51
|
Mruk DD, Silvestrini B, Cheng CY. Anchoring junctions as drug targets: role in contraceptive development. Pharmacol Rev 2008; 60:146-80. [PMID: 18483144 PMCID: PMC3023124 DOI: 10.1124/pr.107.07105] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In multicellular organisms, cell-cell interactions are mediated in part by cell junctions, which underlie tissue architecture. Throughout spermatogenesis, for instance, preleptotene leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier to enter the adluminal compartment for continued development. At the same time, germ cells must also remain attached to Sertoli cells, and numerous studies have reported extensive restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface during germ cell movement across the seminiferous epithelium. Furthermore, the proteins and signaling cascades that regulate adhesion between testicular cells have been largely delineated. These findings have unveiled a number of potential "druggable" targets that can be used to induce premature release of germ cells from the seminiferous epithelium, resulting in transient infertility. Herein, we discuss a novel approach with the aim of developing a nonhormonal male contraceptive for future human use, one that involves perturbing adhesion between Sertoli and germ cells in the testis.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, The Mary M Wohlford Laboratory for Male Contraceptive Research, 1230 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
52
|
Wong EWP, Mruk DD, Cheng CY. Biology and regulation of ectoplasmic specialization, an atypical adherens junction type, in the testis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:692-708. [PMID: 18068662 DOI: 10.1016/j.bbamem.2007.11.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 10/30/2007] [Accepted: 11/09/2007] [Indexed: 12/01/2022]
Abstract
Anchoring junctions are cell adhesion apparatus present in all epithelia and endothelia. They are found at the cell-cell interface (adherens junction (AJ) and desmosome) and cell-matrix interface (focal contact and hemidesmosome). In this review, we focus our discussion on AJ in particular the dynamic changes and regulation of this junction type in normal epithelia using testis as a model. There are extensive restructuring of AJ (e.g., ectoplasmic specialization, ES, a testis-specific AJ) at the Sertoli-Sertoli cell interface (basal ES) and Sertoli-elongating spermatid interface (apical ES) during the seminiferous epithelial cycle of spermatogenesis to facilitate the migration of developing germ cells across the seminiferous epithelium. Furthermore, recent findings have shown that ES also confers cell orientation and polarity in the seminiferous epithelium, illustrating that some of the functions initially ascribed to tight junctions (TJ), such as conferring cell polarity, are also part of the inherent properties of the AJ (e.g., apical ES) in the testis. The biology and regulation based on recent studies in the testis are of interest to cell biologists in the field, in particular their regulation, which perhaps is applicable to tumorigenesis.
Collapse
Affiliation(s)
- Elissa W P Wong
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
53
|
Rodriguez PL, Sahay S, Olabisi OO, Whitehead IP. ROCK I-mediated activation of NF-kappaB by RhoB. Cell Signal 2007; 19:2361-9. [PMID: 17728102 PMCID: PMC2084080 DOI: 10.1016/j.cellsig.2007.07.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 07/23/2007] [Indexed: 01/28/2023]
Abstract
RhoB is a short-lived protein whose expression is increased by a variety of extra-cellular stimuli including UV irradiation, epidermal growth factor (EGF) and transforming growth factor beta (TGF-beta). Whereas most Rho proteins are modified by the covalent attachment of a geranylgeranyl group, RhoB is unique in that it can exist in either a geranylgeranylated (RhoB-GG) or a farnesylated (RhoB-F) form. Although each form is proposed to have different cellular functions, the signaling events that underlie these differences are poorly understood. Here we show that RhoB can activate NF-kappaB signaling in multiple cell types. Whereas RhoB-F is a potent activator of NF-kappaB, much weaker activation is observed for RhoB-GG, RhoA, and RhoC. NF-kappaB activation by RhoB is not associated with increased nuclear translocation of RelA/p65, but rather, by modification of the RelA/p65 transactivation domain. Activation of NF-kappaB by RhoB is dependent upon ROCK I but not PRK I. Thus, ROCK I cooperates with RhoB to activate NF-kappaB, and suppression of ROCK I activity by genetic or pharmacological inhibitors blocks NF-kappaB activation. Suppression of RhoB activity by dominant-inhibitory mutants, or siRNA, blocks NF-kappaB activation by Bcr, and TSG101, but not by TNFalpha or oncogenic Ras. Collectively, these observations suggest the existence of an endosome-associated pathway for NF-kappaB activation that is preferentially regulated by the farnesylated form of RhoB.
Collapse
Affiliation(s)
- Pedro L. Rodriguez
- Department of Microbiology and Molecular Genetics and New Jersey Medical School -University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101-1709
| | - Sutapa Sahay
- Department of Microbiology and Molecular Genetics and New Jersey Medical School -University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101-1709
| | - Oyenike O. Olabisi
- Department of Microbiology and Molecular Genetics and New Jersey Medical School -University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101-1709
| | - Ian P. Whitehead
- Department of Microbiology and Molecular Genetics and New Jersey Medical School -University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101-1709
| |
Collapse
|
54
|
Xia W, Mruk DD, Lee WM, Cheng CY. Unraveling the molecular targets pertinent to junction restructuring events during spermatogenesis using the Adjudin-induced germ cell depletion model. J Endocrinol 2007; 192:563-83. [PMID: 17332525 PMCID: PMC2804028 DOI: 10.1677/joe-06-0158] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During spermatogenesis, extensive restructuring takes place at the Sertoli-Sertoli and Sertoli-germ cell interface, which is regulated via intriguing interactions among cytokines, proteases, protease inhibitors, kinases, phosphatases, and transcription factors. This in turn determines the steady-state levels of integral membrane proteins at the cell junctions. We sought to further expand these observations using the Adjudin model. Adjudin is a potential male contraceptive that targets Sertoli-germ cell adhesion, causing exfoliation of spermatids and spermatocytes, but not spermatogonia, from the seminiferous epithelium. This model thus provides the means to identify crucial regulatory molecules and signaling pathways pertinent to junction restructuring events during spermatogenesis. In this study, genome-wide expression profiling of rat testes after treatment with Adjudin at the time of extensive junction restructuring was performed. Differentially regulated genes, such as cytokines, proteases, protease inhibitors, cell junction-associated proteins, and transcription factors pertinent to junction restructuring were identified. These data were consistent with earlier findings; however, much new information was obtained which has been deposited at the Gene Expression Omnibus data repository website: http://www.ncbi.nih.gov/geo/ with Accession number: GSE5131. The primary signaling events pertinent to junction restructuring in the testis induced by Adjudin were also delineated using bioinformatics. These findings were also consistent with recently published reports. The identified molecular signatures or targets pertinent to junction dynamics in the testis as reported herein, many of which have not been investigated, thus offer a framework upon which the regulation of junction restructuring events at the Sertoli-Sertoli and Sertoli-germ cell interface pertinent to spermatogenesis can be further studied.
Collapse
Affiliation(s)
- Weiliang Xia
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | |
Collapse
|
55
|
Yan HHN, Mruk DD, Lee WM, Cheng CY. Ectoplasmic specialization: a friend or a foe of spermatogenesis? Bioessays 2007; 29:36-48. [PMID: 17187371 PMCID: PMC2804921 DOI: 10.1002/bies.20513] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ectoplasmic specialization (ES) is a testis-specific, actin-based hybrid anchoring and tight junction. It is confined to the interface between Sertoli cells at the blood-testis barrier, known as the basal ES, as well as between Sertoli cells and developing spermatids designated the apical ES. The ES shares features of adherens junctions, tight junctions and focal contacts. By adopting the best features of each junction type, this hybrid nature of ES facilitates the extensive junction-restructuring events in the seminiferous epithelium during spermatogenesis. For instance, the alpha6beta1-integrin-laminin 333 complex, which is usually limited to the cell-matrix interface in other epithelia to facilitate cell movement, is a putative apical ES constituent. Furthermore, JAM-C and CAR, two tight junction integral membrane proteins, are also components of apical ES involving in spermatid orientation. We discuss herein the mechanisms that maintain the cross-talk between ES and blood-testis barrier to facilitate cell movement and orientation in the seminiferous epithelium.
Collapse
Affiliation(s)
- Helen H N Yan
- Center for Biomedical Research, Population Council, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
56
|
Mruk DD, Wong CH, Silvestrini B, Cheng CY. A male contraceptive targeting germ cell adhesion. Nat Med 2006; 12:1323-8. [PMID: 17072312 DOI: 10.1038/nm1420] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 04/24/2006] [Indexed: 12/17/2022]
Abstract
Throughout spermatogenesis, developing germ cells remain attached to Sertoli cells via testis-specific anchoring junctions. If adhesion between these cell types is compromised, germ cells detach from the seminiferous epithelium and infertility often results. Previously, we reported that Adjudin is capable of inducing germ cell loss from the epithelium. In a small subset of animals, however, oral administration of Adjudin (50 mg per kg body weight (b.w.) for 29 d) resulted in adverse effects such as liver inflammation and muscle atrophy. Here, we report a novel approach in which Adjudin is specifically targeted to the testis by conjugating Adjudin to a recombinant follicle-stimulating hormone (FSH) mutant, which serves as its 'carrier'. Using this approach, infertility was induced in adult rats when 0.5 microg Adjudin per kg b.w. was administered intraperitoneally, which was similar to results when 50 mg per kg b.w. was given orally. This represents a substantial increase in Adjudin's selectivity and efficacy as a male contraceptive.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
57
|
Yuan W, Leisner TM, McFadden AW, Clark S, Hiller S, Maeda N, O'Brien DA, Parise LV. CIB1 is essential for mouse spermatogenesis. Mol Cell Biol 2006; 26:8507-14. [PMID: 16982698 PMCID: PMC1636792 DOI: 10.1128/mcb.01488-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
CIB1 is a 22-kDa calcium binding, regulatory protein with approximately 50% homology to calmodulin and calcineurin B. CIB1 is widely expressed and binds to a number of effectors, such as integrin alphaIIb, PAK1, and polo-like kinases, in different tissues. However, the in vivo functions of CIB1 are not well understood. To elucidate the function of CIB1 in whole animals, we used homologous recombination in embryonic stem cells to generate Cib1(-/-) mice. Although Cib1(-/-) mice grow normally, the males are sterile due to disruption of the haploid phase of spermatogenesis. This is associated with reduced testis size and numbers of germ cells in seminiferous tubules, increased germ cell apoptosis, and the loss of elongated spermatids and sperm. Cib1(-/-) testes also show increased mRNA and protein expression of the cell cycle regulator Cdc2/Cdk1. In addition, mouse embryonic fibroblasts (MEFs) derived from Cib1(-/-) mice exhibit a much slower growth rate compared to Cib1(+/+) MEFs, suggesting that CIB1 regulates the cell cycle, differentiation of spermatogenic germ cells, and/or differentiation of supporting Sertoli cells.
Collapse
Affiliation(s)
- Weiping Yuan
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Lui WY, Lee WM. Regulation of junction dynamics in the testis--transcriptional and post-translational regulations of cell junction proteins. Mol Cell Endocrinol 2006; 250:25-35. [PMID: 16431017 DOI: 10.1016/j.mce.2005.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell junctions are the sites at which cells attach to the neighboring cells. They do not only maintain tissue integrity, their turnover also plays a crucial role in cell development and morphogenesis. In the testis, tight junctions and adherens junctions are dynamically remodeled to allow the movement of post-meiotic germ cells across the seminiferous epithelium and the timely release of spermatids into the tubular lumen. There is growing evidence that this dynamic remodeling of cell junctions is mediated by several mechanisms at the transcriptional and post-translational levels. This review summarizes what is known about the transcriptional regulation, ubiquitination and endocytosis that are involved in modulating junction dynamics in epithelial cells. It also highlights the recent findings on the regulation of junction dynamics in the testis and the specific areas that require further research for a thorough understanding of the role of junction remodeling in spermatogenesis. Understanding the junction dynamics in the seminiferous epithelium may unfold new targets for non-hormonal male contraceptive development.
Collapse
Affiliation(s)
- Wing-Yee Lui
- Department of Zoology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | |
Collapse
|
59
|
Xia W, Mruk DD, Lee WM, Cheng CY. Differential interactions between transforming growth factor-beta3/TbetaR1, TAB1, and CD2AP disrupt blood-testis barrier and Sertoli-germ cell adhesion. J Biol Chem 2006; 281:16799-813. [PMID: 16617054 DOI: 10.1074/jbc.m601618200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biochemical basis that regulates the timely and selective opening of the blood-testis barrier (BTB) to migrating preleptotene/leptotene spermatocytes at stage VIII of the epithelial cycle in adult rat testes is virtually unknown. Recent studies have shown that cytokines (e.g. transforming growth factor (TGF)-beta3) may play a crucial role in this event. However, much of this information relies on the use of toxicants (e.g. CdCl(2)), making it difficult to relay these findings to normal testicular physiology. Here we report that overexpression of TGF-beta3 in primary Sertoli cells cultured in vitro indeed perturbed the tight junction (TJ) barrier with a concomitant decline in the production of BTB constituent proteins as follows: occludin, N-cadherin, and ZO-1. Additionally, local administration of TGF-beta3 to testes in vivo was shown to reversibly perturb the BTB integrity and Sertoli-germ cell adhesion via the p38 MAPK and ERK signaling pathways. Most importantly, the simultaneous activation of p38 and ERK signaling pathways is dependent on the association of the TGF-beta3-TbetaR1 complex with adaptors TAB1 and CD2AP because if TbetaR1 was associated preferentially with CD2AP, only Sertoli-germ cell adhesion was perturbed without compromising the BTB. Collectively, these data illustrate that local production of TGF-beta3, and perhaps other TGF-betas and cytokines, by Sertoli and germ cells into the microenvironment at the BTB during spermatogenesis transiently perturbs the BTB and Sertoli-germ cell adhesion to facilitate germ cell migration when the activated TbetaRI interacts with adaptors TAB1 and CD2AP. However, TGF-beta3 selectively disrupts Sertoli-germ cell adhesion in the seminiferous epithelium to facilitate germ cell migration without compromising BTB when TbetaRI interacts only with adaptor CD2AP.
Collapse
Affiliation(s)
- Weiliang Xia
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
60
|
Cheng CY, Mruk D, Silvestrini B, Bonanomi M, Wong CH, Siu MKY, Lee NPY, Lui WY, Mo MY. AF-2364 [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: a review of recent data. Contraception 2006; 72:251-61. [PMID: 16181968 DOI: 10.1016/j.contraception.2005.03.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 03/29/2005] [Accepted: 03/29/2005] [Indexed: 11/20/2022]
Abstract
Earlier studies have shown that 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (AF-2364) is a potential male contraceptive when administered orally to adult Sprague-Dawley rats. This compound induces reversible germ cell loss from the seminiferous epithelium by disrupting cell adhesion function between Sertoli and germ cells, in particular, elongating/elongate/round spermatids and spermatocytes but not spermatogonia. Thus, this event is accompanied by a transient loss of fertility in treated rats. Once the drug is metabolically cleared, the remaining spermatogonia can begin repopulating the epithelium, and fertility bounces back. In this review, we summarize recent findings regarding the possible use of this drug for male contraception and its mechanism of action in the rat testis. We also provide an update on the efficacy results of using different treatment regimens in adult rats where AF-2364 was administered by gavage vs. intraperitoneal and intramuscular administration. These results have clearly indicated that AF-2364 is indeed a reversible male contraceptive. Furthermore, the tissue distribution in multiple organs and biological fluids using [3H]-AF-2364 is also reviewed. These data have clearly illustrated the low bioavailability of AF-2364 in rats and that this compound is not specifically taken up by any organs including the testis or the epididymis. These summaries are helpful to investigators in the field who seek to understand the molecular mechanism of action of AF-2364 in the rat testis and to explore its possible use for male contraception.
Collapse
Affiliation(s)
- C Yan Cheng
- Population Council, Center for Biomedical Research, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Yuan W, Zheng Y, Huo R, Lu L, Huang XY, Yin LL, Li JM, Zhou ZM, Sha JH. Expression of a novel alternative transcript of the novel retinal pigment epithelial cell gene NORPEG in human testes. Asian J Androl 2005; 7:277-88. [PMID: 16110356 DOI: 10.1111/j.1745-7262.2005.00040.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM To identify a novel alternative transcript of the novel retinal pigment epithelial cell gene (NORPEG) expressed in the human testis. METHODS A human testis cDNA microarray was established and hybridized with cDNA probes from human fetal testes, adult testes and human spermatozoa. Differentially expressed clones were sequenced and analyzed. One of these clones was a short transcript of NORPEG which we proceeded to analyze by RT-PCR. RESULTS The novel short alternative transcript of NORPEG was isolated and named sNORPEG. It was 3486 bp in length and contained a 2952-bp open reading frame, encoding a 110.4-kDa protein of 983 amino acids. Amino acid sequence analysis showed that the sNORPEG protein contains six ankyrin repeats and two coiled-coil domains. It shares a high homology with the NORPEG and ankycorbin proteins in both its sequence and motifs. Blasting the human genome database localized sNORPEG to human chromosome 5p13.2-13.3. Expression profiles showed that sNORPEG was expressed in human fetal testes, adult testes and spermatozoa. Moreover, sNORPEG was found to be ubiquitously expressed in human tissues. CONCLUSION sNORPEG is expressed in different developmental stages of the testis and encodes a protein that may have roles in human testis development and spermatogenesis.
Collapse
Affiliation(s)
- Wa Yuan
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Xia W, Wong CH, Lee NPY, Lee WM, Cheng CY. Disruption of Sertoli-germ cell adhesion function in the seminiferous epithelium of the rat testis can be limited to adherens junctions without affecting the blood-testis barrier integrity: an in vivo study using an androgen suppression model. J Cell Physiol 2005; 205:141-57. [PMID: 15880438 DOI: 10.1002/jcp.20377] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During spermatogenesis, both adherens junctions (AJ) (such as ectoplasmic specialization (ES), a testis-specific AJ type at the Sertoli cell-spermatid interface (apical ES) or Sertoli-Sertoli cell interface (basal ES) in the apical compartment and BTB, respectively) and tight junctions (TJ) undergo extensive restructuring to permit germ cells to move across the blood-testis barrier (BTB) as well as the seminiferous epithelium from the basal compartment to the luminal edge to permit fully developed spermatids (spermatozoa) to be sloughed at spermiation. However, the integrity of the BTB cannot be compromised throughout spermatogenesis so that postmeiotic germ cell-specific antigens can be sequestered from the systemic circulation at all times. We thus hypothesize that AJ disruption in the seminiferous epithelium unlike other epithelia, can occur without compromising the BTB-barrier, even though these junctions, namely TJ and basal ES, co-exist side-by-side in the BTB. Using an intratesticular androgen suppression-induced germ cell loss model, we have shown that the disruption of AJs indeed was limited to the Sertoli-germ cell interface without perturbing the BTB. The testis apparently is using a unique physiological mechanism to induce the production of both TJ- and AJ-integral membrane proteins and their associated adaptors to maintain BTB integrity yet permitting a transient loss of cell adhesion function by dissociating N-cadherin from beta-catenin at the apical and basal ES. The enhanced production of TJ proteins, such as occludin and ZO-1, at the BTB site can supersede the transient loss of cadherin-catenin function at the basal ES. This thus allows germ cell depletion from the epithelium without compromising BTB integrity. It is plausible that the testis is using this novel mechanism to facilitate the movement of preleptotene and leptotene spermatocytes across the BTB at late stage VIII through early stage IX of the epithelial cycle in the rat while maintaining the BTB immunological barrier function.
Collapse
Affiliation(s)
- Weiliang Xia
- Population Council, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
63
|
Yan HHN, Cheng CY. Blood-testis barrier dynamics are regulated by an engagement/disengagement mechanism between tight and adherens junctions via peripheral adaptors. Proc Natl Acad Sci U S A 2005; 102:11722-7. [PMID: 16085710 PMCID: PMC1183102 DOI: 10.1073/pnas.0503855102] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Indexed: 01/23/2023] Open
Abstract
In the mammalian testis, the blood-testis barrier (BTB), unlike the blood-brain and blood-retina barriers, is composed of coexisting tight junctions (TJs) and adherens junctions (AJs). Yet these junctions must open (or disassemble) to accommodate the migration of preleptotene and leptotene spermatocytes across the BTB during spermatogenesis while maintaining its integrity. In this report, we show that the BTB utilizes a unique "engagement" and "disengagement" mechanism to permit the disruption of AJ that facilitates germ cell movement without compromising the BTB integrity. For instance, both TJ (e.g., occludin and JAM-1) and AJ (e.g., N-cadherin) integral membrane proteins were colocalized to the same site at the BTB. Although these TJ- and AJ-integral membrane proteins did not physically interact with each other, they were structurally linked by means of peripheral adaptors (e.g., ZO-1 and alpha- and gamma-catenins). As such, these proteins are structurally "engaged" under physiological conditions to reinforce the BTB. When rats were exposed to Adjudin to induce AJ restructuring that eventually led to germ cell loss from the epithelium, this structural interaction between occludin and N-cadherin by means of their adaptors became "disengaged" while their protein levels were significantly induced. In short, when the epithelium is under assault, such as by Adjudin or plausibly at the time of germ cell migration across the BTB during spermatogenesis, the TJ- and AJ-integral membrane proteins can be disengaged. Thus, this mechanism is used by the testis to facilitate AJ restructuring to accommodate germ cell migration while maintaining the BTB integrity.
Collapse
Affiliation(s)
- Helen H N Yan
- Population Council, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
64
|
Xia W, Mruk DD, Lee WM, Cheng CY. Cytokines and junction restructuring during spermatogenesis—a lesson to learn from the testis. Cytokine Growth Factor Rev 2005; 16:469-93. [PMID: 16023885 DOI: 10.1016/j.cytogfr.2005.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the mammalian testis, preleptotene and leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) at late stage VIII through early stage IX of the epithelial cycle during spermatogenesis, entering the adluminal compartment for further development. However, until recently the regulatory mechanisms that regulate BTB dynamics remained largely unknown. We provide a critical review regarding the significance of cytokines in regulating the 'opening' and 'closing' of the BTB. We also discuss how cytokines may be working in concert with adaptors that selectively govern the downstream signaling pathways. This process, in turn, regulates the dynamics of either Sertoli-Sertoli tight junction (TJ), Sertoli-germ cell adherens junction (AJ), or both junction types in the epithelium, thereby permitting TJ opening without compromising AJs, and vice versa. We also discuss how adaptors alter their protein-protein association with the integral membrane proteins at the cell-cell interface via changes in their phosphorylation status, thereby altering adhesion function at AJ. These findings illustrate that the testis is a novel in vivo model to study the biology of junction restructuring. Furthermore, a molecular model is presented regarding how cytokines selectively regulate TJ/AJ restructuring in the epithelium during spermatogenesis.
Collapse
Affiliation(s)
- Weiliang Xia
- Population Council, Center for Biomedical Research, New York, NY 10021, USA
| | | | | | | |
Collapse
|
65
|
Xia W, Cheng CY. TGF-beta3 regulates anchoring junction dynamics in the seminiferous epithelium of the rat testis via the Ras/ERK signaling pathway: An in vivo study. Dev Biol 2005; 280:321-43. [PMID: 15882576 DOI: 10.1016/j.ydbio.2004.12.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/16/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
Recent studies have shown that transforming growth factor (TGF)-beta3 regulates blood-testis barrier (BTB) dynamics in vivo, plausibly by determining the steady-state levels of occludin and zonula occludens-1 (ZO-1) at the BTB site via the p38 MAP kinase signaling pathway. Since BTB is composed of coexisting TJs and basal ectoplasmic specializations [ES, a testis-specific adherens junction (AJ) type] in the seminiferous epithelium of the rat testis, we sought to examine if TGF-beta3 would also regulate anchoring junction dynamics. Using an in vivo model in which rats were treated with AF-2364 [1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide] to perturb Sertoli-germ cell AJs without affecting the integrity of TJs at the BTB, it was noted that the event of germ cell loss from the epithelium was associated with a transient surge in TGF-beta3. Furthermore, it was also associated with a surge in the protein levels of Ras, p-ERK, and the intrinsic activity of ERK, illustrating TGF-beta3 apparently regulates Sertoli-germ cell ES function via the Ras/MEK/ERK signaling pathway. Indeed, pretreatment of rats with TbetaRII/Fc chimera, a TGF-beta antagonist, or U0126, a specific MEK inhibitor, could significantly delay and partially block the disruptive effects of AF-2364 in depleting germ cells from the epithelium. While the protein levels of the cadherin/catenin complex were significantly induced during AF-2364-mediated germ cell loss, perhaps being used to retain germ cells in the epithelium, this increase failed to reverse the loss of adhesion function between Sertoli and germ cells because of a loss of protein-protein interactions between cadherins and catenins. Collectively, these results illustrate that the testis has a novel mechanism in place in which an agent that primarily disrupts TJs can induce secondary loss of AJ function, leading to germ cell loss from the seminiferous epithelium. Yet an agent that selectively disrupts AJs (e.g., AF-2364) can limit its effects exclusively at the Sertoli-germ cell adhesive site without perturbing the Sertoli-Sertoli TJs.
Collapse
Affiliation(s)
- Weiliang Xia
- Population Council, Center for Biomedical Research, New York, NY 10021, USA
| | | |
Collapse
|
66
|
Lee NPY, Mruk DD, Wong CH, Cheng CY. Regulation of Sertoli-germ cell adherens junction dynamics in the testis via the nitric oxide synthase (NOS)/cGMP/protein kinase G (PRKG)/beta-catenin (CATNB) signaling pathway: an in vitro and in vivo study. Biol Reprod 2005; 73:458-71. [PMID: 15858215 DOI: 10.1095/biolreprod.105.040766] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During spermatogenesis, extensive restructuring of cell junctions takes place in the seminiferous epithelium to facilitate germ cell movement. However, the mechanism that regulates this event remains largely unknown. Recent studies have shown that nitric oxide (NO) likely regulates tight junction (TJ) dynamics in the testis via the cGMP/protein kinase G (cGMP-dependent protein kinase, PRKG) signaling pathway. Due to the proximity of TJ and adherens junctions (AJ) in the testis, in particular at the blood-testis barrier, it is of interest to investigate if NO can affect AJ dynamics. Studies using Sertoli-germ cell cocultures in vitro have shown that the levels of NOS (nitric oxide synthase), cGMP, and PRKG were induced when anchoring junctions were being established. Using an in vivo model in which adult rats were treated with adjudin [a molecule that induces adherens junction disruption, formerly called AF-2364, 1-(2,4-dichlorobenzyl)-IH-indazole-3-carbohydrazide], the event of AJ disruption was also associated with a transient iNOS (inducible nitric oxide synthase, NOS2) induction. Immunohistochemistry has illustrated that NOS2 was intensely accumulated in Sertoli and germ cells in the epithelium during adjudin-induced germ cell loss, with a concomitant accumulation of intracellular cGMP and an induction of PRKG but not cAMP or protein kinase A (cAMP-dependent protein kinase, PRKA). To identify the NOS-mediated downstream signaling partners, coimmunoprecipitation was used to demonstrate that NOS2 and eNOS (endothelial nitric oxide synthase, NOS3) were structurally associated with the N-cadherin (CDH2)/beta-catenin (CATNB)/actin complex but not the nectin-3 (poliovirus receptor-related 3, PVRL 3)/afadin (myeloid/lymphoid or mixed lineage-leukemia tranlocation to 4 homolog, MLLT4) nor the integrin beta1 (ITB1)-mediated protein complexes, illustrating the spatial vicinity of NOS with selected AJ-protein complexes. Interestingly, CDH2 and CATNB were shown to dissociate from NOS during the adjudin-mediated AJ disruption, implicating the CDH2/CATNB protein complex is the likely downstream target of the NO signaling. Furthermore, PRKG, the downstream signaling protein of NOS, was shown to interact with CATNB in the rat testis. Perhaps the most important of all, pretreatment of testes with KT5823, a specific PRKG inhibitor, can indeed delay the adjudin-induced germ cell loss, further validating NOS/NO regulates Sertoli-germ cell AJ dynamics via the cGMP/PRKG pathway. These results illustrate that the CDH2/CATNB-mediated adhesion function in the testis is regulated, at least in part, via the NOS/cGMP/PRKG/CATNB pathway.
Collapse
|
67
|
Zhang J, Wong CH, Xia W, Mruk DD, Lee NPY, Lee WM, Cheng CY. Regulation of Sertoli-germ cell adherens junction dynamics via changes in protein-protein interactions of the N-cadherin-beta-catenin protein complex which are possibly mediated by c-Src and myotubularin-related protein 2: an in vivo study using an androgen suppression model. Endocrinology 2005; 146:1268-84. [PMID: 15591133 DOI: 10.1210/en.2004-1194] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using a well characterized model of cell-cell actin-based adherens junction (AJ) disruption by suppressing the intratesticular testosterone level in adult rats with testosterone-estradiol implants, we have confirmed earlier findings that Sertoli-germ cell AJ dynamics are regulated by the activation of kinases via putative signaling pathways but with some unexpected findings as follows. First, the loss of germ cells from the seminiferous epithelium during androgen suppression was associated with a surge in myotubularin-related protein 2 (MTMR2, a lipid phosphatase, in which adult MTMR2-/- mice were recently shown to be azoospermic because of the loss of cell adhesion function between germ and Sertoli cells); kinases: phosphatidylinositol 3-kinase, c-Src, and C-terminal Src kinase; adaptors: alpha-actinin, vinculin, afadin, and p130 Crk-associated protein; and AJ-integral membrane proteins at the ectoplasmic specialization (ES, a testis-specific cell-cell actin-based AJ type) site: N-cadherin, beta-catenin, integrin beta1, and nectin 3. Second, MTMR2, instead of structurally interacting with phosphatidylinositol 3-kinase, a protein and lipid kinase, was shown to associate only with c-Src, a nonreceptor protein tyrosine kinase, as demonstrated by both coimmunoprecipitation and fluorescent microscopy at the site of apical ES, but none of the kinases, adaptors, and AJ-integral proteins that were examined. Collectively, these results suggest that the MTMR2/c-Src is an important phosphatase/kinase protein pair in AJ dynamics in the testis. Because c-Src is known to associate with the cadherin/catenin protein complex at the ES in the testis, we next sought to investigate any changes in the protein-protein interactions of this protein complex during androgen suppression-induced germ cell loss. Indeed, there was a loss of N-cadherin and beta-catenin association, accompanied by a surge in Tyr phosphorylation of beta-catenin, during germ cell loss from the epithelium. Third, and perhaps the most important of all, during natural recovery of the epithelium after removal of testosterone-estradiol implants when spermatids were reattaching to Sertoli cells, an increase in N-cadherin and beta-catenin association was detected with a concomitant loss in the increased Tyr phosphorylation in beta-catenin. In summary, these results illustrate that the cadherin/catenin is a crucial cell adhesion complex that regulates AJ dynamics in the testis, and its functionality is likely modulated by the MTMR2/c-Src protein complex.
Collapse
Affiliation(s)
- Jiayi Zhang
- Population Council, Center for Biomedical Research, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Lee NPY, Cheng CY. Protein kinases and adherens junction dynamics in the seminiferous epithelium of the rat testis. J Cell Physiol 2005; 202:344-60. [PMID: 15389520 DOI: 10.1002/jcp.20119] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Earlier studies in multiple epithelia have shown that cell-cell actin-based adherens junction (AJ) dynamics are regulated, at least in part, by the interplay of kinases and phosphatases that determines the intracellular phosphoprotein content. Yet it is virtually unknown regarding the role of protein kinases in Sertoli-germ cell AJ dynamics in the seminiferous epithelium of the testis. To address this issue, an in vitro coculture system utilizing Sertoli and germ cells was used to study the regulation of several protein kinases, including c-Src (the cellular form of the v-src transforming gene of Rous Sarcoma virus, RSV), carboxyl-terminal Src kinase (Csk), and casein kinase 2 (CK2), during AJ assembly. Both Sertoli and germ cells were shown to express c-Src, Csk, and CK2 with a relative Sertoli:germ cell ratio of approximately 1:1, suggesting both cell types contributed equally to the pool of these kinases in the epithelium. c-Src and Csk were shown to be stage-specific proteins during the epithelial cycle, being highest at stages VII-VIII. Studies using immunoprecipitation have illustrated that these kinases were structurally associated with the N-cadherin/beta-catenin, but not the nectin/afadin, protein complex, implicating that the cadherin/catenin protein complex is their likely putative substrate. An induction in c-Src, Csk, and CK2 were detected during Sertoli-germ cell AJ assembly in vitro but not when Sertoli cells were cultured alone. When adult rats were treated with 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide (AF-2364), a compound known to induce germ cell loss from the seminiferous epithelium, in particular elongating/elongate and round spermatids, by disrupting Sertoli-germ cell AJs, an induction of c-Src and Csk, but not CK2, was detected. Furthermore, a transient increase in the intrinsic kinase activities of c-Src, but not CK2, was also detected. This event was also associated with a loss of protein-protein association of N-cadherin and beta-catenin from the cadherin/catenin/c-Src/Csk/CK2 protein complex. Administration of PP1, a c-Src inhibitor, into adult rats via the jugular vein could induce the loss of spermatocytes and round spermatids, but not elongating/elongate spermatids, from the seminiferous epithelium. This result thus implicates the importance of c-Src in maintaining the integrity of AJs and possibly desmosome-like junctions between Sertoli cells and spermatocytes/round spermatids. In short, the data reported herein have shown that c-Src, Csk, and CK2 are novel protein kinases in AJ dynamics in the testis.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Population Council, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
69
|
Conway AM, James AB, O'Kane EM, Rakhit S, Morris BJ. Regulation of myosin light chain phosphorylation by RhoB in neuronal cells. Exp Cell Res 2004; 300:35-42. [PMID: 15383312 DOI: 10.1016/j.yexcr.2004.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 06/16/2004] [Indexed: 11/26/2022]
Abstract
The phosphorylation of myosin light chain (MLC) is a key regulatory point in the control of cellular morphology. Evidence suggests that RhoA-a member of the Rho GTPase family-regulates MLC phosphorylation via Rho kinase (ROK). Neurones display subtle alterations in their cytoarchitecture during the synaptic plasticity following high-frequency stimulation. We have recently demonstrated that RhoB, and not RhoA, is activated in neurones by high-frequency stimulation. However, the downstream consequences of RhoB activation in cells are unclear. In this study, we tested the hypothesis that RhoB might stimulate neuronal MLC phosphorylation. Transfection of PC12 cells with constitutively active RhoB increased MLC phosphorylation. Conversely, dominant-negative RhoB vectors reduced MLC phosphorylation. The effect of RhoB was attenuated by pretreatment with a selective ROK inhibitor. This confirms that Rho GTPases are important regulators of MLC phosphorylation, but suggests that, in neuronal cells, the control is exerted via RhoB rather than RhoA.
Collapse
Affiliation(s)
- A-M Conway
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
70
|
Abstract
During spermatogenesis, the movement of developing germ cells across the seminiferous epithelium involves the restructuring of adherens junctions that form between Sertoli cells and between Sertoli and germ cells such as the ectoplasmic specialization (ES). At the ultrastructural level, the ES has been thoroughly studied for the past three decades. Until recently, however, relatively little has been known about the molecular architecture, not to mention the mechanism, that regulates the ES. Recent findings in the field have highlighted several areas of research that deserve attention in future studies. For example, proteins that constitute the ES can be targeted to compromise cell adhesion. This approach will not only provide a better understanding of ES dynamics, but also will yield innovative approaches for the development of male contraceptives.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
71
|
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806. [PMID: 15466940 DOI: 10.1210/er.2003-0022] [Citation(s) in RCA: 628] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
72
|
Lee NPY, Mruk DD, Conway AM, Cheng CY. Zyxin, axin, and Wiskott-Aldrich syndrome protein are adaptors that link the cadherin/catenin protein complex to the cytoskeleton at adherens junctions in the seminiferous epithelium of the rat testis. ACTA ACUST UNITED AC 2004; 25:200-15. [PMID: 14760006 DOI: 10.1002/j.1939-4640.2004.tb02780.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During spermatogenesis, the movement of germ cells across the seminiferous epithelium is associated with extensive junction restructuring. Yet the underlying mechanism (or mechanisms) that regulates these events is largely unknown. If the molecular architecture of the cell-cell actin-based adherens junction (AJ), such as ectoplasmic specialization (ES) and tubulobulbar complex- two testis-specific AJ types, is known, many functional mechanistic studies can be designed. We thus undertook an investigation to study 3 adaptors in the seminiferous epithelium: zyxin, axin, and Wiskott-Aldrich syndrome protein (WASP). All 3 adaptors were shown to be products of Sertoli and germ cells. Zyxin was shown to be a stage-specific protein that was most prominent during stages V-VII and restricted mostly to pachytene spermatocytes, but it could also be detected at the site of basal and apical ectoplasmic specialization (ES). Zyxin, axin, and WASP were shown to be structurally linked to the N-cadherin/beta-catenin/alpha-actinin/actin complex but not to the nectin-3/afadin or the beta 1-integrin-mediated protein complexes. Interestingly, zyxin, axin, and WASP are also structurally linked to vimentin (an intermediate filament protein) and alpha-tubulin (the subunit of a microtubule), which suggests that they have a role (or roles) in the regulation of the dynamics of the desmosome-like junction and microtubule. These results illustrate that zyxin, axin, and WASP are adaptors in both AJs and intermediate filament-based desmosome-like junctions. This raises the possibility that classic cadherins are also associated with vimentin-based intermediate filaments via these adaptors in the testis. While virtually no N-cadherin was found to associate with vimentin in the seminiferous tubules, it did associate with vimentin when testis lysates were used. Interestingly, about 5% of the E-cadherin associated with vimentin in isolated seminiferous tubules, and about 50% of the E-cadherin in the testis used vimentin as its attachment site. These data suggest that cadherins in the testis, unlike those in other epithelia, use different attachment sites to anchor the cadherin/catenin complex to the cytoskeleton. The levels of zyxin, axin, and WASP were also assessed during AF-2364-mediated AJ disruption of the testis, which illustrated a time-dependent protein reduction that was similar to the trends observed in nectin-3 and afadin but was the opposite of those observed for N-cadherin and beta-catenin, which were induced. Collectively, these results illustrate that while these adaptors are structurally associated with the cadherin/catenin complex in the testis, they are regulated differently.
Collapse
|
73
|
Abstract
Adaptors are component proteins of junctional complexes in all epithelia, including the seminiferous epithelium of the mammalian testis. They recruit other regulatory and structural proteins to the site of both anchoring junctions (such as cell-cell actin-based adherens junctions [AJs], e.g., ectoplasmic specialization [ES] and tubulobulbar complex, which are both testis-specific cell-cell actin-based AJ types, and cell-cell intermediate filament-based desmosome-like junctions) and tight junctions (TJ). Furthermore, adaptors per se can be substrates and/or activators of kinases or phosphatases. As such, the integrity of cell junctions and the regulation of junction dynamics during spermatogenesis rely on adaptors for their ability to recruit and link different junctional components to the same site and to tether transmembrane proteins at both anchoring and TJ sites to the underlying cytoskeletons, such as the actin filaments, intermediate filaments, and microtubules. These protein-protein interactions are possible because adaptors are composed of conserved protein binding domains, which allow them to link to more than one structural or signaling protein, recruiting multi-protein complexes to the same site. Herein, we provide a timely review of adaptors recently found at the sites of AJ (e.g., ES) and TJ. In addition, several in vivo models that can be used to delineate the function of adaptors in the testis are described, and the role of adaptors in regulating junction dynamics pertinent to spermatogenesis is discussed.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
74
|
Siu MKY, Cheng CY. Extracellular matrix: recent advances on its role in junction dynamics in the seminiferous epithelium during spermatogenesis. Biol Reprod 2004; 71:375-91. [PMID: 15115723 DOI: 10.1095/biolreprod.104.028225] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Spermatogenesis takes place in the seminiferous epithelium of the mammalian testis in which one type A1 spermatogonium (diploid, 2n) gives rise to 256 spermatids (haploid, 1n). To accomplish this, developing germ cells, such as preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) entering into the adluminal compartment for further development into round, elongating, and elongate spermatids. Recent studies have shown that the basement membrane in the testis (a modified form of extracellular matrix, ECM) is important to the event of germ cell movement across the BTB because proteins in the ECM were shown to regulate BTB dynamics via the interactions between collagens, proteases, and protease inhibitors, possibly under the regulation of cytokines. While these findings are intriguing, they are not entirely unexpected. For one, the basement membrane in the testis is intimately associated with the BTB, which represents the basolateral region of Sertoli cells. Also, Sertoli cell tight junctions (TJs) that constitute the BTB are present side-by-side with cell-cell actin-based adherens junctions (AJ, such as basal ectoplasmic specialization [ES]) and intermediate filament-based desmosome-like junctions. As such, the relative morphological layout between TJs, AJs, and desmosome-like junctions in the seminiferous epithelium is in sharp contrast to other epithelia where TJs are located at the apical portion of an epithelium or endothelium, furthest away from ECM, to be followed by AJs and desmosomes, which in turn constitute the junctional complex. For another, anchoring junctions between a cell epithelium and ECM found in multiple tissues, also known as focal contacts (or focal adhesion complex, FAC, an actin-based cell-matrix anchoring junction type), are the most efficient junction type that permits rapid junction restructuring to accommodate cell movement. It is therefore physiologically plausible, and perhaps essential, that the testis is using some components of the focal contacts to regulate rapid restructuring of AJs between Sertoli and germ cells when germ cells traverse the seminiferous epithelium. Indeed, recent findings have shown that the apical ES, a testis-specific AJ type in the seminiferous epithelium, is equipped with proteins of FAC to regulate its restructuring. In this review, we provide a timely update on this exciting yet rapidly developing field regarding how the homeostasis of basement membrane in the tunica propria regulates BTB dynamics and spermatogenesis in the testis, as well as a critical review on the molecular architecture and the regulation of ES in the seminiferous epithelium.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
75
|
Lui WY, Mruk DD, Cheng CY. Interactions among IQGAP1, Cdc42, and the cadherin/catenin protein complex regulate Sertoli-germ cell adherens junction dynamics in the testis. J Cell Physiol 2004; 202:49-66. [PMID: 15389538 DOI: 10.1002/jcp.20098] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The movement of developing germ cells across the seminiferous epithelium during spermatogenesis involves extensive adherens junction (AJ) restructuring between Sertoli cells, as well as between Sertoli and germ cells. In this report, we show that the intricate interactions between Cdc42 (a Rho family protein of Mr approximately 23 kDa originally identified in membranes of human platelets and placenta, and is the homolog of CDC42Sc, which is known to regulate of bud-site assembly in Saccharomyces cerevisiae) and its effector, IQ motif containing GTPase activating protein (IQGAP1, Mr approximately 189 kDa, it is also an actin-binding protein known to interact with Cdc42 and Rac1 GTPases), regulate Sertoli-germ cell, but not Sertoli-Sertoli cell, AJ dynamics. Using testis lysates for immunoprecipitation (IP), IQGAP1 was shown to associate with E-cadherin, N-cadherin, and beta-catenin (but not beta1-integrin and nectin-2), as well as with actin and vimentin (but not alpha-tubulin). Moreover, IQGAP1 was found to localize to the periphery of both Sertoli and germ cells in the seminiferous epithelium, at sites of cell-cell contacts. Using fluorescent microscopy with dual fluorescent probes, IQGAP1 was found to co-localize, at least in part, with N-cadherin in the seminiferous epithelium consistent with their localization at the basal and apical ES. Using Sertoli-germ cell cocultures, it was demonstrated that AJ assembly associated with a transient induction of Cdc42 and IQGAP1, which was not found when Sertoli cells were cultured alone. Lastly, a shift in the interactions of Cdc42, IQGAP1, beta-catenin, and N-cadherin was detected in Sertoli-germ cell cocultures using an Ca2+-induced AJ disruption model, which was used to examine AJ disassembly and its reassembly. In the presence of Ca2+, IQGAP1 bound preferentially to Cdc42 rather than to beta-catenin. However, when Ca2+ was depleted from cocultures using EGTA, a Ca2+ chelating agent, IQGAP1 lost its affinity for Cdc42 and became tightly associated with beta-catenin, destabilizing cadherin-mediated AJs between Sertoli and germ cells. Yet this shift of protein-protein interaction was not detected in Sertoli cells cultured alone. These results illustrate that the interactions among IQGAP1, Cdc42, and beta-catenin are crucial to the regulation of Sertoli-germ cell, but not Sertoli-Sertoli cell, AJ dynamics in the seminiferous epithelium.
Collapse
Affiliation(s)
- Wing Yee Lui
- Population Council, Center for Biomedical Research, New York, New York 10021, USA
| | | | | |
Collapse
|
76
|
Abstract
In the seminiferous tubule of the mammalian testis, one type A1 spermatogonium (diploid, 2n) divides and differentiates into 256 spermatozoa (haploid, n) during spermatogenesis. To complete spermatogenesis and produce approximately 150 x 10(6) spermatozoa each day in a healthy man, germ cells must migrate progressively across the seminiferous epithelium yet remain attach to the nourishing Sertoli cells. This active cell migration process involves precisely controlled restructuring events at the tight (TJ) and anchoring junctions at the cell-cell interface. While the hormonal events that regulate spermatogenesis by follicle-stimulating hormone and testosterone from the pituitary gland and Leydig cells, respectively, are known, less is known about the mechanism(s) that regulates junction restructuring during germ cell movement in the seminiferous epithelium. The relative position of tight (TJs) and anchoring junctions in the testis is of interest. Sertoli cell TJs that constitute the blood-testis barrier (BTB) are present side by side with anchoring junctions and are adjacent to the basement membrane. This intimate physical association with the TJs, the anchoring junctions and the basement membrane (a modified form of extracellular matrix, ECM) suggests a role for the ECM in the junction dynamics of the testis. Indeed, evidence is accumulating that ECM proteins are crucial to Sertoli cell TJ dynamics. In this review, we discuss the pivotal role of tumor necrosis factor alpha (TNFalpha) on BTB dynamics via its effects on the homeostasis of ECM proteins. In addition, discussion will also be focused on the novel findings regarding the role of non-basement-membrane-associated ECM proteins and components of focal adhesion (a cell-matrix anchoring junction type) in the regulation of junction dynamics in the testis.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Population Council, Center for Biomedical Research, New York, New York 10021, USA
| | | |
Collapse
|
77
|
Siu MKY, Cheng CY. Interactions of proteases, protease inhibitors, and the beta1 integrin/laminin gamma3 protein complex in the regulation of ectoplasmic specialization dynamics in the rat testis. Biol Reprod 2003; 70:945-64. [PMID: 14645107 DOI: 10.1095/biolreprod.103.023606] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During spermatogenesis, developing germ cells migrate progressively across the seminiferous epithelium. This event requires extensive restructuring of cell-cell actin-based adherens junctions (AJs), such as the ectoplasmic specialization (ES, a testis-specific AJ type), between Sertoli cells and elongating/elongate spermatids. It was postulated that proteases and protease inhibitors worked in a yin-yang relationship to regulate these events. If this is true, then it is anticipated that both proteases and protease inhibitors are found at the ES. Indeed, matrix metalloprotease (MMP)-2, membrane-type 1 (MT1)-MMP and their inhibitor, tissue-inhibitor of metalloproteases (TIMP)-2, were shown to localize at the apical ES. In order to identify the putative MMP substrate as well as the unknown binding ligand for alpha6beta1 integrin in the ES, immunofluorescent microscopy coupled with immunoprecipitation techniques were used to demonstrate that laminin gamma3, largely a germ cell product, was present at the apical ES and could form a bona fide complex with beta1-integrin. Furthermore, the structural interactions of MMP-2 and MT1-MMP with laminin gamma3 and beta1-integrin, but not with N-cadherin or nectin-3, have implicated the crucial role of MMP-2/MT1-MMP in the regulation of integrin/laminin-based ES dynamics. Using an in vivo model to study AJ dynamics where adult rats were treated with 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide (AF-2364) to disrupt Sertoli-germ cell adhesive function, an induction of active MMP-2, active MT1-MMP and TIMP-2 but not active MMP-9 was detected between 0.5 and 8 h after AF-2364 treatment. This time frame coincided with the depletion of elongating/elongate spermatids from the epithelium, illustrating the synergistic relationships between MMP-2, MT1-MMP, and TIMP-2 in AJ disassembly. Perhaps the most important of all, the use of a specific MMP-2 and MMP-9 inhibitor, (2R)-2-[(4-biphenylylsulfonyl)amino]-3-phenylpropionic acid, could effectively delay the AF-2364-induced elongating/elongate spermatid loss from the epithelium, demonstrating the pivotal role of MMP-2 activation in ES disassembly. Collectively, these studies illustrate that the beta1-integrin/laminin gamma3 complex is a putative ES-structural protein complex, which is regulated, at least in part, by the activation of MMP-2 involving MT1-MMP and TIMP-2 at the apical ES. The net result of this interaction likely regulates germ cell movement in the seminiferous epithelium.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Population Council, Center for Biomedical Research, New York, New York 10021, USA
| | | |
Collapse
|