumulated more amino acids; FOC infection significantly increased levels of both amino acids and organic acids in the roots of ammonium-grown plants. Transcriptome analysis showed that genes related to carbon metabolism were mostly up-regulated in plants grown with nitrate, whereas in ammonium-grown plants the up-regulated genes were mostly those that were related to primary nitrogen metabolism. Root FOC colonization and disease incidence were positively correlated with levels of root amino acids and negatively correlated with levels of root organic acids. In conclusion, organic acid metabolism and expression of related genes increased under nitrate, whereas ammonium increased the level of amino acids and expression of related genes; these altered levels of organic acids and amino acids resulted in different tolerances to FOC infection depending on the nitrogen forms supplied.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zechen Gu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ruirui Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Junjie Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | | | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
73
|
Kovács H, Aleksza D, Baba AI, Hajdu A, Király AM, Zsigmond L, Tóth SZ, Kozma-Bognár L, Szabados L. Light Control of Salt-Induced Proline Accumulation Is Mediated by ELONGATED HYPOCOTYL 5 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1584. [PMID: 31921239 PMCID: PMC6914869 DOI: 10.3389/fpls.2019.01584] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/12/2019] [Indexed: 05/21/2023]
Abstract
Plants have to adapt their metabolism to constantly changing environmental conditions, among which the availability of light and water is crucial in determining growth and development. Proline accumulation is one of the sensitive metabolic responses to extreme conditions; it is triggered by salinity or drought and is regulated by light. Here we show that red and blue but not far-red light is essential for salt-induced proline accumulation, upregulation of Δ1-PYRROLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1) and downregulation of PROLINE DEHYDROGENASE 1 (PDH1) genes, which control proline biosynthetic and catabolic pathways, respectively. Chromatin immunoprecipitation and electrophoretic mobility shift assays demonstrated that the transcription factor ELONGATED HYPOCOTYL 5 (HY5) binds to G-box and C-box elements of P5CS1 and a C-box motif of PDH1. Salt-induced proline accumulation and P5CS1 expression were reduced in the hy5hyh double mutant, suggesting that HY5 promotes proline biosynthesis through connecting light and stress signals. Our results improve our understanding on interactions between stress and light signals, confirming HY5 as a key regulator in proline metabolism.
Collapse
Affiliation(s)
- Hajnalka Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Dávid Aleksza
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Abu Imran Baba
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Anita Hajdu
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Anna Mária Király
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Szilvia Z. Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - László Kozma-Bognár
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- *Correspondence: László Szabados,
| |
Collapse
|
74
|
Anwar A, She M, Wang K, Riaz B, Ye X. Biological Roles of Ornithine Aminotransferase (OAT) in Plant Stress Tolerance: Present Progress and Future Perspectives. Int J Mol Sci 2018; 19:ijms19113681. [PMID: 30469329 PMCID: PMC6274847 DOI: 10.3390/ijms19113681] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Plant tolerance to biotic and abiotic stresses is complicated by interactions between different stresses. Maintaining crop yield under abiotic stresses is the most daunting challenge for breeding resilient crop varieties. In response to environmental stresses, plants produce several metabolites, such as proline (Pro), polyamines (PAs), asparagine, serine, carbohydrates including glucose and fructose, and pools of antioxidant reactive oxygen species. Among these metabolites, Pro has long been known to accumulate in cells and to be closely related to drought, salt, and pathogen resistance. Pyrroline-5-carboxylate (P5C) is a common intermediate of Pro synthesis and metabolism that is produced by ornithine aminotransferase (OAT), an enzyme that functions in an alternative Pro metabolic pathway in the mitochondria under stress conditions. OAT is highly conserved and, to date, has been found in all prokaryotic and eukaryotic organisms. In addition, ornithine (Orn) and arginine (Arg) are both precursors of PAs, which confer plant resistance to drought and salt stresses. OAT is localized in the cytosol in prokaryotes and fungi, while OAT is localized in the mitochondria in higher plants. We have comprehensively reviewed the research on Orn, Arg, and Pro metabolism in plants, as all these compounds allow plants to tolerate different kinds of stresses.
Collapse
Affiliation(s)
- Alia Anwar
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Maoyun She
- School of Veterinary and Life Sciences, Murdoch University, WA 6150, Australia.
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bisma Riaz
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
75
|
Wang W, Chen D, Zhang X, Liu D, Cheng Y, Shen F. Role of plant respiratory burst oxidase homologs in stress responses. Free Radic Res 2018; 52:826-839. [DOI: 10.1080/10715762.2018.1473572] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Dongdong Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Dan Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| |
Collapse
|
76
|
Vannette RL, Fukami T. Contrasting effects of yeasts and bacteria on floral nectar traits. ANNALS OF BOTANY 2018; 121:1343-1349. [PMID: 29562323 PMCID: PMC6007235 DOI: 10.1093/aob/mcy032] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/20/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Flowers can be highly variable in nectar volume and chemical composition, even within the same plant, but the causes of this variation are not fully understood. One potential cause is nectar-colonizing bacteria and yeasts, but experimental tests isolating their effects on wildflowers are largely lacking. This study examines the effects of dominant species of yeasts and bacteria on the hummingbird-pollinated shrub, Mimulus aurantiacus, in California. METHODS Wildflowers were inoculated with field-relevant titres of either the yeast Metschnikowia reukaufii or the bacterium Neokomagataea sp. (formerly Gluconobacter sp.), both isolated from M. aurantiacus nectar. Newly opened flowers were bagged, inoculated, harvested after 3 d and analysed for microbial abundance, nectar volume, and sugar and amino acid concentration and composition. KEY RESULTS Yeast inoculation reduced amino acid concentration and altered amino acid composition, but had no significant effect on nectar volume or sugar composition. In contrast, bacterial inoculation increased amino acid concentration, enhanced the proportion of nectar sugars comprised by monosaccharides, and reduced nectar volume. CONCLUSIONS The results presented suggest that microbial inhabitants of floral nectar can make nectar characteristics variable among flowers through divergent effects of yeasts and bacteria on nectar chemistry and availability, probably modifying plant-pollinator interactions.
Collapse
Affiliation(s)
- Rachel L Vannette
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
77
|
Tajti J, Janda T, Majláth I, Szalai G, Pál M. Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:546-554. [PMID: 29127816 DOI: 10.1016/j.ecoenv.2017.10.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/23/2023]
Abstract
In several cases a correlation was found between polyamines and abiotic stress tolerance. However, the individual polyamines may have different effects, which also vary depending on the type of treatment. When applied as seed soaking or added hydroponically 0.5mM putrescine and spermidine, different changes were induced during 50µM cadmium stress in wheat plants. Seed-soaked plants were exposed to cadmium immediately after germination for 5 days, while plants pre-treated with polyamines hydroponically were stressed at age of 14 days for 7 days. Putrescine pre-treatment was beneficial both as seed soaking and applied hydroponically, while spermidine only had a protective effect in the case of seed soaking, enhancing the Cd-induced oxidative stress when were pre-treated hydroponically. The differences observed were related to the polyamine metabolism. The accumulation of endogenous putrescine beyond a certain amount may be in relation with the negative effect of hydroponic spermidine pre-treatment during Cd stress. The increased putrescine content was also correlated with the highest accumulation of Cd, salicylic acid and proline contents in plants treated with a combination of spermidine and Cd. However, the expression level of the gene encoding phytochelatin synthase was only influenced by hydroponically applied spermidine, which decreased it under cadmium stress. Changes in the activities of antioxidant enzymes, diamine and polyamine oxidases were also discussed.
Collapse
Affiliation(s)
- Judit Tajti
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Imre Majláth
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary.
| |
Collapse
|
78
|
Fu Y, Ma H, Chen S, Gu T, Gong J. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:579-588. [PMID: 29253181 PMCID: PMC5853435 DOI: 10.1093/jxb/erx419] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proline plays a crucial role in the drought stress response in plants. However, there are still gaps in our knowledge about the molecular mechanisms that regulate proline metabolism under drought stress. Here, we report that the histone methylase encoded by CAU1, which is genetically upstream of P5CS1 (encoding the proline biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthetase 1), plays a crucial role in proline-mediated drought tolerance. We determined that the transcript level of CAU1 decreased while that of ANAC055 (encoding a transcription factor) increased in wild-type Arabidopsis under drought stress. Further analyses showed that CAU1 bound to the promoter of ANAC055 and suppressed its expression via H4R3sme2-type histone methylation in the promoter region. Thus, under drought stress, a decreased level of CAU1 led to an increased transcript level of ANAC055, which induced the expression of P5CS1 and increased proline level independently of CAS. Drought tolerance and the level of proline were found to be decreased in the cau1 anac055 double-mutant, while proline supplementation restored drought sensitivity in the anac055 mutant. Our results reveal the details of a novel pathway leading to drought tolerance mediated by CAU1.
Collapse
Affiliation(s)
- Yanlei Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- Correspondence:
| | - Hailing Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Siying Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Tianyu Gu
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jiming Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
79
|
Wang L, Guo Z, Zhang Y, Wang Y, Yang G, Yang L, Wang R, Xie Z. Characterization of LhSorP5CS, a gene catalyzing proline synthesis in Oriental hybrid lily Sorbonne: molecular modelling and expression analysis. BOTANICAL STUDIES 2017; 58:10. [PMID: 28510193 PMCID: PMC5432930 DOI: 10.1186/s40529-017-0163-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/07/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Abiotic stresses negatively affect plant growth and flower production. In plants, P5CS proteins are key enzymes that catalyzed the rate-limiting steps of proline synthesis, and proline is a well-known osmoprotectant that is closely related to abiotic stress tolerance. However, information about the P5CS genes, their effects on proline accumulation, and their role in abiotic stress tolerance in Lilium is still lacking. RESULTS We isolated and characterized a novel gene (LhSorP5CS) from Oriental hybrid lily cultivar Sorbonne. Phylogenetic analysis indicated that LhSorP5CS is a member of the P5CS family. The three-dimensional structure of LhSorP5CS predicted by homology modeling showed high similarity to its correspondant human P5CS template. Further gene expression analysis revealed that LhSorP5CS expression was up-regulated by NaCl, mannitol, and ABA, and that stress-exposed plants accumulated proline at a significantly higher level than in the control. CONCLUSIONS LhSorP5CS characterized in this study is involved in proline synthesis in lily, and that it might play an important role in abiotic stress tolerance. However, there should be other P5CS homologues in the lily genome, and some of them could be highly stress-induced and more important for proline accumulation. Future studies on P5CS family genes would be of great importance to proline-related stress tolerance in lily.
Collapse
Affiliation(s)
- Le Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhihong Guo
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yubao Zhang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yajun Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Guo Yang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Liu Yang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ruoyu Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Zhongkui Xie
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
80
|
Ghosh D, Sen S, Mohapatra S. Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1294-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
81
|
Gupta A, Senthil-Kumar M. Transcriptome changes in Arabidopsis thaliana infected with Pseudomonas syringae during drought recovery. Sci Rep 2017; 7:9124. [PMID: 28831155 PMCID: PMC5567376 DOI: 10.1038/s41598-017-09135-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/24/2017] [Indexed: 11/24/2022] Open
Abstract
Field-grown plants experience cycles of drought stress and recovery due to variation in soil moisture status. Physiological, biochemical and transcriptome responses instigated by recovery are expected to be different from drought stress and non-stressed state. Such responses can further aid or antagonize the plant's interaction with the pathogen. However, at molecular level, not much is known about plant-pathogen interaction during drought recovery. In the present study, we performed a microarray-based global transcriptome profiling and demonstrated the existence of unique transcriptional changes in Arabidopsis thaliana inoculated with Pseudomonas syringae pv. tomato DC3000 at the time of drought recovery (drought recovery pathogen, DRP) when compared to the individual drought (D) or pathogen (P) or drought recovery (DR). Furthermore, the comparison of DRP with D or DR and P transcriptome revealed the presence of a few common genes among three treatments. Notably, a gene encoding proline dehydrogenase (AtProDH1) was found to be commonly up-regulated under drought recovery (DR), DRP and P stresses. We also report an up-regulation of pyrroline-5-carboxylate biosynthesis pathway during recovery. We propose that AtProDH1 influences the defense pathways during DRP. Altogether, this study provides insight into the understanding of defense responses that operate in pathogen-infected plants during drought recovery.
Collapse
Affiliation(s)
- Aarti Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
82
|
Gomes MADC, Hauser-Davis RA, Suzuki MS, Vitória AP. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:55-64. [PMID: 28231506 DOI: 10.1016/j.ecoenv.2017.01.042] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 05/13/2023]
Abstract
Increasingly, anthropogenic perturbations of the biosphere manifest in a broad array of global phenomena, causing widespread contamination of most ecosystems, with high dispersion rates of many contaminants throughout different environmental compartments, including metals. Chromium (Cr) contamination in particular, is, increasingly, posing a serious threat to the environment, emerging as a major health hazard to the biota. However, although the molecular and physiological mechanisms of plant responses to many heavy metals, especially lead (Pb) and cadmium (Cd), have been focused upon in recent years, chromium has attracted significantly less attention. In this context, this review discusses aspects of Cr uptake and transport, some physiological and biochemical effects of Cr exposure in plants, and molecular defense mechanisms against this metal. Recent advances in determining these responses, in fields of knowledge such as genomics, proteomics and metallomics, are discussed herein.
Collapse
Affiliation(s)
- Maria Angélica da Conceição Gomes
- Laboratório de Ciências Ambientais (LCA), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense ''Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, CEP:28013-602 Rio de Janeiro, RJ, Brasil.
| | - Rachel Ann Hauser-Davis
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH), ENSP, FIOCRUZ, Rua Leopoldo Bulhões, 1480, 21041-210 Rio de Janeiro, RJ, Brasil
| | - Marina Satika Suzuki
- Laboratório de Ciências Ambientais (LCA), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense ''Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, CEP:28013-602 Rio de Janeiro, RJ, Brasil
| | - Angela Pierre Vitória
- Laboratório de Ciências Ambientais (LCA), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense ''Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, CEP:28013-602 Rio de Janeiro, RJ, Brasil
| |
Collapse
|
83
|
Liu Z, Liu P, Qi D, Peng X, Liu G. Enhancement of cold and salt tolerance of Arabidopsis by transgenic expression of the S-adenosylmethionine decarboxylase gene from Leymus chinensis. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:90-99. [PMID: 28178573 DOI: 10.1016/j.jplph.2016.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Leymus chinensis is an important perennial forage grass natively distributed in the Eurasian Steppe. However, little is known about the molecular mechanism of its adaptation to extreme environmental conditions. Based on L. chinensis cold-treated sequence database, a highly expressed S-adenosylmethionine decarboxylase gene (LcSAMDC1) was isolated from L. chinensis. Gene structure analysis showed that LcSAMDC1 has two introns and three exons as well as three non-overlapping ORFs in its mRNA sequence. One hour of cold exposure caused a significant up-regulation of LcSAMDC1, while abscisic acid (ABA), salt, and osmotic stresses slightly induced its expression. Analysis of gene expression in different tissues showed that LcSAMDC1 was expressed ubiquitously, with higher levels in the young spike and rhizome. Overexpression of the main ORF of LcSAMDC1 in transgenic Arabidopsis promoted increased tolerance to cold and salt stress relative to wild type Arabidopsis. The concentration of polyamines, proline, and chlorophyll was significantly higher in transgenic Arabidopsis, and spermine of polyamines increased more under cold than under salt stress. These results suggest that LcSAMDC1 was induced in response to cold and could influence the production of polyamines involved in stress tolerance of L. chinensis. Moreover, transgenic expression of LcSAMDC1 could be used to improve the abiotic resistance of crops.
Collapse
Affiliation(s)
- Zhujiang Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Panpan Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
84
|
Schaker PDC, Peters LP, Cataldi TR, Labate CA, Caldana C, Monteiro-Vitorello CB. Metabolome Dynamics of Smutted Sugarcane Reveals Mechanisms Involved in Disease Progression and Whip Emission. FRONTIERS IN PLANT SCIENCE 2017; 8:882. [PMID: 28620397 PMCID: PMC5450380 DOI: 10.3389/fpls.2017.00882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/10/2017] [Indexed: 05/02/2023]
Abstract
Sugarcane smut disease, caused by the biotrophic fungus Sporisorium scitamineum, is characterized by the development of a whip-like structure from the plant meristem. The disease causes negative effects on sucrose accumulation, fiber content and juice quality. The aim of this study was to exam whether the transcriptomic changes already described during the infection of sugarcane by S. scitamineum result in changes at the metabolomic level. To address this question, an analysis was conducted during the initial stage of the interaction and through disease progression in a susceptible sugarcane genotype. GC-TOF-MS allowed the identification of 73 primary metabolites. A set of these compounds was quantitatively altered at each analyzed point as compared with healthy plants. The results revealed that energetic pathways and amino acid pools were affected throughout the interaction. Raffinose levels increased shortly after infection but decreased remarkably after whip emission. Changes related to cell wall biosynthesis were characteristic of disease progression and suggested a loosening of its structure to allow whip growth. Lignin biosynthesis related to whip formation may rely on Tyr metabolism through the overexpression of a bifunctional PTAL. The altered levels of Met residues along with overexpression of SAM synthetase and ACC synthase genes suggested a role for ethylene in whip emission. Moreover, unique secondary metabolites antifungal-related were identified using LC-ESI-MS approach, which may have potential biomarker applications. Lastly, a putative toxin was the most important fungal metabolite identified whose role during infection remains to be established.
Collapse
Affiliation(s)
- Patricia D. C. Schaker
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Leila P. Peters
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Thais R. Cataldi
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Carlos A. Labate
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology LaboratorySão Paulo, Brazil
- Max Planck Partner Group at Brazilian Bioethanol Science and Technology LaboratorySão Paulo, Brazil
| | - Claudia B. Monteiro-Vitorello
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
- *Correspondence: Claudia B. Monteiro-Vitorello
| |
Collapse
|
85
|
Zarattini M, Forlani G. Toward Unveiling the Mechanisms for Transcriptional Regulation of Proline Biosynthesis in the Plant Cell Response to Biotic and Abiotic Stress Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:927. [PMID: 28626464 PMCID: PMC5454058 DOI: 10.3389/fpls.2017.00927] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/17/2017] [Indexed: 05/18/2023]
Abstract
Proline accumulation occurs in plants following the exposure to a wide array of stress conditions, as well as during numerous physiological and adaptive processes. Increasing evidence also supports the involvement of proline metabolism in the plant response to pathogen attack. This requires that the biosynthetic pathway is triggered by components of numerous and different signal transduction chains. Indeed, several reports recently described activation of genes coding for enzymes of the glutamate pathway by transcription factors (TFs) belonging to various families. Here, we summarize some of these findings with special emphasis on rice, and show the occurrence of a plethora of putative TF binding sites in the promoter of such genes.
Collapse
|
86
|
Zhang A, Liu D, Hua C, Yan A, Liu B, Wu M, Liu Y, Huang L, Ali I, Gan Y. The Arabidopsis Gene zinc finger protein 3(ZFP3) Is Involved in Salt Stress and Osmotic Stress Response. PLoS One 2016; 11:e0168367. [PMID: 27977750 PMCID: PMC5158053 DOI: 10.1371/journal.pone.0168367] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/30/2016] [Indexed: 11/18/2022] Open
Abstract
Plants are continuously challenged by various abiotic and biotic stresses. To tide over these adversities, plants evolved intricate regulatory networks to adapt these unfavorable environments. So far, many researchers have clarified the molecular and genetic pathways involved in regulation of stress responses. However, the mechanism through which these regulatory networks operate is largely unknown. In this study, we cloned a C2H2-type zinc finger protein gene ZFP3 from Arabidopsis thaliana and investigated its function in salt and osmotic stress response. Our results showed that the expression level of ZFP3 was highly suppressed by NaCl, mannitol and sucrose. Constitutive expression of ZFP3 enhanced tolerance of plants to salt and osmotic stress while the zfp3 mutant plants displays reduced tolerance in Arabidopsis. Gain- and Loss-of-function studies of ZFP3 showed that ZFP3 significantly changes proline accumulation and chlorophyll content. Furthermore, over-expression of ZFP3 induced the expressions of stress-related gene KIN1, RD22, RD29B and AtP5CS1. These results suggest that ZFP3 is involved in salt and osmotic stress response.
Collapse
Affiliation(s)
- Aidong Zhang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dongdong Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Changmei Hua
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - An Yan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bohan Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minjie Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yihua Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Linli Huang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Imran Ali
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
87
|
Dynamic cross-talk between host primary metabolism and viruses during infections in plants. Curr Opin Virol 2016; 19:50-5. [PMID: 27442236 DOI: 10.1016/j.coviro.2016.06.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 12/23/2022]
Abstract
Upon infection plant viruses modulate cellular functions and resources to survive and reproduce. Plant cells in which the virus is replicating are transformed into strong metabolic sinks. This conversion gives rise to a massive reprogramming of plant primary metabolism. Such a metabolic shift involves perturbations in carbohydrates, amino acids and lipids that eventually lead to increase respiration rates, and/or decrease in photosynthetic activity. By doing so, plants provide metabolic acclimation against cellular stress and meet the increased demand for energy needed to sustain virus multiplication and defense responses against viruses. This review will highlight our current knowledge pertaining to the contribution of primary metabolism to the outcome of viral infections in plants.
Collapse
|
88
|
Desalegn G, Turetschek R, Kaul HP, Wienkoop S. Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection. J Proteomics 2016; 143:173-187. [PMID: 27016040 DOI: 10.1016/j.jprot.2016.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/18/2016] [Accepted: 03/15/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED The long cultivation of field pea led to an enormous diversity which, however, seems to hold just little resistance against the ascochyta blight disease complex. The potential of below ground microbial symbiosis to prime the immune system of Pisum for an upcoming pathogen attack has hitherto received little attention. This study investigates the effect of beneficial microbes on the leaf proteome and metabolome as well as phenotype characteristics of plants in various symbiont interactions (mycorrhiza, rhizobia, co-inoculation, non-symbiotic) after infestation by Didymella pinodes. In healthy plants, mycorrhiza and rhizobia induced changes in RNA metabolism and protein synthesis. Furthermore, metal handling and ROS dampening was affected in all mycorrhiza treatments. The co-inoculation caused the synthesis of stress related proteins with concomitant adjustment of proteins involved in lipid biosynthesis. The plant's disease infection response included hormonal adjustment, ROS scavenging as well as synthesis of proteins related to secondary metabolism. The regulation of the TCA, amino acid and secondary metabolism including the pisatin pathway, was most pronounced in rhizobia associated plants which had the lowest infection rate and the slowest disease progression. BIOLOGICAL SIGNIFICANCE A most comprehensive study of the Pisum sativum proteome and metabolome infection response to Didymella pinodes is provided. Several distinct patterns of microbial symbioses on the plant metabolism are presented for the first time. Upon D. pinodes infection, rhizobial symbiosis revealed induced systemic resistance e.g. by an enhanced level of proteins involved in pisatin biosynthesis.
Collapse
Affiliation(s)
- G Desalegn
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - R Turetschek
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria
| | - H-P Kaul
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - S Wienkoop
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria.
| |
Collapse
|
89
|
Kadotani N, Akagi A, Takatsuji H, Miwa T, Igarashi D. Exogenous proteinogenic amino acids induce systemic resistance in rice. BMC PLANT BIOLOGY 2016; 16:60. [PMID: 26940322 PMCID: PMC4778346 DOI: 10.1186/s12870-016-0748-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/26/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant immune responses can be induced by endogenous and exogenous signaling molecules. Recently, amino acids and their metabolites have been reported to affect the plant immune system. However, how amino acids act in plant defense responses has yet to be clarified. Here, we report that treatment of rice roots with amino acids such as glutamate (Glu) induced systemic disease resistance against rice blast in leaves. RESULTS Treatment of roots with Glu activated the transcription of a large variety of defense-related genes both in roots and leaves. In leaves, salicylic acid (SA)-responsive genes, rather than jasmonic acid (JA) or ethylene (ET)-responsive genes, were induced by this treatment. The Glu-induced blast resistance was partially impaired in rice plants deficient in SA signaling such as NahG plants expressing an SA hydroxylase, WRKY45-knockdown, and OsNPR1-knockdown plants. The JA-deficient mutant cpm2 exhibited full Glu-induced blast resistance. CONCLUSIONS Our results indicate that the amino acid-induced blast resistance partly depends on the SA pathway but an unknown SA-independent signaling pathway is also involved.
Collapse
Affiliation(s)
- Naoki Kadotani
- Institute for Innovation, Ajinomoto Co., Inc, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| | - Aya Akagi
- Plant Disease Resistance Research Unit, Division of Plant Science, National Institute of Agrobiological Sciences, 2-1-2, Kannondai, Tsukuba, 305-8602, Japan.
- Bayer Crop Science, Tokyo, 100-8262, Japan.
| | - Hiroshi Takatsuji
- Plant Disease Resistance Research Unit, Division of Plant Science, National Institute of Agrobiological Sciences, 2-1-2, Kannondai, Tsukuba, 305-8602, Japan.
| | - Tetsuya Miwa
- Institute for Innovation, Ajinomoto Co., Inc, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| | - Daisuke Igarashi
- Institute for Innovation, Ajinomoto Co., Inc, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| |
Collapse
|
90
|
Ben Rejeb K, Lefebvre-De Vos D, Le Disquet I, Leprince AS, Bordenave M, Maldiney R, Jdey A, Abdelly C, Savouré A. Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 208:1138-48. [PMID: 26180024 DOI: 10.1111/nph.13550] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/08/2015] [Indexed: 05/07/2023]
Abstract
Many plants accumulate proline, a compatible osmolyte, in response to various environmental stresses such as water deficit and salinity. In some stress responses, plants generate hydrogen peroxide (H2 O2 ) that mediates numerous physiological and biochemical processes. The aim was to study the relationship between stress-induced proline accumulation and H2 O2 production. Using pharmacological and reverse genetic approaches in Arabidopsis thaliana, we investigated the role of NADPH oxidases, Respiratory burst oxidase homologues (Rboh), in the induction of proline accumulation was investigated in response to stress induced by either 200 mM NaCl or 400 mM mannitol. Stress from NaCl or mannitol resulted in a transient increase in H2 O2 content accompanied by accumulation of proline. Dimethylthiourea, a scavenger of H2 O2 , and diphenylene iodonium (DPI), an inhibitor of H2 O2 production by NADPH oxidase, were found to significantly inhibit proline accumulation in these stress conditions. DPI also reduced the expression level of Δ(1) -pyrroline-5-carboxylate synthetase, the key enzyme involved in the biosynthesis of proline. Similarly, less proline accumulated in knockout mutants lacking either AtRbohD or AtRbohF than in wild-type plants in response to the same stresses. Our data demonstrate that AtRbohs (A. thaliana Rbohs) contribute to H2 O2 production in response to NaCl or mannitol stress to increase proline accumulation in this plant.
Collapse
Affiliation(s)
- Kilani Ben Rejeb
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Delphine Lefebvre-De Vos
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
| | - Isabel Le Disquet
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
| | - Anne-Sophie Leprince
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
| | - Marianne Bordenave
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
| | - Régis Maldiney
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
| | - Asma Jdey
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Arnould Savouré
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
| |
Collapse
|
91
|
Kaur G, Asthir B. Proline: a key player in plant abiotic stress tolerance. BIOLOGIA PLANTARUM 2015; 59:609-619. [PMID: 0 DOI: 10.1007/s10535-015-0549-3] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
92
|
Biancucci M, Mattioli R, Moubayidin L, Sabatini S, Costantino P, Trovato M. Proline affects the size of the root meristematic zone in Arabidopsis. BMC PLANT BIOLOGY 2015; 15:263. [PMID: 26514776 PMCID: PMC4625561 DOI: 10.1186/s12870-015-0637-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND We reported previously that root elongation in Arabidopsis is promoted by exogenous proline, raising the possibility that this amino acid may modulate root growth. RESULTS To evaluate this hypothesis we used a combination of genetic, pharmacological and molecular analyses, and showed that proline specifically affects root growth by modulating the size of the root meristem. The effects of proline on meristem size are parallel to, and independent from, hormonal pathways, and do not involve the expression of genes controlling cell differentiation at the transition zone. On the contrary, proline appears to control cell division in early stages of postembryonic root development, as shown by the expression of the G2/M-specific CYCLINB1;1 (CYCB1;1) gene. CONCLUSIONS The overall data suggest that proline can modulate the size of root meristematic zone in Arabidopsis likely controlling cell division and, in turn, the ratio between cell division and cell differentiation.
Collapse
Affiliation(s)
- Marco Biancucci
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Roberto Mattioli
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Laila Moubayidin
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Sabrina Sabatini
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Paolo Costantino
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Maurizio Trovato
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
93
|
Silva CB, Rondon JN, Souza PF, Oliveira AMR, Santos GO, Kulik JD, Lima CP, Kerber VA, Dias JFG, Zanin SMW, Miguel OG, Miguel MD. The presence of Microlobius foetidus cause changes in the antioxidant defense of Urochloa decumbens? BRAZ J BIOL 2015; 75:565-73. [PMID: 26465722 DOI: 10.1590/1519-6984.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/17/2014] [Indexed: 11/21/2022] Open
Abstract
Urochloa decumbens (Stapf) R. D. Webster (Poaceae) is an exotic species with has spread rapidly through the Cerrado area of Pantanal, Mato Grosso do Sul, Brazil. It has covered the soil aggressively turning it into cultivated pastures. Thus, it has become a challenge to protect native areas due its capacity of exclusion of native species. It has been observed that Microlobius foetidus (Jacq.) M.Sousa & G.Andrade species (Fabaceae) shows a dominant pattern over the development of U. decumbens. This work shows that M. foetidus interfere on the natural growth of U. decumbens within 10 m ratio. Between 15 and 20 m, it was observed an increase of Importance Value index (IVI) and Relative cover (RC) values. It was also observed a variation on the antioxidant defense system of U. decumbens within 10m ratio from M. foetidus. The enzymes superoxide dismutase, catalase and peroxidase present higher levels of activity then those found for glutathione reductase. This data indicates that M. foetidus may have an effect on U. decumbens, increase the activity of antioxidant enzymes. This effect probably happens as means to neutralize the toxic effects of the oxygen generated due to the presence of allelochemicals, which increases oxidative stress.
Collapse
Affiliation(s)
- C B Silva
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, BR
| | - J N Rondon
- Departamento de Biologia, Universidade Católica Dom Bosco, Campo Grande, MS, BR
| | - P F Souza
- Departamento de Biologia, Universidade Católica Dom Bosco, Campo Grande, MS, BR
| | - A M R Oliveira
- Departamento de Engenharia Florestal, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, BR
| | - G O Santos
- Departamento de Botânica, Universidade Federal do Paraná, Curitiba, PR, BR
| | - J D Kulik
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, BR
| | - C P Lima
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, BR
| | - V A Kerber
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, BR
| | - J F G Dias
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, BR
| | - S M W Zanin
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, BR
| | - O G Miguel
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, BR
| | - M D Miguel
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, BR
| |
Collapse
|
94
|
Nussbaumer T, Warth B, Sharma S, Ametz C, Bueschl C, Parich A, Pfeifer M, Siegwart G, Steiner B, Lemmens M, Schuhmacher R, Buerstmayr H, Mayer KFX, Kugler KG, Schweiger W. Joint Transcriptomic and Metabolomic Analyses Reveal Changes in the Primary Metabolism and Imbalances in the Subgenome Orchestration in the Bread Wheat Molecular Response to Fusarium graminearum. G3 (BETHESDA, MD.) 2015; 5:2579-92. [PMID: 26438291 PMCID: PMC4683631 DOI: 10.1534/g3.115.021550] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/22/2015] [Indexed: 12/26/2022]
Abstract
Fusarium head blight is a prevalent disease of bread wheat (Triticum aestivum L.), which leads to considerable losses in yield and quality. Quantitative resistance to the causative fungus Fusarium graminearum is poorly understood. We integrated transcriptomics and metabolomics data to dissect the molecular response to the fungus and its main virulence factor, the toxin deoxynivalenol in near-isogenic lines segregating for two resistance quantitative trait loci, Fhb1 and Qfhs.ifa-5A. The data sets portrait rearrangements in the primary metabolism and the translational machinery to counter the fungus and the effects of the toxin and highlight distinct changes in the metabolism of glutamate in lines carrying Qfhs.ifa-5A. These observations are possibly due to the activity of two amino acid permeases located in the quantitative trait locus confidence interval, which may contribute to increased pathogen endurance. Mapping to the highly resolved region of Fhb1 reduced the list of candidates to few genes that are specifically expressed in presence of the quantitative trait loci and in response to the pathogen, which include a receptor-like protein kinase, a protein kinase, and an E3 ubiquitin-protein ligase. On a genome-scale level, the individual subgenomes of hexaploid wheat contribute differentially to defense. In particular, the D subgenome exhibited a pronounced response to the pathogen and contributed significantly to the overall defense response.
Collapse
Affiliation(s)
- Thomas Nussbaumer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
| | - Benedikt Warth
- Center for Analytical Chemistry (IFA-Tulln), BOKU - University of Natural Resources and Life Sciences, Tulln, A- 3430, Austria
| | - Sapna Sharma
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
| | - Christian Ametz
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU - University of Natural Resources and Life Sciences, Tulln, A-3430, Austria
| | - Christoph Bueschl
- Center for Analytical Chemistry (IFA-Tulln), BOKU - University of Natural Resources and Life Sciences, Tulln, A- 3430, Austria
| | - Alexandra Parich
- Center for Analytical Chemistry (IFA-Tulln), BOKU - University of Natural Resources and Life Sciences, Tulln, A- 3430, Austria
| | - Matthias Pfeifer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
| | - Gerald Siegwart
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU - University of Natural Resources and Life Sciences, Tulln, A-3430, Austria
| | - Barbara Steiner
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU - University of Natural Resources and Life Sciences, Tulln, A-3430, Austria
| | - Marc Lemmens
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU - University of Natural Resources and Life Sciences, Tulln, A-3430, Austria
| | - Rainer Schuhmacher
- Center for Analytical Chemistry (IFA-Tulln), BOKU - University of Natural Resources and Life Sciences, Tulln, A- 3430, Austria
| | - Hermann Buerstmayr
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU - University of Natural Resources and Life Sciences, Tulln, A-3430, Austria
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
| | - Karl G Kugler
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
| | - Wolfgang Schweiger
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU - University of Natural Resources and Life Sciences, Tulln, A-3430, Austria
| |
Collapse
|
95
|
Shukla P, Singh S, Dubey P, Singh A, Singh AK. Nitric oxide mediated amelioration of arsenic toxicity which alters the alternative oxidase (Aox1) gene expression in Hordeum vulgare L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:59-65. [PMID: 26036416 DOI: 10.1016/j.ecoenv.2015.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
The role of nitric oxide (NO) as a key molecule in the signal transduction pathway of a biotic stress response has already been described. Recent studies indicate that it also participate in the signaling of abiotic stresses. In the present study, we showed the altered expression of stress responsive gene alternative oxidase (Aox1) in seedlings of barley (Hordeum vulgare L.) in response to arsenic toxicity. Arsenic toxicity decreased the germination percentage, biomass, chlorophyll and carotenoid content whereas, arsenic toxicity enhanced the MDA content and proline content in a dose dependent manner. Other enzyme activities like catalase and superoxide dismutase increased with the increase in concentrations but it fell down at higher concentration of arsenic. Pretreatment of nitric oxide results in the enhanced expression of alternative oxidase which showed the adaptation of alternative pathway during the arsenic stress and it also enhances the growth ability and adaptability towards the arsenic stress. The results support the conclusion that nitric oxide ameliorates the arsenic toxicity not only at the level of antioxidant defense but also by affecting other mechanism of detoxification.
Collapse
Affiliation(s)
- Pratiksha Shukla
- (a) Genotoxic Lab, Department of Botany, Udai Pratap Autonomous college, Varanasi 221002, India.
| | | | | | - Aradhana Singh
- (a) Genotoxic Lab, Department of Botany, Udai Pratap Autonomous college, Varanasi 221002, India
| | - A K Singh
- (a) Genotoxic Lab, Department of Botany, Udai Pratap Autonomous college, Varanasi 221002, India
| |
Collapse
|
96
|
Ali N, Hadi F. Phytoremediation of cadmium improved with the high production of endogenous phenolics and free proline contents in Parthenium hysterophorus plant treated exogenously with plant growth regulator and chelating agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13305-18. [PMID: 25940488 DOI: 10.1007/s11356-015-4595-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/23/2015] [Indexed: 05/21/2023]
Abstract
Pot experiments were conducted to evaluate the effects of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) on growth parameters, cadmium (Cd) phytoextraction, total phenolics, free proline and chlorophyll content of Parthenium hysterophorus plant grown in Cd-contaminated (100 mg/kg) soil. GA3 was applied as foliar spray (10(-2), 10(-4) and 10(-6) M) while EDTA (40 mg/kg soil) was added to soil as single and in split doses. Results showed decrease in growth parameters due to Cd stress but P. hysterophorus plant demonstrated Cd hyperaccumulator potential based on bioconcentration factor (BCF). Lower concentration of GA3 (10(-6) M) showed highest significant increase in the growth parameters while Cd concentration, accumulation (1.97 ± 0.11 mg/DBM) and bioconcentration (9.75 ± 0.34) was significantly higher in the treatment T11 (GA3 10(-2) + split doses of EDTA). Cadmium significantly increased the root free proline while total phenolic concentration was significantly high in all parts of the plant. Chlorophyll contents were significantly reduced by Cd. GA3 showed significant increase in phenolic and chlorophyll contents in plant. Cadmium accumulation in plant tissues showed positive correlation with free proline (R (2) = 0.527, R (2) = 0.630) and total phenolics (R (2) = 0.554, R (2) = 0.723) in roots and leaves, respectively. Cd contents negatively correlated with biomass, chlorophyll and total water contents. Proline and phenolic contents showed positive correlation with dry biomass of plant. These findings suggest further investigation to study the role of endogenous phenolics and proline in heavy metal phytoremediation.
Collapse
Affiliation(s)
- Nasir Ali
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, 18800, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | | |
Collapse
|
97
|
Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S, Garnczarska M. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:1-12. [PMID: 26070063 DOI: 10.1016/j.jplph.2015.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 05/21/2023]
Abstract
Osmopriming is a pre-sowing treatment that enhances germination performance and stress tolerance of germinating seeds. Brassica napus seeds showed osmopriming-improved germination and seedling growth under salinity stress. To understand the molecular and biochemical mechanisms of osmopriming-induced salinity tolerance, the accumulation of proline, gene expression and activity of enzymes involved in proline metabolism and the level of endogenous hydrogen peroxide were investigated in rape seeds during osmopriming and post-priming germination under control (H2O) and stress conditions (100 mM NaCl). The relationship between gene expression and enzymatic activity of pyrroline-5-carboxylate synthetase (P5CS), ornithine-δ-aminotransferase (OAT) and proline dehydrogenase (PDH) was determined. The improved germination performance of osmoprimed seeds was accompanied by a significant increase in proline content. The accumulation of proline during priming and post-priming germination was associated with strong up-regulation of the P5CSA gene, down-regulation of the PDH gene and accumulation of hydrogen peroxide. The up-regulated transcript level of P5CSA was consistent with the increase in P5CS activity. This study shows, for the first time, the role of priming-induced modulation of activities of particular genes and enzymes of proline turnover, and its relationship with higher content of hydrogen peroxide, in improving seed germination under salinity stress. Following initial stress-exposure, the primed seeds acquired stronger salinity stress tolerance during post-priming germination, a feature likely linked to a 'priming memory'.
Collapse
Affiliation(s)
- Szymon Kubala
- Adam Mickiewicz University in Poznań, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland; Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Łukasz Wojtyla
- Adam Mickiewicz University in Poznań, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 4-5, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Lechowska
- Adam Mickiewicz University in Poznań, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 4-5, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Małgorzata Garnczarska
- Adam Mickiewicz University in Poznań, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
98
|
Sherwood P, Villari C, Capretti P, Bonello P. Mechanisms of induced susceptibility to Diplodia tip blight in drought-stressed Austrian pine. TREE PHYSIOLOGY 2015; 35:549-62. [PMID: 25900028 DOI: 10.1093/treephys/tpv026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/08/2015] [Indexed: 05/11/2023]
Abstract
Plants experiencing drought stress are frequently more susceptible to pathogens, likely via alterations in physiology that create favorable conditions for pathogens. Common plant responses to drought include the production of reactive oxygen species (ROS) and the accumulation of free amino acids (AAs), particularly proline. These same phenomena also frequently occur during pathogenic attack. Therefore, drought-induced perturbations in AA and ROS metabolism could potentially contribute to the observed enhanced susceptibility. Furthermore, nitrogen (N) availability can influence AA accumulation and affect plant resistance, but its contributions to drought-induced susceptibility are largely unexplored. Here we show that drought induces accumulation of hydrogen peroxide (H2O2) in Austrian pine (Pinus nigra Arnold) shoots, but that shoot infection by the blight and canker pathogen Diplodia sapinea (Fr.) Fuckel leads to large reductions in H2O2 levels in droughted plants. In in vitro assays, H2O2 was toxic to D. sapinea, and the fungus responded to this oxidative stress by increasing catalase and peroxidase activities, resulting in substantial H2O2 degradation. Proline increased in response to drought and infection when examined independently, but unlike all other AAs, proline further increased in infected shoots of droughted trees. In the same tissues, the proline precursor, glutamate, decreased significantly. Proline was found to protect D. sapinea from H2O2 damage, while also serving as a preferred N source in vitro. Fertilization increased constitutive and drought-induced levels of some AAs, but did not affect plant resistance. A new model integrating interactions of proline and H2O2 metabolism with drought and fungal infection of plants is proposed.
Collapse
Affiliation(s)
- Patrick Sherwood
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210 , USA
| | - Caterina Villari
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210 , USA
| | - Paolo Capretti
- Dipartimento di Scienze Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze, Firenze 50144, Italy
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210 , USA
| |
Collapse
|
99
|
Wu JX, Li J, Liu Z, Yin J, Chang ZY, Rong C, Wu JL, Bi FC, Yao N. The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:767-80. [PMID: 25619405 DOI: 10.1111/tpj.12769] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 05/20/2023]
Abstract
Ceramidases hydrolyze ceramide into sphingosine and fatty acids. In mammals, ceramidases function as key regulators of sphingolipid homeostasis, but little is known about their roles in plants. Here we characterize the Arabidopsis ceramidase AtACER, a homolog of human alkaline ceramidases. The acer-1 T-DNA insertion mutant has pleiotropic phenotypes, including reduction of leaf size, dwarfing and an irregular wax layer, compared with wild-type plants. Quantitative sphingolipid profiling showed that acer-1 mutants and the artificial microRNA-mediated silenced line amiR-ACER-1 have high ceramide levels and decreased long chain bases. AtACER localizes predominantly to the endoplasmic reticulum, and partially to the Golgi complex. Furthermore, we found that acer-1 mutants and AtACER RNAi lines showed increased sensitivity to salt stress, and lines overexpressing AtACER showed increased tolerance to salt stress. Reduction of AtACER also increased plant susceptibility to Pseudomonas syringae. Our data highlight the key biological functions of ceramidases in biotic and abiotic stresses in plants.
Collapse
Affiliation(s)
- Jian-Xin Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Ruszkowski M, Nocek B, Forlani G, Dauter Z. The structure of Medicago truncatula δ(1)-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:869. [PMID: 26579138 PMCID: PMC4626632 DOI: 10.3389/fpls.2015.00869] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/01/2015] [Indexed: 05/18/2023]
Abstract
The two pathways for proline biosynthesis in higher plants share the last step, the conversion of δ(1)-pyrroline-5-carboxylate (P5C) to L-proline, which is catalyzed by P5C reductase (P5CR, EC 1.5.1.2) with the use of NAD(P)H as a coenzyme. There is increasing amount of evidence to suggest a complex regulation of P5CR activity at the post-translational level, yet the molecular basis of these mechanisms is unknown. Here we report the three-dimensional structure of the P5CR enzyme from the model legume Medicago truncatula (Mt). The crystal structures of unliganded MtP5CR decamer, and its complexes with the products NAD(+), NADP(+), and L-proline were refined using x-ray diffraction data (at 1.7, 1.85, 1.95, and 2.1 Å resolution, respectively). Based on the presented structural data, the coenzyme preference for NADPH over NADH was explained, and NADPH is suggested to be the only coenzyme used by MtP5CR in vivo. Furthermore, the insensitivity of MtP5CR to feed-back inhibition by proline, revealed by enzymatic analysis, was correlated with structural features. Additionally, a mechanism for the modulation of enzyme activity by chloride anions is discussed, as well as the rationale for the possible development of effective enzyme inhibitors.
Collapse
Affiliation(s)
- Milosz Ruszkowski
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer InstituteArgonne, IL, USA
- *Correspondence: Milosz Ruszkowski
| | - Boguslaw Nocek
- Biosciences Division, Argonne National Laboratory, The Structural Biology CenterArgonne, IL, USA
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer InstituteArgonne, IL, USA
| |
Collapse
|