51
|
Salinas-Muñoz L, Campos-Fernández R, Olivera-Valle I, Mercader E, Fernandez-Pacheco C, Lasarte S, Pérez-Martín L, Navarro-González MT, Sánchez-Mateos P, Samaniego R, Relloso M. Estradiol impairs epithelial CXCL1 gradient in the cervix to delay neutrophil transepithelial migration during insemination. J Reprod Immunol 2019; 132:9-15. [PMID: 30807979 DOI: 10.1016/j.jri.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/24/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
Abstract
Female reproductive mucosa must allow allogenic sperm survival whereas at the same time, avoid pathogen infection. To preserve sperm from neutrophil attack, neutrophils disappear from the vagina during the ovulatory phase (high estradiol); although the mechanisms that regulate neutrophil influx to the vagina during insemination remain controversial. We investigated the sex hormone regulation of the neutrophil migration through the cervix during insemination and revealed that ovulatory estradiol dose fades the CXCL1 epithelial expression in the ectocervix and fornix; hence, retarding neutrophil migration and retaining them in the epithelium. These mechanisms spare sperm from neutrophil attack to preserve reproduction, but might compromise immunity. However, luteal progesterone dose promotes the CXCL1 gradient expression to restore neutrophil migration, to eliminate sperm and prevent sperm associated pathogen dissemination. Surprisingly, these mechanisms are hormone dependent and independent of the insemination. Thus, sex hormones orchestrate tolerance and immunity in the vaginal lumen by regulating neutrophil transepithelial migration in the fornix and ectocervix.
Collapse
Affiliation(s)
- L Salinas-Muñoz
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - R Campos-Fernández
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - I Olivera-Valle
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - E Mercader
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Servicio de Cirugía General, Sección Cirugía Endocrino-Metabólica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - C Fernandez-Pacheco
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Animalario, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - S Lasarte
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - L Pérez-Martín
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Servicio de Ginecología, Hospital General Universitario Gregorio Marañón, Spain
| | - M T Navarro-González
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Servicio de Ginecología, Hospital General Universitario Gregorio Marañón, Spain
| | - P Sánchez-Mateos
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - R Samaniego
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - M Relloso
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
52
|
Gomes GM, Crespilho AM, Leão KM, Jacob JC, Gomes LP, Segabinazzi LG, Papa FO, Alvarenga MA. Can Sperm Selection, Inseminating Dose, and Artificial Insemination Technique Influence Endometrial Inflammatory Response in Mares? J Equine Vet Sci 2019. [DOI: 10.1016/j.jevs.2018.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
53
|
Nosi E, Gritzapis AD, Makarounis K, Georgoulias G, Kapetanios V, Varla-Leftherioti M, Venieratos P, Papanikopoulos C, Konstantinidou A, Tsilivakos V. Improvement of Sperm Quality in Hyperviscous Semen following DNase I Treatment. Int J Endocrinol 2019; 2019:6325169. [PMID: 31275375 PMCID: PMC6560320 DOI: 10.1155/2019/6325169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/23/2019] [Accepted: 04/07/2019] [Indexed: 11/25/2022] Open
Abstract
Semen hyperviscosity impairs sperm motility and can lead to male infertility. This prospective study aimed at assessing the ability of exogenous DNase in improving sperm quality, taking into consideration that DNase has been found in the seminal plasma of several species and that neutrophils release chromatin in order to trap bacteria. A total of seventy-seven semen samples with high seminal viscosity (HSV) as the study group and sixty-two semen samples with normal seminal viscosity (NSV) as the control group were compared in this analysis. These semen samples were divided into three groups of receiving treatment (a) with DNase I at 37°C for 15 min, (b) by density gradient centrifugation, and (c) with a combination of the above two methods. Following a fifteen-minute treatment of hyperviscous semen, the motility of spermatozoa in 83% of semen samples increased to a statistically significant degree. On the contrary, DNase treatment of semen with normal viscosity had no such effects. The above treatment was also accompanied by a significant increase in the percentage of normal spermatozoa, resulting in a major decrease of the teratozoospermia index. Comparison between semen samples that underwent density gradient centrifugation following DNase I treatment, to those collected after density gradient treatment alone, showed that in the first case the results were more spectacular. The evaluation of each preparation in terms of yield (% total progressively motile sperm count after treatment in relation to the initial total sperm count) revealed that the combined approach resulted in 29.8% vs. 18.5% with density treatment alone (p=0.0121). DNase I treatment results in an improvement of sperm motility and morphology and could be beneficial to men with hyperviscous semen in assisted reproduction protocols.
Collapse
Affiliation(s)
- Effrosyni Nosi
- Department of Immunology and Cellular Biology, LOCUS MEDICUS S.A., Athens, Greece
- First Department of Anatomical Pathology, National and Kapodistrian University of Athens, Faculty of Medicine, Greece
| | - Angelos D. Gritzapis
- Department of Immunology and Cellular Biology, LOCUS MEDICUS S.A., Athens, Greece
- Department of Virology, Saint Savas Cancer Hospital, Athens, Greece
| | | | | | | | | | | | - Christodoulos Papanikopoulos
- Obstetrics and Gynecology Clinic, LOCUS MEDICUS S.A., Athens, Greece
- EMBRYOGENESIS Assisted Conception Unit, Athens, Greece
| | - Anastasia Konstantinidou
- First Department of Anatomical Pathology, National and Kapodistrian University of Athens, Faculty of Medicine, Greece
| | - Vassilis Tsilivakos
- Department of Immunology and Cellular Biology, LOCUS MEDICUS S.A., Athens, Greece
| |
Collapse
|
54
|
Brinkmann V. Neutrophil Extracellular Traps in the Second Decade. J Innate Immun 2018; 10:414-421. [PMID: 29909412 DOI: 10.1159/000489829] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Nearly 15 years after the first description of neutrophil extracellular traps (NETs), our knowledge concerning this structure has expanded considerably. Initially, NETs were considered solely an elaborate function of the innate immune system to combat invading microorganisms. Successively it became clear that NETs have farther-reaching capabilities. They are involved in a series of pathophysiological mechanisms ranging from inflammation to thrombosis where they fulfill essential functions when produced at the right site and the right time but can have a serious impact when generation or clearance of NETs is inadequately controlled. This review provides a concise overview on the far-reaching functions of NETs in health and disease.
Collapse
|
55
|
Zlatina K, Saftenberger M, Kühnle A, Galuska CE, Gärtner U, Rebl A, Oster M, Vernunft A, Galuska SP. Polysialic Acid in Human Plasma Can Compensate the Cytotoxicity of Histones. Int J Mol Sci 2018; 19:E1679. [PMID: 29874880 PMCID: PMC6032143 DOI: 10.3390/ijms19061679] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
The innate immune system has numerous mechanisms to fight against pathogens, including the formation of neutrophil extracellular traps (NETs). By spreading out chromatin, antimicrobial peptides and enzymes, neutrophils efficiently trap pathogens like bacteria and facilitate their elimination. During this process, high concentrations of extracellular histones can be reached. Several researchers have demonstrated that the cytotoxic characteristics of these histones can trigger diseases like sepsis. Interestingly, the carbohydrate polysialic acid (polySia) can bind histones and reduce histone-mediated cytotoxicity in a chain length-dependent manner. In the present study, we examined the chain length of polySia in plasma and tested its ability to decrease the cytotoxic characteristics of extracellular histones. Remarkably, we detected polySia not only in the soluble fraction of plasma, but also on enriched extracellular vesicles (EVs). Chain length analysis revealed that polySia chains originating from human plasma can consists of more than 40 sialic acid residues and show a cytoprotective effect against extracellular histones. Intriguingly, polySia is not only present in human plasma but also in fish and other branches of vertebrates. Thus, polySia is a physiological element in plasma and may represent a natural buffer for extracellular histones.
Collapse
Affiliation(s)
- Kristina Zlatina
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Max Saftenberger
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany.
| | - Andrea Kühnle
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Christina E Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany.
| | - Alexander Rebl
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Michael Oster
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Andreas Vernunft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
56
|
Salinas-Muñoz L, Campos-Fernández R, Mercader E, Olivera-Valle I, Fernández-Pacheco C, Matilla L, García-Bordas J, Brazil JC, Parkos CA, Asensio F, Muñoz-Fernández MA, Hidalgo A, Sánchez-Mateos P, Samaniego R, Relloso M. Estrogen Receptor-Alpha (ESR1) Governs the Lower Female Reproductive Tract Vulnerability to Candida albicans. Front Immunol 2018; 9:1033. [PMID: 29881378 PMCID: PMC5976782 DOI: 10.3389/fimmu.2018.01033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023] Open
Abstract
Estradiol-based therapies predispose women to vaginal infections. Moreover, it has long been known that neutrophils are absent from the vaginal lumen during the ovulatory phase (high estradiol). However, the mechanisms that regulate neutrophil influx to the vagina remain unknown. We investigated the neutrophil transepithelial migration (TEM) into the vaginal lumen. We revealed that estradiol reduces the CD44 and CD47 epithelial expression in the vaginal ectocervix and fornix, which retain neutrophils at the apical epithelium through the estradiol receptor-alpha. In contrast, luteal progesterone increases epithelial expression of CD44 and CD47 to promote neutrophil migration into the vaginal lumen and Candida albicans destruction. Distinctive to vaginal mucosa, neutrophil infiltration is contingent to sex hormones to prevent sperm from neutrophil attack; although it may compromise immunity during ovulation. Thus, sex hormones orchestrate tolerance and immunity in the vaginal lumen by regulating neutrophil TEM.
Collapse
Affiliation(s)
- Laura Salinas-Muñoz
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Raúl Campos-Fernández
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Enrique Mercader
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Cirugía General, Sección Cirugía Endocrino-Metabólica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irene Olivera-Valle
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Carlota Fernández-Pacheco
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Animalario, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Lara Matilla
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Julio García-Bordas
- Servicio de Anatomía Patológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jennifer C Brazil
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Fernando Asensio
- Animalario, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Maria A Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Paloma Sánchez-Mateos
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Rafael Samaniego
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Miguel Relloso
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
57
|
Niringiyumukiza JD, Cai H, Xiang W. Prostaglandin E2 involvement in mammalian female fertility: ovulation, fertilization, embryo development and early implantation. Reprod Biol Endocrinol 2018; 16:43. [PMID: 29716588 PMCID: PMC5928575 DOI: 10.1186/s12958-018-0359-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/20/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Infertility in mammalian females has been a challenge in reproductive medicine. The causes of female infertility include anovulation, ovulated oocyte defects, abnormal fertilization, and insufficient luteal support for embryo development, as well as early implantation. Ovulation induction, in vitro fertilization and luteal support regimens have been performed for decades to increase fertility rates. The identification of proteins and biochemical factors involved in female reproduction is essential to further increase female fertility rates. Evidence has shown that prostaglandins (PGs) might be involved in the female reproductive process, mainly ovulation, fertilization, and implantation. However, only a few studies on individual PGs in female reproduction have been done so far. This review aimed to identify the pivotal role of prostaglandin E2 (PGE2), a predominant PG, in female reproduction to improve fertility, specifically ovulation, fertilization, embryo development and early implantation. RESULTS Prostaglandin E2 (PGE2) was shown to play a relevant role in the ovulatory cascade, including meiotic maturation, cumulus expansion and follicle rupture, through inducing ovulatory genes, such as Areg, Ereg, Has2 and Tnfaip6, as well as increasing intracellular cAMP levels. PGE2 reduces extracellular matrix viscosity and thereby optimizes the conditions for sperm penetration. PGE2 reduces the phagocytic activity of polymorphonuclear neutrophils (PMNs) against sperm. In the presence of PGE2, sperm function and binding capacity to oocytes are enhanced. PGE2 maintains luteal function for embryo development and early implantation. In addition, it induces chemokine expression for trophoblast apposition and adhesion to the decidua for implantation. CONCLUSION It has been shown that PGE2 positively affects different stages of female fertility. Therefore, PGE2 should be taken into consideration when optimizing reproduction in infertile females. We suggest that in clinical practice, the administration of non-steroidal anti-inflammatory drugs, which are PGE2 synthesis inhibitors, should be reasonable and limited in infertile women. Additionally, assessments of PGE2 protein and receptor expression levels should be taken into consideration.
Collapse
Affiliation(s)
- Jean Damascene Niringiyumukiza
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Hongcai Cai
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Wenpei Xiang
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| |
Collapse
|
58
|
Rebordão MR, Amaral A, Lukasik K, Szóstek-Mioduchowska A, Pinto-Bravo P, Galvão A, Skarzynski DJ, Ferreira-Dias G. Constituents of neutrophil extracellular traps induce in vitro collagen formation in mare endometrium. Theriogenology 2018; 113:8-18. [PMID: 29452855 DOI: 10.1016/j.theriogenology.2018.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 01/08/2023]
Abstract
Neutrophil extracellular traps (NETs) are DNA complexes carrying nuclear and cytoplasmic proteins, such as elastase (ELA), cathepsin-G (CAT) and myeloperoxidase (MPO). Mare endometrosis is a chronic degenerative process characterized by excessive collagen in endometrium. While NETs fight bacteria that cause endometritis, they may trigger endometrial fibrogenesis. The aim was to evaluate the in vitro effect of some NETs components on mare endometrial fibrogenesis and determine its relationship with histopathology or estrous cycle. Endometrial explants were incubated with NETs components (ELA, CAT, MPO or oxytocin). Collagen type I (COL1) protein and type I and III (COL3) gene transcription were evaluated in follicular and mid-luteal phases endometria (Kenney and Doig type I/IIA and IIB/III). Increased COL1 occurred with all NETs proteins, although endometrial response to each NETs protease depended on estrous cycle and/or endometrial category. Since ELA enhanced COL1 production, NETs persistence might be linked to endometrosis. Estrous cycle influenced COL1 protein concentration and COL3 transcripts, suggesting that follicular phase may favor endometrial collagen production. However, luteal phase endometria with moderate or severe lesions may be also susceptible to fibrotic effects of NETs constituents. These data propose that NETs involvement in chronic endometritis in mares may act as putative endometrial fibrogenic mediators.
Collapse
Affiliation(s)
- Maria Rosa Rebordão
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Coimbra College of Agriculture, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Ana Amaral
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Karolina Lukasik
- Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | | | - Pedro Pinto-Bravo
- Coimbra College of Agriculture, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - António Galvão
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | | | - Graça Ferreira-Dias
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
59
|
Pini T, Leahy T, Paul de Graaf S. Seminal plasma and cryopreservation alter ram sperm surface carbohydrates and interactions with neutrophils. Reprod Fertil Dev 2018; 30:689-702. [DOI: 10.1071/rd17251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 02/05/2023] Open
Abstract
Spermatozoa deposited vaginally must navigate the physical, chemical and immune barriers of the cervix to reach the site of fertilisation. Characteristics that favour successful cervical transit remain largely unknown beyond the obvious factors of motility and viability. Epididymal and cryopreserved ram spermatozoa demonstrate poor cervical transit, for unknown reasons. We hypothesised that seminal plasma exposure and cryopreservation alter the surface sugars of these sperm populations and, consequently, their interaction with immune cells, both potential factors for successful cervical transit. The carbohydrate profiles of epididymal, ejaculated and frozen–thawed ram spermatozoa were assessed by flow cytometry and western blotting using lectins for galactose, sialic acid, N-acetylglucosamine and mannose. Seminal plasma exposure and cryopreservation caused significant changes to the relative amounts of surface sugars detected by flow cytometry and lectin blotting. Immune cell interaction was characterised using a neutrophil-binding assay. Seminal plasma acted as a robust protective mechanism, limiting binding of spermatozoa, whereas the media used for cryopreservation caused a significant disruption to opsonin-mediated binding. We were unable to demonstrate a link between changes to surface sugars and neutrophil susceptibility. Seminal plasma and cryopreservation clearly alter the sperm glycocalyx, as well as the interaction of spermatozoa with immune cells.
Collapse
|
60
|
Ortmann W, Kolaczkowska E. Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation. Cell Tissue Res 2017; 371:473-488. [PMID: 29250748 PMCID: PMC5820386 DOI: 10.1007/s00441-017-2751-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Neutrophil extracellular traps or NETs are released by highly activated neutrophils in response to infectious agents, sterile inflammation, autoimmune stimuli and cancer. In the cells, the nuclear envelop disintegrates and decondensation of chromatin occurs that depends on peptidylarginine deiminase 4 (PAD4) and neutrophil elastase (NE). Subsequently, proteins from neutrophil granules (e.g., NE, lactoferrin and myeloperoxidase) and the nucleus (histones) bind to decondensed DNA and the whole structure is ejected from the cell. The DNA decorated with potent antimicrobials and proteases can act to contain dissemination of infection and in sterile inflammation NETs were shown to degrade cytokines and chemokines via serine proteases. On the other hand, overproduction of NETs, or their inadequate removal and prolonged presence in vasculature or tissues, can lead to bystander damage or even initiation of diseases. Considering the pros and cons of NET formation, it is of relevance if the stage of neutrophil maturation (immature, mature and senescent cells) affects the capacity to produce NETs as the cells of different age-related phenotypes dominate in given (pathological) conditions. Moreover, the immune system of neonates and elderly individuals is weaker than in adulthood. Is the same pattern followed when it comes to NETs? The overall importance of individual and neutrophil age on the capacity to release NETs is reviewed in detail and the significance of these facts is discussed.
Collapse
Affiliation(s)
- Weronika Ortmann
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387, Krakow, Poland
| | - Elzbieta Kolaczkowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
61
|
Galuska CE, Dambon JA, Kühnle A, Bornhöfft KF, Prem G, Zlatina K, Lütteke T, Galuska SP. Artificial Polysialic Acid Chains as Sialidase-Resistant Molecular-Anchors to Accumulate Particles on Neutrophil Extracellular Traps. Front Immunol 2017; 8:1229. [PMID: 29033944 PMCID: PMC5626807 DOI: 10.3389/fimmu.2017.01229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/19/2017] [Indexed: 01/21/2023] Open
Abstract
Neutrophils are involved in numerous immunological events. One mechanism of neutrophils to combat pathogens is the formation of neutrophil extracellular traps (NETs). Thereby, neutrophils use DNA fibers to form a meshwork of DNA and histones as well as several antimicrobial components to trap and kill invaders. However, the formation of NETs can lead to pathological conditions triggering among other things (e.g., sepsis or acute lung failure), which is mainly a consequence of the cytotoxic characteristics of accumulated extracellular histones. Interestingly, the carbohydrate polysialic acid represents a naturally occurring antagonist of the cytotoxic properties of extracellular histones. Inspired by polysialylated vesicles, we developed polysialylated nanoparticles. Since sialidases are frequently present in areas of NET formation, we protected the sensitive non-reducing end of these homopolymers. To this end, the terminal sialic acid residue of the non-reducing end was oxidized and directly coupled to nanoparticles. The covalently linked sialidase-resistant polysialic acid chains are still able to neutralize histone-mediated cytotoxicity and to initiate binding of these polysialylated particles to NET filaments. Furthermore, polysialylated fluorescent microspheres can be used as a bioanalytical tool to stain NET fibers. Thus, polySia chains might not only be a useful agent to reduce histone-mediated cytotoxicity but also an anchor to accumulate nanoparticles loaded with active substances in areas of NET formation.
Collapse
Affiliation(s)
- Christina E Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Jan A Dambon
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Andrea Kühnle
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Kim F Bornhöfft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Gerlinde Prem
- Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Kristina Zlatina
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Thomas Lütteke
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
62
|
Christoffersen M, Troedsson MHT. Inflammation and fertility in the mare. Reprod Domest Anim 2017; 52 Suppl 3:14-20. [DOI: 10.1111/rda.13013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- M Christoffersen
- Faculty of Health and Medical Sciences; Section for Veterinary Reproduction and Obstetrics; Department of Veterinary Clinical Sciences; University of Copenhagen; Copenhagen Denmark
| | - MHT Troedsson
- Maxwell H. Gluck Equine Research Center; University of Kentucky; Lexington KY USA
| |
Collapse
|
63
|
Villagra-Blanco R, Silva LMR, Gärtner U, Wagner H, Failing K, Wehrend A, Taubert A, Hermosilla C. Molecular analyses on Neospora caninum-triggered NETosis in the caprine system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:119-127. [PMID: 28254622 DOI: 10.1016/j.dci.2017.02.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Neospora caninum is an obligate intracellular protozoan parasite causing serious reproductive disorders in large and small ruminants worldwide. Polymorphonuclear neutrophils (PMN) react against multiple invading pathogens through different mechanisms including the release of neutrophil extracellular traps (NETs). Here, in vitro interactions of caprine PMN and N. caninum tachyzoites were studied. Scanning electron microscopic- and immunofluorescence-analyses demonstrated that caprine PMN undergo NETosis upon contact with tachyzoites of N. caninum, extruding filaments that entrap parasites. Detailed co-localization studies of N. caninum tachyzoite-induced NETs revealed the presence of PMN-derived DNA being decorated with histones (H1, H2A/H2B, H3,H4) and neutrophil elastase (NE) corroborating the molecular characteristics of classical mammalian NETs. As a new result for parasite-induced NETosis, we identified pentraxin and cathepsin B in N. caninum-triggered NETs. Nonetheless, functional inhibition assays revealed that during caprine NET formation triggered by N. caninum different molecular signaling pathways are induced, when compared to other apicomplexan parasites or host species. As such, N. caninum-induced NETosis appears to be influenced by MPO but independent of NADPH oxidase, SOCE, ERK1/2 and p38 MAPK activities. Furthermore, the inhibition of PMN autophagy via blockage of the PI3K-mediated signaling pathway failed to influence tachyzoite-induced NETosis. Since N. caninum-tachyzoites induced caprine NETosis, this effector mechanism should be considered as an early host immune response during acute caprine neosporosis.
Collapse
Affiliation(s)
- R Villagra-Blanco
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany; Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany.
| | - L M R Silva
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - U Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - H Wagner
- Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - K Failing
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - A Wehrend
- Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - A Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - C Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| |
Collapse
|
64
|
Kowsar R, Keshtegar B, Marey MA, Miyamoto A. An autoregressive logistic model to predict the reciprocal effects of oviductal fluid components on in vitro spermophagy by neutrophils in cattle. Sci Rep 2017; 7:4482. [PMID: 28667317 PMCID: PMC5493678 DOI: 10.1038/s41598-017-04841-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
After intercourse/insemination, large numbers of sperm are deposited in the female reproductive tract (FRT), triggering a massive recruitment of neutrophils (PMNs) into the FRT, possibly to eliminate excessive sperm via phagocytosis. Some bovine oviductal fluid components (BOFCs) have been shown to regulate in vitro sperm phagocytosis (spermophagy) by PMNs. The modeling approach-based logistic regression (LR) and autoregressive logistic regression (ALR) can be used to predict the behavior of complex biological systems. We, first, compared the LR and ALR models using in vitro data to find which of them provides a better prediction of in vitro spermophagy in bovine. Then, the best model was used to identify and classify the reciprocal effects of BOFCs in regulating spermophagy. The ALR model was calibrated using an iterative procedure with a dynamical search direction. The superoxide production data were used to illustrate the accuracy in validating logit model-based ALR and LR. The ALR model was more accurate than the LR model. Based on in vitro data, the ALR predicted that the regulation of spermophagy by PMNs in bovine oviduct is more sensitive to alpha-1 acid glycoprotein (AGP), PGE2, bovine serum albumin (BSA), and to the combination of AGP or BSA with other BOFCs.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran. .,Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| | - Behrooz Keshtegar
- Department of Civil Engineering, Faculty of Engineering, University of Zabol, P.B. 9861335-856, Zabol, Iran.
| | - Mohamed A Marey
- Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt.,Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
65
|
Roan NR, Sandi-Monroy N, Kohgadai N, Usmani SM, Hamil KG, Neidleman J, Montano M, Ständker L, Röcker A, Cavrois M, Rosen J, Marson K, Smith JF, Pilcher CD, Gagsteiger F, Sakk O, O'Rand M, Lishko PV, Kirchhoff F, Münch J, Greene WC. Semen amyloids participate in spermatozoa selection and clearance. eLife 2017; 6. [PMID: 28653619 PMCID: PMC5487211 DOI: 10.7554/elife.24888] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022] Open
Abstract
Unlike other human biological fluids, semen contains multiple types of amyloid fibrils in the absence of disease. These fibrils enhance HIV infection by promoting viral fusion to cellular targets, but their natural function remained unknown. The similarities shared between HIV fusion to host cell and sperm fusion to oocyte led us to examine whether these fibrils promote fertilization. Surprisingly, the fibrils inhibited fertilization by immobilizing sperm. Interestingly, however, this immobilization facilitated uptake and clearance of sperm by macrophages, which are known to infiltrate the female reproductive tract (FRT) following semen exposure. In the presence of semen fibrils, damaged and apoptotic sperm were more rapidly phagocytosed than healthy ones, suggesting that deposition of semen fibrils in the lower FRT facilitates clearance of poor-quality sperm. Our findings suggest that amyloid fibrils in semen may play a role in reproduction by participating in sperm selection and facilitating the rapid removal of sperm antigens. DOI:http://dx.doi.org/10.7554/eLife.24888.001 Seminal plasma, the fluid portion of semen, helps to transport sperm cells to the egg during sexual reproduction. Seminal plasma contains numerous proteins that help the sperm to survive and, in recent years, researchers discovered that it also harbours protein deposits known as amyloid fibrils. Such protein deposits are generally associated with neurodegenerative diseases such as Alzheimer's and Parkinson’s disease, where a build-up of fibrils can damage the nervous system. Semen amyloids, however, are present in the absence of disease, but can boost infection by HIV and other sexually transmitted viruses, by shuttling virus particles to their target cells. Despite these damaging effects, some researchers had suggested that amyloids in semen could be beneficial for humans, though it was unclear what these benefits might be. Roan et al. now set out to assess how semen amyloids affect human sperm activity. The results show that semen amyloids bind to damaged sperm cells and immobilize them, which are then quickly cleared away by immune cells. This could ensure that only the fittest sperm cells reach the egg. These findings suggest that amyloids can potentially serve beneficial roles for reproduction. A next step will be to investigate how semen amyloids trap unwanted sperm and how immune cells know when to remove it. More research is needed to investigate if problems in these processes could lead to infertility in men. DOI:http://dx.doi.org/10.7554/eLife.24888.002
Collapse
Affiliation(s)
- Nadia R Roan
- Department or Urology, University of California San Francisco, San Francisco, United States.,Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States
| | - Nathallie Sandi-Monroy
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.,Kinderwunsch-Zentrum, Ulm, Germany
| | - Nargis Kohgadai
- Department or Urology, University of California San Francisco, San Francisco, United States.,Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States
| | - Shariq M Usmani
- The Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Katherine G Hamil
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, United States
| | - Jason Neidleman
- Department or Urology, University of California San Francisco, San Francisco, United States.,Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States
| | - Mauricio Montano
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States
| | - Ludger Ständker
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.,Core Facility Functional Peptidomics, Ulm University, Ulm, Germany
| | - Annika Röcker
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Marielle Cavrois
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States.,Department of Medicine, University of California San Francisco, San Francisco, United States
| | - Jared Rosen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| | - Kara Marson
- HIV / AIDS Division, San Francisco General Hospital, University of California San Francisco, San Francisco, United States
| | - James F Smith
- Department or Urology, University of California San Francisco, San Francisco, United States
| | - Christopher D Pilcher
- HIV / AIDS Division, San Francisco General Hospital, University of California San Francisco, San Francisco, United States
| | | | - Olena Sakk
- Core Facility Transgenic Mice, Medical Faculty, Ulm University, Ulm, Germany
| | - Michael O'Rand
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, United States
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States.,Department of Medicine, University of California San Francisco, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| |
Collapse
|
66
|
Galuska SP, Galuska CE, Tharmalingam T, Zlatina K, Prem G, Husejnov FCO, Rudd PM, Vann WF, Reid C, Vionnet J, Gallagher ME, Carrington FA, Hassett SL, Carrington SD. In vitro generation of polysialylated cervical mucins by bacterial polysialyltransferases to counteract cytotoxicity of extracellular histones. FEBS J 2017; 284:1688-1699. [PMID: 28371406 DOI: 10.1111/febs.14073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 01/25/2023]
Abstract
Neutrophil extracellular traps (NET) are formed against pathogens. However, various diseases are directly linked to this meshwork of DNA. The cytotoxic properties of extracellular histones especially seem to be an important trigger during these diseases. Furthermore, NET accumulation on implants is discussed to result in an impaired efficiency or failure, depending on the category of implant. Interestingly, mucins have been investigated as surface coatings potentially capable of reducing neutrophil adhesion. Similarly, polysialic acid was shown to inactivate the cytotoxic properties of extracellular histones. We wanted to combine the probability to decrease the adhesion of neutrophils using mucins with the capability of sialic acid polymers to counteract histone-mediated cytotoxicity. To this end, we elongate cervical mucins using bacterial polysialyltransferases. Subsequent cell-based experiments demonstrated the activity of elongated mucins against histone-mediated cytotoxicity. Thus, polysialylated mucins may represent a novel component to coat implants or to combat diseases with exaggerated NET formation.
Collapse
Affiliation(s)
- Sebastian P Galuska
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Christina E Galuska
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | | | - Kristina Zlatina
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Gerlinde Prem
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Farzali C O Husejnov
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Pauline M Rudd
- Dublin-Oxford Glycobiology Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Blackrock Co., Dublin, Ireland
| | - Willie F Vann
- Food and Drug Administration, Silver Spring, MD, USA
| | - Colm Reid
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | | | - Mary E Gallagher
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | - Faye A Carrington
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | | | | |
Collapse
|
67
|
The Effect of Cysteine-Rich Secretory Protein-3 and Lactoferrin on Endometrial Cytokine mRNA Expression After Breeding in the Horse. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2016.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
68
|
Canisso IF, Stewart J, Coutinho da Silva MA. Endometritis: Managing Persistent Post-Breeding Endometritis. Vet Clin North Am Equine Pract 2016; 32:465-480. [PMID: 27810036 DOI: 10.1016/j.cveq.2016.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Endometritis was rated as the third most common medical problem encountered in adult horses in North America. It is the leading cause of subfertility in broodmares and is a major contributor to economic loss in the horse breeding industry, with pregnancy rates reported to be as low as 21% in mares with severe endometritis. Endometritis may be categorized as: endometrosis (chronic degenerative endometritis), acute, chronic, active, dormant, subclinical, clinical, and persistent post-breeding. These classifications are not mutually exclusive, and mares may change categories within breeding seasons or estrous cycles or may fit in multiple classifications. This chapter will focus on discussing etiology and management strategies for mares affected by persistent post-breeding endometritis. Overall, these mares are considered subfertile but acceptable pregnancy and foaling rates can be achieved with appropriate breeding management.
Collapse
Affiliation(s)
- Igor F Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61822, USA
| | - Jamie Stewart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61822, USA
| | - Marco A Coutinho da Silva
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St, Columbus, OH 43210, USA.
| |
Collapse
|
69
|
Zambrano F, Carrau T, Gärtner U, Seipp A, Taubert A, Felmer R, Sanchez R, Hermosilla C. Leukocytes coincubated with human sperm trigger classic neutrophil extracellular traps formation, reducing sperm motility. Fertil Steril 2016; 106:1053-1060.e1. [DOI: 10.1016/j.fertnstert.2016.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 12/28/2022]
|
70
|
Fedorka CE, Scoggin KE, Woodward EM, Squires EL, Ball BA, Troedsson M. The effect of select seminal plasma proteins on endometrial mRNA cytokine expression in mares susceptible to persistent mating-induced endometritis. Reprod Domest Anim 2016; 52:89-96. [PMID: 27686063 DOI: 10.1111/rda.12813] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
In the horse, breeding induces a transient endometrial inflammation. A subset of mares are unable to resolve this inflammation, and they are considered susceptible to persistent mating-induced endometritis PMIE Select seminal plasma proteins cysteine-rich secretory protein-3 (CRISP-3) and lactoferrin have been shown to affect the innate immune response to sperm in vitro. The objective of this study was to determine whether the addition of CRISP-3 and lactoferrin at the time of insemination had an effect on the mRNA expression of endometrial cytokines in susceptible mares after breeding. Six mares classified as susceptible to PMIE were inseminated during four consecutive oestrous cycles with treatments in randomized order of: 1 mg/ml CRISP-3, 150 μg/ml lactoferrin, seminal plasma (positive control) or lactated Ringer's solution (LRS; negative control) to a total volume of 10 ml combined with 1 × 109 spermatozoa pooled from two stallions. Six hours after treatment, an endometrial biopsy was obtained for qPCR analysis of selected genes associated with inflammation (pro-inflammatory cytokines interleukin (IL)-1β, IL-8, tumour necrosis factor (TNF)-α, interferon (INF)-γ, anti-inflammatory cytokines IL-1RN and IL-10, and inflammatory-modulating cytokine IL-6). Seminal plasma treatment increased the mRNA expression of IL-1β (p = .019) and IL-8 (p = .0068), while suppressing the mRNA expression of TNF (p = .0013). Lactoferrin also suppressed the mRNA expression of TNF (p = .0013). In conclusion, exogenous lactoferrin may be considered as one modulator of the complex series of events resulting in the poorly regulated pro-inflammatory response seen in susceptible mares.
Collapse
Affiliation(s)
- C E Fedorka
- Department of Veterinary Science, College of Agriculture Food and Environment, University of Kentucky, Lexington, KY, USA
| | - K E Scoggin
- Department of Veterinary Science, College of Agriculture Food and Environment, University of Kentucky, Lexington, KY, USA
| | - E M Woodward
- Department of Clinical Sciences, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E L Squires
- Department of Veterinary Science, College of Agriculture Food and Environment, University of Kentucky, Lexington, KY, USA
| | - B A Ball
- Department of Veterinary Science, College of Agriculture Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Mht Troedsson
- Department of Veterinary Science, College of Agriculture Food and Environment, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
71
|
Hill PB, Imai A. The immunopathogenesis of staphylococcal skin infections - A review. Comp Immunol Microbiol Infect Dis 2016; 49:8-28. [PMID: 27865269 DOI: 10.1016/j.cimid.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/22/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus and S. pseudintermedius are the major causes of bacterial skin disease in humans and dogs. These organisms can exist as commensals on the skin, but they can also cause severe or even devastating infections. The immune system has evolved mechanisms to deal with pathogenic microorganisms and has strategies to combat bacteria of this type. What emerges is a delicate "peace" between the opposing sides, but this balance can be disrupted leading to a full blown "war". In the ferocious battle that ensues, both sides attempt to get the upper hand, using strategies that are comparable to those used by modern day armies. In this review article, the complex interactions between the immune system and the organisms are described using such military analogies. The process is described in a sequential manner, starting with the invasion itself, and progressing to the eventual battlezone in which there are heavy casualties on both sides. By the end, the appearance of a simple pustule on the skin surface will take on a whole new meaning.
Collapse
Affiliation(s)
- P B Hill
- Companion Animal Health Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy SA 5371, Australia.
| | - A Imai
- Dermatology resident, Synergy Animal General Hospital, 815 Kishigami Kawaguchi, Saitama, 333-0823, Japan
| |
Collapse
|
72
|
Marey MA, Yousef MS, Liu J, Morita K, Sasaki M, Hayakawa H, Shimizu T, Miyamoto A. Angiotensin II increases sperm phagocytosis by neutrophils in vitro: A possible physiological role in the bovine oviduct. Mol Reprod Dev 2016; 83:630-9. [DOI: 10.1002/mrd.22672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 06/04/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Mohamed Ali Marey
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
- Faculty of Veterinary Medicine; Department of Theriogenology; Damanhur University; Behera Egypt
| | - Mohamed Samy Yousef
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
- Faculty of Veterinary Medicine; Department of Theriogenology; Assiut University; Assiut Egypt
| | - Jinghui Liu
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
| | - Kazuhiro Morita
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
| | - Motoki Sasaki
- Department of Basic Veterinary Science; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
| | | | - Takashi Shimizu
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene; Obihiro University of Agriculture and Veterinary Medicine; Obihiro Japan
| |
Collapse
|
73
|
Marey MA, Yousef MS, Kowsar R, Hambruch N, Shimizu T, Pfarrer C, Miyamoto A. Local immune system in oviduct physiology and pathophysiology: attack or tolerance? Domest Anim Endocrinol 2016; 56 Suppl:S204-11. [PMID: 27345318 DOI: 10.1016/j.domaniend.2016.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 10/21/2022]
Abstract
The local immune system in the oviduct has a unique ability to deal with pathogens, allogeneic spermatozoa, and the semi-allogeneic embryo. To achieve this, it seems likely that the oviduct possesses an efficient and strictly controlled immune system that maintains optimal conditions for fertilization and early embryo development. The presence of a proper sperm and/or embryo-oviduct interaction begs the question of whether the local immune system in the oviduct exerts beneficial or deleterious effects on sperm and early embryo; support or attack?. A series of studies has revealed that bovine oviduct epithelial cells (BOECs) are influenced by preovulatory levels of Estradiol-17β, progesterone, and LH to maintain an immunologic homeostasis in bovine oviduct, via inhibition of proinflammatory responses that are detrimental to allogenic sperm. Under pathologic conditions, the mucosal immune system initiates the inflammatory response to the infection; the bacterial lipopolysaccharide (LPS) at low concentrations induces a proinflammatory response with increased expression of TLR-4, PTGS2, IL-1β, NFκB1, and TNFα, resulting in tissue damage. At higher concentrations, however, LPS induces a set of anti-inflammatory genes (TLR-2, IL-4, IL-10, and PTGES) that may initiate a tissue repair. This response of BOECs is accompanied by the secretion of acute phase protein, suggesting that BOECs react to LPS with a typical acute proinflammatory response. Under physiological conditions, polymorphonuclear neutrophils (PMN) are existent in the oviductal fluid during preovulatory period in the bovine. Interestingly, the bovine oviduct downregulates sperm phagocytosis by PMN via prostaglandin E2 (PGE2) action. In addition, the angiotensin-endothelin-PGE2 system controlling oviduct contraction may fine-tune the PMN phagocytic behavior to sperm in the oviduct. Importantly, a physiological range of PGE2 supplies anti-inflammatory balance in BOEC. Our recent results show that the sperm binding to BOECs further shift the local immunity toward anti-inflammatory conditions with upregulation of IL-10, TGFβ, and PGE2. In addition, this local environment leads PMN to express anti-inflammatory cytokines. In conclusion, the oviduct displays mucosal immunity that maintains an anti-inflammatory environment under physiological conditions that supports the sperm. Under pathologic condition, however, the oviduct supplies the innate immunity that may attack the sperm. Moreover, the oviduct-sperm interaction further suppresses the innate immune cells and strengthens the anti-inflammatory balance in the oviduct. Therefore, the oviduct immunity ensures sperm viability before fertilization.
Collapse
Affiliation(s)
- M A Marey
- Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan; Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt
| | - M S Yousef
- Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan; Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - R Kowsar
- Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan; Department of Animal Science, Isfahan University of Technology, Isfahan, Iran
| | - N Hambruch
- Department of Anatomy, University of Veterinary Medicine Hannover, Hannover, D-30173, Germany
| | - T Shimizu
- Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan
| | - C Pfarrer
- Department of Anatomy, University of Veterinary Medicine Hannover, Hannover, D-30173, Germany
| | - A Miyamoto
- Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan.
| |
Collapse
|
74
|
Del Giudice PT, Belardin LB, Camargo M, Zylbersztejn DS, Carvalho VM, Cardozo KHM, Bertolla RP, Cedenho AP. Determination of testicular function in adolescents with varicocoele - a proteomics approach. Andrology 2016; 4:447-55. [DOI: 10.1111/andr.12174] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/03/2015] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Affiliation(s)
- P. T. Del Giudice
- Division of Urology; Human Reproduction Section; Department of Surgery; Universidade Federal de São Paulo; São Paulo Brazil
| | - L. B. Belardin
- Division of Urology; Human Reproduction Section; Department of Surgery; Universidade Federal de São Paulo; São Paulo Brazil
| | - M. Camargo
- Division of Urology; Human Reproduction Section; Department of Surgery; Universidade Federal de São Paulo; São Paulo Brazil
| | - D. S. Zylbersztejn
- Division of Urology; Human Reproduction Section; Department of Surgery; Universidade Federal de São Paulo; São Paulo Brazil
- Hospital São Paulo; São Paulo Brazil
| | | | | | - R. P. Bertolla
- Division of Urology; Human Reproduction Section; Department of Surgery; Universidade Federal de São Paulo; São Paulo Brazil
- Hospital São Paulo; São Paulo Brazil
| | - A. P. Cedenho
- Division of Urology; Human Reproduction Section; Department of Surgery; Universidade Federal de São Paulo; São Paulo Brazil
| |
Collapse
|
75
|
Muñoz-Caro T, Machado Ribeiro da Silva L, Rentería-Solis Z, Taubert A, Hermosilla C. Neutrophil extracellular traps in the intestinal mucosa of Eimeria-infected animals. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
76
|
Our current understanding of the pathophysiology of equine endometritis with an emphasis on breeding-induced endometritis. Reprod Biol 2016; 16:8-12. [DOI: 10.1016/j.repbio.2016.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/10/2016] [Accepted: 01/18/2016] [Indexed: 11/20/2022]
|
77
|
Hibbs JB, Vavrin Z, Cox JE. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose. Redox Biol 2016; 8:271-84. [PMID: 26895212 PMCID: PMC4761651 DOI: 10.1016/j.redox.2016.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 01/05/2023] Open
Abstract
Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. Extracellular metabolism occurs in dilute human leukocyte cytosolic protein solution. Extracellular metabolism is activated by acid phosphatases. Ribose5P salvage from purine nucleotides and its metabolism produces NADPH. Extracellular NADPH generating metabolism influences the redox environment. Extracellular metabolism could be a component of inflammation and wound healing.
Collapse
Affiliation(s)
- John B Hibbs
- Emeritus, Department of Internal Medicine, Division of Infectious Diseases, University of Utah Health Science Center, Salt Lake City, UT, United States; VA Medical Center, Salt Lake City, UT, United States.
| | - Zdenek Vavrin
- VA Medical Center, Salt Lake City, UT, United States
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States; Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
78
|
Marey MA, Yousef MS, Liu J, Morita K, Sasaki M, Hayakawa H, Shimizu T, Elshahawy II, Miyamoto A. Endothelin-1 downregulates sperm phagocytosis by neutrophils in vitro: A physiological implication in bovine oviduct immunity. J Reprod Dev 2016; 62:151-7. [PMID: 26781611 PMCID: PMC4848572 DOI: 10.1262/jrd.2015-112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The oviduct is an active contractile tube that provides the proper environment for sperm transport,
capacitation and survival. Oviductal contractions are regulated by autocrine/paracrine secretion of several
factors, such as prostaglandins (PGs) and endothelin-1 (EDN-1). We have previously shown that during the
preovulatory stage, sperm are exposed to polymorphonuclear neutrophils (PMNs) in the bovine oviduct, and the
bovine oviduct epithelial cells (BOECs) secrete molecules including PGE2 that suppress sperm phagocytosis by
PMNs in vitro. In this study, we investigated the possible effects of EDN-1 on the phagocytic
activity of PMNs toward sperm. The local concentrations of EDN-1 in oviduct fluid and BOEC culture medium
ranged from 10–10 to 10–11 M as determined by EIA. Phagocytosis and superoxide
production were assayed by co-incubation of sperm pretreated to induce capacitation with PMNs exposed to EDN-1
(0, 10–11, 10–10, 10–9, and 10–8 M) for 2 h. EDN-1 suppressed dose
dependently (10–11 to 10–8 M) the phagocytic activity for sperm and superoxide
production of PMNs in response to capacitated sperm. Moreover, this suppression was eliminated by an
ETB receptor antagonist (BQ-788). EDN-1 suppressed mRNA expression of EDN-1 and ETB
but not ETA receptors in PMNs, suggesting the ETB receptor-mediated pathway. Scanning
electron microscopic observation revealed that incubation of PMNs with EDN-1 (10–9 M) completely
suppressed the formation of DNA-based neutrophil extracellular traps for sperm entanglement. The results
provide evidence indicating that EDN-1 may be involved in the protection of sperm from phagocytosis by PMNs in
the bovine oviduct, supporting sperm survival until fertilization.
Collapse
Affiliation(s)
- Mohamed Ali Marey
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Rebordão MR, Galvão A, Szóstek A, Amaral A, Mateus L, Skarzynski DJ, Ferreira-Dias G. Physiopathologic mechanisms involved in mare endometrosis. Reprod Domest Anim 2015; 49 Suppl 4:82-7. [PMID: 25277436 DOI: 10.1111/rda.12397] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/14/2014] [Indexed: 02/06/2023]
Abstract
Endometrosis is a degenerative chronic process, characterized by paramount fibrosis development in mare endometrium. This condition is one of the major causes of subfertility/infertility in mares. As in other organs, fibrosis might be a pathologic sequel of many chronic inflammatory diseases. However, aetiology and physiopathologic mechanisms involved in endometrial fibrosis are still controversial. This review presents new hypotheses based on our newest data. As the first line of innate immune defence, systemic neutrophils arrive in the uterus at mating or in the presence of pathogens. A novel paradigm is that neutrophils cast out their DNA in response to infectious stimuli and form neutrophil extracellular traps (NETs). We have shown that bacterial strains of Streptococcus zooepidemicus, Escherichia coli or Staphylococcus capitis, known to cause endometritis in mares were able to induce NETs release in vitro by equine PMN to different extents. An intriguing dilemma is the dual action of NETs. While NETs play a desirable role fighting micro-organisms in mare uterus, they may also contribute to endometrial fibrosis. A long-term in vitro exposure of mare endometrium explants to NETs components (myeloperoxidase, elastase and cathepsin G) up-regulated fibrosis markers TGFβ and Tissue inhibitor of metalloproteinase (TIMP-1). Also, pro-fibrotic cytokines regulated collagen deposition and fibrosis. Changes in expression of connective tissue growth factor (CTGF), interleukins (IL)1-α, IL-1β, IL-6 and receptors in endometrium with different degrees of fibrosis and/or inflammation were observed. A putative role of CTGF, IL and NETs components in endometrosis development should be considered. Additionally, we speculate that in sustained endometritis in mares, prostaglandins may not only cause early luteolysis or early pregnancy loss, but may also be related to endometrial fibrosis pathogenesis by stimulating collagen deposition.
Collapse
Affiliation(s)
- M R Rebordão
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Coimbra College of Agriculture, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
80
|
Tecle E, Gagneux P. Sugar-coated sperm: Unraveling the functions of the mammalian sperm glycocalyx. Mol Reprod Dev 2015; 82:635-50. [PMID: 26061344 PMCID: PMC4744710 DOI: 10.1002/mrd.22500] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/30/2015] [Indexed: 01/05/2023]
Abstract
Mammalian spermatozoa are coated with a thick glycocalyx that is assembled during sperm development, maturation, and upon contact with seminal fluid. The sperm glycocalyx is critical for sperm survival in the female reproductive tract and is modified during capacitation. The complex interplay among the various glycoconjugates generates numerous signaling motifs that may regulate sperm function and, as a result, fertility. Nascent spermatozoa assemble their own glycans while the cells still possess a functional endoplasmic reticulum and Golgi in the seminiferous tubule, but once spermatogenesis is complete, they lose the capacity to produce glycoconjugates de novo. Sperm glycans continue to be modified, during epididymal transit by extracellular glycosidases and glycosyltransferases. Furthermore, epididymal cells secrete glycoconjugates (glycophosphatidylinositol-anchored glycoproteins and glycolipids) and glycan-rich microvesicles that can fuse with the maturing sperm membrane. The sperm glycocalyx mediates numerous functions in the female reproductive tract, including the following: inhibition of premature capacitation; passage through the cervical mucus; protection from innate and adaptive female immunity; formation of the sperm reservoir; and masking sperm proteins involved in fertilization. The immense diversity in sperm-associated glycans within and between species forms a remarkable challenge to our understanding of essential sperm glycan functions.
Collapse
Affiliation(s)
- Eillen Tecle
- Division of Comparative Pathology and Medicine, Department of Pathology, Glycobiology Research and Training Center, University of California San Diego, La Jolla, California
| | - Pascal Gagneux
- Division of Comparative Pathology and Medicine, Department of Pathology, Glycobiology Research and Training Center, University of California San Diego, La Jolla, California
| |
Collapse
|
81
|
Reichel M, Muñoz-Caro T, Sanchez Contreras G, Rubio García A, Magdowski G, Gärtner U, Taubert A, Hermosilla C. Harbour seal (Phoca vitulina) PMN and monocytes release extracellular traps to capture the apicomplexan parasite Toxoplasma gondii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:106-115. [PMID: 25681075 DOI: 10.1016/j.dci.2015.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
Extracellular traps (ETs) are composed of nuclear DNA as backbone adorned with histones, cytoplasmic antimicrobial peptides/proteins which are released from a range of vertebrate and invertebrate host immune cells in response to several invading pathogens. Until now this ancient novel innate defence mechanism has not been demonstrated in any marine mammal. Interactions of harbour seal (Phoca vitulina)-PMN and -monocytes with viable tachyzoites of Toxoplasma gondii were investigated in this respect in vitro. For the demonstration and quantification of harbour seal PMN- and monocyte-derived ETs, extracellular DNA was stained with Sytox Orange. Fluorescence assays as well as scanning electron microscopy (SEM) analyses demonstrated PMN- and monocyte-promoted ET formation rapidly being induced upon contact with T. gondii-tachyzoites. The co-localisation of extracellular DNA decorated with histones (H3), neutrophil elastase (NE) and myeloperoxidase (MPO) in parasite entrapping structures confirmed the classical characteristics of PMN- and monocyte-promoted ETs. Exposure of harbour seal PMN and monocytes to viable tachyzoites resulted in a significant induction of ETs when compared to negative controls. Harbour seal-ETs were efficiently abolished by DNase I treatment and were reduced after PMN and monocytes pre-incubation with the NADPH oxidase inhibitor diphenilane iodondium. Tachyzoites of T. gondii were firmly entrapped and immobilised within harbour seal-ET structures. To our best knowledge, we here report for the first time on T. gondii-induced ET formation in harbour seal-PMN and -monocytes. Our results strongly indicate that PMN- and monocyte-triggered ETs represent a relevant and ancient conserved effector mechanism of the pinniped innate immune system as reaction against the pathogenic protozoon T. gondii and probably against other foreign pathogens occurring in the ocean environment.
Collapse
Affiliation(s)
- Maria Reichel
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Tamara Muñoz-Caro
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Ana Rubio García
- Seal Rehabilitation and Research Centre, Pieterburen, The Netherlands
| | - Gerd Magdowski
- Institute of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
82
|
Boe DM, Curtis BJ, Chen MM, Ippolito JA, Kovacs EJ. Extracellular traps and macrophages: new roles for the versatile phagocyte. J Leukoc Biol 2015; 97:1023-35. [PMID: 25877927 DOI: 10.1189/jlb.4ri1014-521r] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/20/2015] [Indexed: 12/13/2022] Open
Abstract
MΦ are multipurpose phagocytes with a large repertoire of well-characterized abilities and functions, including regulation of inflammation, wound healing, maintenance of tissue homeostasis, as well as serving as an integral component of the innate-immune defense against microbial pathogens. Working along with neutrophils and dendritic cells, the other myeloid-derived professional phagocytes, MΦ are one of the key effector cells initiating and directing the host reaction to pathogenic organisms and resolving subsequent responses once the threat has been cleared. ETs are a relatively novel strategy of host defense involving expulsion of nuclear material and embedded proteins from immune cells to immobilize and kill bacteria, fungi, and viruses. As research on ETs expands, it has begun to encompass many immune cell types in unexpected ways, including various types of MΦ, which are not only capable of generating METs in response to various stimuli, but recent preclinical data suggest that they are an important agent in clearing ETs and limiting ET-mediated inflammation and tissue damage. This review aims to summarize historical and recent findings of biologic research regarding ET formation and function and discuss the role of MΦ in ET physiology and associated pathologies.
Collapse
Affiliation(s)
- Devin M Boe
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Brenda J Curtis
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Michael M Chen
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Jill A Ippolito
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Elizabeth J Kovacs
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| |
Collapse
|
83
|
Cooper PR, Palmer LJ, Chapple ILC. Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe? Periodontol 2000 2015; 63:165-97. [PMID: 23931060 DOI: 10.1111/prd.12025] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/12/2022]
Abstract
The discovery of neutrophil extracellular traps in 2004 opened a fascinating new chapter in immune-mediated microbial killing. Brinkman et al. demonstrated that neutrophils, when catastrophically stimulated, undergo a novel form of programmed cell death (neutrophil extracellular trap formation) whereby they decondense their entire nuclear chromatin/DNA and release the resulting structure into the cytoplasm to mix with granule-derived antimicrobial peptides before extruding these web-like structures into the extracellular environment. The process requires the activation of the granule enzyme peptidyl arginine deiminase-4, the formation of reactive oxygen species (in particular hypochlorous acid), the neutrophil microtubular system and the actin cytoskeleton. Recent work by Yousefi et al. demonstrated that exposure to different agents for shorter stimulation periods resulted in neutrophil extracellular trap release from viable granulocytes, and that such neutrophil extracellular traps comprised mitochondrial DNA rather than nuclear DNA and were also capable of microbial entrapment and destruction. Deficiency in NADPH-oxidase production (as found in patients with chronic granulomatous disease) results in an inability to produce neutrophil extracellular traps and, along with their failure to produce antimicrobial reactive oxygen species, these patients suffer from severe, and sometimes life-threatening, infections. However, conversely the release of nuclear chromatin into tissues is also potentially autoimmunogenic and is now associated with the generation of anti-citrullinated protein antibodies in seropositive rheumatoid arthritis. Other neutrophil-derived nuclear and cytoplasmic contents are also pathogenic, either through direct effects on tissues or via autoimmune processes (e.g. autoimmune vasculitis). In this review, we discuss the plant origins of a highly conserved innate immune method of microbial killing, the history and biology of neutrophil extracellular traps and their role in defence and in human diseases. We attempt to resolve areas of controversy and propose roles for excess neutrophil extracellular trap release from hyperactive/reactive neutrophils and for the unique peptidyl arginine deiminase enzyme of Porphyromonas gingivalis in the pathogenesis of periodontitis, and subsequently a role for periodontitis/the peptidyl arginine deiminase enzyme of P. gingivalis in the causal pathway of autoimmune diseases such as rheumatoid arthritis. We propose that neutrophil extracellular trap and peptidyl arginine deiminase release may propagate tissue-destructive mechanisms rather than provide protection in susceptible individuals and that release of host-derived DNase may play an important role in the digestion and removal of neutrophil extracellular traps within tissues.
Collapse
|
84
|
Simon P, Feuerstacke C, Kaese M, Saboor F, Middendorff R, Galuska SP. Polysialylation of NCAM characterizes the proliferation period of contractile elements during postnatal development of the epididymis. PLoS One 2015; 10:e0123960. [PMID: 25822229 PMCID: PMC4379024 DOI: 10.1371/journal.pone.0123960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
Polysialic acid (polySia) attached to the neural cell adhesion molecule (NCAM) regulates inter alia the proliferation and differentiation via the interactions with neurotrophins. Since in postnatal epididymis neurotrophins and their receptors like the Low-Affinity Nerve Growth Factor Receptor p75 and TrK B receptor are expressed, we wanted to analyze if the polysialylation of NCAM is also involved during the development of the epididymis. To this end, we monitored the developmental changes in the expression of the polysialyltransferases and NCAM polysialylation using murine epididymis at different time points during postnatal development. Our results revealed that during postnatal development of the epididymis both polysialyltransferases, ST8SiaII and ST8SiaIV, were expressed and that the expression levels dropped with increasing age. In agreement with the expression levels of the polysialyltransferases the highest content of polysialylated NCAM was present during the first 10 days after birth. Interestingly, proliferating smooth muscle cell populations prevalently expressed polysialylated NCAM. Furthermore, we observed that inverse to the decrease in polysialylation of smooth muscle cells a strong up-regulation of collagen takes place suggesting a functional relationship since collagen was recently described to induce the turnover of polysialylated NCAM via an induction of endocytosis in cellulo. The same time course of polySia and collagen synthesis was also observed in other regions of the male reproductive system e.g. vas deferens and tunica albuginea (testis). Together, we identified a spatio-temporal expression pattern of polySia-NCAM characterized by high proliferation rate of smooth muscle cells and low collagen content.
Collapse
Affiliation(s)
- Peter Simon
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392, Giessen, Germany
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385, Giessen, Germany
| | - Caroline Feuerstacke
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385, Giessen, Germany
| | - Miriam Kaese
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392, Giessen, Germany
| | - Farhan Saboor
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385, Giessen, Germany
| | - Ralf Middendorff
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385, Giessen, Germany
- * E-mail: (RM); (SPG)
| | - Sebastian P. Galuska
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392, Giessen, Germany
- * E-mail: (RM); (SPG)
| |
Collapse
|
85
|
Schjenken JE, Robertson SA. Seminal fluid and immune adaptation for pregnancy--comparative biology in mammalian species. Reprod Domest Anim 2015; 49 Suppl 3:27-36. [PMID: 25220746 DOI: 10.1111/rda.12383] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2014] [Indexed: 12/16/2022]
Abstract
Seminal fluid delivered to the female reproductive tract at coitus not only promotes the survival and fertilizing capacity of spermatozoa, but also contains potent signalling agents that influence female reproductive physiology to improve the chances of conception and reproductive success. Male to female seminal fluid signalling occurs in rodents, domestic and livestock animals, and all other mammals examined to date. Seminal plasma is instrumental in eliciting the female response, by provision of cytokines and prostaglandins synthesized in the male accessory glands. These agents bind to receptors on target cells in the cervix and uterus, activating changes in gene expression leading to functional adaptations in the female tissues. Sperm also interact with female tract cells, although the molecular basis of this interaction is not yet defined. The consequences are increased sperm survival and fertilization rates, conditioning of the female immune response to tolerate semen and the conceptus, and molecular and cellular changes in the endometrium that facilitate embryo development and implantation. Studies in porcine, equine, bovine, ovine and canine species all show evidence of male-female signalling function for seminal fluid. There are variations between species that relate to their different reproductive strategies and behaviours, particularly the site of seminal fluid deposition and female reproductive tract anatomy. Although the details of the molecular mechanisms require more study, the available data are consistent with both the sperm and plasma fractions of seminal fluid acting in a synergistic fashion to activate inflammation-like responses and downstream female tract changes in each of these species. Insight into the biological function and molecular basis of seminal fluid signalling in the female will inform new interventions and management practices to support optimal reproductive outcomes in domestic, livestock and endangered animal species.
Collapse
Affiliation(s)
- J E Schjenken
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
86
|
Alghamdi AS, Madill S, Foster DN, Troedsson MHT. Equine sperm-neutrophil binding. Biol Reprod 2015; 92:94. [PMID: 25695722 DOI: 10.1095/biolreprod.114.122655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 02/16/2015] [Indexed: 11/01/2022] Open
Abstract
When mares are inseminated repeatedly, protein molecules from the seminal plasma (SP) prevent sperm-neutrophil binding and reduced fertility. The molecule(s) responsible for sperm-neutrophil binding is not known and the identification of beneficial SP proteins is complicated by their large numbers and abundant variation. We examined several important aspects of sperm-neutrophil binding to ultimately facilitate the identification and isolation of the molecule(s) responsible. First, we raised anti-equine P-selectin antibodies to determine the involvement of this adhesion molecule in sperm-neutrophil binding. While these antibodies identified equine P-selectin, they did not inhibit sperm-neutrophil binding. However, acrosome-reacted equine sperm expressed a molecule similar to the ligand recognition unit of P-selectin. Second, we attempted to characterize SP protein binding to equine sperm and gauge their affinity. Biotinylated SP proteins were incubated with fresh sperm, washed over a viscous medium, electrophoresed, and probed with avidin. Several SP proteins bound to sperm with a strong affinity to withstand these treatments. This finding may prove valuable for future attempts to identify and characterize specific SP molecules. Lastly, we compared the secretions from male sex organs/glands on sperm motility, sperm-neutrophil binding, and their protein profile. We expected fewer proteins from individual organs/glands, which would facilitate isolation and identification of target molecules. While each secretion had a varying effect on motility and sperm-neutrophil binding, the protein profile was as complex as that seen in whole SP, indicating that collection of proteins from individual sources will not facilitate this work. Together, these experiments answer several important questions related to sperm-neutrophil binding, sperm-SP proteins interaction, and the complexity of the SP proteome.
Collapse
Affiliation(s)
- Abdorrahman S Alghamdi
- Departments of Agriculture and Natural Resources, University of Minnesota Crookston, Crookston, Minnesota
| | - Scott Madill
- Veterinary Population Medicine, University of Minnesota Twin Cities, St. Paul, Minnesota
| | - Douglas N Foster
- Animal Science, University of Minnesota Twin Cities, St. Paul, Minnesota
| | - Mats H T Troedsson
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
87
|
Rebordão MR, Carneiro C, Alexandre-Pires G, Brito P, Pereira C, Nunes T, Galvão A, Leitão A, Vilela C, Ferreira-Dias G. Neutrophil extracellular traps formation by bacteria causing endometritis in the mare. J Reprod Immunol 2014; 106:41-9. [PMID: 25218891 DOI: 10.1016/j.jri.2014.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/08/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022]
Abstract
Besides the classical functions, neutrophils (PMNs) are able to release DNA in response to infectious stimuli, forming neutrophil extracellular traps (NETs) and killing pathogens. The pathogenesis of endometritis in the mare is not completely understood. The aim was to evaluate the in vitro capacity of equine PMNs to secrete NETs by chemical activation, or stimulated with Streptococcus equi subspecies zooepidemicus (Szoo), Escherichia coli (Ecoli) or Staphylococcus capitis (Scap) strains obtained from mares with endometritis. Ex vivo endometrial mucus from mares with bacterial endometritis were evaluated for the presence of NETs. Equine blood PMNs were used either without or with stimulation by phorbol-myristate-acetate (PMA), a strong inducer of NETs, for 1-3h. To evaluate PMN ability to produce NETs when phagocytosis was impaired, the phagocytosis inhibitor cytochalasin (Cyt) was added after PMA. After the addition of bacteria, a subsequent 1-h incubation was carried out in seven groups. NETs were visualized by 4',6-diamidino-2-phenylindole (DAPI) and anti-histone. Ex vivo samples were immunostained for myeloperoxidase and neutrophil elastase. A 3-h incubation period of PMN + PMA increased NETs (p < 0.05). Bacteria + 25 nM PMA and bacteria + PMA + Cyt increased NETs (p<0.05). Szoo induced fewer NETs than Ecoli or Scap (p < 0.05). Ex vivo NETs were present in mares with endometritis. Scanning electron microscopy showed the spread of NETs formed by smooth fibers and globules that can be aggregated in thick bundles. Formation of NETs and the subsequent entanglement of bacteria suggest that equine NETs might be a complementary mechanism in fighting some of the bacteria causing endometritis in the mare.
Collapse
Affiliation(s)
- M R Rebordão
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; Coimbra College of Agriculture, Coimbra, Portugal
| | - C Carneiro
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - G Alexandre-Pires
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - P Brito
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - C Pereira
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - T Nunes
- Faculty of Sciences, Microscopy Center, University of Lisbon, Portugal
| | - A Galvão
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - A Leitão
- Instituto de Investigação Científica Tropical, CVZ, CIISA, Lisbon, Portugal
| | - C Vilela
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - G Ferreira-Dias
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal.
| |
Collapse
|
88
|
Piasecka M, Fraczek M, Gaczarzewicz D, Gill K, Szumala-Kakol A, Kazienko A, Laszczynska M, Lenart S, Beutin L, Kurpisz M. Novel Morphological Findings of Human Sperm Removal by Leukocytes inIn VivoandIn VitroConditions: Preliminary Study. Am J Reprod Immunol 2014; 72:348-58. [DOI: 10.1111/aji.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/31/2014] [Indexed: 12/25/2022] Open
Affiliation(s)
- Malgorzata Piasecka
- Department of Histology and Developmental Biology; Pomeranian Medical University; Szczecin Poland
| | - Monika Fraczek
- Department of Reproductive Biology and Stem Cells; Institute of Human Genetics; Polish Academy of Sciences; Poznan Poland
| | - Dariusz Gaczarzewicz
- Department of Animal Reproduction, Biotechnology and Environmental Hygiene; West Pomeranian University of Technology; Szczecin Poland
| | - Kamil Gill
- Department of Histology and Developmental Biology; Pomeranian Medical University; Szczecin Poland
| | | | - Anna Kazienko
- Department of Histology and Developmental Biology; Pomeranian Medical University; Szczecin Poland
| | - Maria Laszczynska
- Department of Histology and Developmental Biology; Pomeranian Medical University; Szczecin Poland
| | - Stanislaw Lenart
- Institute of Materials Engineering; West Pomeranian University of Technology; Szczecin Poland
| | - Lothar Beutin
- Department of Biological Safety; Federal Institute for Risk Assessment (BfR); Berlin Germany
| | - Maciej Kurpisz
- Department of Reproductive Biology and Stem Cells; Institute of Human Genetics; Polish Academy of Sciences; Poznan Poland
| |
Collapse
|
89
|
Liu J, Marey MA, Kowsar R, Hambruch N, Shimizu T, Haneda S, Matsui M, Sasaki M, Hayakawa H, Pfarrer C, Miyamoto A. An acute-phase protein as a regulator of sperm survival in the bovine oviduct: alpha 1-acid-glycoprotein impairs neutrophil phagocytosis of sperm in vitro. J Reprod Dev 2014; 60:342-8. [PMID: 24931131 PMCID: PMC4219990 DOI: 10.1262/jrd.2014-049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that polymorphonuclear neutrophils (PMNs) are present in bovine oviduct fluid under physiological conditions, and that the oviduct provides a microenvironment that protects sperm from phagocytosis by PMNs. Alpha 1-acid glycoprotein (AGP) is a major acute-phase protein produced mainly in the liver that has immunomodulatory functions. AGP mRNA is expressed in extrahepatic organs, such as the lung, kidney, spleen, lymph node, uterus, and ovary. Therefore, in this study, we investigated, 1) the local production of AGP in the bovine oviduct, 2) the effect of AGP on the phagocytic activity of PMNs for sperm and superoxide production and 3) the impact of AGP desialylation on the PMN phagocytosis of sperm. The AGP gene was expressed in cultured bovine oviduct epithelial cells (BOECs) and AGP protein was detected in oviduct fluid. Preexposure of PMNs to AGP at physiological levels impaired PMN phagocytosis for sperm and superoxide generation. The desialylation of AGP eliminated these suppressive effects of AGP on PMN. Scanning electron microscopy revealed that AGP drastically reduced the formation of DNA-based neutrophil extracellular traps (NETs) for sperm entanglement. Additionally, AGP dose-dependently stimulated BOECs to produce prostaglandin E2 (PGE2) which has been shown to partially contribute to the regulation of sperm phagocytosis in the bovine oviduct. AGP and PGE2 at concentrations detected in the oviducts additively suppressed sperm phagocytosis by PMNs. These results provide evidence that locally produced AGP may be involved in protecting sperm from phagocytosis by PMNs in the bovine oviduct.
Collapse
Affiliation(s)
- Jinghui Liu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
The apicomplexan parasite Eimeria arloingi induces caprine neutrophil extracellular traps. Parasitol Res 2014; 113:2797-807. [PMID: 24849865 DOI: 10.1007/s00436-014-3939-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022]
Abstract
As a novel effector mechanism polymorphonuclear neutrophils (PMN) release neutrophil extracellular traps (NETs), which represent protein-labeled DNA matrices capable of extracellular trapping and killing of invasive pathogens. Here, we demonstrate for the first time NET formation performed by caprine PMN exposed to different stages (sporozoites and oocysts) of the goat apicomplexan protozoan parasite Eimeria arloingi. Scanning electron microscopy as well as fluorescence microscopy of sporozoites- and oocysts-PMN co-cultures revealed a fine network of DNA fibrils partially covering the parasites. Immunofluorescence analyses confirmed the co-localization of histones (H3), neutrophil elastase (NE), and myeloperoxidase (MPO) in extracellular traps released from caprine PMN. In addition, the enzymatic activity of NE was found significantly enhanced in sporozoite-exposed caprine PMN. The treatment of caprine NET structures with deoxyribonuclease (DNase) and the NADPH oxidase inhibitor diphenylene iodondium (DPI) significantly reduced NETosis confirming the classical characteristics of NETs. Caprine NETs efficiently trapped vital sporozoites of E. arloingi since 72% of these stages were immobilized-but not killed-in NET structures. As a consequence, early infection rates were significantly reduced when PMN-pre-exposed sporozoites were allowed to infect adequate host cells. These findings suggest that NETs may play an important role in the early innate host response to E. arloingi infection in goats.
Collapse
|
91
|
Côté O, Clark ME, Viel L, Labbé G, Seah SYK, Khan MA, Douda DN, Palaniyar N, Bienzle D. Secretoglobin 1A1 and 1A1A differentially regulate neutrophil reactive oxygen species production, phagocytosis and extracellular trap formation. PLoS One 2014; 9:e96217. [PMID: 24777050 PMCID: PMC4002474 DOI: 10.1371/journal.pone.0096217] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/04/2014] [Indexed: 12/13/2022] Open
Abstract
Secretoglobin family 1A member 1 (SCGB 1A1) is a small protein mainly secreted by mucosal epithelial cells of the lungs and uterus. SCGB 1A1, also known as club (Clara) cell secretory protein, represents a major constituent of airway surface fluid. The protein has anti-inflammatory properties, and its concentration is reduced in equine recurrent airway obstruction (RAO) and human asthma. RAO is characterized by reversible airway obstruction, bronchoconstriction and neutrophilic inflammation. Direct effects of SCGB 1A1 on neutrophil functions are unknown. We have recently identified that the SCGB1A1 gene is triplicated in equids and gives rise to two distinct proteins. In this study we produced the endogenously expressed forms of SCGBs (SCGB 1A1 and 1A1A) as recombinant proteins, and analyzed their effects on reactive oxygen species production, phagocytosis, chemotaxis and neutrophil extracellular trap (NET) formation ex vivo. We further evaluated whether NETs are present in vivo in control and inflamed lungs. Our data show that SCGB 1A1A but not SCGB 1A1 increase neutrophil oxidative burst and phagocytosis; and that both proteins markedly reduce neutrophil chemotaxis. SCGB 1A1A reduced chemotaxis significantly more than SCGB 1A1. NET formation was significantly reduced in a time- and concentration-dependent manner by SCGB 1A1 and 1A1A. SCGB mRNA in bronchial biopsies, and protein concentration in bronchoalveolar lavage fluid, was lower in horses with RAO. NETs were present in bronchoalveolar lavage fluid from horses with exacerbated RAO, but not in fluid from horses with RAO in remission or in challenged healthy horses. These findings indicate that SCGB 1A1 and 1A1A have overlapping and diverging functions. Considering disparities in the relative abundance of SCGB 1A1 and 1A1A in airway secretions of animals with RAO suggests that these functional differences may contribute to the pathogenesis of RAO and other neutrophilic inflammatory lung diseases.
Collapse
Affiliation(s)
- Olivier Côté
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Mary Ellen Clark
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Laurent Viel
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, Canada
| | - Geneviève Labbé
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Meraj A. Khan
- Program in Physiology and Experimental Medicine, Lung Innate Immunity Research Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
| | - David N. Douda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Program in Physiology and Experimental Medicine, Lung Innate Immunity Research Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nades Palaniyar
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Program in Physiology and Experimental Medicine, Lung Innate Immunity Research Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
92
|
The intriguing host innate immune response: novel anti-parasitic defence by neutrophil extracellular traps. Parasitology 2014; 141:1489-98. [PMID: 24721985 DOI: 10.1017/s0031182014000316] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The capacity of polymorphonuclear neutrophils (PMN) and other leucocytes of the innate immune system to expel their DNA in a controlled process into the extracellular environment to trap and kill pathogenic microorganisms led to a paradigm shift in our comprehension of host leucocyte-pathogen interactions. Formation of neutrophil extracellular traps (NETs) has recently been recognized as a novel effector mechanism of the host innate immune response against microbial infections. Meanwhile evidence has arisen that NET formation is a widely spread mechanism in vertebrates and invertebrates and extends not only to the entrapment of microbes, fungi and viruses but also to the capture of protozoan and metazoan parasites. PMN produce NETs after stimulation with mitogens, cytokines or pathogens in a controlled process which depends on reactive oxygen species (ROS) and the induction of the Raf-MEK-ERK-mediated signalling pathway cascade. NETs consist of nuclear DNA as a backbone decorated with histones, antimicrobial peptides, and PMN-specific granular enzymes thereby providing an extracellular matrix capable of entrapping and killing invasive pathogens. This review is intended to summarize parasite-related data on NETs. Special attention will be given to NET-associated mechanisms by which parasites, in particular apicomplexa, might be hampered in their ability to reproduce within the host cell and complete the life cycle.
Collapse
|
93
|
Liu P, Wu X, Liao C, Liu X, Du J, Shi H, Wang X, Bai X, Peng P, Yu L, Wang F, Zhao Y, Liu M. Escherichia coli and Candida albicans induced macrophage extracellular trap-like structures with limited microbicidal activity. PLoS One 2014; 9:e90042. [PMID: 24587206 PMCID: PMC3934966 DOI: 10.1371/journal.pone.0090042] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/27/2014] [Indexed: 01/21/2023] Open
Abstract
The formation of extracellular traps (ETs) has recently been recognized as a novel defense mechanism in several types of innate immune cells. It has been suggested that these structures are toxic to microbes and contribute significantly to killing several pathogens. However, the role of ETs formed by macrophages (METs) in defense against microbes remains little known. In this study, we demonstrated that a subset of murine J774A.1 macrophage cell line (8% to 17%) and peritoneal macrophages (8.5% to 15%) form METs-like structures (METs-LS) in response to Escherichia coli and Candida albicans challenge. We found only a portion of murine METs-LS, which are released by dying macrophages, showed detectable killing effects on trapped E. coli but not C. albicans. Fluorescence and scanning electron microscopy analyses revealed that, in vitro, both microorganisms were entrapped in J774A.1 METs-LS composed of DNA and microbicidal proteins such as histone, myeloperoxidase and lysozyme. DNA components of both nucleus and mitochondrion origins were detectable in these structures. Additionally, METs-LS formation occurred independently of ROS produced by NADPH oxidase, and this process did not result in cell lysis. In summary, our results emphasized that microbes induced METs-LS in murine macrophage cells and that the microbicidal activity of these METs-LS differs greatly. We propose the function of METs-LS is to contain invading microbes at the infection site, thereby preventing the systemic diffusion of them, rather than significantly killing them.
Collapse
Affiliation(s)
- Pan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiuping Wu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Chengshui Liao
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiaolei Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Jing Du
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Haining Shi
- Mucosal Immunology Laboratory, Pediatric Gastroenterology Unit, Massachusetts General Hospital East, Charlestown, Massachusetts, United States of America
| | - Xuelin Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Peng Peng
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Lu Yu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Feng Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Ying Zhao
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail:
| |
Collapse
|
94
|
Marey MA, Liu J, Kowsar R, Haneda S, Matsui M, Sasaki M, Shimizu T, Hayakawa H, Wijayagunawardane MPB, Hussein FM, Miyamoto A. Bovine oviduct epithelial cells downregulate phagocytosis of sperm by neutrophils: prostaglandin E2 as a major physiological regulator. Reproduction 2014; 147:211-9. [DOI: 10.1530/rep-13-0375] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the presence of polymorphonuclear neutrophils (PMNs) in bovine oviduct fluid under physiological conditions and to determine the possible role of bovine oviduct epithelial cells (BOECs) in the regulation of the phagocytic activity of PMNs for sperm. During the pre-ovulatory stage, PMNs were identified in the bovine oviduct fluid in relatively constant numbers. In our experiments, PMNs were incubated for 4 h with the supernatant of cultured BOECs stimulated for 24 h by LH (10 ng/ml). Phagocytosis was then assayed by co-incubation of these PMNs with sperm treated to induce capacitation. The BOEC supernatant significantly suppressed sperm phagocytosis by PMNs, and the LH-stimulated BOEC supernatant further suppressed phagocytosis. Importantly, in the BOEC culture, LH stimulated the secretion of prostaglandin E2(PGE2), which dose-dependently (10−6, 10−7, and 10−8 M) suppressed sperm phagocytosis by PMNs. Furthermore, a PGEP2receptor antagonist significantly abrogated the inhibition of phagocytosis by the LH-stimulated BOEC supernatant. Additionally, using scanning electron microscopy, incubation of PMNs with either PGE2or LH-stimulated BOEC supernatant before phagocytosis was found to prevent the formation of DNA-based neutrophil extracellular traps for sperm entanglement. The results indicate that sperm are exposed to PMNs in the oviduct and PGE2released into the oviduct fluid after LH stimulation may play a major role in the suppression of the phagocytic activity of PMNs for sperm via interaction with EP2receptors. Thus, the bovine oviduct provides a PGE2-rich microenvironment to protect sperm from phagocytosis by PMNs, thereby supporting sperm survival in the oviduct.Free Japanese abstractA Japanese translation of this abstract is freely available athttp://www.reproduction-online.org/content/147/2/211/suppl/DC1
Collapse
|
95
|
Improving bovine semen diluents: insights from the male and female reproductive tracts, and the potential relevance of cervical mucins. Animal 2014; 8 Suppl 1:173-84. [DOI: 10.1017/s1751731114000287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
96
|
Troedsson MHT. Mating-induced endometritis: physiology or pathology? Vet J 2013; 199:9-10. [PMID: 24280587 DOI: 10.1016/j.tvjl.2013.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/09/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Mats H T Troedsson
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546-0099, USA.
| |
Collapse
|
97
|
|
98
|
Driouich A, Follet-Gueye ML, Vicré-Gibouin M, Hawes M. Root border cells and secretions as critical elements in plant host defense. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:489-95. [PMID: 23856080 DOI: 10.1016/j.pbi.2013.06.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 05/20/2023]
Abstract
Border cells and border-like cells are released from the root tip as individual cells and small aggregates, or as a group of attached cells. These are viable components of the root system that play a key role in controlling root interaction with living microbes of the rhizosphere. As their separation from root tip proceeds, the cells synthesize and secrete a hydrated mucilage that contains polysaccharides, secondary metabolites, antimicrobial proteins and extracellular DNA (exDNA). This exDNA-based matrix seems to function in root defense in a way similar to that of recently characterized neutrophil extracellular traps (NETs) in mammalian cells. This review discusses the role of the cells and secreted compounds in the protection of root tip against microbial infections.
Collapse
Affiliation(s)
- Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (EA 4358), Grand Réseau de Recherche VASI Végétal-Agronomie-Sols et Innovations et Plate Forme d'Imagerie Cellulaire (PRIMACEN) de Haute Normandie, Université de Rouen, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | |
Collapse
|
99
|
Alvarez-Gallardo H, Kjelland ME, Moreno JF, Welsh TH, Randel RD, Lammoglia MA, Pérez-Martínez M, Lara-Sagahón AV, Esperón-Sumano AE, Romo S. Gamete therapeutics: recombinant protein adsorption by sperm for increasing fertility via artificial insemination. PLoS One 2013; 8:e65083. [PMID: 23762288 PMCID: PMC3677874 DOI: 10.1371/journal.pone.0065083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/22/2013] [Indexed: 11/24/2022] Open
Abstract
A decrease in fertility can have a negative economic impact, both locally and over a broader geographical scope, and this is especially the case with regard to the cattle industry. Therefore, much interest exists in evaluating proteins that might be able to increase the fertility of sperm. Heparin binding proteins (HBPs), specifically the fertility associated antigen (FAA) and the Type-2 tissue inhibitor of metalloproteinase (TIMP-2), act to favor the capacitation and acrosome reaction and perhaps even modulate the immune system’s response toward the sperm. The objective of this research was to determine the effect on fertility of adding recombinant FAA (rFAA) and recombinant TIMP-2 (rTIMP-2) to bovine semen before cryopreservation for use in an artificial insemination (AI) program in a tropical environment. For this experiment, 100 crossbred (Bos taurus x Bos indicus) heifers were selected based on their estrus cycle, body condition score (BCS), of 4 to 6 on a scale of 1 to 9, and adequate anatomical conformation evaluated by pelvic and genital (normal) measurements. Heifers were synchronized using estradiol benzoate (EB), Celosil® (PGF2α) (Shering-Plough) and a controlled internal drug release (CIDR) device was inserted that contained progesterone. Inseminations were performed in two groups at random, 50 animals per group. The control group was inseminated with conventional semen. The treatment group was inseminated with semen containing rFAA (25 µg/mL) and rTIMP-2 (25 µg/mL). In the control group a 16% pregnancy rate was obtained versus a 40% pregnancy rate for the HBP treatment group, resulting in a significant difference (P = 0.0037). Given the results herein, one may conclude that the HBPs can increase fertility and could be an option for cattle in tropical conditions; however, one needs to consider the environment, nutrition, and the genetic interaction affecting the final result in whatever reproductive program that is implemented.
Collapse
Affiliation(s)
- Horacio Alvarez-Gallardo
- Centro Nacional de Recursos Genéticos - Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco, México
| | | | - Juan F. Moreno
- Sexing Technologies, Navasota, Texas, United States of America
| | - Thomas H. Welsh
- Texas A&M University, College Station, Texas, United States of America
| | - Ronald D. Randel
- Texas A&M AgriLife Research-Overton, Overton, Texas, United States of America
| | - Miguel A. Lammoglia
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Tuxpan, Veracruz, México
| | - Mario Pérez-Martínez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Alma V. Lara-Sagahón
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán, Estado de México, México
| | - A. Enrique Esperón-Sumano
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán, Estado de México, México
| | - Salvador Romo
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán, Estado de México, México
| |
Collapse
|
100
|
Simon P, Bäumner S, Busch O, Röhrich R, Kaese M, Richterich P, Wehrend A, Müller K, Gerardy-Schahn R, Mühlenhoff M, Geyer H, Geyer R, Middendorff R, Galuska SP. Polysialic acid is present in mammalian semen as a post-translational modification of the neural cell adhesion molecule NCAM and the polysialyltransferase ST8SiaII. J Biol Chem 2013; 288:18825-33. [PMID: 23671285 DOI: 10.1074/jbc.m113.451112] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fertilization in animals is a complex sequence of several biochemical events beginning with the insemination into the female reproductive tract and, finally, leading to embryogenesis. Studies by Kitajima and co-workers (Miyata, S., Sato, C., and Kitajima, K. (2007) Trends Glycosci. Glyc, 19, 85-98) demonstrated the presence of polysialic acid (polySia) on sea urchin sperm. Based on these results, we became interested in the potential involvement of sialic acid polymers in mammalian fertilization. Therefore, we isolated human sperm and performed analyses, including Western blotting and mild 1,2-diamino-4,5-methylenedioxybenzene-HPLC, that revealed the presence α2,8-linked polySia chains. Further analysis by a glyco-proteomics approach led to the identification of two polySia carriers. Interestingly, besides the neural cell adhesion molecule, the polysialyltransferase ST8SiaII has also been found to be a target for polysialylation. Further analysis of testis and epididymis tissue sections demonstrated that only epithelial cells of the caput were polySia-positive. During the epididymal transit, polySia carriers were partially integrated into the sperm membrane of the postacrosomal region. Because polySia is known to counteract histone as well as neutrophil extracellular trap-mediated cytotoxicity against host cells, which plays a role after insemination, we propose that polySia in semen represents a cytoprotective element to increase the number of vital sperm.
Collapse
Affiliation(s)
- Peter Simon
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|