51
|
Ortega MA, Gómez-Lahoz AM, Sánchez-Trujillo L, Fraile-Martinez O, García-Montero C, Guijarro LG, Bravo C, De Leon-Luis JA, Saz JV, Bujan J, García-Honduvilla N, Monserrat J, Alvarez-Mon M. Chronic Venous Disease during Pregnancy Causes a Systematic Increase in Maternal and Fetal Proinflammatory Markers. Int J Mol Sci 2022; 23:ijms23168976. [PMID: 36012236 PMCID: PMC9409364 DOI: 10.3390/ijms23168976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic venous disease (CVD) is a common vascular disorder characterized by increased venous hypertension and insufficient venous return from the lower limbs. Pregnancy is a high-risk situation for developing CVD. Approximately a third of the women will develop this condition during pregnancy, and similarly to arterial hypertensive disorders, previous evidence has described a plethora of alterations in placental structure and function in women with pregnancy-induced CVD. It is widely known that arterial-induced placenta dysfunction is accompanied by an important immune system alteration along with increased inflammatory markers, which may provide detrimental consequences for the women and their offspring. However, to our knowledge, there are still no data collected regarding cytokine profiling in women with pregnancy-induced CVD. Thus, the aim of the present work was to examine cytokine signatures in the serum of pregnant women (PW) with CVD and their newborns (NB). This study was conducted through a multiplex technique in 62 PW with pregnancy-induced CVD in comparison to 52 PW without CVD (HC) as well as their NB. Our results show significant alterations in a broad spectrum of inflammatory cytokines (IL-6, IL-12, TNF-α, IL-10, IL-13, IL-2, IL-7, IFN-γ, IL-4, IL-5, IL-21, IL-23, GM-CSF, chemokines (fractalkine), MIP-3α, and MIP-1β). Overall, we demonstrate that pregnancy-induced CVD is associated with a proinflammatory environment, therefore highlighting the potentially alarming consequences of this condition for maternal and fetal wellbeing.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Correspondence:
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Lara Sánchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Service of Pediatric, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Systems Biology, Faculty of Medicine and Health Sciences (Networking Research Center on for Liver and Digestive Diseases (CIBEREHD)), University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Juan A. De Leon-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Jose V. Saz
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806 Alcalá de Henares, Spain
| |
Collapse
|
52
|
Saadat N, Zhang L, Hyer S, Padmanabhan V, Woo J, Engeland CG, Misra DP, Giurgescu C. Psychosocial and behavioral factors affecting inflammation among pregnant African American women. Brain Behav Immun Health 2022; 22:100452. [PMID: 35403067 PMCID: PMC8990056 DOI: 10.1016/j.bbih.2022.100452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/12/2022] [Indexed: 01/08/2023] Open
Abstract
African American women are reported to have greater inflammation compared with women from other racial groups. Higher inflammation during pregnancy has been associated with increased risk of adverse perinatal outcomes. We hypothesized that maternal inflammation is related to depressive symptoms and social and behavioral risk factors among pregnant African American women. Pregnant African American women (n = 187) were recruited at prenatal clinics in the Midwest. Women completed questionnaires and had blood drawn at a prenatal visit. Plasma levels of cytokines (interferon gamma [IFN]-γ, interleukin [IL]-6, IL-8, IL-10, tumor necrosis factor [TNF]-α) and C-reactive protein (CRP) were measured by multiplex assays. Women had a mean age of 26.58±5.42 years and a mean gestational age at data collection of 16.35±5.95 weeks. Twenty-six percent of women had Center for Epidemiological Studies-Depression (CES-D) scores ≥23 (scores that have been correlated with clinical diagnosis of depression), 15.5% smoked cigarettes, 16.6% used marijuana, and 5.3% reported experiencing intimate partner violence (IPV). Higher CES-D scores were correlated with higher plasma CRP levels (r = 0.16, p = 0.046). Women who reported any experiences of IPV during pregnancy had higher levels of IL-8 (p = 0.018) and lower levels of IFN-γ (p = 0.012) compared with women who did not report IPV. Cigarette smoking during pregnancy was associated with lower levels of the anti-inflammatory cytokine IL-10 (p = 0.003). These findings suggest that depressive symptoms, IPV, and cigarette smoking during pregnancy relate to select inflammatory markers in pregnant African American women. The relationships of inflammation with these factors should be further investigated to better understand the mechanisms which influence maternal and fetal health outcomes. Depressive symptoms are related to higher levels of CRP in pregnant African American Women. Intimate partner violence in pregnancy is related to higher interleukin 8 levels. Smoking during pregnancy is associated with lower interleukin 10 levels. Inflammation is related to depressive symptoms, intimate partner violence and smoking in pregnant African American women.
Collapse
|
53
|
Kumar M, Saadaoui M, Al Khodor S. Infections and Pregnancy: Effects on Maternal and Child Health. Front Cell Infect Microbiol 2022; 12:873253. [PMID: 35755838 PMCID: PMC9217740 DOI: 10.3389/fcimb.2022.873253] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Pregnancy causes physiological and immunological adaptations that allow the mother and fetus to communicate with precision in order to promote a healthy pregnancy. At the same time, these adaptations may make pregnant women more susceptible to infections, resulting in a variety of pregnancy complications; those pathogens may also be vertically transmitted to the fetus, resulting in adverse pregnancy outcomes. Even though the placenta has developed a robust microbial defense to restrict vertical microbial transmission, certain microbial pathogens have evolved mechanisms to avoid the placental barrier and cause congenital diseases. Recent mechanistic studies have begun to uncover the striking role of the maternal microbiota in pregnancy outcomes. In this review, we discuss how microbial pathogens overcome the placental barrier to cause congenital diseases. A better understanding of the placental control of fetal infection should provide new insights into future translational research.
Collapse
Affiliation(s)
- Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | |
Collapse
|
54
|
Casazza RL, Philip DT, Lazear HM. Interferon Lambda Signals in Maternal Tissues to Exert Protective and Pathogenic Effects in a Gestational Stage-Dependent Manner. mBio 2022; 13:e0385721. [PMID: 35471083 PMCID: PMC9239100 DOI: 10.1128/mbio.03857-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/28/2022] [Indexed: 01/10/2023] Open
Abstract
Interferon lambda (IFN-λ) (type III IFN) is constitutively secreted from human placental cells in culture and reduces Zika virus (ZIKV) transplacental transmission in mice. However, the roles of IFN-λ during healthy pregnancy and in restricting congenital infection remain unclear. Here, we used mice lacking the IFN-λ receptor (Ifnlr1-/-) to generate pregnancies lacking either maternal or fetal IFN-λ responsiveness and found that the antiviral effect of IFN-λ resulted from signaling exclusively in maternal tissues. This protective effect depended on gestational stage, as infection earlier in pregnancy (E7 rather than E9) resulted in enhanced transplacental transmission of ZIKV. In Ifnar1-/- dams, which sustain robust ZIKV infection, maternal IFN-λ signaling caused fetal resorption and intrauterine growth restriction. Pregnancy pathology elicited by poly(I·C) treatment also was mediated by maternal IFN-λ signaling, specifically in maternal leukocytes, and also occurred in a gestational stage-dependent manner. These findings identify an unexpected effect of IFN-λ signaling, specifically in maternal (rather than placental or fetal) tissues, which is distinct from the pathogenic effects of IFN-αβ (type I IFN) during pregnancy. These results highlight the complexity of immune signaling at the maternal-fetal interface, where disparate outcomes can result from signaling at different gestational stages. IMPORTANCE Pregnancy is an immunologically complex situation, which must balance protecting the fetus from maternal pathogens with preventing maternal immune rejection of non-self fetal and placental tissue. Cytokines, such as interferon lambda (IFN-λ), contribute to antiviral immunity at the maternal-fetal interface. We found in a mouse model of congenital Zika virus infection that IFN-λ can have either a protective antiviral effect or cause immune-mediated pathology, depending on the stage of gestation when IFN-λ signaling occurs. Remarkably, both the protective and pathogenic effects of IFN-λ occurred through signaling exclusively in maternal immune cells rather than in fetal or placental tissues or in other maternal cell types, identifying a new role for IFN-λ at the maternal-fetal interface.
Collapse
Affiliation(s)
- Rebecca L. Casazza
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Drake T. Philip
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Helen M. Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
55
|
Herki̇loglu D, Gokce S, Cevi̇k O. Relationship of interferon regulator factor 5 and interferon‑γ with missed abortion. Exp Ther Med 2022; 23:356. [PMID: 35493426 PMCID: PMC9019773 DOI: 10.3892/etm.2022.11283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
The aim of the present study was to reveal the association of missed abortion, a process integrated with the immune system, with interferon regulatory factor 5 (IRF5) and interferon-γ (IFN-γ), and to demonstrate the function of these molecules by examining their levels in decidual tissue. This prospective cohort study included 13 patients with no additional systemic disease, between 6 and 10 weeks of gestation with negative fetal heartbeat, and 11 patients between 6 and 10 weeks of gestation with positive heartbeat who presented for voluntary termination of pregnancy. In the fresh decidual tissue materials recovered after therapeutic curettage, IFN-γ and IRF5 protein levels were determined by ELISA method and IFN-γ and IRF5 gene expression levels by qPCR method. The mean IFN-γ (86.5 vs. 27.3 pg/mg protein; P<0.001) and IRF5 (2.0 vs. 1.5 ng/mg protein; P<0.001) levels were significantly higher in pregnant women who had missed abortion compared to the voluntary abortion group. The increases in the mean IFN-γ/GAPDH (3.5 vs. 1.5-fold increase; P<0.001) and IRF5/GAPDH (3.9 vs. 1.4-fold increase; P<0.001) gene expression levels were significantly higher in the tissues of pregnant women with missed abortion than in the voluntary abortion group. A threshold value of 45.2 pg/mg protein for IFN-γ had a sensitivity of 100% and specificity of 100% in determination of missed abortion. The findings of present study revealed, to the best of our knowledge for the first time in the literature, that IFN-γ and IRF5 may be associated with missed abortion, and that IFN-γ and IRF5 protein levels and gene expression levels were significantly increased in the case of missed abortion. According to our findings, IFN-γ and IRF5 play an important role in placental invasion and pregnancy and can be used as markers for endometrial implantation.
Collapse
Affiliation(s)
- Di̇lsad Herki̇loglu
- Department of Obstetrics and Gynecology, Gaziosmanpasa Hospital of Yeni Yuzyl University, İstanbul 34245, Turkey
| | - Sefi̇k Gokce
- Department of Obstetrics and Gynecology, Gaziosmanpasa Hospital of Yeni Yuzyl University, İstanbul 34245, Turkey
| | - Ozge Cevi̇k
- Department of Biochemistry, School of Medicine, Adnan Menderes University, Aydin 09010, Turkey
| |
Collapse
|
56
|
Zhao SJ, Muyayalo KP, Luo J, Huang D, Mor G, Liao AH. Next generation of immune checkpoint molecules in maternal-fetal immunity. Immunol Rev 2022; 308:40-54. [PMID: 35234305 DOI: 10.1111/imr.13073] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Successful pregnancy is a unique situation requires the maternal immune system to recognize and tolerate a semi-identical fetus and allow normal invasion of trophoblast cells. Although efforts have been made, the deep mechanisms of the maternal-fetal crosstalk have not yet been fully deciphered. Immune checkpoint molecules (ICMs) are a group of negative modulators of the immune response that avoid immune damage. They have been extensively studied in the fields of oncology and transplantation, while the latest evidence suggests that they are closely associated with pregnancy outcomes via multiple inhibitory mechanisms. Although studies have mostly demonstrated the regulatory role of the well-known PD-1, CTLA-4 at the maternal-fetal interface, what is unique about the newly discovered multiple ICMs remains a mystery. Here, we review the latest knowledge on ICMs, focusing on the first generation of checkpoints (PD-1, CTLA-4) and the next generation (Tim-3, Tigit, Lag-3, VISTA) highlighting their immunoregulatory roles in maternal-fetal tolerance and decidual vascular remodeling, and their involvement in pathological pregnancies. The content covers three aspects: the characteristics they possess, the dynamic expression profile of their expression at the maternal-fetal interface, and their involvement in pathological pregnancy. In immunotherapy strategies for pregnancy complications, upregulation of immune checkpoints may play a role. Meanwhile, the impact on pregnancy outcomes when using ICMs in clinical cancer treatment during pregnancy is a topic worth exploring. These may serve as a guide for future basic research and clinical applications of maternal-fetal immunity.
Collapse
Affiliation(s)
- Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghui Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
57
|
Taraschi A, Cimini C, Colosimo A, Ramal-Sanchez M, Moussa F, Mokh S, Valbonetti L, Capacchietti G, Tagaram I, Bernabò N, Barboni B. Human Immune System Diseasome Networks and Female Oviductal Microenvironment: New Horizons to be Discovered. Front Genet 2022; 12:795123. [PMID: 35154249 PMCID: PMC8829125 DOI: 10.3389/fgene.2021.795123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Human hypofertility and infertility are two worldwide conditions experiencing nowadays an alarming increase due to a complex ensemble of events. The immune system has been suggested as one of the responsible for some of the etiopathogenic mechanisms involved in these conditions. To shed some light into the strong correlation between the reproductive and immune system, as can be inferred by the several and valuable manuscripts published to date, here we built a network using a useful bioinformatic tool (DisGeNET), in which the key genes involved in the sperm-oviduct interaction were linked. This constitutes an important event related with Human fertility since this interaction, and specially the spermatozoa, represents a not-self entity immunotolerated by the female. As a result, we discovered that some proteins involved in the sperm-oviduct interaction are implicated in several immune system diseases while, at the same time, some immune system diseases could interfere by using different pathways with the reproduction process. The data presented here could be of great importance to understand the involvement of the immune system in fertility reduction in Humans, setting the basis for potential immune therapeutic tools in the near future.
Collapse
Affiliation(s)
- Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Colosimo
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Fadl Moussa
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Doctoral School of Science and Technology Lebanese University, Beirut, Lebanon
| | - Samia Mokh
- National Council for Scientific Research (CNRS), Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compound (LACO), Beiru, Lebanon
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Giulia Capacchietti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Israiel Tagaram
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
- *Correspondence: Nicola Bernabò,
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
58
|
The Cytokines Responses against Parvovirus B19 in Miscarriage Women and the Susceptibility of their RhD Blood Type to Contract Parvovirus B19 in South of Iraq. Rep Biochem Mol Biol 2022; 10:462-470. [PMID: 34981024 DOI: 10.52547/rbmb.10.3.462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/18/2021] [Indexed: 11/18/2022]
Abstract
Background Parvovirus B19 (B19) infection is linked with various diseases. Cytokines play critical roles in cellular response to viral infection. It has also been reported that's susceptibility of the ABO blood type people to several viral infection. In this study, we evaluated interleukin 6 (IL-6), interleukin 8(IL-8), and interferon gamma (IFN-γ) levels in aborted women infected with parvovirus B19 (B19+/Abr+) and uninfected with B19(B19-/Abr+) in comparison with healthy women (B12-/Abr-) and susceptibility of their RhD blood type to contract B19. Methods B19+/Abr+ were diagnosed using IgM and IgG antibodies against B19, and the concentrations of IL-6, IL-8, and IFN-γ were determined using enzyme-linked immunosorbent assay (ELISA) test in both B19+/Abr+, B19-/Abr+, and B19-/Abr-. Here, we also collected blood groups, number of abortion, and gestational ages from 200 B19+/Abr+ along with the same number ofB19-/Abr+ and B19-/Abr-. Results The levels of IFN-γ were higher in serum of B19-/Abr+andB19+/Abr+ group in comparison to B19-/Abr-, while the serum levels of IL-6, IL-8were increased in B19+/Abr+ group in comparisontoB19-/Abr+ and B19-/Abr-. Our analyzed data also showed that aborted women with RhD+ are more susceptible to contract s B19 than people with RhD- blood type. Conclusion B19 infection may differently modulate the amount of cytokines in the plasma of aborted women. So, it can be suggested that IL-6, IL-8, and IFN-γ potentially useful as markers for inflammation intrauterine. The susceptibility/protection of aborted women against B19 might be determined based on RhD blood type.
Collapse
|
59
|
OUP accepted manuscript. Hum Reprod Update 2022; 28:435-454. [DOI: 10.1093/humupd/dmac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/15/2021] [Indexed: 11/13/2022] Open
|
60
|
Carter M, Casey S, O'Keeffe GW, Gibson L, Gallagher L, Murray DM. Maternal Immune Activation and Interleukin 17A in the Pathogenesis of Autistic Spectrum Disorder and Why It Matters in the COVID-19 Era. Front Psychiatry 2022; 13:823096. [PMID: 35250672 PMCID: PMC8891512 DOI: 10.3389/fpsyt.2022.823096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
Autism spectrum disorder (ASD) is the commonest neurodevelopmental disability. It is a highly complex disorder with an increasing prevalence and an unclear etiology. Consensus indicates that ASD arises as a genetically modulated, and environmentally influenced condition. Although pathogenic rare genetic variants are detected in around 20% of cases of ASD, no single factor is responsible for the vast majority of ASD cases or that explains their characteristic clinical heterogeneity. However, a growing body of evidence suggests that ASD susceptibility involves an interplay between genetic factors and environmental exposures. One such environmental exposure which has received significant attention in this regard is maternal immune activation (MIA) resulting from bacterial or viral infection during pregnancy. Reproducible rodent models of ASD are well-established whereby induction of MIA in pregnant dams, leads to offspring displaying neuroanatomical, functional, and behavioral changes analogous to those seen in ASD. Blockade of specific inflammatory cytokines such as interleukin-17A during gestation remediates many of these observed behavioral effects, suggesting a causative or contributory role. Here, we review the growing body of animal and human-based evidence indicating that interleukin-17A may mediate the observed effects of MIA on neurodevelopmental outcomes in the offspring. This is particularly important given the current corona virus disease-2019 (COVID-19) pandemic as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy is a potent stimulator of the maternal immune response, however the long-term effects of maternal SARS-CoV-2 infection on neurodevelopmental outcomes is unclear. This underscores the importance of monitoring neurodevelopmental outcomes in children exposed to SARS-CoV-2-induced MIA during gestation.
Collapse
Affiliation(s)
- Michael Carter
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Sophie Casey
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Louise Gibson
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Deirdre M Murray
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| |
Collapse
|
61
|
Markova K, Mikhailova V, Milyutina Y, Korenevsky A, Sirotskaya A, Rodygina V, Tyshchuk E, Grebenkina P, Simbirtsev A, Selkov S, Sokolov D. Effects of Microvesicles Derived from NK Cells Stimulated with IL-1β on the Phenotype and Functional Activity of Endothelial Cells. Int J Mol Sci 2021; 22:ijms222413663. [PMID: 34948459 PMCID: PMC8708902 DOI: 10.3390/ijms222413663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022] Open
Abstract
Microvesicles (MVs) are plasma extracellular vesicles ranging from 100 (150) to 1000 nm in diameter. These are generally produced by different cells through their vital activity and are a source of various protein and non-protein molecules. It is assumed that MVs can mediate intercellular communication and modulate cell functions. The interaction between natural killer cells (NK cells) and endothelial cells underlies multiple pathological conditions. The ability of MVs derived from NK cells to influence the functional state of endothelial cells in inflammatory conditions has yet to be studied well. In this regard, we aimed to study the effects of MVs derived from NK cells of the NK-92 cell line stimulated with IL-1β on the phenotype, caspase activity, proliferation and migration of endothelial cells of the EA.hy926 cell line. Endothelial cells were cultured with MVs derived from cells of the NK-92 cell line after their stimulation with IL-1β. Using flow cytometry, we evaluated changes in the expression of endothelial cell surface molecules and endothelial cell death. We evaluated the effect of MVs derived from stimulated NK cells on the proliferative and migratory activity of endothelial cells, as well as the activation of caspase-3 and caspase-9 therein. It was established that the incubation of endothelial cells with MVs derived from cells of the NK-92 cell line stimulated with IL-1β and with MVs derived from unstimulated NK cells, leads to the decrease in the proliferative activity of endothelial cells, appearance of the pan leukocyte marker CD45 on them, caspase-3 activation and partial endothelial cell death, and reduced CD105 expression. However, compared with MVs derived from unstimulated NK cells, a more pronounced effect of MVs derived from cells of the NK-92 cell line stimulated with IL-1β was found in relation to the decrease in the endothelial cell migratory activity and the intensity of the CD54 molecule expression on them. The functional activity of MVs is therefore mediated by the conditions they are produced under, as well as their internal contents.
Collapse
Affiliation(s)
- Kseniia Markova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology Named after D.O. Ott, 199034 St. Petersburg, Russia; (V.M.); (Y.M.); (A.K.); (A.S.); (V.R.); (E.T.); (P.G.); (S.S.); (D.S.)
- Correspondence: ; Tel.:+7-812-323-75-45
| | - Valentina Mikhailova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology Named after D.O. Ott, 199034 St. Petersburg, Russia; (V.M.); (Y.M.); (A.K.); (A.S.); (V.R.); (E.T.); (P.G.); (S.S.); (D.S.)
| | - Yulia Milyutina
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology Named after D.O. Ott, 199034 St. Petersburg, Russia; (V.M.); (Y.M.); (A.K.); (A.S.); (V.R.); (E.T.); (P.G.); (S.S.); (D.S.)
| | - Andrey Korenevsky
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology Named after D.O. Ott, 199034 St. Petersburg, Russia; (V.M.); (Y.M.); (A.K.); (A.S.); (V.R.); (E.T.); (P.G.); (S.S.); (D.S.)
| | - Anastasia Sirotskaya
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology Named after D.O. Ott, 199034 St. Petersburg, Russia; (V.M.); (Y.M.); (A.K.); (A.S.); (V.R.); (E.T.); (P.G.); (S.S.); (D.S.)
| | - Veronika Rodygina
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology Named after D.O. Ott, 199034 St. Petersburg, Russia; (V.M.); (Y.M.); (A.K.); (A.S.); (V.R.); (E.T.); (P.G.); (S.S.); (D.S.)
| | - Elizaveta Tyshchuk
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology Named after D.O. Ott, 199034 St. Petersburg, Russia; (V.M.); (Y.M.); (A.K.); (A.S.); (V.R.); (E.T.); (P.G.); (S.S.); (D.S.)
| | - Polina Grebenkina
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology Named after D.O. Ott, 199034 St. Petersburg, Russia; (V.M.); (Y.M.); (A.K.); (A.S.); (V.R.); (E.T.); (P.G.); (S.S.); (D.S.)
| | - Andrey Simbirtsev
- State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia;
| | - Sergey Selkov
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology Named after D.O. Ott, 199034 St. Petersburg, Russia; (V.M.); (Y.M.); (A.K.); (A.S.); (V.R.); (E.T.); (P.G.); (S.S.); (D.S.)
| | - Dmitry Sokolov
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology Named after D.O. Ott, 199034 St. Petersburg, Russia; (V.M.); (Y.M.); (A.K.); (A.S.); (V.R.); (E.T.); (P.G.); (S.S.); (D.S.)
| |
Collapse
|
62
|
Immunotherapy for cancer treatment during pregnancy. Lancet Oncol 2021; 22:e550-e561. [PMID: 34856152 DOI: 10.1016/s1470-2045(21)00525-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Immunotherapy has greatly improved outcomes for subgroups of patients with cancer. As indications keep expanding, there is an unmet need to gain a better understanding of the effect of these therapies on pregnancy and fertility. During pregnancy, substantial adaptations occur in the maternal immune system to maintain protection against pathogens while avoiding detrimental reactions to the semi-allogeneic fetus. The pathways involved in the establishment of this fetomaternal tolerance can be hijacked by cancers. Immunotherapies that target these inhibitory pathways, or that directly interact with the regulatory immune cells involved in tolerance mechanisms, might therefore result in complications during pregnancy. Similarly, by activating the patient's immune system with immunotherapy, a broad range of immune-related adverse events can occur that could negatively affect the fetus or impede a future desired pregnancy. This Review summarises preclinical and clinical data related to the use of immunotherapy during pregnancy, including all approved immune checkpoint inhibitors, recombinant cytokines, cell therapies, vaccines, and immunomodulatory drugs.
Collapse
|
63
|
Carter M, Casey S, O’Keeffe GW, Gibson L, Murray DM. Mid-gestation cytokine profiles in mothers of children affected by autism spectrum disorder: a case-control study. Sci Rep 2021; 11:22315. [PMID: 34785716 PMCID: PMC8595633 DOI: 10.1038/s41598-021-01662-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Autism Spectrum disorder is one of the commonest and most important neurodevelopmental conditions affecting children today. With an increasing prevalence and an unclear aetiology, it is imperative we find early markers of autism, which may facilitate early identification and intervention. Alterations of gestational cytokine profiles have been reported in mothers of autistic children. Increasing evidence suggests that the intrauterine environment is an important determinant of autism risk. This study aims to examine the mid-gestational serum cytokine profiles of the mothers of autistic children from a well-characterised birth cohort. A nested sub-cohort within a large mother-child birth cohort were identified based on a confirmed multi-disciplinary diagnosis of autism before the age 10 years and neuro-typical matched controls in a 2:1 ratio. IFN-γ, IL-1β, IL-4, IL-6, IL-8, IL-17A, GMCSF and TNFα were measured in archived maternal 20-week serum using MesoScale Diagnostics multiplex technology and validation of our IL-17A measurements was performed using an ultrasensitive assay. From a cohort of 2137 children, 25 had confirmed autism before 10 years and stored maternal serum from mid-gestation. We examined the sera of these 25 cases and 50 matched controls. The sex ratio was 4:1 males to females in each group, and the mean age at diagnosis was 5.09 years (SD 2.13). We found that concentrations of IL-4 were significantly altered between groups. The other analytes did not differ significantly using either multiplex or ultra-sensitive assays. In our well-characterised prospective cohort of autistic children, we confirmed mid-gestational alterations in maternal IL-4 concentrations in autism affected pregnancies versus matched controls. These findings add to promising evidence from animal models and retrospective screening programmes and adds to the knowledge in this field.
Collapse
Affiliation(s)
- Michael Carter
- The Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland. .,National Children's Research Centre, Crumlin, Dublin 12, Ireland. .,Department of Paediatrics and Child Health, University College Cork (UCC), Cork, Ireland.
| | - Sophie Casey
- grid.7872.a0000000123318773The Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Gerard W. O’Keeffe
- grid.7872.a0000000123318773The Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Louise Gibson
- grid.7872.a0000000123318773The Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Paediatrics and Child Health, University College Cork (UCC), Cork, Ireland
| | - Deirdre M. Murray
- grid.7872.a0000000123318773The Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Paediatrics and Child Health, University College Cork (UCC), Cork, Ireland
| |
Collapse
|
64
|
McIntosh SZ, Quinn KE, Ashley RL. CXCL12 May Drive Inflammatory Potential in the Ovine Corpus Luteum During Implantation. Reprod Sci 2021; 29:122-132. [PMID: 34755321 PMCID: PMC8677687 DOI: 10.1007/s43032-021-00791-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/31/2021] [Indexed: 11/01/2022]
Abstract
Adequate corpus luteum (CL) function is paramount to successful pregnancy. Structural and functional CL integrity is controlled by diverse cell types that contribute and respond to the local cytokine milieu. The chemokine ligand 12 (CXCL12) and receptor, CXCR4, are modulators of inflammation and cell survival, but little is understood about CXCL12-CXCR4 axis and CL functional regulation. Corpora lutea from control nonpregnant ewes (n = 5; day 10 estrous cycle (D10C)) and pregnant ewes (n = 5/day) on days 20 (D20P) and 30 (D30P) post-breeding were analyzed for gene and protein expression of CXCL12, CXCR4, and select inflammatory cytokines. In separate cell culture studies, cytokine production was evaluated following CXCL12 treatment. Abundance of CXCL12 and CXCR4 increased (P < 0.05) in pregnant ewes compared to nonpregnant ewes, as determined by a combination of quantitative PCR, immunoblot, and immunofluorescence microscopy. CXCR4 was detected in steroidogenic and nonsteroidogenic cells in ovine CL, and select pro-inflammatory mediators were greater in CL from pregnant ewes. In vitro studies revealed greater abundance of tumor necrosis factor (TNF) following CXCL12 administration (P = 0.05), while P4 levels in cell media were unchanged. Fully functional CL of pregnant ewes is characterized by increased abundance of inflammatory cytokines which may function in a luteotropic manner. We report concurrent increases in CXCL12, CXCR4, and select inflammatory mediators in ovine CL as early pregnancy progresses. We propose CXCL12 stimulates production of select cytokines, rather than P4 in the CL to assist in CL establishment and survival.
Collapse
Affiliation(s)
- Stacia Z McIntosh
- Department of Animal and Range Sciences, New Mexico State University, MSC 3-I, PO Box 30003, Las Cruces, NM, 88003, USA
| | - Kelsey E Quinn
- Department of Animal and Range Sciences, New Mexico State University, MSC 3-I, PO Box 30003, Las Cruces, NM, 88003, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan L Ashley
- Department of Animal and Range Sciences, New Mexico State University, MSC 3-I, PO Box 30003, Las Cruces, NM, 88003, USA.
| |
Collapse
|
65
|
Bordt EA, Shook LL, Atyeo C, Pullen KM, De Guzman RM, Meinsohn MC, Chauvin M, Fischinger S, Yockey LJ, James K, Lima R, Yonker LM, Fasano A, Brigida S, Bebell LM, Roberts DJ, Pépin D, Huh JR, Bilbo SD, Li JZ, Kaimal A, Schust DJ, Gray KJ, Lauffenburger D, Alter G, Edlow AG. Maternal SARS-CoV-2 infection elicits sexually dimorphic placental immune responses. Sci Transl Med 2021; 13:eabi7428. [PMID: 34664987 PMCID: PMC8784281 DOI: 10.1126/scitranslmed.abi7428] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a persistent bias toward higher prevalence and increased severity of coronavirus disease 2019 (COVID-19) in males. Underlying mechanisms accounting for this sex difference remain incompletely understood. Interferon responses have been implicated as a modulator of COVID-19 disease in adults and play a key role in the placental antiviral response. Moreover, the interferon response has been shown to alter Fc receptor expression and therefore may affect placental antibody transfer. Here, we examined the intersection of maternal-fetal antibody transfer, viral-induced placental interferon responses, and fetal sex in pregnant women infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Placental Fc receptor abundance, interferon-stimulated gene (ISG) expression, and SARS-CoV-2 antibody transfer were interrogated in 68 human pregnancies. Sexually dimorphic expression of placental Fc receptors, ISGs and proteins, and interleukin-10 was observed after maternal SARS-CoV-2 infection, with up-regulation of these features in placental tissue of pregnant individuals with male fetuses. Reduced maternal SARS-CoV-2–specific antibody titers and impaired placental antibody transfer were also observed in pregnancies with a male fetus. These results demonstrate fetal sex-specific maternal and placental adaptive and innate immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Evan A. Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Lydia L. Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Krista M. Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Rose M. De Guzman
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Maeva Chauvin
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Laura J. Yockey
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kaitlyn James
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rosiane Lima
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Lael M. Yonker
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02129, USA
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sara Brigida
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lisa M. Bebell
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Drucilla J. Roberts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David Pépin
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jun R. Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Staci D. Bilbo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Jonathan Z. Li
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Anjali Kaimal
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Danny J. Schust
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO 65201, USA
| | - Kathryn J. Gray
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Andrea G. Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
66
|
Jiang L, Fei H, Jin X, Liu X, Yang C, Li C, Chen J, Yang A, Zhu J, Wang H, Fei X, Zhang S. Extracellular Vesicle-Mediated Secretion of HLA-E by Trophoblasts Maintains Pregnancy by Regulating the Metabolism of Decidual NK Cells. Int J Biol Sci 2021; 17:4377-4395. [PMID: 34803505 PMCID: PMC8579460 DOI: 10.7150/ijbs.63390] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles derived from trophoblasts (T-EVs) play an important role in pregnancy, but the mechanism is not entirely clear. In this study, we found that HLA-E, which is mostly confined to the cytoplasm of trophoblast cells, was secreted by T-EVs. The level of HLA-E in T-EVs from unexplained recurrent spontaneous abortion (URSA) patients was lower than that in normal pregnancy (NP) and RSA patients who had an abnormal embryo karyotype (AK-RSA). T-EVs promoted secretion of IFN-γ and VEGFα by decidual NK (dNK) cells from URSA patients via HLA-E, VEGFα was necessary for angiogenesis and trophoblast growth, and IFN-γ inhibited Th17 induction. Glycolysis and oxidative phosphorylation (OxPhos) were involved in this process. Glycolysis but not OxPhos of dNK cells facilitated by T-EVs was dependent on mTORC1 activation. Inhibition of T-EV production in vivo increased the susceptibility of mice to embryo absorption, which was reversed by transferring exogenous T-EVs. T-EVs promoted secretion of IFN-γ and VEGFα by dNK cells to maintain pregnancy via Qa-1 in abortion-prone mouse models. This study reveals a new mechanism of pregnancy maintenance mediated by HLA-E via T-EVs.
Collapse
Affiliation(s)
- Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Haiyi Fei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Xiu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Cuiyu Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Jianmin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Anran Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Jiajuan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Medical, Jiaxing University Affiliated Women and Children Hospital, 314051, Jiaxing, China
| | - Huihong Wang
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital, 310008, Hangzhou, China
| | - Xiaoyang Fei
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital, 310008, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| |
Collapse
|
67
|
Taglauer ES, Fernandez-Gonzalez A, Willis GR, Reis M, Yeung V, Liu X, Prince LS, Mitsialis SA, Kourembanas S. Antenatal Mesenchymal Stromal Cell Extracellular Vesicle Therapy Prevents Preeclamptic Lung Injury in Mice. Am J Respir Cell Mol Biol 2021; 66:86-95. [PMID: 34614384 DOI: 10.1165/rcmb.2021-0307oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In preeclamptic pregnancies, a variety of intrauterine alterations lead to abnormal placentation, release of inflammatory/antiangiogenic factors, and subsequent fetal growth restriction with significant potential to cause a primary insult to the developing fetal lung. Thus, modulation of the maternal intrauterine environment may be a key therapeutic avenue to prevent preeclampsia-associated developmental lung injury. A biologic therapy of interest are mesenchymal stromal cell-derived extracellular vesicles (MEx), which we have previously shown to ameliorate preeclamptic physiology through intrauterine immunomodulation. To evaluate the therapeutic potential of MEx to improve developmental lung injury in experimental preeclampsia. Using the heme oxygenase-1 null mouse (Hmox1-/-) model, preeclamptic pregnant dams were administered intravenous antenatal MEx treatment during each week of pregnancy followed by analysis of fetal and postnatal lung tissues, amniotic fluid protein profiles and lung explant/amniotic fluid co-cultures in comparison with control and untreated preeclamptic pregnancies. We first identified that a preeclamptic intrauterine environment had a significant adverse impact on fetal lung development including alterations in fetal lung developmental gene profiles in addition to postnatal alveolar and bronchial changes. Amniotic fluid proteomic analysis and fetal lung explant/amniotic fluid co-cultures further demonstrated that maternally administered MEx altered the expression of multiple inflammatory mediators in the preeclamptic intrauterine compartment resulting in normalization of fetal lung branching morphogenesis and developmental gene expression. Our evaluation of fetal and postnatal parameters overall suggests that antenatal MEx treatment may provide a highly valuable preventative therapeutic modality for amelioration of lung development in preeclamptic disease.
Collapse
Affiliation(s)
- Elizabeth S Taglauer
- Harvard Medical School, 1811, Boston Children's Hospital, Boston, Massachusetts, United States
| | | | - Gareth R Willis
- Children's Hospital Boston, 1862, Boston, Massachusetts, United States
| | - Monica Reis
- Boston Children's Hospital, Department of Medicine, Division of Newborn Medicine, Boston, Massachusetts, United States.,Harvard Medical School, 1811, Department of Pediatrics, Boston, Massachusetts, United States
| | - Vincent Yeung
- Children's Hospital Boston, 1862, Boston, Massachusetts, United States.,Harvard Medical School, 1811, Boston, Massachusetts, United States
| | - Xianlan Liu
- Boston Children's Hospital, Division of Newborn Medicine, Boston, Massachusetts, United States
| | - Lawrence S Prince
- Stanford University School of Medicine, 10624, Pediatrics, Stanford, California, United States.,Lucile Salter Packard Children's Hospital at Stanford, 24349, Palo Alto, California, United States
| | - S Alex Mitsialis
- Boston Children's Hospital, 1862, Pediatrics, Boston, Massachusetts, United States.,Harvard Medical School, 1811, Pediatics, Boston, Massachusetts, United States
| | - Stella Kourembanas
- Harvard Medical School, 1811, Boston Children's Hospital, Boston, Massachusetts, United States;
| |
Collapse
|
68
|
Johns DN, Lucas CG, Pfeiffer CA, Chen PR, Meyer AE, Perry SD, Spate LD, Cecil RF, Fudge MA, Samuel MS, Spinka CM, Liu H, Lucy MC, Wells KD, Prather RS, Spencer TE, Geisert RD. Conceptus interferon gamma is essential for establishment of pregnancy in the pig. Biol Reprod 2021; 105:1577-1590. [PMID: 34608481 DOI: 10.1093/biolre/ioab186] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Establishment and maintenance of pregnancy in the pig is a complex process that relies on conceptus regulation of the maternal proinflammatory response to endometrial attachment. Following elongation, pig conceptuses secrete interferon gamma (IFNG) during attachment to the endometrial luminal epithelium. The objective here was to determine if conceptus production of IFNG is important for early development and establishment of pregnancy. CRISPR/Cas9 gene editing and somatic cell nuclear transfer technologies were used to create an IFNG loss-of-function study in pigs. Wild-type (IFNG+/+) and null (IFNG-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer. IFNG expression was not detected in IFNG-/- conceptuses on either day 15 or day 17 of pregnancy. Ablation of conceptus IFNG production resulted in the reduction of stromal CD3+ and mast cells which localized to the site of conceptus attachment on day 15. The uteri of recipients with IFNG-/- conceptuses were inflamed, hyperemic and there was an abundance of erythrocytes in the uterine lumen associated with the degenerating conceptuses. The endometrial stromal extracellular matrix was altered in the IFNG-/- embryo pregnancies and there was an increased endometrial mRNA levels for collagen XVII (COL17A1), matrilin 1 (MATN1), secreted phosphoprotein 1 (SPP1) and cysteine-rich secretory protein 3 (CRISP3), which are involved with repair and remodeling of the extracellular matrix. These results indicate conceptus IFNG production is essential in modulating the endometrial proinflammatory response for conceptus attachment and survival in pigs.
Collapse
Affiliation(s)
- Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | | | - Paula R Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Shelbi D Perry
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Raissa F Cecil
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Melissa A Fudge
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | | | - Hongyu Liu
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Matthew C Lucy
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| |
Collapse
|
69
|
Cord blood levels of interleukin-10 decrease in neonates with increased birth weight: novel implications of the cytokine network in early obesity. Eur J Pediatr 2021; 180:2529-2537. [PMID: 33959818 DOI: 10.1007/s00431-021-04104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/18/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Interleukin-10 (IL-10) and interferon-gamma (IFN-gamma) are associated with body weight alterations in children, adolescents, and adults. However, little is known regarding the role of IL-10 and IFN-gamma in birth weight of neonates. One hundred eighty-two infants were enrolled and divided in groups of normal birth weight (< 95th percentile) or increased birth weight (> 95th percentile) for gestational age. IL-10 and IFN-gamma levels were measured in umbilical cord tissue and blood of newborns by quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). The average value of birth weight in infants below and above the 95th percentile was 3.03±0.39 and 3.58±0.37 kg, respectively, and was independent of the mother's pre-gestational body mass index. The Student t test revealed that neonates with birth weights > 95th percentile show a significant 30% decrease in cord blood values of IL-10 as compared to infants with birth weights < 95th percentile (P<0.0001), with no significant changes in IFN-gamma levels (P=0.1661). Cord blood IL-10 was not of maternal origin but produced by umbilical cord tissue that showed less IL-10 expression in neonates with birth weights > 95th percentile than in infants with birth weights < 95th percentile (P=0.0252). Cord blood levels of IL-10 exhibited significant inverse correlations with birth weight (r = - 0.658, P=0.002) and INF-gamma (r = - 0.502, P=0.005).Conclusion: In conclusion, this work demonstrates for the first time that cord blood IL-10 decreases as birth weight increases in infants born at term and might help to improve early recognition of newborns at higher risk of developing obesity in childhood or adulthood. What is Known: • Reduction in interleukin-10 levels has been associated with obesity in adolescents and adults but not newborns. • The number of neonates with excess birth weight has alarmingly increased in the last 30 years. What is New: • We demonstrate that umbilical cord blood levels of interleukin-10 clearly decrease as birth weight increases. • Interleukin-10 and interferon-gamma integrate a cytokine network that might play a role in obesity in infants.
Collapse
|
70
|
Travis OK, Tardo GA, Giachelli C, Siddiq S, Nguyen HT, Crosby MT, Johnson TD, Brown AK, Booz GW, Smith AN, Williams JM, Cornelius DC. Interferon γ neutralization reduces blood pressure, uterine artery resistance index, and placental oxidative stress in placental ischemic rats. Am J Physiol Regul Integr Comp Physiol 2021; 321:R112-R124. [PMID: 34075808 PMCID: PMC8409917 DOI: 10.1152/ajpregu.00349.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/18/2023]
Abstract
Preeclampsia (PE) is characterized by maternal hypertension, intrauterine growth restriction, and increased cytolytic natural killer cells (cNKs), which secrete interferon γ (IFNγ). However, the precise role of IFNγ in contributing to PE pathophysiology remains unclear. Using the reduced uterine perfusion pressure (RUPP) rat model of placental ischemia, we tested the hypothesis that neutralization of IFNγ in RUPPs will decrease placental reactive oxygen species (ROS) and improve vascular function resulting in decreased MAP and improved fetal growth. On gestation day (GD) 14, the RUPP procedure was performed and on GDs 15 and 18, a subset of normal pregnant rats (NP) and RUPP rats were injected with 10 μg/kg of an anti-rat IFNγ monoclonal antibody. On GD 18, uterine artery resistance index (UARI) was measured via Doppler ultrasound and on GD 19, mean arterial pressure (MAP) was measured, animals were euthanized, and blood and tissues were collected for analysis. Increased MAP was observed in RUPP rats compared with NP and was reduced in RUPP + anti-IFNγ. Placental ROS was also increased in RUPP rats compared with NP rats and was normalized in RUPP + anti-IFNγ. Fetal and placental weights were reduced in RUPP rats, but were not improved following anti-IFNγ treatment. However, UARI was elevated in RUPP compared with NP rats and was reduced in RUPP + anti-IFNγ. In conclusion, we observed that IFNγ neutralization reduced MAP, UARI, and placental ROS in RUPP recipients. These data suggest that IFNγ is a potential mechanism by which cNKs contribute to PE pathophysiology and may represent a therapeutic target to improve maternal outcomes in PE.
Collapse
Affiliation(s)
- Olivia K Travis
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Geilda A Tardo
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Chelsea Giachelli
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shani Siddiq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Henry T Nguyen
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Madison T Crosby
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Tyler D Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Andrea K Brown
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alex N Smith
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jan Michael Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
71
|
Mikhailova V, Khokhlova E, Grebenkina P, Salloum Z, Nikolaenkov I, Markova K, Davidova A, Selkov S, Sokolov D. NK-92 cells change their phenotype and function when cocultured with IL-15, IL-18 and trophoblast cells. Immunobiology 2021; 226:152125. [PMID: 34365089 DOI: 10.1016/j.imbio.2021.152125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
NK cell development is affected by their cellular microenvironment and cytokines, including IL-15 and IL-18. NK cells can differentiate in secondary lymphoid organs, liver and within the uterus in close contact with trophoblast cells. The aim was to evaluate changes in the NK cell phenotype and function in the presence of IL-15, IL-18 and JEG-3, a trophoblast cell line. When cocultured with JEG-3 cells, IL-15 caused an increase in the number of NKG2D+ NK-92 cells and the intensity of CD127 expression. IL-18 stimulates an increase in the amount of NKp44+ NK-92 cells and in the intensity of NKp44 expression by pNK in the presence of trophoblast cells. NK-92 cell cytotoxic activity against JEG-3 cells increased only in presence of IL-18. Data on changes in the cytotoxic activity of NK-92 cells against JEG-3 cells in the presence of IL-15 and IL-18 indicate the modulation of NK cell function both by the cytokine microenvironment and directly by target cells. IL-15 and IL-18 were present in conditioned media (CM) from 1st and 3rd trimester placentas. In the presence of 1st trimester CM and JEG-3 cells, NK-92 cells showed an increase in the intensity of NKG2D expression. In the presence of 3rd trimester CM and JEG-3 cells, a decrease in the expression of NKG2D by NK-92 cells was observed. Thus, culturing of NK-92 cells with JEG-3 trophoblast cells stimulated a pronounced change in the NK cell phenotype, bringing it closer to the decidual NK cell-like phenotype.
Collapse
Affiliation(s)
- Valentina Mikhailova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Evgeniia Khokhlova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Polina Grebenkina
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Zeina Salloum
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Igor Nikolaenkov
- Department of Obstetrics, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Kseniya Markova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Alina Davidova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Sergey Selkov
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Dmitriy Sokolov
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| |
Collapse
|
72
|
Kieffer TE, Chin PY, Green ES, Moldenhauer LM, Prins JR, Robertson SA. Prednisolone in early pregnancy inhibits regulatory T cell generation and alters fetal and placental development in mice. Mol Hum Reprod 2021; 26:340-352. [PMID: 32159777 DOI: 10.1093/molehr/gaaa019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/16/2020] [Indexed: 01/01/2023] Open
Abstract
Corticosteroids have been utilised in the assisted reproduction setting with the expectation of suppressing aberrant immune activation and improving fertility in women. However, the effects of corticosteroids on fertility, and on pregnancy and offspring outcomes, are unclear. In this study, mice were administered prednisolone (1 mg/kg) or PBS daily in the pre-implantation phase, and effects on the adaptive immune response, the implantation rate, fetal development and postnatal outcomes were investigated. Prednisolone disrupted the expected expansion of CD4+ T cells in early pregnancy, inhibiting generation of both regulatory T cells (Treg cells) and effector T cells and suppressing IFNG required for T cell functional competence. Prednisolone caused an 8-20% increase in the embryo implantation rate and increased the number of viable pups per litter. In late gestation, fetal and placental weights were reduced in a litter size-dependent manner, and the canonical inverse relationship between litter size and fetal weight was lost. The duration of pregnancy was extended by ~ 0.5 day and birth weight was reduced by ~ 5% after prednisolone treatment. Viability of prednisolone-exposed offspring was comparable to controls, but body weight was altered in adulthood, particularly in male offspring. Thus, while prednisolone given in the pre-implantation phase in mice increases maternal receptivity to implantation and resource investment in fetal growth, there is a trade-off in long-term consequences for fetal development, birth weight and offspring health. These effects are associated with, and likely caused by, prednisolone suppression of the adaptive immune response at the outset of pregnancy.
Collapse
Affiliation(s)
- Tom Ec Kieffer
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.,Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peck Y Chin
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ella S Green
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lachlan M Moldenhauer
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jelmer R Prins
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sarah A Robertson
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
73
|
Verma S, Kang AK, Pal R, Gupta SK. BST2 regulates interferon gamma-dependent decrease in invasion of HTR-8/SVneo cells via STAT1 and AKT signaling pathways and expression of E-cadherin. Cell Adh Migr 2021; 14:24-41. [PMID: 31957537 PMCID: PMC6973314 DOI: 10.1080/19336918.2019.1710024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mechanism by which interferon-gamma (IFN-γ) downregulates trophoblast invasion needs further investigation. Treatment of HTR-8/SVneo cells with IFN-γ led to a decrease in their invasion concomitant with an increased expression of BST2. Silencing of BST2 by siRNA showed a significant increase in their invasion and spreading after treatment with IFN-γ as well as downregulated expression of E-cadherin. Further, STAT1 silencing inhibited the IFN-γ-dependent increase in the expression of BST2 and E-cadherin. Treatment of HTR-8/SVneo cells with IFN-γ led to the activation of AKT, and its inhibition with PI3K inhibitor abrogated IFN-γ-mediated decrease in invasion/spreading and downregulated BST2 and E-cadherin expression. Collectively, IFN-γ decreases the invasion of HTR-8/SVneo cells by STAT1 and AKT activation via increased expression of BST2 and E-cadherin.
Collapse
Affiliation(s)
- Sonam Verma
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Amandeep Kaur Kang
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Rahul Pal
- Immunoendocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
74
|
Olmos-Ortiz A, Olivares-Huerta A, García-Quiroz J, Zariñán T, Chavira R, Zaga-Clavellina V, Avila E, Halhali A, Durand M, Larrea F, Díaz L. Placentas associated with female neonates from pregnancies complicated by urinary tract infections have higher cAMP content and cytokines expression than males. Am J Reprod Immunol 2021; 86:e13434. [PMID: 33905581 DOI: 10.1111/aji.13434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
PROBLEM The cAMP pathway is involved in important biological processes including immune regulation and hormone signaling. At the feto-maternal unit, cAMP participates in placental function/physiology and the establishment of immunoendocrine networks. Low cAMP in male fetuses cord blood has been linked to poorer perinatal outcomes; however, cAMP placental content and its relationship with immune factors and fetal sex in an infectious condition have not been investigated. METHOD OF STUDY Sex-dependent changes in cAMP content and its association with cytokines and antimicrobial peptides expression were studied in human placentas collected from normal pregnancies and with urinary tract infections (UTI). Radioimmunoassay was used to quantify cAMP in placental tissue, while immune markers expression was studied by qPCR. Additionally, cAMP effect on antimicrobial peptides expression was studied in cultured trophoblasts challenged with lipopolysaccharide, to mimic an infection. RESULTS In UTI, placentas from female neonates had higher cAMP tissue content and increased expression of TNFA, IL1B, and IL10 than those from males, where IFNG was more elevated. While cAMP negatively correlated with maternal bacteriuria and IFNG, it positively correlated with the antimicrobial peptide S100A9 expression in a sex-specific fashion. In cultured trophoblasts, cAMP significantly stimulated β-defensin-1 while reduced the lipopolysaccharide-dependent stimulatory effect on β-defensin-2, β-defensins-3, and S100A9. CONCLUSION Our results showed higher cAMP content and defense cytokines expression in placentas associated with female neonates from pregnancies complicated by UTI. The associations between cAMP and bacteriuria/immune markers, together with cAMP's ability to differentially regulate placental antimicrobial peptides expression, suggest a dual modulatory role for cAMP in placental immunity.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México.,Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Alberto Olivares-Huerta
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, México
| | - Roberto Chavira
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México, México
| | - Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Ali Halhali
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Marta Durand
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| |
Collapse
|
75
|
Negrey JD, Behringer V, Langergraber KE, Deschner T. Urinary neopterin of wild chimpanzees indicates that cell-mediated immune activity varies by age, sex, and female reproductive status. Sci Rep 2021; 11:9298. [PMID: 33927233 PMCID: PMC8085242 DOI: 10.1038/s41598-021-88401-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
The study of free-living animal populations is necessary to understand life history trade-offs associated with immune investment. To investigate the role of life history strategies in shaping proinflammatory cell-mediated immune function, we analyzed age, sex, and reproductive status as predictors of urinary neopterin in 70 sexually mature chimpanzees (Pan troglodytes) at Ngogo, Kibale National Park, Uganda. In the absence of clinical signs of acute infectious disease, neopterin levels significantly increased with age in both male and female chimpanzees, as observed in humans and several other vertebrate species. Furthermore, males exhibited higher neopterin levels than females across adulthood. Finally, females with full sexual swellings, pregnant females, and post-reproductive females, the oldest individuals in our sample, exhibited higher neopterin levels than lactating females and cycling females without full swellings. Variation in females' neopterin levels by reproductive status is consistent with post-ovulatory and pregnancy-related immune patterns documented in humans. Together, our results provide evidence of ample variation in chimpanzee immune activity corresponding to biodemographic and physiological variation. Future studies comparing immune activity across ecological conditions and social systems are essential for understanding the life histories of primates and other mammals.
Collapse
Affiliation(s)
- Jacob D Negrey
- Department of Anthropology, Boston University, Boston, MA, 02215, USA.
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, USA.
| | - Verena Behringer
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077, Göttingen, Germany
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA
- Institute of Human Origins, Arizona State University, Tempe, AZ, 85287, USA
| | - Tobias Deschner
- Interim Group Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| |
Collapse
|
76
|
Bidarimath M, Lingegowda H, Miller JE, Koti M, Tayade C. Insights Into Extracellular Vesicle/Exosome and miRNA Mediated Bi-Directional Communication During Porcine Pregnancy. Front Vet Sci 2021; 8:654064. [PMID: 33937376 PMCID: PMC8081834 DOI: 10.3389/fvets.2021.654064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Spontaneous fetal loss is one of the most important challenges that commercial pig industry is still facing in North America. Research over the decade provided significant insights into some of the associated mechanisms including uterine capacity, placental efficiency, deficits in vasculature, and immune-inflammatory alterations at the maternal-fetal interface. Pigs have unique epitheliochorial placentation where maternal and fetal layers lay in opposition without any invasion. This has provided researchers opportunities to accurately tease out some of the mechanisms associated with maternal-fetal interface adaptations to the constantly evolving needs of a developing conceptus. Another unique feature of porcine pregnancy is the conceptus derived recruitment of immune cells during the window of conceptus attachment. These immune cells in turn participate in pregnancy associated vascular changes and contribute toward tolerance to the semi-allogeneic fetus. However, the precise mechanism of how maternal-fetal cells communicate during the critical times in gestation is not fully understood. Recently, it has been established that bi-directional communication between fetal trophoblasts and maternal cells/tissues is mediated by extracellular vesicles (EVs) including exosomes. These EVs are detected in a variety of tissues and body fluids and their role has been described in modulating several physiological and pathological processes including vascularization, immune-modulation, and homeostasis. Recent literature also suggests that these EVs (exosomes) carry cargo (nucleic acids, protein, and lipids) as unique signatures associated with some of the pregnancy associated pathologies. In this review, we provide overview of important mechanisms in porcine pregnancy success and failure and summarize current knowledge about the unique cargo containing biomolecules in EVs. We also discuss how EVs (including exosomes) transfer their contents into other cells and regulate important biological pathways critical for pregnancy success.
Collapse
Affiliation(s)
- Mallikarjun Bidarimath
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | | | - Jessica E. Miller
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Obstetrics and Gynecology, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
77
|
Zang X, Gu T, Hu Q, Xu Z, Xie Y, Zhou C, Zheng E, Huang S, Xu Z, Meng F, Cai G, Wu Z, Hong L. Global Transcriptomic Analyses Reveal Genes Involved in Conceptus Development During the Implantation Stages in Pigs. Front Genet 2021; 12:584995. [PMID: 33719331 PMCID: PMC7943634 DOI: 10.3389/fgene.2021.584995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 02/08/2021] [Indexed: 01/18/2023] Open
Abstract
Prenatal mortality remains a significant concern to the pig farming industry around the world. Spontaneous fetal loss ranging from 20 to 45% by term occur after fertilization, with most of the loss happening during the implantation period. Since the factors regulating the high mortality rates of early conceptus during implantation phases are poorly understood, we sought to analyze the overall gene expression changes during this period, and identify the molecular mechanisms involved in conceptus development. This work employed Illumina's next-generation sequencing (RNA-Seq) and quantitative real-time PCR to analyze differentially expressed genes (DEGs). Soft clustering was subsequently used for the cluster analysis of gene expression. We identified 8236 DEGs in porcine conceptus at day 9, 12, and 15 of pregnancy. Annotation analysis of these genes revealed rRNA processing (GO:0006364), cell adhesion (GO:1904874), and heart development (GO:0007507), as the most significantly enriched biological processes at day 9, 12, and 15 of pregnancy, respectively. In addition, we found various genes, such as T-complex 1, RuvB-like AAA ATPase 2, connective tissue growth factor, integrins, interferon gamma, SLA-1, chemokine ligand 9, PAG-2, transforming growth factor beta receptor 1, and Annexin A2, that play essential roles in conceptus morphological development and implantation in pigs. Furthermore, we investigated the function of PAG-2 in vitro and found that PAG-2 can inhibit trophoblast cell proliferation and migration. Our analysis provides a valuable resource for understanding the mechanisms of conceptus development and implantation in pigs.
Collapse
Affiliation(s)
- Xupeng Zang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Qun Hu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Fanming Meng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| |
Collapse
|
78
|
Spence T, Allsopp PJ, Yeates AJ, Mulhern MS, Strain JJ, McSorley EM. Maternal Serum Cytokine Concentrations in Healthy Pregnancy and Preeclampsia. J Pregnancy 2021; 2021:6649608. [PMID: 33680514 PMCID: PMC7925069 DOI: 10.1155/2021/6649608] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
The maternal immune response is essential for successful pregnancy, promoting immune tolerance to the fetus while maintaining innate and adaptive immunity. Uncontrolled, increased proinflammatory responses are a contributing factor to the pathogenesis of preeclampsia. The Th1/Th2 cytokine shift theory, characterised by bias production of Th2 anti-inflammatory cytokine midgestation, was frequently used to reflect the maternal immune response in pregnancy. This theory is simplistic as it is based on limited information and does not consider the role of other T cell subsets, Th17 and Tregs. A range of maternal peripheral cytokines have been measured in pregnancy cohorts, albeit the changes in individual cytokine concentrations across gestation is not well summarised. Using available data, this review was aimed at summarising changes in individual maternal serum cytokine concentrations throughout healthy pregnancy and evaluating their association with preeclampsia. We report that TNF-α increases as pregnancy progresses, IL-8 decreases in the second trimester, and IL-4 concentrations remain consistent throughout gestation. Lower second trimester IL-10 concentrations may be an early predictor for developing preeclampsia. Proinflammatory cytokines (TNF-α, IFN-γ, IL-2, IL-8, and IL-6) are significantly elevated in preeclampsia. More research is required to determine the usefulness of using cytokines, particularly IL-10, as early biomarkers of pregnancy health.
Collapse
Affiliation(s)
- Toni Spence
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Philip J. Allsopp
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Alison J. Yeates
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Maria S. Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - J. J. Strain
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Emeir M. McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
79
|
Liu H, Wang W, Liu C. Increased expression of IFN-γ in preeclampsia impairs human trophoblast invasion via a SOCS1/JAK/STAT1 feedback loop. Exp Ther Med 2020; 21:112. [PMID: 33335575 PMCID: PMC7739872 DOI: 10.3892/etm.2020.9544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The weakening of extravillous trophoblast (EVT) invasion results in shallow placenta implantation. In HTR8/SVneo cells, IFN-γ can activate STAT1 and reduce cell invasion, and suppressor of cytokine signaling (SOCS) is an important negative regulatory protein in the Janus kinase (JAK)/STAT activator pathway and has a negative feedback function on JAK/STAT1. The aim of the present study was to elucidate how SOCS1 feedback regulates JAK/STAT1 and affects EVT cell invasion, which in turn affects the development of preeclampsia (PE). MTT and Annexin V/phosphatidylserine (PS) assays were performed to evaluate the viability and apoptosis of HTR8/SVneo cells treated with IFN-γ, respectively. Wound healing and invasion assays were also conducted to measure the migratory and invasive abilities of IFN-γ-treated HTR8/SVneo cells. The mRNA and protein expression levels of genes were detected using reverse transcription-quantitative PCR and western blot analysis. Small interfering RNA knockdown of SOCS1 was used to verify the role of feedback regulation in the IFN-γ-activated JAK/STAT1 signaling pathway. IFN-γ can inhibit HTR8/SVneo migration and invasion, and promote apoptosis by increasing the expression of phosphorylated (p)-JAK, p-STAT1 and caspase3, and reducing the expression of platelet-derived growth factor receptor A and Ezrin. Furthermore, SOCS1 may negatively regulate JAK/STAT1 and affect HTR-8/SVneo invasiveness. Evaluation of clinical samples demonstrated that the expression levels of SOCS1 and IFN-γ were higher in patients with PE compared with the healthy group. Collectively, the present results indicated that IFN-γ reduced the invasion of HTR-8/SVneo cells by activating JAK/STAT1, concurrently leading to an increase in SOCS1, which negatively regulates JAK/STAT1 and eliminates the pro-inflammatory effects of IFN-γ, thus forming a feedback loop.
Collapse
Affiliation(s)
- Huiqiang Liu
- Department of Gynecology and Obstetrics, Chaoyang Hospital Affiliated to Capital Medical University, Chaoyang, Beijing 100020, P.R. China.,Department of Gynecology and Obstetrics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wenhao Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chongdong Liu
- Department of Gynecology and Obstetrics, Chaoyang Hospital Affiliated to Capital Medical University, Chaoyang, Beijing 100020, P.R. China
| |
Collapse
|
80
|
Susceptibility to Heart Defects in Down Syndrome Is Associated with Single Nucleotide Polymorphisms in HAS 21 Interferon Receptor Cluster and VEGFA Genes. Genes (Basel) 2020; 11:genes11121428. [PMID: 33260695 PMCID: PMC7761327 DOI: 10.3390/genes11121428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Congenital heart defects (CHDs) are present in about 40-60% of newborns with Down syndrome (DS). Patients with DS can also develop acquired cardiac disorders. Mouse models suggest that a critical 3.7 Mb region located on human chromosome 21 (HSA21) could explain the association with CHDs. This region includes a cluster of genes (IFNAR1, IFNAR2, IFNGR2, IL10RB) encoding for interferon receptors (IFN-Rs). Other genes located on different chromosomes, such as the vascular endothelial growth factor A (VEGFA), have been shown to be involved in cardiac defects. So, we investigated the association between single nucleotide polymorphisms (SNPs) in IFNAR2, IFNGR2, IL10RB and VEGFA genes, and the presence of CHDs or acquired cardiac defects in patients with DS. METHODS Individuals (n = 102) with DS, and age- and gender-matched controls (n = 96), were genotyped for four SNPs (rs2229207, rs2834213, rs2834167 and rs3025039) using KASPar assays. RESULTS We found that the IFNGR2 rs2834213 G homozygous genotype and IL10RB rs2834167G-positive genotypes were more common in patients with DSand significantly associated with heart disorders, while VEGFA rs3025039T-positive genotypes (T/*) were less prevalent in patients with CHDs. CONCLUSIONS We identified some candidate risk SNPs for CHDs and acquired heart defects in DS. Our data suggest that a complex architecture of risk alleles with interplay effects may contribute to the high variability of DS phenotypes.
Collapse
|
81
|
Ali S, Majid S, Ali MN, Taing S, Rehman MU, Arafah A. Cytokine imbalance at materno-embryonic interface as a potential immune mechanism for recurrent pregnancy loss. Int Immunopharmacol 2020; 90:107118. [PMID: 33191177 DOI: 10.1016/j.intimp.2020.107118] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Recurrent pregnancy loss (RPL) is a prominent reproductive disease that distresses about 2%-5% of couples. RPL is the loss of two or more successive spontaneous pregnancies prior to the 20th week of embryo development. The commencement of pregnancy necessitates implantation of the embryo into responsive maternal decidua synchronized with the process of placentation, decidual and myometrial trophoblast incursion as well as refashioning of spiral blood arteries of uterus. The collapse of any of the processes fundamental for pregnancy success may result into an array of pregnancy problems including spontaneous pregnancy loss. Endometrium of human female manufactures an extensive range of cytokines during the proliferative and secretory stage of the menstrual cycle. These endometrial cytokines are thought as major players for making the uterus ready for embryo implantation and placental development during pregnancy. Decidual cytokines regulate the invasion of trophoblast and remodeling of spiral arteries as well as take part in immune suppression to accomplish the pregnancy. Deterrence of maternal rejection of embryo needs a regulated milieu, which takes place essentially at the embryo-maternal interface and the tissues of the uterus. The reasons of RPL remain anonymous in a large number of cases that lead to difficulties in management and severe trauma in couples. Cytokine modulatory therapies have been shown promising for preventing RPL. Further study of novel factors is wanted to establish more effective RPL treatment protocols. The present study aims to review the outcome of cytokine breach at materno-embryonic interface and the efficacy of cytokine modulatory therapies in RPL.
Collapse
Affiliation(s)
- Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir-190006, Srinagar, J&K, India; Department of Biochemistry, Government Medical College, Srinagar, J&K, India.
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College, Srinagar, J&K, India
| | - Md Niamat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir-190006, Srinagar, J&K, India.
| | - Shahnaz Taing
- Department of Obstetrics and Gynaecology, Govt. Medical College Associated Lalla Ded Hospital, Srinagar, J&K, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
82
|
Parrilla I, Martinez CA, Cambra JM, Lucas X, Ferreira-Dias G, Rodriguez-Martinez H, Cuello C, Gil MA, Martinez EA. Blastocyst-Bearing Sows Display a Dominant Anti-Inflammatory Cytokine Profile Compared to Cyclic Sows at Day 6 of the Cycle. Animals (Basel) 2020; 10:ani10112028. [PMID: 33158034 PMCID: PMC7692685 DOI: 10.3390/ani10112028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary A proper uterine environment is basic for obtaining optimal embryo transfer outputs in domestic species, including the pig. However, scarce information is available about the uterine immune response of recipient (uninseminated) sows when receiving embryos during embryo transfer. Endometrial cytokine profile is among the main factors regulating uterine receptivity to embryos. In this study, using Luminex MAP® technology, we found important differences in the endometrial production in most of the 16 cytokines analyzed between recipient sows and embryo-bearing (inseminated) sows six days after estrus, with a predominant cytokine anti-inflammatory environment in the embryo-bearing endometria. These observations suggest that insemination components and/or early embryos induce an endometrium immune-tolerant cytokine profile at Day 6 of the cycle. The findings could contribute importantly to design strategies to maximize the reproductive performance of recipients after embryo transfer in swine. Abstract In the context of porcine embryo transfer (ET) technology, understanding the tightly regulated local uterine immune environment is crucial to achieve an adequate interaction between the transferred embryos and the receiving endometrium. However, information is limited on the uterine immune status of cyclic-recipient sows when receiving embryos during ET. The present study postulated that the anti- and proinflammatory cytokine profile 6 days after the onset of estrus differs between endometria from uninseminated cyclic sows and blastocyst-bearing sows. On Day 6 of the cycle, endometrial explants were collected from sows inseminated or not inseminated during the postweaning estrus and cultured for 22 h. The culture medium was then analyzed for the contents of a total of 16 cytokines using Luminex MAP® technology. The results showed important differences in the endometrial production of most cytokines between the sow categories, with a predominant anti-inflammatory environment displayed by the blastocyst-bearing endometria. These findings suggest that sperm, seminal plasma (SP) and/or early embryos modify the uterine environment by inducing an immune-tolerant cytokine profile already visible at Day 6. Whether the SP or some of its active components may help to develop strategies to maximize the reproductive performance of recipients after ET needs further investigation.
Collapse
Affiliation(s)
- Inmaculada Parrilla
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
- Correspondence: (I.P.); (C.A.M.)
| | - Cristina A. Martinez
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, 58183 Linköping, Sweden;
- Correspondence: (I.P.); (C.A.M.)
| | - Josep M. Cambra
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Xiomara Lucas
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal;
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Cristina Cuello
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Maria A. Gil
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Emilio A. Martinez
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| |
Collapse
|
83
|
Taglauer ES, Fernandez-Gonzalez A, Willis GR, Reis M, Yeung V, Liu X, Mitsialis SA, Kourembanas S. Mesenchymal stromal cell-derived extracellular vesicle therapy prevents preeclamptic physiology through intrauterine immunomodulation†. Biol Reprod 2020; 104:457-467. [PMID: 33112369 DOI: 10.1093/biolre/ioaa198] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stromal cells (MSCs) are a widely recognized treatment modality for a variety of preclinical disease models and have been transitioned to human clinical trials. We have previously shown in neonatal lung disease that the therapeutic capacity of MSCs is conferred by their secreted extracellular vesicles (MEx), which function primarily through immunomodulation. We hypothesize that MEx have significant therapeutic potential pertinent to immune-mediated gestational diseases. Of particular interest is early-onset preeclampsia, which can be caused by alterations of the maternal intrauterine immune environment. Using a heme-oxygenase-1 null mouse model of pregnancy loss with preeclampsia-like features, we examined the preventative effects of maternal MEx treatment early in pregnancy. Heme oxygenase-1 null females (Hmox1-/-) or wild-type control females were bred in homozygous matings followed by evaluation of maternal and fetal parameters. A single dose of MEx was administered intravenously on gestational day (GD)1 to Hmox1-/- females (Hmox1-/- MEx). Compared with untreated Hmox1-/- females, Hmox1-/- MEx-treated pregnancies showed significant improvement in fetal loss, intrauterine growth restriction, placental spiral artery modification, and maternal preeclamptic stigmata. Biodistribution studies demonstrated that MEx localize to a subset of cells in the preimplantation uterus. Further, mass cytometric (CyTOF) evaluation of utero-placental leukocytes in Hmox1-/- MEx versus untreated pregnancies showed alteration in the abundance, surface marker repertoire, and cytokine profiles of multiple immune populations. Our data demonstrate the therapeutic potential of MEx to optimize the intrauterine immune environment and prevent maternal and fetal sequelae of preeclamptic disease.
Collapse
Affiliation(s)
- Elizabeth S Taglauer
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Gareth R Willis
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monica Reis
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Vincent Yeung
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Xianlan Liu
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
84
|
Abdian Asl A, Vaziri Nezamdoust F, Fesahat F, Astani A, Barati M, Raee P, Asadi-Saghandi A. Association between rs1049174 NKG2D gene polymorphism and idiopathic recurrent spontaneous abortion in Iranian women: a case-control study. J OBSTET GYNAECOL 2020; 41:774-778. [PMID: 33063590 DOI: 10.1080/01443615.2020.1798906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer group 2, member D (NKG2D) is one of the best known activating receptors of NK cells, which recognises its ligand on altered or stressed cells and activates NK cells to kill them. In this study, the single nucleotide polymorphism of the NKG2D gene for rs1049174 mutation was compared in 140 women with recurrent spontaneous abortion (RSA) and 175 control women with at least one successful pregnancy and without any known pregnancy loss. The findings just revealed that GG genotype and G allele were significantly higher in the case group compared with the control group (p < .001). Our results regarding decreased risk of RSA in C allele (OR = 0.438; 95%CI = 0.310-0.619; p < .001), and GC genotype (OR = 0.492; 95%CI = 0.214-0.574; p < .001) compared with G allele and GG genotype respectively. This study demonstrated a significant association between NKG2D gene polymorphism (rs1049174 G/C) and the risk of RSA in Iranian women.Impact statementWhat is already known on this subject? According to previous investigations, maternal immune responses may affect the foetus, causing recurrent spontaneous abortion (RSA). The main cause of RSA has not yet been detected in nearly 50% of the cases.What do the results of this study add? The results showed that the frequency of G allele and C allele were significantly different in the case group and control group.What are the implications of these findings for clinical practice and/or further research? The results suggest a protective function of C allele because it significantly decreased the risk of RSA compared to G allele. It improves inhibition of NK cells and probably participates in maintaining pregnancy in fertile controls; whereas, G allele is related to a slight inhibition of NK cells, probably leading to increase effectiveness of NK activation and undesirable inflammation, which consequently causes foetal rejection.
Collapse
Affiliation(s)
- Amir Abdian Asl
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Astani
- Zoonotic Diseases Research Center, School of Public Health, Sahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Meisam Barati
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Anatomy and Reproductive Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolghasem Asadi-Saghandi
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
85
|
Sheibak N, Mahmoudzadeh-Sagheb H, Moudi B, Heidari Z. Elevated immunoexpression of interferon-gamma in placenta tissue samples from pregnancies complicated with preeclampsia compared to the placenta previa. Pregnancy Hypertens 2020; 22:175-180. [PMID: 33035950 DOI: 10.1016/j.preghy.2020.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 11/25/2022]
Abstract
AIM The present study aimed to compare the immunohistochemical expression of interferon-gamma (IFN-γ) in placentas from pregnancies complicated with preeclampsia (PE) and placenta previa (PP) and normal healthy placentas. METHODS Placentas were collected from cases of PE, PP and normal pregnancies as a control group (10 placentas in each group). All the deliveries were at full-term (37-42 weeks) by cesarean section and newborns were without any complications or diseases. Expression of IFN-γ in the placenta was determined using immunohistochemical methods and findings were compared. Statistical analysis was performed by Mann-Whitney and Kruskal-Wallis tests for comparing the mean values of IFN-γ expression in the placentas from PE, PP and control groups. Our results showed that the immunoexpression of IFN-γ in syncytiotrophoblast cells, extravillous trophoblast cells, vascular endothelium and basal plate of the placenta from PE group were more than control and PP groups (P < 0.05) and in PP group were more than the control group (P < 0.05). CONCLUSION We concluded that the immunoexpression of IFN-γ was increased significantly in placenta tissue samples of the PE group compared to the PP group and normal pregnancies. It is proposed that IFN-γ has an important role in the different mechanisms of PE and PP progression.
Collapse
Affiliation(s)
- Nadia Sheibak
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bita Moudi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Heidari
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
86
|
Wang W, Sung N, Gilman-Sachs A, Kwak-Kim J. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front Immunol 2020; 11:2025. [PMID: 32973809 PMCID: PMC7461801 DOI: 10.3389/fimmu.2020.02025] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
During pregnancy, various immune effectors and molecules participating in the immune-microenvironment establish specific maternal tolerance toward the semi-allogeneic fetus. Activated maternal immune effectors by the trophoblast antigens, such as T helper (Th), T cytotoxic (Tc), T regulatory (Treg), and B cells, are involved in the regulation of adaptive immunity. Recognition of active signal through the T cell receptors stimulate the differentiation of naive CD3+CD4+ T cells into specific T cell subsets, such as Th1, Th2, Th9, Th17, Th22, and follicular Th cells (Tfh). Each of these subsets has a significant and distinct role in human pregnancy. Th1 immunity, characterized by immune-inflammatory responses, becomes dominant during the peri-implantation period, and the “controlled” Th1 immunity benefits the invading trophoblasts rather than harm. Quickly after the placental implantation, the early inflammatory Th1 immunity is shifted to the Th2 anti-inflammatory immune responses. The predominant Th2 immunity, which overrules the Th1 immunity at the placental implantation site, protects a fetus by balancing Th1 immunity and accommodate fetal and placental development. Moreover, Treg and Th9 cells regulate local inflammatory immune responses, potentially detrimental to the fetus. Th17 cells induce protective immunity against extracellular microbes during pregnancy. However, excessive Th17 immunity may induce uncontrolled neutrophil infiltration at the maternal-fetal interface. Other Th cell subsets such as Tfh cells, also contribute to pregnancy by setting up favorable humoral immunity during pregnancy. However, dysregulation of Th cell immunity during pregnancy may result in obstetrical complications, such as recurrent pregnancy losses (RPL) and preeclampsia (PE). With this review, we intend to deliver a comprehensive overview of CD4+ Th cell subsets, including Th1, Th2, Th9, Th17, Th22, and Tfh cells, in human pregnancy by reviewing their roles in normal and pathological pregnancies.
Collapse
Affiliation(s)
- Wenjuan Wang
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Department of Clinical Sciences, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Nayoung Sung
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Department of Clinical Sciences, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Alice Gilman-Sachs
- Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Clinical Immunology Laboratory, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Department of Clinical Sciences, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
87
|
Tryptophan and kynurenine stimulate human decidualization via activating Aryl hydrocarbon receptor: Short title: Kynurenine action on human decidualization. Reprod Toxicol 2020; 96:282-292. [PMID: 32781018 DOI: 10.1016/j.reprotox.2020.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Decidualization is essential for successful pregnancy in rodents and primates. Although L-Tryptophan and its metabolites are essential for mammalian pregnancy, the underlying mechanism is poorly defined. We explored effects of tryptophan and kynurenine on human in vitro decidualization in human endometrial stromal cell line and primary endometrial stromal cells. Tryptophan significantly stimulates the expression of prolactin and insulin growth factor binding protein 1, reliable markers for human decidualization. When stromal cells are treated with tryptophan, tryptophan hydroxylase-1 remains unchanged, but indoleamine 2,3-dioxygenase 1 is significantly increased, suggesting tryptophan is mainly metabolized through kynurenine pathway. Kynurenine significantly stimulates insulin growth factor binding protein 1 expression. Aryl hydrocarbon receptor and its target genes (P450 1A1 and P450 1B1) are significantly increased by tryptophan and kynurenine. The induction of tryptophan and kynurenine on insulin growth factor binding protein 1 is abrogated by CH223191, an aryl hydrocarbon receptor inhibitor. Cytochrome P450 1A1 and P450 1B1 catalyze the oxidative metabolism of estradiol to catechol estrogens (2-hydroxy estradiol and 4-hydroxy estradiol), respectively. Insulin growth factor binding protein 1 is up-regulated by 2-hydroxy estradiol and 4-hydroxy estradiol. Interferon-γ significantly induces the expression of indoleamine 2,3-dioxygenase 1, aryl hydrocarbon receptor and insulin growth factor binding protein 1. All the data are also verified in primary human stromal cells. Our data indicate that Interferon-γ-induced kynurenine pathway promotes human decidualization via aryl hydrocarbon receptor signaling.
Collapse
|
88
|
Staphylococcal infections and infertility: mechanisms and management. Mol Cell Biochem 2020; 474:57-72. [PMID: 32691256 DOI: 10.1007/s11010-020-03833-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022]
Abstract
Infertility is a subject of worldwide concern as it affects approximately 15% of couples. Among the prime contributors of infertility, urogenital bacterial infections have lately gained much clinical importance. Staphylococcal species are commensal bacteria and major human pathogens mediating an array of reproductive tract infections. Emerging evidences are 'bit by bit' revealing the mechanisms by which Staphylococci strategically disrupt normal reproductive functions. Staphylococcal species can directly or through hematogenous routes can invade the reproductive tissues. In the testicular cells, epididymis as well as in various compartments of female reproductive tracts, the pathogen recognition receptors, toll-like receptors (TLRs), can recognize the pathogen-associated molecular patterns on the Staphylococci and thereby activate inflammatory signalling pathways. These elicit pro-inflammatory mediators trigger other immune cells to infiltrate and release further inflammatory agents and reactive oxygen species (ROS). Adaptive immune responses may intensify the inflammation-induced reproductive tissue damage, particularly via activation of T-helper (Th) cells, Th1 and Th17 by the innate components or by staphylococcal exotoxins. Staphylococcal surface factors binding with sperm membrane proteins can directly impair sperm functions. Although Staphylococci, being one of the most virulent bacterial species, are major contributors in infection-induced infertility in both males and females, the mechanisms of their operations remain under-discussed. The present review aims to provide a comprehensive perception of the possible mechanisms of staphylococcal infection-induced male and female infertility and aid potential interventions to address the lack of competent therapeutic measures for staphylococcal infection-induced infertility.
Collapse
|
89
|
Sullivan-Pyke C, Mani S, Rhon-Calderon EA, Ord T, Coutifaris C, Bartolomei MS, Mainigi M. Timing of exposure to gonadotropins has differential effects on the conceptus: evidence from a mouse model†. Biol Reprod 2020; 103:854-865. [PMID: 32584398 DOI: 10.1093/biolre/ioaa109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/23/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Superovulation with gonadotropins alters the hormonal milieu during early embryo development and placentation, and may be responsible for fetal and placental changes observed after in vitro fertilization (IVF). We hypothesized that superovulation has differential effects depending on timing of exposure. To test our hypothesis, we isolated the effect of superovulation on pre- and peri-implantation mouse embryos. Blastocysts were obtained from either natural mating or following superovulation and mating, and were transferred into naturally mated or superovulated pseudopregnant recipient mice. Fetal weight was significantly lower after peri-implantation exposure to superovulation, regardless of preimplantation exposure (p = 0.006). Placentas derived from blastocysts exposed to superovulation pre- and peri-implantation were larger than placentas derived from natural blastocysts that are transferred into a natural or superovulated environment (p < 0.05). Fetal-to-placental weight ratio decreased following superovulation during the pre- or peri-implantation period (p = 0.05, 0.01, respectively) and these effects were additive. Peg3 DNA methylation levels were decreased in placentas derived from exposure to superovulation both pre- and peri-implantation compared with unexposed embryos and exposure of the preimplantation embryo only. Through RNA sequencing on placental tissue, changes were identified in genes involved in immune system regulation, specifically interferon signaling, which has been previously implicated in implantation and maintenance of early pregnancy in mice. Overall, we found that the timing of exposure to gonadotropin stimulation can have differential effects on fetal and placental growth. These findings could impact clinical practice and underscores the importance of dissecting the role of procedures utilized during IVF on pregnancy complications.
Collapse
Affiliation(s)
| | - Sneha Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric A Rhon-Calderon
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Teri Ord
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christos Coutifaris
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
90
|
Transcriptomic analysis of interferon-γ-regulated genes in endometrial explants and their possible role in regulating maternal endometrial immunity during the implantation period in pigs, a true epitheliochorial placentation species. Theriogenology 2020; 155:114-124. [PMID: 32659448 DOI: 10.1016/j.theriogenology.2020.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/02/2023]
Abstract
The implantation process requires precisely controlled interactions between the maternal uterine endometrium and the implanting conceptus. Conceptus-derived secretions affect endometrial cells to facilitate the adhesion and attachment of trophoblasts, and endometrial secretions support the growth and development of the conceptus. In pigs, the conceptus secretes a large amount of type II interferon, interferon-γ (IFNG), during the implantation period. However, the role of IFNG in the implantation process has not been fully understood in pigs. Thus, to determine the role of IFNG in the endometrium during early pregnancy in pigs, we treated endometrial explant tissues with increasing doses of IFNG and analyzed the transcriptome regulated by IFNG using an RNA-sequencing analysis. Data analyses identified 276 differentially regulated genes, their Gene Ontology terms, and 94 signature genes in a Gene Set Enrichment Analysis. Furthermore, we analyzed the expression of IFNG-regulated genes, including CIITA, KYNU, IDO1, WARS, and MHC class II molecules, in the endometrium throughout pregnancy and found that levels of those genes in the endometrium were highest on Day 15 of pregnancy, corresponding to the time of peak IFNG secretion by porcine conceptuses. In addition, immunohistochemical analyses revealed that CIITA, KYNU, and IDO proteins were expressed in a cell type- and pregnancy status-specific manner in the endometrium. These results show that genes overrepresented in endometrial tissues in response to IFNG were mainly related to immune responses, suggesting that conceptus-derived IFNG could play critical roles in regulating the maternal immune response for the establishment of pregnancy in pigs.
Collapse
|
91
|
Mezouar S, Mege JL. Changing the paradigm of IFN-γ at the interface between innate and adaptive immunity: Macrophage-derived IFN-γ. J Leukoc Biol 2020; 108:419-426. [PMID: 32531848 DOI: 10.1002/jlb.4mir0420-619rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022] Open
Abstract
IFN-γ plays a critical role in the immune response to bacterial infections. It is established that IFN-γ is mainly produced by NK/ILC1 cells and T cells, and most of papers have rejected the biologic reality of alternative sources for more than 20 years. Here, we are proposing to revisit this dogma and discuss the role of macrophage-derived IFN-γ in bacterial infections. Our hypothesis is based on a panel of publications and is recently revived by our results on placenta, a chimeric organ in which the immune response is tailored to protect the fetus from mother's immune response. The culture of purified placental macrophages is associated with a production of IFN-γ that may contribute to fetal protection from bacterial infections before eliciting a Th1-like immune response potentially pathogenic for pregnancy. Hence, macrophage IFN-γ may be a novel actor of early crosstalk between innate and adaptive immunity in the context of host defense against bacterial infections.
Collapse
Affiliation(s)
- Soraya Mezouar
- Aix-Marseille University, MEPHI, IRD, APHM, Marseille, France.,IHU-Mediterranean Infection, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille University, MEPHI, IRD, APHM, Marseille, France.,IHU-Mediterranean Infection, Marseille, France.,APHM, UF Immunology Department, Marseille, France
| |
Collapse
|
92
|
Evolution of male pregnancy associated with remodeling of canonical vertebrate immunity in seahorses and pipefishes. Proc Natl Acad Sci U S A 2020; 117:9431-9439. [PMID: 32284407 PMCID: PMC7196912 DOI: 10.1073/pnas.1916251117] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Among vertebrates, pregnancy has evolved more than 150 times independently. A fundamental problem for pregnancy to evolve is inadvertent rejection of the embryo when being recognized as foreign tissue by the vertebrate’s adaptive immune system. We show that the unique evolution of male pregnancy in pipefishes and seahorses coincided with a genomic modification of one arm of the adaptive immune system. Our findings indicate a trade-off between immunological tolerance and embryo rejection to accompanying the emergence of male pregnancy. That syngnathids survive in an ocean of microbes despite their drastically modified immune defense suggests an unexpected immunological flexibility. Our results may improve the understanding of immune-deficiency diseases and call for a reassessment of vertebrate immunity. A fundamental problem for the evolution of pregnancy, the most specialized form of parental investment among vertebrates, is the rejection of the nonself-embryo. Mammals achieve immunological tolerance by down-regulating both major histocompatibility complex pathways (MHC I and II). Although pregnancy has evolved multiple times independently among vertebrates, knowledge of associated immune system adjustments is restricted to mammals. All of them (except monotremata) display full internal pregnancy, making evolutionary reconstructions within the class mammalia meaningless. Here, we study the seahorse and pipefish family (syngnathids) that have evolved male pregnancy across a gradient from external oviparity to internal gestation. We assess how immunological tolerance is achieved by reconstruction of the immune gene repertoire in a comprehensive sample of 12 seahorse and pipefish genomes along the “male pregnancy” gradient together with expression patterns of key immune and pregnancy genes in reproductive tissues. We found that the evolution of pregnancy coincided with a modification of the adaptive immune system. Divergent genomic rearrangements of the MHC II pathway among fully pregnant species were identified in both genera of the syngnathids: The pipefishes (Syngnathus) displayed loss of several genes of the MHC II pathway while seahorses (Hippocampus) featured a highly divergent invariant chain (CD74). Our findings suggest that a trade-off between immunological tolerance and embryo rejection accompanied the evolution of unique male pregnancy. That pipefishes survive in an ocean of microbes without one arm of the adaptive immune defense suggests a high degree of immunological flexibility among vertebrates, which may advance our understanding of immune-deficiency diseases.
Collapse
|
93
|
Qin S, Zhang Y, Zhang J, Tian F, Sun L, He X, Ma X, Zhang J, Liu XR, Zeng W, Lin Y. SPRY4 regulates trophoblast proliferation and apoptosis via regulating IFN-γ-induced STAT1 expression and activation in recurrent miscarriage. Am J Reprod Immunol 2020; 83:e13234. [PMID: 32196809 DOI: 10.1111/aji.13234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
PROBLEM The dysregulation of trophoblast functions is one of the leading causes of recurrent miscarriage (RM), which frustrates 1%-5% of couples of childbearing ages. Sprouty 4 (SPRY4) is considered as a tumour suppressor and exerts a negative role in cell viability. However, its role in regulating trophoblast behaviors at the maternal-fetal interface remains largely unknown. METHOD OF STUDY First-trimester villous samples were collected from RM patients and healthy controls (HCs) to determine the SPRY4 expression in human placenta during early pregnancy. The HTR8/SVneo cell line was introduced to clarify trophoblast cell functions via transfecting with specific short interfering RNA against SPRY4 or SPRY4-overexpressing lentivirus in vitro. In addition, gene expression microarray analysis was performed to explore the downstream molecules and pathways. RESULTS Our results revealed that SPRY4 expression was significantly increased in the first-trimester cytotrophoblasts of RM patients compared with HCs. Furthermore, SPRY4 overexpression inhibited trophoblast proliferation and accelerated apoptosis in vitro, while SPRY4 knockdown reversed these effects. Mechanistically, IFN-γ -induced STAT1 expression and activation were involved in the regulation of trophoblast proliferation and apoptosis by SPRY4, and IFN-γ promoted SPRY4 expression and STAT1 phosphorylation through PI3K/AKT pathway. Additionally, both STAT1 and phosphorylated STAT (p-STAT) levels were also upregulated in trophoblasts from RM patients and positively correlated with SPRY4 expression. CONCLUSION Our findings indicate that SPRY4 may act as a negative regulator of trophoblast functions through upregulating IFN-γ/PI3K/AKT-induced STAT1 activation. High levels of SPRY4 and STAT1 may contribute to RM development and progression, and blocking of either target could be a novel therapeutic strategy for RM patients.
Collapse
Affiliation(s)
- Shi Qin
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuju Tian
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqun Sun
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying He
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Ma
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Rui Liu
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Zeng
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
94
|
Hamelin-Morrissette J, Dallagi A, Girouard J, Ravelojaona M, Oufqir Y, Vaillancourt C, Van Themsche C, Carrier C, Reyes-Moreno C. Leukemia inhibitory factor regulates the activation of inflammatory signals in macrophages and trophoblast cells. Mol Immunol 2020; 120:32-42. [PMID: 32045772 DOI: 10.1016/j.molimm.2020.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
The pleiotropic cytokine leukemia inhibitory factor (LIF) is a key gestational factor known to establish dynamic cellular and molecular cross talk at the feto-maternal interface. Previously, we described the regulatory role of the LIF-trophoblast-IL10 axis in the process of macrophage deactivation in response to pro-inflammatory cytokines. However, the direct regulatory effects of LIF in macrophage and trophoblast cell function remains elusive. In this study, we aimed to examine whether and how LIF regulates the behavior of macrophages and trophoblast cells in response to pro-inflammatory stress factors. We found that LIF modulated the activating effects of interferon-gamma (IFNγ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in macrophages and trophoblast cells by reducing the phosphorylation levels of signal transducer and activator of transcription-1 (Stat1) and -5 (Stat5). Cell activation with IFNγ inhibited cell invasion and migration but this immobilizing effect was abrogated when macrophages and trophoblast cells were deactivated with LIF; macrophage cell motility restitution could in part be explained by the positive effects of LIF in Stat3 activation and matrix metalloproteinase 9 (MMP-9) expression. Pharmacological inhibition of Stat1 and Stat3 indicated that IFNγ-induced Stat1 activation mediated macrophage motility inhibition, and that cell motility in IFNγ-activated macrophages is restored via LIF-induced Stat3 activation and Stat1 inhibition. Moreover, IFNγ-induced TNFα gene expression was also abrogated by LIF through Stat1 inhibition and Stat3 activation. Finally, we have found that cell invasion of trophoblast cells is inhibited when they were cocultured with GM-CSF-differentiated, IFNγ-stimulated macrophages. This effect, however, was inhibited when macrophages were exposed to LIF. Overall, this in vitro study reveals for the first time the anti-inflammatory and pro-gestational activities of LIF by acting directly on macrophages and trophoblast cells.
Collapse
Affiliation(s)
- Jovane Hamelin-Morrissette
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Angham Dallagi
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Julie Girouard
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Marion Ravelojaona
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Yassine Oufqir
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Cathy Vaillancourt
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montréal, QC, H2X 3Y7, Canada; Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QC, H7V 1B7, Canada; Réseau Intersectoriel de Recherche en Santé de l'Université du Québec (RISUQ), Laval, QC H7V 1B7, Canada
| | - Céline Van Themsche
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montréal, QC, H2X 3Y7, Canada; Réseau Intersectoriel de Recherche en Santé de l'Université du Québec (RISUQ), Laval, QC H7V 1B7, Canada
| | - Christian Carrier
- Centre Hospitalier Affilié Universitaire Régional de Trois-Rivières (CHAUR-TR), Service d'Hémato-Oncologie, Trois-Rivières, QC, G8Z 3R9, Canada
| | - Carlos Reyes-Moreno
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montréal, QC, H2X 3Y7, Canada; Réseau Intersectoriel de Recherche en Santé de l'Université du Québec (RISUQ), Laval, QC H7V 1B7, Canada.
| |
Collapse
|
95
|
Immunological adaptations in pregnancy that modulate rheumatoid arthritis disease activity. Nat Rev Rheumatol 2020; 16:113-122. [PMID: 31932747 DOI: 10.1038/s41584-019-0351-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 02/08/2023]
Abstract
During pregnancy, the fetus that grows within the maternal uterus is not rejected by the maternal immune system. To enable both tolerance towards the fetus and defence against pathogens, modifications of the maternal immune system occur during gestation. These modifications are able to bring about a natural improvement in disease activity of some autoimmune diseases, such as rheumatoid arthritis (RA). Various mechanisms of the immune system contribute to the phenomenon of pregnancy-related improvement of RA, and the cessation of these immunomodulatory mechanisms after delivery correlates with postpartum disease flare. HLA disparity between mother and fetus, glycosylation of IgG, immunoregulatory pathways, and alterations in innate and adaptive immune cells and their cytokines have important roles in pregnancy and in pregnancy-related amelioration of RA.
Collapse
|
96
|
Walsh SC, Miles JR, Yao L, Broeckling CD, Rempel LA, Wright‐Johnson EC, Pannier AK. Metabolic compounds within the porcine uterine environment are unique to the type of conceptus present during the early stages of blastocyst elongation. Mol Reprod Dev 2020; 87:174-190. [PMID: 31840336 PMCID: PMC7003770 DOI: 10.1002/mrd.23306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
The objective of this study was to identify metabolites within the porcine uterine milieu during the early stages of blastocyst elongation. At Days 9, 10, or 11 of gestation, reproductive tracts of White cross-bred gilts (n = 38) were collected immediately following harvest and flushed with Roswell Park Memorial Institute-1640 medium. Conceptus morphologies were assessed from each pregnancy and corresponding uterine flushings were assigned to one of five treatment groups based on these morphologies: (a) uniform spherical (n = 8); (b) heterogeneous spherical and ovoid (n = 8); (c) uniform ovoid (n = 8); (d) heterogeneous ovoid and tubular (n = 8); and (e) uniform tubular (n = 6). Uterine flushings from these pregnancies were submitted for nontargeted profiling by gas chromatography-mass spectrometry (GC-MS) and ultra performance liquid chromatography (UPLC)-MS techniques. Unsupervised multivariate principal component analysis (PCA) was performed using pcaMethods and univariate analysis of variance was performed in R with false discovery rate (FDR) adjustment. PCA analysis of the GC-MS and UPLC-MS data identified 153 and 104 metabolites, respectively. After FDR adjustment of the GC-MS and UPLC-MS data, 38 and 59 metabolites, respectively, differed (p < .05) in uterine flushings from pregnancies across the five conceptus stages. Some metabolites were greater (p < .05) in abundance for uterine flushings containing earlier stage conceptuses (i.e., spherical), such as uric acid, tryptophan, and tyrosine. In contrast, some metabolites were greater (p < .05) in abundance for uterine flushings containing later stage conceptuses (i.e., tubular), such as creatinine, serine, and urea. These data illustrate several putative metabolites that change within the uterine milieu during early porcine blastocyst elongation.
Collapse
Affiliation(s)
- Sophie C. Walsh
- Department of Biological Systems EngineeringUniversity of Nebraska‐LincolnLincolnNebraska
| | - Jeremy R. Miles
- United States Department of AgricultureU.S. Meat Animal Research CenterClay CenterNebraska
| | - Linxing Yao
- Proteomics and Metabolomics FacilityColorado State UniversityFort CollinsColorado
| | - Corey D. Broeckling
- Proteomics and Metabolomics FacilityColorado State UniversityFort CollinsColorado
| | - Lea A. Rempel
- United States Department of AgricultureU.S. Meat Animal Research CenterClay CenterNebraska
| | | | - Angela K. Pannier
- Department of Biological Systems EngineeringUniversity of Nebraska‐LincolnLincolnNebraska
| |
Collapse
|
97
|
Grinnemo KH, Löfling M, Nathanson L, Baumgartner R, Ketelhuth DFJ, Beljanski V, Davies LC, Österholm C. Immunomodulatory effects of interferon-γ on human fetal cardiac mesenchymal stromal cells. Stem Cell Res Ther 2019; 10:371. [PMID: 31801632 PMCID: PMC6894330 DOI: 10.1186/s13287-019-1489-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs), due to their regenerative and immunomodulatory properties, are therapeutically used for diseases, including heart failure. As early gestational-phase embryonic tissues exhibit extraordinary regenerative potential, fetal MSCs exposed to inflammation offer a unique opportunity to evaluate molecular mechanisms underlying preferential healing, and investigate their inherent abilities to communicate with the immune system during development. The principal aim of this study was to evaluate the effects of interferon-γ (IFNγ) on the immunomodulatory effects of first-trimester human fetal cardiac (hfc)-MSCs. METHODS hfcMSCs (gestational week 8) were exposed to IFNγ, with subsequent analysis of the whole transcriptome, based on RNA sequencing. Exploration of surface-expressed immunoregulatory mediators and modulation of T cell responses were performed by flow cytometry. Presence and activity of soluble mediators were assessed by ELISA or high-performance liquid chromatography. RESULTS Stimulation of hfcMSCs with IFNγ revealed significant transcriptional changes, particularly in respect to the expression of genes belonging to antigen presentation pathways, cell cycle control, and interferon signaling. Expression of immunomodulatory genes and associated functional changes, including indoleamine 2,3-dioxygenase activity, and regulation of T cell activation and proliferation via programmed cell death protein (PD)-1 and its ligands PD-L1 and PD-L2, were significantly upregulated. These immunoregulatory molecules diminished rapidly upon withdrawal of inflammatory stimulus, indicating a high degree of plasticity by hfcMSCs. CONCLUSIONS To our knowledge, this is the first study performing a systematic evaluation of inflammatory responses and immunoregulatory properties of first-trimester cardiac tissue. In summary, our study demonstrates the dynamic responsiveness of hfcMSCs to inflammatory stimuli. Further understanding as to the immunoregulatory properties of hfcMSCs may be of benefit in the development of novel stromal cell therapeutics for cardiovascular disease.
Collapse
Affiliation(s)
- Karl-Henrik Grinnemo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, BioClinicum J10:20, SE-171 64, Solna, Sweden
- Division of Cardiothoracic Surgery and Anesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, 751 85, Uppsala, Sweden
| | - Marie Löfling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, BioClinicum J10:20, SE-171 64, Solna, Sweden
| | - Lubov Nathanson
- Institute for Neuroimmune Medicine, Dr Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Roland Baumgartner
- Department of Medicine Solna, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Daniel F J Ketelhuth
- Department of Medicine Solna, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Vladimir Beljanski
- Cell Therapy Institute, Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Lindsay C Davies
- Department of Laboratory Medicine, Karolinska Institutet, SE-141 52, Huddinge, Sweden
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, BioClinicum J10:20, SE-171 64, Solna, Sweden.
| |
Collapse
|
98
|
Yoo I, Seo H, Choi Y, Jang H, Han J, Lee S, Choi Y, Ka H. Analysis of interferon-γ receptor IFNGR1 and IFNGR2 expression and regulation at the maternal-conceptus interface and the role of interferon-γ on endometrial expression of interferon signaling molecules during early pregnancy in pigs. Mol Reprod Dev 2019; 86:1993-2004. [PMID: 31680343 DOI: 10.1002/mrd.23287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
It has long been known that pig conceptuses produce interferon-γ (IFNG) at the time of implantation, but the role of IFNG and its mechanism of action at the maternal-conceptus interface are not fully understood. Accordingly, we analyzed the expression and regulation of IFNG receptors IFNGR1 and IFNGR2 in the endometrium during the estrous cycle and pregnancy in pigs. Levels of IFNGR1 and IFNGR2 messenger RNA (mRNA) expression changed in the endometrium, with the highest levels during mid pregnancy for IFNGR1 and on Day 12 of pregnancy for IFNGR2. The expression of IFNGR1 and IFNGR2 mRNAs was also detected in conceptuses during early pregnancy and chorioallantoic tissues during mid to late pregnancy. IFNGR1 and IFNGR2 mRNAs were localized to endometrial epithelial and stromal cells and to the chorionic membrane during pregnancy. IFNGR2 protein was also localized to endometrial epithelial and stromal cells, and increased epithelial expression of IFNGR2 mRNA and protein was detectable during early pregnancy than the estrous cycle. Explant culture studies showed that estrogen increased levels of IFNGR2, but not IFNGR1, mRNAs, while interleukin-1β did not affect levels of IFNGR1 and IFNGR2 mRNAs. Furthermore, IFNG increased levels of IRF1, IRF2, STAT1, and STAT2 mRNAs in the endometrial explants. These results in pigs indicate that IFNGR1 and IFNGR2 are expressed in a stage of pregnancy- and cell-type specific manner in the endometrium and that sequential cooperative action of conceptus signals estrogen and IFNG may be critical for endometrial responsiveness to IFNs for the establishment of pregnancy in pigs.
Collapse
Affiliation(s)
- Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Heewon Seo
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Yohan Choi
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Hwanhee Jang
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
99
|
Winterbottom EF, Ban Y, Sun X, Capobianco AJ, Marsit CJ, Chen X, Wang L, Karagas MR, Robbins DJ. Transcriptome-wide analysis of changes in the fetal placenta associated with prenatal arsenic exposure in the New Hampshire Birth Cohort Study. Environ Health 2019; 18:100. [PMID: 31752878 PMCID: PMC6868717 DOI: 10.1186/s12940-019-0535-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/18/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Increasing evidence suggests that prenatal exposure to arsenic, even at common environmental levels, adversely affects child health. These adverse effects include impaired fetal growth, which can carry serious health implications lifelong. However, the mechanisms by which arsenic affects fetal health and development remain unclear. METHODS We addressed this question using a group of 46 pregnant women selected from the New Hampshire Birth Cohort Study (NHBCS), a US cohort exposed to low-to-moderate arsenic levels in drinking water through the use of unregulated private wells. Prenatal arsenic exposure was assessed using maternal urine samples taken at mid-gestation. Samples of the fetal portion of the placenta were taken from the base of the umbilical cord insertion at the time of delivery, stored in RNAlater and frozen. We used RNA sequencing to analyze changes in global gene expression in the fetal placenta associated with in utero arsenic exposure, adjusting for maternal age. Gene set enrichment analysis and enrichment mapping were then used to identify biological processes represented by the differentially expressed genes. Since our previous analyses have identified considerable sex differences in placental gene expression associated with arsenic exposure, we analyzed male and female samples separately. RESULTS At FDR < 0.05, no genes were differentially expressed in female placenta, while 606 genes were differentially expressed in males. Genes showing the most significant associations with arsenic exposure in females were LEMD1 and UPK3B (fold changes 2.51 and 2.48), and in males, FIBIN and RANBP3L (fold changes 0.14 and 0.15). In gene set enrichment analyses, at FDR < 0.05, a total of 211 gene sets were enriched with differentially expressed genes in female placenta, and 154 in male placenta. In female but not male placenta, 103 of these gene sets were also associated with reduced birth weight. CONCLUSIONS Our results reveal multiple biological functions in the fetal placenta that are potentially affected by increased arsenic exposure, a subset of which is sex-dependent. Further, our data suggest that in female infants, the mechanisms underlying the arsenic-induced reduction of birth weight may involve activation of stress response pathways.
Collapse
Affiliation(s)
- Emily F Winterbottom
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Xiaodian Sun
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Anthony J Capobianco
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, 30322, USA
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Lily Wang
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Department of Human Genetics, Dr. John T. Macdonald Foundation, John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, 33136, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - David J Robbins
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
100
|
Acosta-Manzano P, Coll-Risco I, Van Poppel MNM, Segura-Jiménez V, Femia P, Romero-Gallardo L, Borges-Cosic M, Díaz-Castro J, Moreno-Fernández J, Ochoa-Herrera JJ, Aparicio VA. Influence of a Concurrent Exercise Training Intervention during Pregnancy on Maternal and Arterial and Venous Cord Serum Cytokines: The GESTAFIT Project. J Clin Med 2019; 8:jcm8111862. [PMID: 31684183 PMCID: PMC6912691 DOI: 10.3390/jcm8111862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to analyze the influence of a supervised concurrent exercise-training program, from the 17th gestational week until delivery, on cytokines in maternal (at 17th and 35th gestational week, and at delivery) and arterial and venous cord serum. Fifty-eight Caucasian pregnant women (age: 33.5 ± 4.7 years old, body mass index: 23.6 ± 4.1kg/m2) from the GESTAFIT Project (exercise (n = 37) and control (n = 21) groups) participated in this quasi-experimental study (per-protocol basis). The exercise group followed a 60-min 3 days/week concurrent (aerobic-resistance) exercise-training from the 17th gestational week to delivery. Maternal and arterial and venous cord serum cytokines (fractalkine, interleukin (IL)-1β, IL-6, IL-8, IL-10, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α) were assessed using Luminex xMAP technology. In maternal serum (after adjusting for the baseline values of cytokines), the exercise group decreased TNF-α (from baseline to 35th week, p = 0.02), and increased less IL-1β (from baseline to delivery, p = 0.03) concentrations than controls. When adjusting for other potential confounders, these differences became non-significant. In cord blood, the exercise group showed reduced arterial IL-6 and venous TNF-α (p = 0.03 and p = 0.001, respectively) and higher concentrations of arterial IL-1β (p = 0.03) compared to controls. The application of concurrent exercise-training programs could be a strategy to modulate immune responses in pregnant women and their fetuses. However, future research is needed to better understand the origin and clearance of these cytokines, their role in the maternal-placental-fetus crosstalk, and the influence of exercise interventions on them.
Collapse
Affiliation(s)
- Pedro Acosta-Manzano
- PA-HELP "Physical Activity for Health Promotion, CTS-1018" Research group, Department of Physical Education and Sport, Faculty of Sport Sciences. University of Granada, Granada 18011, Spain.
- Sport and Health Research Centre, University of Granada, Granada 18007, Spain.
| | - Irene Coll-Risco
- Sport and Health Research Centre, University of Granada, Granada 18007, Spain.
- Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology, University of Granada, Granada 18011, Spain.
| | | | - Víctor Segura-Jiménez
- Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz 11519, Spain.
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital University of Cádiz, Cádiz 11009, Spain.
| | - Pedro Femia
- Unit of Biostatistics, Department of Statistics, Faculty of Medicine, University of Granada, Granada 18016, Spain.
| | - Lidia Romero-Gallardo
- PA-HELP "Physical Activity for Health Promotion, CTS-1018" Research group, Department of Physical Education and Sport, Faculty of Sport Sciences. University of Granada, Granada 18011, Spain.
- Sport and Health Research Centre, University of Granada, Granada 18007, Spain.
| | - Milkana Borges-Cosic
- PA-HELP "Physical Activity for Health Promotion, CTS-1018" Research group, Department of Physical Education and Sport, Faculty of Sport Sciences. University of Granada, Granada 18011, Spain.
- Sport and Health Research Centre, University of Granada, Granada 18007, Spain.
| | - Javier Díaz-Castro
- Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology, University of Granada, Granada 18011, Spain.
| | - Jorge Moreno-Fernández
- Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology, University of Granada, Granada 18011, Spain.
| | - Julio J Ochoa-Herrera
- Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology, University of Granada, Granada 18011, Spain.
| | - Virginia A Aparicio
- Sport and Health Research Centre, University of Granada, Granada 18007, Spain.
- Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology, University of Granada, Granada 18011, Spain.
| |
Collapse
|