51
|
Zhang H, Chang M, Hansen CN, Basso DM, Noble-Haeusslein LJ. Role of matrix metalloproteinases and therapeutic benefits of their inhibition in spinal cord injury. Neurotherapeutics 2011; 8:206-20. [PMID: 21455784 PMCID: PMC3077748 DOI: 10.1007/s13311-011-0038-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review will focus on matrix metalloproteinases (MMPs) and their inhibitors in the context of spinal cord injury (SCI). MMPs have a specific cellular and temporal pattern of expression in the injured spinal cord. Here we consider their diverse functions in the acutely injured cord and during wound healing. Excessive activity of MMPs, and in particular gelatinase B (MMP-9), in the acutely injured cord contributes to disruption of the blood-spinal cord barrier, and the influx of leukocytes into the injured cord, as well as apoptosis. MMP-9 and MMP-2 regulate inflammation and neuropathic pain after peripheral nerve injury and may contribute to SCI-induced pain. Early pharmacologic inhibition of MMPs or the gelatinases (MMP-2 and MMP-9) results in an improvement in long-term neurological recovery and is associated with reduced glial scarring and neuropathic pain. During wound healing, gelatinase A (MMP-2) plays a critical role in limiting the formation of an inhibitory glial scar, and mice that are genetically deficient in this protease showed impaired recovery. Together, these findings illustrate complex, temporally distinct roles of MMPs in SCIs. As early gelatinase activity is detrimental, there is an emerging interest in developing gelatinase-targeted therapeutics that would be specifically tailored to the acute injured spinal cord. Thus, we focus this review on the development of selective gelatinase inhibitors.
Collapse
Affiliation(s)
- Haoqian Zhang
- Department of Neurosurgery, University of California, San Francisco, California 94143-0110, USA.
| | | | | | | | | |
Collapse
|
52
|
Toivonen JM, Oliván S, Osta R. Tetanus toxin C-fragment: the courier and the cure? Toxins (Basel) 2010; 2:2622-44. [PMID: 22069568 PMCID: PMC3153173 DOI: 10.3390/toxins2112622] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 10/28/2010] [Indexed: 12/14/2022] Open
Abstract
In many neurological disorders strategies for a specific delivery of a biological activity from the periphery to the central nervous system (CNS) remains a considerable challenge for successful therapy. Reporter assays have established that the non-toxic C-fragment of tetanus toxin (TTC), provided either as protein or encoded by non-viral naked DNA plasmid, binds pre-synaptic motor neuron terminals and can facilitate the retrograde axonal transport of desired therapeutic molecules to the CNS. Alleviated symptoms in animal models of neurological diseases upon delivery of therapeutic molecules offer a hopeful prospect for TTC therapy. This review focuses on what has been learned on TTC-mediated neuronal targeting, and discusses the recent discovery that, instead of being merely a carrier molecule, TTC itself may well harbor neuroprotective properties.
Collapse
Affiliation(s)
- Janne M Toivonen
- LAGENBIO-I3A, Veterinary School, Aragón Institute of Health Sciences (IACS), Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | | | | |
Collapse
|
53
|
Wu KLH, Hsu C, Chan JYH. Nitric oxide and superoxide anion differentially activate poly(ADP-ribose) polymerase-1 and Bax to induce nuclear translocation of apoptosis-inducing factor and mitochondrial release of cytochrome c after spinal cord injury. J Neurotrauma 2010; 26:965-77. [PMID: 19473058 DOI: 10.1089/neu.2008.0692] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We reported previously that complete spinal cord transection (SCT) results in depression of mitochondrial respiratory chain enzyme activity that triggers apoptosis via sequential activations of apoptosis-inducing factor (AIF)- and caspase-dependent cascades in the injured spinal cord. This study tested the hypothesis that nitric oxide (NO) and superoxide anion (O(2)(.-)) serve as the interposing signals between SCT and impaired mitochondrial respiratory functions. Adult Sprague-Dawley rats manifested a significant increase in NO or O(2)(.-) level in the injured spinal cord during the first 3 days after SCT. The augmented O(2)(.-) production, along with concomitant reduction in mitochondrial respiratory chain enzyme activity or ATP level, nuclear translocation of AIF, cytosolic release of cytochrome c, and DNA fragmentation were reversed by osmotic minipump infusion of a NO trapping agent, carboxy-PTIO, or a superoxide dismutase mimetic, tempol, into the epicenter of the transected spinal cord. Intriguingly, carboxy-PTIO significantly suppressed upregulation of poly(ADP-ribose) polymerase-1 (PARP-1) in the nucleus, attenuated nuclear translocation of AIF, inhibited mitochondrial translocation of Bax and antagonized mitochondrial release of cytochrome c; whereas tempol only inhibited the later two cellular events after SCT. We conclude that overproduction of NO and O(2)(.-) in the injured spinal cord promulgates mitochondrial dysfunction and triggers AIF- and caspase-dependent apoptotic signaling cascades via differential upregulation of nuclear PARP-1 and mitochondrial translocation of Bax.
Collapse
Affiliation(s)
- Kay L H Wu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | | | | |
Collapse
|
54
|
Anti-apoptotic and neuroprotective effects of α-lipoic acid on spinal cord ischemia-reperfusion injury in rabbits. Acta Neurochir (Wien) 2010; 152:1591-600; discussion 1600-1. [PMID: 20535507 DOI: 10.1007/s00701-010-0703-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Radical oxygen species produced after injury counteracts antioxidant activity and frequently causes severe oxidative stress for the tissues. Alpha-lipoic acid is a powerful metabolic antioxidant with immunomodulatory effects which provides neuroprotection. The aim of this study is to investigate the neuroprotective and anti-apoptotic effects of alpha-lipoic acid on spinal cord ischemia-reperfusion. METHODS Twenty-four adult, male, New Zealand rabbits were divided into sham (n = 8), control (n = 8), and treatment groups (n = 8). The abdominal aorta was clamped for 30 min by an aneurysm clip, approximately 1 cm below the renal artery and 1 cm above the iliac bifurcation in control and treatment groups. Only laparotomy was performed in the sham group. Twenty-five cubic centimeters of saline in control group and 100 mg/kg lipoic acid were administered intraperitoneally in the treatment group after closure of the incision. The animals were killed 48 h later. Spinal cord segments between L2 and S1 were harvested for analysis. Levels of nitric oxide, glutathione, malondialdehyde, advanced oxidation protein products, and superoxide dismutase were analyzed as markers of oxidative stress and inflammation. Caspase-3 activity was analyzed to detect the effect of lipoic acid on apoptosis. RESULTS In all measured parameters of oxidative stress, administration of lipoic acid significantly demonstrated favorable effects. Both plasma and tissue levels of nitric oxide, glutathione, malondialdehyde, and advanced oxidation protein products significantly changed in favor of antioxidant activity. There was no significant difference between the plasma superoxide dismutase levels of the groups. Histopathological evaluation of the tissues also demonstrated significant decrease in cellular degeneration and infiltration parameters after lipoic acid administration. However, lipoic acid has no effect on caspase-3 activity. CONCLUSIONS Although further studies considering different dose regimens and time intervals are required, the results of the present study prove that alpha-lipoic acid has favorable effects on experimental spinal cord ischemia-reperfusion injury.
Collapse
|
55
|
A gel-based proteomic analysis of the effects of green tea polyphenols on ovariectomized rats. Nutrition 2010; 27:681-6. [PMID: 20708377 DOI: 10.1016/j.nut.2010.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/30/2010] [Accepted: 05/30/2010] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Our recent study demonstrated the protective action of green tea polyphenols (GTPs) against bone loss in ovariectomized (OVX) rats through their antioxidant capacities to scavenge reactive oxygen species. The objective of the present study was to evaluate the alterations of liver protein profiles in estrogen-deficient middle-aged rats after GTP treatment by a gel-based proteomic approach. This may lead to understanding the mechanisms of GTPs in promoting bone health. METHODS Liver samples were obtained from 14-mo-old female OVX rats treated with no GTPs (OVX) or 0.5% (w/v) GTPs (OVX + GTP) in drinking water for 16 wk (n = 10/group). Two-dimensional difference gel electrophoresis combined with mass spectrometry was used to compare the liver protein profiles of pooled samples from the OVX and OVX + GTP groups. Liver proteins were labeled in duplicate by reversing the fluorescent dyes. RESULTS Approximately 800 protein spots were detected. The expression levels of superoxide dismutase-1 and adenosine triphosphate synthase were 2.0-fold and 1.5-fold higher in the OVX + GTP group versus the OVX group, respectively, whereas the expression level of catechol-O-methyltransferase was 1.5-fold lower in the OVX + GTP group versus the OVX group. The changes of superoxide dismutase-1 and catechol-O-methyltransferase in individual liver samples were confirmed by western blots. CONCLUSION Our data provide further evidence for the antioxidant role of GTPs by increasing superoxide dismutase-1 and adenosine triphosphate synthase and the estrogen-associated effect of GTPs by decreasing catechol-O-methyltransferase.
Collapse
|
56
|
Abstract
Important findings regarding the structure and function of respiratory cytochromes have been made from the study of these hemeproteins associated to liposomes. These studies contributed to the comprehension of the biological role of these proteins in the electron transfer process, the regulatory mechanisms, the energy transduction mechanisms, the protein sites that interact with mitochondrial membranes and the role played by the non-redox subunits present in the protein complexes of the respiratory chain of eukaryotes. In this chapter, the protocols developed to study cytochrome bc (1) activity in liposomes and the binding of cytochrome c to lipid bilayers is presented . The former protocol was developed to study the mechanism of energy transduction related to the topology of the components of bc (1) complex in the mitochondrial membrane. These studies were done with purified cytochrome bc (1) complexes reconstituted into potassium-loaded vesicles. The latter protocol was developed to study the influence of pH, DeltapH, and DeltaPsi on the interaction of cytochrome c with liposomes that mimic the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Iseli L Nantes
- Centro Interdisciplinar de Investigação Bioquímica CIIB, Universidade de Mogi das Cruzes, S.P., Brazil
| | | | | | | |
Collapse
|
57
|
Kawai C, Pessoto FS, Rodrigues T, Mugnol KCU, Tórtora V, Castro L, Milícchio VA, Tersariol ILS, Di Mascio P, Radi R, Carmona-Ribeiro AM, Nantes IL. pH-sensitive binding of cytochrome c to the inner mitochondrial membrane. Implications for the participation of the protein in cell respiration and apoptosis. Biochemistry 2009; 48:8335-42. [PMID: 19650668 DOI: 10.1021/bi9006463] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c exhibits two positively charged sites: site A containing lysine residues with high pKa values and site L containing ionizable groups with pKaobs values around 7.0. This protein feature implies that cytochrome c can participate in the fusion of mitochondria and have its detachment from the inner membrane regulated by cell acidosis and alkalosis. In this study, we demonstrated that both horse and tuna cytochrome c exhibited two types of binding to inner mitochondrial membranes that contributed to respiration: a high-affinity and low-efficiency pH-independent binding (microscopic dissociation constant Ksapp2, approximately 10 nM) and a low-affinity and high-efficiency pH-dependent binding that for horse cytochrome c had a pKa of approximately 6.7. For tuna cytochrome c (Lys22 and His33 replaced with Asn and Trp, respectively), the effect of pH on Ksapp1 was less striking than for the horse heme protein, and both tuna and horse cytochrome c had closed Ksapp1 values at pH 7.2 and 6.2, respectively. Recombinant mutated cytochrome c H26N and H33N also restored the respiration of the cytochrome c-depleted mitoplast in a pH-dependent manner. Consistently, the detachment of cytochrome c from nondepleted mitoplasts was favored by alkalinization, suggesting that site L ionization influences the participation of cytochrome c in the respiratory chain and apoptosis.
Collapse
Affiliation(s)
- Cintia Kawai
- Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Chronidou F, Apostolakis E, Papapostolou I, Grintzalis K, Georgiou CD, Koletsis EN, Karanikolas M, Papathanasopoulos P, Dougenis D. Beneficial effect of the oxygen free radical scavenger amifostine (WR-2721) on spinal cord ischemia/reperfusion injury in rabbits. J Cardiothorac Surg 2009; 4:50. [PMID: 19758462 PMCID: PMC2751753 DOI: 10.1186/1749-8090-4-50] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 09/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background Paraplegia is the most devastating complication of thoracic or thoraco-abdominal aortic surgery. During these operations, an ischemia-reperfusion process is inevitable and the produced radical oxygen species cause severe oxidative stress for the spinal cord. In this study we examined the influence of Amifostine, a triphosphate free oxygen scavenger, on oxidative stress of spinal cord ischemia-reperfusion in rabbits. Methods Eighteen male, New Zealand white rabbits were anesthetized and spinal cord ischemia was induced by temporary occlusion of the descending thoracic aorta by a coronary artery balloon catheter, advanced through the femoral artery. The animals were randomly divided in 3 groups. Group I functioned as control. In group II the descending aorta was occluded for 30 minutes and then reperfused for 75 min. In group III, 500 mg Amifostine was infused into the distal aorta during the second half-time of ischemia period. At the end of reperfusion all animals were sacrificed and spinal cord specimens were examined for superoxide radicals by an ultra sensitive fluorescent assay. Results Superoxide radical levels ranged, in group I between 1.52 and 1.76 (1.64 ± 0.10), in group II between 1.96 and 2.50 (2.10 ± 0.23), and in group III (amifostine) between 1.21 and 1.60 (1.40 ± 0.19) (p = 0.00), showing a decrease of 43% in the Group of Amifostine. A lipid peroxidation marker measurement ranged, in group I between 0.278 and 0.305 (0.296 ± 0.013), in group II between 0.427 and 0.497 (0.463 ± 0.025), and in group III (amifostine) between 0.343 and 0.357 (0.350 ± 0.007) (p < 0.00), showing a decrease of 38% after Amifostine administration. Conclusion By direct and indirect methods of measuring the oxidative stress of spinal cord after ischemia/reperfusion, it is suggested that intra-aortic Amifostine infusion during spinal cord ischemia phase, significantly attenuated the spinal cord oxidative injury in rabbits.
Collapse
Affiliation(s)
- Fany Chronidou
- Cardiothoracic Surgery Department, Medical School, University of Patras, Patras, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Belikova NA, Tyurina YY, Borisenko G, Tyurin V, Samhan Arias AK, Yanamala N, Furtmüller PG, Klein-Seetharaman J, Obinger C, Kagan VE. Heterolytic reduction of fatty acid hydroperoxides by cytochrome c/cardiolipin complexes: antioxidant function in mitochondria. J Neurochem 2009; 131:11288-11289. [PMID: 19627079 DOI: 10.1111/j.1471-4159.2009.06331.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cytochrome c (cyt c), a mitochondrial intermembrane electron shuttle between complexes III and IV, can, upon binding with an anionic phospholipid, cardiolipin (CL), act as a peroxidase that catalyzes cardiolipin oxidation. H(2)O(2) was considered as a source of oxidative equivalents for this reaction, which is essential for programmed cell death. Here we report that peroxidase cyt c/CL complexes can utilize free fatty acid hydroperoxides (FFA-OOH) at exceptionally high rates that are approximately 3 orders of magnitude higher than for H(2)O(2). Similarly, peroxidase activity of murine liver mitochondria was high with FFA-OOH. Using EPR spin trapping and LC-MS techniques, we have demonstrated that cyt c/CL complexes split FFA-OOH predominantly via a heterolytic mechanism, yielding hydroxy-fatty acids, whereas H(2)O(2) (and tert-butyl hydroperoxide, t-BuOOH) undergo homolytic cleavage. Computer simulations have revealed that Arg(38) and His(33) are important for the heterolytic mechanism at potential FFA-OOH binding sites of cyt c (but not for H(2)O(2) or t-BuOOH). Regulation of FFA-OOH metabolism may be an important function of cyt c that is associated with elimination of toxic FFA-OOH and synthesis of physiologically active hydroxy-fatty acids in mitochondria.
Collapse
Affiliation(s)
- Natalia A Belikova
- Center for Free Radical and Antioxidant Health and Department of Environmental and Occupational Health, University of Pittsburgh, 100 Technology Drive, Suite 350, Pittsburgh, Pennsylvania 15219-3130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
The causes of amyotrophic lateral sclerosis (ALS) are poorly understood. A small proportion, about 2%, is associated with a mutation in the superoxide dismutase (SOD1) gene, and mice expressing this mutant gene exhibit a progressive, ALS-like neurodegenerative disease. Studies of these animals, as well as of human post mortem tissue, reveal the presence of multiple pathological processes, including oxidative stress, glutamate excitotoxicity, neuroinflammation, mitochondrial degeneration, alterations in neurofilaments and neurotubules, mitochondrial damage, aggregation of proteins, abnormalities in growth factors, and apoptosis. We propose that alterations in the disposition of zinc ions may be important in the initiation and development of ALS. SOD1 binds zinc, and many of the mutant forms of this enzyme associated with ALS show altered zinc binding. Alterations in the expression of metallothioneins (MTs), which regulate cellular levels of zinc, have been reported in mutant SOD1 mice, and deletion of MTs in these animals accelerates disease progression. Zinc plays a key role in all the pathological processes associated with ALS. Our zinc hypothesis also may help explain evidence for environmental factors in some cases of ALS, such as in the Chamorro tribe in Guam and in the Gulf War.
Collapse
Affiliation(s)
- Andrew P Smith
- The Forbes Norris ALS Research Center, California Pacific Medical Center Research Institute, California 94115, USA
| | | |
Collapse
|
61
|
Iłzecka J. Decreased cerebrospinal fluid cytochrome c levels in patients with amyotrophic lateral sclerosis. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 67:264-9. [PMID: 17454840 DOI: 10.1080/00365510601016105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE There is evidence showing impaired mitochondrial energy production and increased oxidative damage to mitochondria in amyotrophic lateral sclerosis (ALS). It is known that a lack of cytochrome c (CyC) in the mitochondrial intermembrane space can increase free radical release from mitochondria through interruption of the electron transport. CyC also plays a role in the apoptotic cell death which is suspected in ALS. The aim of the study was to measure cerebrospinal fluid (CSF) and serum CyC levels in patients with ALS. MATERIAL AND METHODS Forty ALS patients were diagnosed according to the El Escorial criteria of ALS. The clinical state of the patients was measured using the Amyotrophic Lateral Sclerosis Functional Rating Scale [ALSFRS]. RESULTS It was shown that overall CyC levels were significantly decreased by 46 % in the CSF of patients with ALS compared with controls (p<0.05), and not affected in serum of patients with ALS (p>0.05). There was no significant difference in CyC levels in relation to the clinical parameters of the disease (p>0.05). CONCLUSIONS The study indicates that CyC may play a role in the pathogenesis of ALS. A possible mechanism is that increased neurodegeneration in ALS caused by free radical production decreases the concentrations of CyC.
Collapse
Affiliation(s)
- J Iłzecka
- Department of Neurology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
62
|
Abstract
Mitochondrial dysfunction is frequently observed in ALS. Mitochondrial dysfunction may result in increased serum lactate at rest or low levels of exercise, being used for diagnostic purposes. The study investigated if resting-lactate-determination is superior to lactate-stress-testing (LST) in demonstrating mitochondrial dysfunction in ALS. Included were 15 ALS patients, 4 women, 11 men, aged 37-72. Severity of the disease was assessed by the Norris-score. The control group comprised 66 healthy subjects, 40 women, 26 men, aged 36-76. Serum lactate was determined before, three times during, and once after a constant workload with 30 W on a bicycle ergometer. According to the EIEscorial criteria 8 patients had definite, 4 probable, 3 possible ALS. Resting lactate was increased in 2 patients, 1 with definite and 1 with possible ALS. The LST was abnormal in 5 patients with definite, 1 with probable and 1 with possible ALS. The mean Norris-score was 67.8 in patients with abnormal LST and 74.6 in patients with normal LST. In conclusion, the LST is more suitable than resting-lactate-determination in demonstrating mitochondrial dysfunction in ALS. The LST suggests mitochondrial dysfunction in half of the ALS patients. Mitochondrial dysfunction in ALS is related to the clinical severity of the disease.
Collapse
Affiliation(s)
- Josef Finsterer
- Department of Neurology, Krankenanstalt Rudolfstiftung, Vienna, Austria.
| |
Collapse
|
63
|
Danilov CA, Chandrasekaran K, Racz J, Soane L, Zielke C, Fiskum G. Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation. Glia 2009; 57:645-56. [PMID: 18942756 PMCID: PMC2657190 DOI: 10.1002/glia.20793] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative stress is an important molecular mechanism of astrocyte injury and death following ischemia/reperfusion and may be an effective target of intervention. One therapeutic strategy for detoxifying the many different reactive oxygen and nitrogen species that are produced under these conditions is induction of the Phase II gene response by the use of chemicals or conditions that promote the translocation of the transcriptional activating factor NRF2 from the cytosol to the nucleus, where it binds to genomic antioxidant response elements. This study tested the hypothesis that pre- or post-treatment of cultured cortical astrocytes with sulforaphane, an alkylating agent known to activate the NRF2 pathway of gene expression protects against death of astrocytes caused by transient exposure to O(2) and glucose deprivation (OGD). Rat cortical astrocytes were exposed to 5 muM sulforaphane either 48 h prior to, or for 48 h after a 4-h period of OGD. Both pre- and post-treatments significantly reduced cell death at 48 h after OGD. Immunostaining for 8-hydroxy-2-deoxyguanosine, a marker of DNA/RNA oxidation, was reduced at 4 h reoxygenation with sulforaphane pretreatment. Sulforaphane exposure was followed by an increase in cellular and nuclear NRF2 immunoreactivity. Moreover, sulforaphane also increased the mRNA, protein level, and enzyme activity of NAD(P)H/Quinone Oxidoreductase1, a known target of NRF2 transcriptional activation. We conclude that sulforaphane stimulates the NRF2 pathway of antioxidant gene expression in astrocytes and protects them from cell death in an in vitro model of ischemia/reperfusion.
Collapse
Affiliation(s)
- Camelia A. Danilov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Krish Chandrasekaran
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jennifer Racz
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Lucian Soane
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Carol Zielke
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gary Fiskum
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
64
|
Lobsiger CS, Boillee S, McAlonis-Downes M, Khan AM, Feltri ML, Yamanaka K, Cleveland DW. Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice. Proc Natl Acad Sci U S A 2009; 106:4465-70. [PMID: 19251638 PMCID: PMC2657393 DOI: 10.1073/pnas.0813339106] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Indexed: 12/15/2022] Open
Abstract
Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1(G37R)) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells.
Collapse
Affiliation(s)
- Christian S. Lobsiger
- Department of Medicine and Neuroscience, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S975, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, Hôpital de la Salpêtrière, 75013 Paris, France
- Université Pierre et Marie Curie Paris 6, 75013 Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7225, 75013 Paris, France
| | - Severine Boillee
- Department of Medicine and Neuroscience, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S975, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, Hôpital de la Salpêtrière, 75013 Paris, France
- Université Pierre et Marie Curie Paris 6, 75013 Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7225, 75013 Paris, France
| | - Melissa McAlonis-Downes
- Department of Medicine and Neuroscience, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093
| | - Amir M. Khan
- Department of Medicine and Neuroscience, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093
| | - M. Laura Feltri
- Department of Cell Biology and Genetics, San Raffaele Scientific Research Institute, 20132 Milan, Italy; and
| | - Koji Yamanaka
- Department of Medicine and Neuroscience, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093
- Yamanaka Research Unit, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Don W. Cleveland
- Department of Medicine and Neuroscience, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
65
|
Abstract
BACKGROUND AND PURPOSE Traditionally, cell death after cerebral ischemia was considered to be exclusively necrotic in nature, but research over the past decade has revealed that after a stroke, many neurons in the ischemic penumbra will undergo apoptosis. SUMMARY OF REVIEW This brief review provides a general overview and update of various signaling pathways in the development of apoptosis in ischemic lesions. Cerebral ischemia triggers two general pathways of apoptosis: the intrinsic pathway, originating from mitochondrial release of cytochrome c and associated stimulation of caspase-3; and the extrinsic pathway, originating from the activation of cell surface death receptors, resulting in the stimulation of caspase-8. Although many of the key apoptotic proteins have been identified, our understanding of the complex underlying mechanisms remains poor and hence treatment of stroke patients by manipulating apoptotic pathways remains a daunting task. However, recent advances in the field have helped broaden our knowledge of apoptosis after cerebral ischemia. Further to the simplistic concept that stroke-induced apoptosis occurs predominantly in neurons and is caspase-dependent, accumulating evidence now indicates that apoptosis is prevalent in nonneuronal cells and that caspase-independent mechanisms also play a key role. CONCLUSIONS Although the ischemic penumbra is under threat of infarction, it is potentially salvageable and thus represents an opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Brad R S Broughton
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
66
|
Yune TY, Lee JY, Jiang MH, Kim DW, Choi SY, Oh TH. Systemic administration of PEP-1-SOD1 fusion protein improves functional recovery by inhibition of neuronal cell death after spinal cord injury. Free Radic Biol Med 2008; 45:1190-200. [PMID: 18722523 DOI: 10.1016/j.freeradbiomed.2008.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/19/2008] [Accepted: 07/15/2008] [Indexed: 01/08/2023]
Abstract
Spinal cord injury (SCI) produces excessive levels of reactive oxygen species (ROS) that induce apoptosis of neurons. Cu,Zn-superoxide dismutase (SOD1) is a key antioxidant enzyme that detoxifies intracellular ROS, thereby protecting cells from oxidative damage. PEP-1 is a peptide carrier capable of delivering full-length native peptides or proteins into cells. In the study described here, we fused a human SOD1 gene with PEP-1 in a bacterial expression vector to produce a genetic in-frame PEP-1-SOD1 fusion protein; we then investigated the neuroprotective effect of the fusion protein after SCI. The expressed and purified PEP-1-SOD1 was efficiently delivered into cultured cells and spinal cords in vivo, and the delivered fusion protein was biologically active. Systemic administration of PEP-1-SOD1 significantly decreased levels of ROS and protein carbonylation and nitration in spinal motor neurons after injury. PEP-1-SOD1 treatment also significantly inhibited mitochondrial cytochrome c release and activation of caspase-9 and caspase-3 in spinal cords after injury. Furthermore, PEP-1-SOD1 treatment significantly reduced ROS-induced apoptosis of motor neurons and improved functional recovery after SCI. These results suggest that PEP-1-SOD1 may provide a novel strategy for the therapeutic delivery of antioxidant enzymes that protect neurons from ROS after SCI.
Collapse
Affiliation(s)
- Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 130-701, Korea.
| | | | | | | | | | | |
Collapse
|
67
|
Secondary pathology following contusion, dislocation, and distraction spinal cord injuries. Exp Neurol 2008; 212:490-506. [DOI: 10.1016/j.expneurol.2008.04.038] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/24/2008] [Accepted: 04/28/2008] [Indexed: 12/17/2022]
|
68
|
Yu F, Kamada H, Niizuma K, Endo H, Chan PH. Induction of mmp-9 expression and endothelial injury by oxidative stress after spinal cord injury. J Neurotrauma 2008; 25:184-95. [PMID: 18352832 PMCID: PMC2365489 DOI: 10.1089/neu.2007.0438] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) activation plays an important role in blood-brain barrier (BBB) dysfunction after central nervous system injury. Oxidative stress is also implicated in the pathogenesis after cerebral ischemia and spinal cord injury (SCI), but the relationship between MMP-9 activation and oxidative stress after SCI has not yet been clarified. We examined MMP-9 expression after SCI using copper/zinc-superoxide dismutase (SOD1) transgenic (Tg) rats. Our results show that MMP-9 activity significantly increased after SCI in both SOD1 Tg rats and their wild-type (Wt) littermates, although the increase was less in the SOD1 Tg rats. This pattern of MMP-9 expression was further confirmed by immunostaining and Western blot analysis. In situ zymography showed that gelatinolytic activity increased after SCI in the Wt rats, while the increase was less in the Tg rats. Evans blue extravasation increased in both the Wt and Tg rats, but was less in the SOD1 Tg rats. Inhibitor studies showed that, with an intrathecal injection of SB-3CT (a selective MMP-2/MMP-9 inhibitor), the MMP activity, Evans blue extravasation, and apoptotic cell death decreased after SCI. We conclude that increased oxidative stress after SCI leads to MMP-9 upregulation, BBB disruption, and apoptosis, and that overexpression of SOD1 in Tg rats decreases oxidative stress and further attenuates MMP-9 mediated BBB disruption.
Collapse
Affiliation(s)
- Fengshan Yu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
69
|
Yu F, Narasimhan P, Saito A, Liu J, Chan PH. Increased expression of a proline-rich Akt substrate (PRAS40) in human copper/zinc-superoxide dismutase transgenic rats protects motor neurons from death after spinal cord injury. J Cereb Blood Flow Metab 2008; 28:44-52. [PMID: 17457363 PMCID: PMC2167854 DOI: 10.1038/sj.jcbfm.9600501] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The serine-threonine kinase, Akt, plays an important role in the cell survival signaling pathway. A proline-rich Akt substrate, PRAS40, has been characterized, and an increase in phospho-PRAS40 (pPRAS40) is neuroprotective after transient focal cerebral ischemia. However, the involvement of PRAS40 in the cell death/survival pathway after spinal cord injury (SCI) is unclear. Liposome-mediated PRAS40 transfection was performed to study whether overexpression of pPRAS40 is neuroprotective. We further examined the expression of pPRAS40 after SCI by immunohistochemistry and Western blot using copper/zinc-superoxide dismutase (SOD1) transgenic (Tg) rats and wild-type (Wt) littermates. We then examined the relationship between PRAS40 and Akt by injection of LY294002, a phosphatidylinositol 3-kinase (PI3K) pathway inhibitor, or Akt inhibitor IV, a compound that inhibits Akt activation after SCI. Our data demonstrated that increased pPRAS40 resulted in survival of more motor neurons compared with control complementary DNA transfection. Phosphorylated PRAS40 increased in the Wt rats after SCI, whereas there was a greater and prolonged increase in the SOD1 Tg rats. Coimmunoprecipitation showed that binding of pPRAS40 with 14-3-3 increased 1 day after SCI in the Wt rats, whereas there was a significant increase in the Tg rats. The inhibitor studies showed that phospho-Akt and pPRAS40 were decreased after injection of LY294002 or Akt inhibitor IV. We conclude that an increase in pPRAS40 by transfection after SCI results in survival of motor neurons, and overexpression of SOD1 in the Tg rats results in an increase in endogenous pPRAS40 and a decrease in motor neuron death through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Fengshan Yu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5487, USA
| | | | | | | | | |
Collapse
|
70
|
Titova E, Ostrowski RP, Rowe J, Chen W, Zhang JH, Tang J. Effects of superoxide dismutase and catalase derivates on intracerebral hemorrhage-induced brain injury in rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2008; 105:33-35. [PMID: 19066078 DOI: 10.1007/978-3-211-09469-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The use of exogenous superoxide dismutase (SOD) and catalase (CAT) has been previously evaluated against various reactive oxygen species-mediated brain injuries, especially those associated with ischemia/ reperfusion. In this study, we investigated effects of these enzymatic antioxidants on intracerebral hemorrhage (ICH)-induced brain injury. A total of 65 male Sprague-Dawley rats (300-380 g) were divided into a sham group, an untreated ICH group, 3 groups of ICH rats treated with lecithinized SOD (PC-SOD) at doses of 0.1, 0.3, and 1 mg/kg, and a group treated with polyethylene glycol conjugated CAT (PEG-CAT) at a dose of 10,000 U/kg. An additional group of ICH rats received a combination of PC-SOD (1 mg/kg) and PEG-CAT (10,000 U/kg). ICH was induced by collagenase injection. All drugs were administered intravenously immediately after ICH induction. Brain injury was evaluated by scoring neurological function and measuring brain edema at 24 h after ICH induction. Our results demonstrated that ICH caused significant neurological deficit associated with remarkable brain edema. Treatment with PC-SOD, PEG-CAT, or PC-SOD in combination with PEG-CAT did not reduce brain edema or neurological deficit after ICH. We conclude that intravenously administered PC-SOD and/or PEG-CAT do not reduce brain injury in the collagenase-induced ICH rat model.
Collapse
Affiliation(s)
- E Titova
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | | | | | | |
Collapse
|
71
|
Zheng L, Du Y, Miller C, Gubitosi-Klug RA, Kern TS, Ball S, Berkowitz BA. Critical role of inducible nitric oxide synthase in degeneration of retinal capillaries in mice with streptozotocin-induced diabetes. Diabetologia 2007; 50:1987-1996. [PMID: 17583794 DOI: 10.1007/s00125-007-0734-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 04/30/2007] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Diabetes results in the upregulation of the production of several components of the inflammatory response in the retina, including inducible nitric oxide synthase (iNOS). The aim of this study was to investigate the role of iNOS in the pathogenesis of the early stages of diabetic retinopathy using iNOS-deficient mice (iNos (-/-)). MATERIALS AND METHODS iNos (-/-) mice and wild-type (WT; C57BL/6J) mice were made diabetic with streptozotocin or kept as non-diabetic controls. Mice were killed at different time points after the induction of diabetes for assessment of vascular histopathology, cell loss in the ganglion cell layer (GCL), retinal thickness, and biochemical and physiological abnormalities. RESULTS The concentrations of nitric oxide, nitration of proteins, poly(ADP-ribose) (PAR)-modified proteins, endothelial nitric oxide synthase, prostaglandin E(2), superoxide and leucostasis were significantly (p < 0.05) increased in retinas of WT mice diabetic for 2 months compared with non-diabetic WT mice. All of these abnormalities except PAR-modified proteins in retinas were inhibited (p < 0.05) in diabetic iNos (-/-) mice. The number of acellular capillaries and pericyte ghosts was significantly increased in retinas from WT mice diabetic for 9 months compared with non-diabetic WT controls, these increases being significantly inhibited in diabetic iNos (-/-) mice (p < 0.05 for all). Retinas from WT diabetic mice were significantly thinner than those from their non-diabetic controls, whereas diabetic iNos (-/-) mice were protected from this abnormality. We found no evidence of cell loss in the GCL of diabetic WT or iNos (-/-) mice. Deletion of iNos had no beneficial effect on diabetes-induced abnormalities on the electroretinogram. CONCLUSIONS/INTERPRETATION We demonstrate that the inflammatory enzyme iNOS plays an important role in the pathogenesis of vascular lesions characteristic of the early stages of diabetic retinopathy in mice.
Collapse
Affiliation(s)
- L Zheng
- Department of Medicine, 448B Biomedical Research Building, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Y Du
- Department of Medicine, 448B Biomedical Research Building, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - C Miller
- Department of Medicine, 448B Biomedical Research Building, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Alcon Research, Fort Worth, TX, USA
| | - R A Gubitosi-Klug
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - T S Kern
- Department of Medicine, 448B Biomedical Research Building, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Department of Ophthalmology, 434 Biomedical Research Building, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Cleveland VAMC Research Service 151, Cleveland, OH, USA.
| | - S Ball
- Cleveland VAMC Research Service 151, Cleveland, OH, USA
| | - B A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
- Department of Ophthalmology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
72
|
Toborek M, Son KW, Pudelko A, King-Pospisil K, Wylegala E, Malecki A. ERK 1/2 signaling pathway is involved in nicotine-mediated neuroprotection in spinal cord neurons. J Cell Biochem 2007; 100:279-92. [PMID: 16888810 DOI: 10.1002/jcb.21013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Evidence indicates that agonists of neuronal nicotinic receptors (nAChRs), including nicotine, can induce neuroprotective and anti-apoptotic effects in the CNS. To study these mechanisms, the present study focused on nicotine-mediated modulation of the extracellular regulated kinase 1 and 2 (ERK1/2) pathway in cultured spinal cord neurons. Exposure to nicotine (0.1-10 microM) for as short as 1 min markedly upregulated levels of phosphorylated ERK1/2 (pERK1/2) and increased total ERK1/2 activity. Inhibition studies with mecamylamine and alpha-bungarotoxin revealed that these effects were mediated by the alpha7 nicotinic receptor. In addition, pre-exposure to U0126, a specific inhibitor of the ERK1/2 signaling, prevented nicotine-mediated anti-apoptotic effects. To indicate if treatment with nicotine also can activate ERK1/2 in vivo, a moderate spinal cord injury (SCI) was induced in rats using a weight-drop device and nicotine was injected 2 h post-trauma. Consistent with in vitro data, nicotine increased levels of pERK1/2 in this animal model of spinal cord trauma. Results of the present study indicate that the ERK1/2 pathway is involved in anti-apoptotic effects of nicotine in spinal cord neurons and may be involved in therapeutic effects of nicotine in spinal cord trauma.
Collapse
Affiliation(s)
- Michal Toborek
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | |
Collapse
|
73
|
Yu F, Sugawara T, Nishi T, Liu J, Chan PH. Overexpression of SOD1 in Transgenic Rats Attenuates Nuclear Translocation of Endonuclease G and Apoptosis after Spinal Cord Injury. J Neurotrauma 2006; 23:595-603. [PMID: 16689664 DOI: 10.1089/neu.2006.23.595] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal motor neurons are selectively vulnerable after spinal cord injury (SCI). Recent studies suggest they undergo apoptosis after caspase activation through a mitochondria-dependent apoptosis pathway, and that oxidative stress after SCI is likely to play a role. However, other signaling pathways of apoptosis that involve mitochondria have not been thoroughly studied after SCI. Apoptosis-inducing factor (AIF) and endonuclease G (EndoG) are mitochondrial apoptogenic proteins that are capable of inducing neuronal apoptosis when translocated from mitochondria to nuclei through a caspase-independent pathway. In this study, we examined translocation of these proteins and apoptotic cell death of motor neurons. The role of oxidative stress was also studied using transgenic (Tg) rats that overexpress the intrinsic antioxidant copper/zinc-superoxide dismutase (SOD1). Western blots and an activity assay demonstrated that a greater amount of SOD1 and higher activity of SOD presented in mitochondria of Tg rats compared with wild-type (Wt) rats. Immunohistochemistry and Western blots showed translocation of EndoG and AIF from mitochondria to nuclei in motor neurons 1 day after SCI in both groups of rats. However, there was significantly less translocation of EndoG in the Tg rats compared with the Wt rats. Less apoptotic cell death was detected in the Tg rats than in the Wt rats 3 days after SCI. These results suggest that translocation of EndoG and AIF from mitochondria to nuclei may initiate a caspase-independent pathway of apoptosis. An increased level of SOD1 in mitochondria conceivably reduces oxidative stress, thereby attenuating EndoG translocation, and resulting in reduction of caspase-independent apoptosis.
Collapse
Affiliation(s)
- Fengshan Yu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
74
|
Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee YS, Nito C, Kamada H, Dodd RL, Hsieh LB, Hassid B, Kim EE, González M, Chan PH. Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 2006; 31:105-16. [PMID: 15953815 DOI: 10.1385/mn:31:1-3:105] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/15/2004] [Indexed: 11/11/2022]
Abstract
It has been demonstrated by numerous studies that apoptotic cell death pathways are implicated in ischemic cerebral injury in ischemia models in vivo. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides oxygen as a substrate for numerous enzymatic oxidation reactions and for mitochondrial oxidative phosphorylation to produce adenosine triphosphate. Oxygen radicals, the products of these biochemical and physiological reactions, are known to damage cellular lipids, proteins, and nucleic acids and to initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways could provide novel therapeutic strategies in clinical stroke.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Ohta Y, Takenaga M, Tokura Y, Hamaguchi A, Yamaguchi Y, Nakamura M, Okano H, Igarashi R. Lecithinized superoxide dismutase promoted the recovery from spinal cord injury-induced motor dysfunction. Inflamm Regen 2006. [DOI: 10.2492/inflammregen.26.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
76
|
Yu F, Sugawara T, Maier CM, Hsieh LB, Chan PH. Akt/Bad signaling and motor neuron survival after spinal cord injury. Neurobiol Dis 2005; 20:491-9. [PMID: 15896972 DOI: 10.1016/j.nbd.2005.04.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 03/28/2005] [Accepted: 04/08/2005] [Indexed: 11/18/2022] Open
Abstract
The serine-threonine kinase Akt is a cell survival signaling pathway that inactivates the proapoptotic BCL-2 family protein Bad and promotes cell survival in cerebral ischemia. Involvement of the Akt/Bad signaling pathway after spinal cord injury (SCI) is, however, uncertain. Our results showed that phospho-Akt (serine-473) and phospho-Bad (serine-136) were significantly upregulated at 1 day after SCI. In addition, phospho-Akt and phospho-Bad were colocalized in motor neurons that survived SCI and inhibition of PI3-K reduced expression of phospho-Akt and phospho-Bad. Dimerization of Bad with 14-3-3 in the cytosol was increased whereas Bad/Bcl-XL binding in the mitochondria was decreased after SCI. We further found that reduced oxidative stress by SOD1 overexpression in rats enhanced the expression of phospho-Akt, phospho-Bad, Bad/14-3-3 binding and reduced Bad/Bcl-XL binding after SCI, as compared to wild-type rats. We conclude that oxidative stress may play a role in modulating Akt/Bad signaling and subsequent motor neuron survival after SCI.
Collapse
Affiliation(s)
- Fengshan Yu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
77
|
Klussmann S, Martin-Villalba A. Molecular targets in spinal cord injury. J Mol Med (Berl) 2005; 83:657-71. [PMID: 16075258 DOI: 10.1007/s00109-005-0663-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 02/23/2005] [Indexed: 12/26/2022]
Abstract
The spinal cord can be compared to a highway connecting the brain with the different body levels lying underneath, with the axons being the ultimate carriers of the electrical impulse. After spinal cord injury (SCI), many cells are lost because of the injury. To reconstitute function, damaged axons from surviving neurons have to grow through the lesion site to their initial targets. However, the territory they have to traverse has changed: the highway is full of inhibitory signals (myelin and scar components); the pavement itself has become bumpy (demyelination); and specialized cells are recruited to clear the way (inflammatory cells). Thus, actual strategies to treat spinal injuries aim at providing a permissive environment for regenerating axons and boosting the endogenous potential of axons to regenerate while limiting progression of secondary damage. Here we review some of the strategies currently under consideration to treat spinal injuries.
Collapse
Affiliation(s)
- Stefan Klussmann
- Tumorimmunology Program, Division of Immunogenetics, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
78
|
Kawai C, Prado FM, Nunes GLC, Di Mascio P, Carmona-Ribeiro AM, Nantes IL. pH-Dependent interaction of cytochrome c with mitochondrial mimetic membranes: the role of an array of positively charged amino acids. J Biol Chem 2005; 280:34709-17. [PMID: 16012169 DOI: 10.1074/jbc.m412532200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of cytochrome c (cyt c) with mitochondrial mimetic vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, and heart cardiolipin (PCPECL) was investigated over the 7.4-6.2 pH range by means of turbidimetry and photon correlation spectroscopy. In the presence of cyt c, the decrease of pH induced an increase in vesicle turbidity and mean diameter resulting from vesicle fusion as determined by a rapid decrease in the excimer/monomer ratio of 2-(10-(1-pyrene)-decanoyl)-phosphatidylcholine (PyPC). N-acetylated cyt c and protamine, a positively charged protein, increased vesicle turbidity in a pH-independent manner, whereas albumin did not affect PCPECL vesicle turbidity. pH-dependent turbidity kinetics revealed a role for cyt c-ionizable groups with a pK(a)((app)) of approximately 7.0. The carbethoxylation of these groups by diethylpyrocarbonate prevented cyt c-induced vesicle fusion, although cyt c association to vesicles remained unaffected. Matrix-assisted laser desorption ionization time-of-flight analysis revealed that Lys-22, Lys-27, His-33, and Lys-87 cyt c residues were the main targets for carbethoxylation performed at low pH values (<7.5). In fact, these amino acid residues belong to clusters of positively charged amino acids that lower the pK(a). Thus, at low pH, protonation of these invariant and highly conserved amino acid residues produced a second positively charged region opposite to the Lys-72 and Lys-73 region in the cyt c structure. These two opposing sites allowed two vesicles to be brought together by the same cyt c molecule for fusion. Therefore, a novel pH-dependent site associating cyt c to mitochondrial mimetic membranes was established in this study.
Collapse
Affiliation(s)
- Cintia Kawai
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo CEP 08780-911, Brazil
| | | | | | | | | | | |
Collapse
|
79
|
Lalonde R, Le Pêcheur M, Strazielle C, London J. Exploratory activity and motor coordination in wild-type SOD1/SOD1 transgenic mice. Brain Res Bull 2005; 66:155-62. [PMID: 15982533 DOI: 10.1016/j.brainresbull.2005.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/30/2005] [Accepted: 04/18/2005] [Indexed: 11/30/2022]
Abstract
SOD1 is one of several overexpressed genes in trisomy 21. In order to dissect possible genetic causes of the syndrome, wild-type SOD1/SOD1 transgenic mice were compared to FVB/N non-transgenic controls at 5 months of age in tests of exploratory activity and motor coordination. Wild-type SOD1/SOD1 transgenic mice had fewer stereotyped movements in an open-field and fell sooner from a rotorod than controls. In contrast, wild-type SOD1/SOD1 transgenic mice had fewer falls on a wire suspension test. There was no intergroup difference for ambulatory movements in the open-field, exploration of the elevated plus-maze, emergence from a small compartment, and motor coordination on a stationary beam. These results indicate that homozygous mice expressing human SOD1 are impaired in their ability to adjust their posture in response to a moving surface and make fewer small-amplitude movements without any change in general exploratory activity.
Collapse
Affiliation(s)
- R Lalonde
- Université de Rouen, Faculté de Médecine et de Pharmacie, INSERM U614, Bâtiment de Recherche, 22 bld Gambetta, Salle 1D18, 76183 Rouen Cedex, France.
| | | | | | | |
Collapse
|
80
|
Kaptanoglu E, Caner H, Solaroglu I, Kilinc K. Mexiletine treatment—induced inhibition of caspase-3 activation and improvement of behavioral recovery after spinal cord injury. J Neurosurg Spine 2005; 3:53-6. [PMID: 16122023 DOI: 10.3171/spi.2005.3.1.0053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Object. It has been demonstrated in several experimental studies that apoptosis contributes to cellular damage after spinal cord injury (SCI). During apoptosis dying cells secrete additional mediators of apoptosis such as cytokines and free radicals which have additional toxic effects and exacerbate neuronal death. The aim of this laboratory study was to investigate the effects of mexiletine on caspase-3 activation and functional recovery and compare its post-SCI effectiveness with methylprednisolone.
Methods. The rats were divided into five groups. Animals in the trauma group underwent traumatic interventions after laminectomy. Spinal cord contusion injury was produced using the weight-drop method. Animals in treatment groups received a single dose of methylprednisolone sodium succinate (Group C), single dose of mexiletine (Group D), or vehicle solution (saline; Group E) intraperitoneally immediately after injury. Hind-limb functions were assessed using the inclined plane technique and caspase-3 activity in tissue samples was measured 24 hours after SCI. Traumatic injury was found to increase tissue caspase-3 activity. In both treatment groups the drug prevented an increase in caspase-3 activity. Mexiletine treatment improved early behavioral recovery after SCI.
Conclusions. The results obtained in this study demonstrated that mexiletine treatment inhibits caspase-3 activation and preserve/restore better neuronal function compared with methylprednisolone after experimental SCI.
Collapse
Affiliation(s)
- Erkan Kaptanoglu
- Department of Neurosurgery, Ankara Numune Education and Research Hospital, Hacettepe University, Ankara, Turkey.
| | | | | | | |
Collapse
|
81
|
Knoblach SM, Huang X, VanGelderen J, Calva-Cerqueira D, Faden AI. Selective caspase activation may contribute to neurological dysfunction after experimental spinal cord trauma. J Neurosci Res 2005; 80:369-80. [PMID: 15795935 DOI: 10.1002/jnr.20465] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Caspases are implicated in apoptotic cell death after spinal cord injury (SCI), but the relative contribution of these proteases to the secondary injury process has been only partially described. We examined the activation of caspases 1, 2, 3, 6, 8, and 9 from 1 hr to 7 days after moderate contusion injury induced by a weight-drop method in the rat. Tissue homogenates from a 1-cm segment of cord that contained the site of impact were processed by fluorometric enzymatic activity assays and/or immunoblotting methods. Caspases 3, 8, and 9 were activated from 1 to 72 hr after injury, whereas caspases 1, 2, and 6 were not. Double-label immunohistochemistry utilizing antibodies for CNS cell-type-specific markers and active subunits of caspases 3, 8, or 9 showed that, at 4 and 72 hr after injury, these caspases were primarily activated in neurons and oligodendrocytes, rather than in astrocytes. Active caspase subunits were present in neurons within the necrotic lesion core at 4 hr after injury and in cells more than several segments away at 4 or 72 hr after injury. Intrathecal injection of the pan-caspase inhibitor Boc-Asp (OMe)-fluoromethylketone (Boc-d-fmk) at 15 min after injury improved locomotor function 21 and 28 days later. Treatment with the selective caspase 3 inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (z-DEVD-fmk) improved function at 21 days after injury. These data suggest that caspases 3, 8, and 9 may be differentially activated in white and gray matter after spinal cord trauma and that such activation may contribute to subsequent neurological dysfunction.
Collapse
Affiliation(s)
- S M Knoblach
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | | | | | |
Collapse
|
82
|
Colak A, Karaoğlan A, Barut S, Köktürk S, Akyildiz AI, Taşyürekli M. Neuroprotection and functional recovery after application of the caspase-9 inhibitor z-LEHD-fmk in a rat model of traumatic spinal cord injury. J Neurosurg Spine 2005; 2:327-34. [PMID: 15796358 DOI: 10.3171/spi.2005.2.3.0327] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Apoptosis is considered one of the most significant mechanisms in the pathogenesis of neuronal damage after spinal cord injury (SCI). This form of cell death occurs via mediators known as caspases. The aim of this study was to evaluate the neuroprotective effect of the caspase-9 inhibitor, z-LEHD-fmk, in a rat model of spinal cord trauma. METHODS Fifty-four Wistar albino rats were studied in the following three groups of 18 animals each: sham-operated controls (Group 1); trauma-only controls (Group 2); and trauma combined with z-LEHD-fmk-treated animals (0.8 microM/kg; Group 3). Spinal cord injury was produced at the thoracic level by using the weight-drop technique. Responses to SCI and the efficacy of z-LEHD-fmk treatment were determined on the basis of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining and light and electron microscopy findings in cord tissue at 24 hours and 7 days posttrauma. Six rats from each group were also assessed for functional recovery at 3 and 7 days after SCI. This was conducted using the inclined-plane technique and a modified version of the Tarlov motor grading scale. At 24 hours postinjury, light microscopic examination of Group 2 tissue samples showed hemorrhage, edema, necrosis, polymorphonuclear leukocyte infiltration, and vascular thrombi. Those obtained in Group 3 rats at this stage showed similar features. At 24 hours postinjury, the mean apoptotic cell count in Group 2 was significantly higher than that in Group 3 (90.25 +/- 2.6 and 50.5 +/- 1.9, respectively; p < 0.05). At 7 days postinjury, the corresponding mean apoptotic cell counts were 49 +/- 2.1 and 17.7 +/- 2.6, also a significant difference (p < 0.05). Electron microscopy findings confirmed the occurrence of programmed cell death in different cell types in the spinal cord and showed that z-LEHD-fmk treatment protected neurons, glia, myelin, axons, and intracellular organelles. CONCLUSIONS Examination of the findings in this rat model of SCI revealed that apoptosis occurs not only in neurons and astrocytes but also in oligodendrocytes and microglia. Furthermore, immediate treatment with the caspase-9 inhibitor z-LEHD-fmk blocked apoptosis effectively and was associated with better functional outcome. More in-depth research of the role of programmed cell death in spinal cord trauma and further study of the ways in which caspases are involved in this process may lead to new strategies for treating SCI.
Collapse
Affiliation(s)
- Ahmet Colak
- Neurosurgery and Pathology Clinics, Taksim Education and Research Hospital, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
83
|
Xu W, Chi L, Xu R, Ke Y, Luo C, Cai J, Qiu M, Gozal D, Liu R. Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury. Spinal Cord 2005; 43:204-13. [PMID: 15520836 DOI: 10.1038/sj.sc.3101674] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
STUDY DESIGN Experimental laboratory investigation of the role and pathways of reactive oxygen species (ROS)-mediated motor neuron cell death in a mouse model of compression spinal cord injury. OBJECTIVES To analyze ROS-mediated oxidative stress propagation and signal transduction leading to motor neuron apoptosis induced by compression spinal cord injury. SETTING University of Louisville Health Science Center. METHODS Adult C57BL/6J mice and transgenic mice overexpressing SOD1 were severely lesioned at the lumbar region by compression spinal cord injury approach. Fluorescent oxidation, oxidative response gene expression and oxidative stress damage markers were used to assay spinal cord injury-mediated ROS generation and oxidative stress propagation. Biochemical and immunohistochemical analyses were applied to define the ROS-mediated motor neuron apoptosis resulted from compression spinal cord injury. RESULTS ROS production was shown to be elevated in the lesioned spinal cord as detected by fluorescent oxidation assays. The early oxidative stress response markers, NF-kappaB transcriptional activation and c-Fos gene expression, were significantly increased after spinal cord injury. Lipid peroxidation and nucleic acid oxidation were also elevated in the lesioned spinal cord and motor neurons. Cytochrome c release, caspase-3 activation and apoptotic cell death were increased in the spinal cord motor neuron cells after spinal cord injury. On the other hand, transgenic mice overexpressing SOD1 showed lower levels of steady-state ROS production and reduction of motor neuron apoptosis compared to that of control mice after spinal cord injury. CONCLUSION These data together provide direct evidence to demonstrate that the increased production of ROS is an early and likely causal event that contributes to the spinal cord motor neuron death following spinal cord injury. Thus, antioxidants/antioxidant enzyme intervention combined with other therapy may provide an effective approach to alleviate spinal cord injury-induced motor neuron damage and motor dysfunction.
Collapse
Affiliation(s)
- W Xu
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Warner DS, Sheng H, Batinić-Haberle I. Oxidants, antioxidants and the ischemic brain. ACTA ACUST UNITED AC 2004; 207:3221-31. [PMID: 15299043 DOI: 10.1242/jeb.01022] [Citation(s) in RCA: 415] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite numerous defenses, the brain is vulnerable to oxidative stress resulting from ischemia/reperfusion. Excitotoxic stimulation of superoxide and nitric oxide production leads to formation of highly reactive products, including peroxynitrite and hydroxyl radical, which are capable of damaging lipids, proteins and DNA. Use of transgenic mutants and selective pharmacological antioxidants has greatly increased understanding of the complex interplay between substrate deprivation and ischemic outcome. Recent evidence that reactive oxygen/nitrogen species play a critical role in initiation of apoptosis, mitochondrial permeability transition and poly(ADP-ribose) polymerase activation provides additional mechanisms for oxidative damage and new targets for post-ischemic therapeutic intervention. Because oxidative stress involves multiple post-ischemic cascades leading to cell death, effective prevention/treatment of ischemic brain injury is likely to require intervention at multiple effect sites.
Collapse
Affiliation(s)
- David S Warner
- Department of Anesthesiology, The Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
85
|
Abstract
Cumulative evidence suggests that apoptosis plays a pivotal role in neuronal death after cerebral ischemia in various experimental animal models. The time-dependent molecular and biochemical sequelae that lead to apoptotic cell death after the interruption of cerebral blood flow have been established. Many neuroprotective agents that target cell death pathways have been failures, and alternative strategies need to be considered. One such strategy is to target the neuronal survival signaling pathway, which involves the phosphatidylinositol 3-kinase (PI3-K)/Akt (protein kinase B) pathway. It has been demonstrated that PI3-K/Akt and downstream phosphorylated Bad and proline-rich Akt substrate survival signaling cascades are upregulated in surviving neurons in the ischemic brain that overexpresses copper-zinc superoxide dismutase activity. These studies provide an impetus for novel therapeutic targets in neuroprotective strategies in stroke.
Collapse
Affiliation(s)
- Pak H Chan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Calif 94305-5487, USA.
| |
Collapse
|
86
|
Lalonde R, Dumont M, Paly E, London J, Strazielle C. Characterization of hemizygous SOD1/wild-type transgenic mice with the SHIRPA primary screen and tests of sensorimotor function and anxiety. Brain Res Bull 2004; 64:251-8. [PMID: 15464862 DOI: 10.1016/j.brainresbull.2004.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 06/21/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
SOD1 is one of several overexpressed genes in Down's syndrome. In order to dissect genetic causes of the syndrome, hemizygous human wild-type SOD1 transgenic mice were compared to FVB/N non-transgenic controls at 3 months of age in the SHIRPA primary screen of neurologic function as well as in tests of motor activity and coordination. The responsiveness of SOD1/wt transgenic mice to visual and somatosensory stimuli was reduced in placing, pinna, corneal, and toe-pinch tests. In addition, SOD1/wt transgenic mice crossed fewer segments on a stationary beam. On the contrary, there was no intergroup difference for motor activity and anxiety in open-field and emergence tests and for latencies before falling on the stationary beam, coat-hanger, and rotorod. These results indicate mild deficits in sensorimotor responsiveness in a mouse model expressing human SOD1 and that the overexpressed gene may be responsible for some Down symptoms.
Collapse
Affiliation(s)
- R Lalonde
- Faculté de Médecine et de Pharmacie, Université de Rouen, INSERM U614, Bâtiment de Recherche, 22 bld Gambetta, Salle 1D18, 76183 Rouen, Cedex, France.
| | | | | | | | | |
Collapse
|
87
|
Sheng H, Spasojevic I, Warner DS, Batinic-Haberle I. Mouse spinal cord compression injury is ameliorated by intrathecal cationic manganese(III) porphyrin catalytic antioxidant therapy. Neurosci Lett 2004; 366:220-5. [PMID: 15276251 DOI: 10.1016/j.neulet.2004.05.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/15/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
This study evaluated the effects of the cationic manganese(III) tetrakis(N,N'-diethylimidazolium-2-yl)porphyrin catalytic antioxidant Mn(III)TDE-2-ImP5+ (AEOL 10150) on outcome from spinal cord compression (SCC) in the mouse. C57BL/6J mice were subjected to 60 min thoracic SCC after discontinuation of halothane anesthesia. In Experiment 1, mice were given intravenous Mn(III)TDE-2-ImP5+ (0.5 mg/kg bolus followed by 1 mg kg(-1) h(-1) for 24 h), methylprednisolone (30 mg/kg bolus followed by 5.4 mg kg(-1) h(-1) for 24 h), or vehicle (n = 25 per group). In Experiment 2, mice were given intrathecal Mn(III)TDE-2-ImP5+ (2.5 or 5.0 microg/kg) or vehicle (n = 18 per group). In both experiments, treatment began 5 min post-SCC onset. Rotarod performance was measured on post-SCC days 3, 7, 14, and 21. On post-SCC day 21, the spinal cord was histologically examined and a total damage score was calculated. Neither intravenous Mn(III)TDE-2-ImP5+ nor methylprednisolone altered rotarod performance (accelerated rate P = 0.11, fixed rate P = 0.11) or mean +/- S.D. total damage score (Mn(III)TDE-2-ImP5+ = 21 +/- 9, methylprednisolone = 24 +/- 8, vehicle = 22 +/- 10; P = 0.47; shams = 0). Intrathecal Mn(III)TDE-2-ImP5+ (both 2.5 and 5.0 microg) given at SCC-onset improved rotarod performance (P = 0.05) and total damage score (2.5 microg = 19 +/- 10, P = 0.04; 5.0 microg =19 +/- 8, P = 0.03) versus vehicle (26 +/- 10). These studies demonstrate sustained benefit from manganese(III) porphyrin catalytic antioxidant therapy after SCC. However, efficacy was dependent upon route of administration suggesting that bioavailability is critical in defining efficacy.
Collapse
Affiliation(s)
- Huaxin Sheng
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
88
|
Ravikumar R, Flora G, Geddes JW, Hennig B, Toborek M. Nicotine attenuates oxidative stress, activation of redox-regulated transcription factors and induction of proinflammatory genes in compressive spinal cord trauma. ACTA ACUST UNITED AC 2004; 124:188-98. [PMID: 15135227 DOI: 10.1016/j.molbrainres.2004.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2004] [Indexed: 10/26/2022]
Abstract
Pathophysiology of neurodegeneration following spinal cord injury (SCI) involves alterations of cellular redox status, activation of transcription factors and induction of proinflammatory genes. In addition, recent evidence indicates that nicotine can induce potent neuroprotective effects. To study the influence of nicotine on the redox signaling pathways in relationship to SCI, moderate contusions of spinal cords at the level of T-10 were induced in rats treated or untreated with nicotine. Cellular oxidative stress, DNA binding activity of redox-responsive transcription factors (AP-1, NF-kappaB and CREB) as well as mRNA levels of inflammatory genes (MCP-1 and TNF-alpha) were determined in the thoracic and lumbar regions of the spinal cords. Nicotine was administrated 2 h after the SCI in a single i.p. injection at the dose of 0.35, 3.5 or 7 mg/kg, and rats were sacrificed 3 h following such an injection. Spinal cord trauma was associated with a significant increase in oxidative stress, and activation of NF-kappaB, AP-1 and CREB, as well as overexpression of MCP-1 and TNF-alpha in both the thoracic and lumbar regions. Nicotine administration following the SCI markedly attenuated, especially in the lumbar region, these oxidative and proinflammatory responses. These protective effects of nicotine were fully reversed by inhibition of neuronal nicotinic receptors by mecamylamine. The present results indicate that nicotine administration can attenuate the oxidative injury to spinal cords and suggest that neuronal nicotinic receptors can be attractive targets for neuroprotective therapy.
Collapse
Affiliation(s)
- R Ravikumar
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
89
|
Rosenzweig ES, McDonald JW. Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr Opin Neurol 2004; 17:121-31. [PMID: 15021237 DOI: 10.1097/00019052-200404000-00007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW In this review, we have documented some current research trends in rodent models of spinal cord injury. We have also catalogued the treatments used in studies published between October 2002 and November 2003, with special attention given to studies in which treatments were delayed for at least 4 days after injury. RECENT FINDINGS Most spinal cord injury studies are performed with one of three general injury models: transection, compression, or contusion. Although most treatments are begun immediately after injury, a growing number of studies have used delayed interventions. Mice and the genetic tools they offer are gaining in popularity. Some researchers are setting their sights beyond locomotion, to issues more pressing for people with spinal cord injury (especially bladder function and pain). SUMMARY Delayed treatment protocols may extend the window of opportunity for treatment of spinal cord injury, whereas continued progress in the prevention of secondary cell death will reduce the severity of new cases. The use of mice will hopefully accelerate progress towards useful regeneration in humans. Researchers must improve cross-study comparability to allow balanced decisions about potentially useful treatments.
Collapse
Affiliation(s)
- Ephron S Rosenzweig
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
| | | |
Collapse
|
90
|
Kurz B, Lemke A, Kehn M, Domm C, Patwari P, Frank EH, Grodzinsky AJ, Schünke M. Influence of tissue maturation and antioxidants on the apoptotic response of articular cartilage after injurious compression. ACTA ACUST UNITED AC 2004; 50:123-30. [PMID: 14730608 DOI: 10.1002/art.11438] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To study the influence of tissue maturation and antioxidants on apoptosis in bovine articular cartilage induced by injurious compression. METHODS Bovine articular cartilage disks were obtained from the femoropatellar groove of animals ages 0.5-23 months and placed in culture. Cartilage disks were preincubated overnight with the cell-permeable superoxide dismutase (SOD) mimetic Mn(III) porphyrin (0-12.5 microM) or alpha-tocopherol (0-50 microM) and then injured by a single unconfined compression to a final strain of 50% at a velocity of 1 mm/second. After 4 days of additional incubation, the disks were fixed and embedded for light and electron microscopy. Apoptotic cells were quantified morphologically by the appearance of nuclear blebbing on light microscopy. Biosynthetic activity was demonstrated by incorporation of radiolabeled proline. The antioxidative action of the SOD mimetic was confirmed by histologic examination of cartilage after incubation with nitroblue tetrazolium. RESULTS Injurious compression induced significantly more apoptosis in cartilage disks from newborn calves (22% of cells) than in cartilage from more mature cows (2-6%). In cartilage from 22-month-old animals, the SOD mimetic reduced the percentage of apoptotic cells induced by injury in a dose-dependent manner (complete inhibition with 2.5 microM), while alpha-tocopherol had no effect. Neither antioxidant altered protein biosynthesis or cellular ultrastructure. CONCLUSION Our data suggest that the apoptotic response of articular cartilage to mechanical injury is affected by maturation and is mediated in part by reactive oxygen species. The antioxidative status of the tissue might be important for the prevention of mechanically induced cell death in articular cartilage.
Collapse
Affiliation(s)
- Bodo Kurz
- Anatomisches Institut der Christian-Albrechts-Universität, Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, Narasimhan P, Maier CM, Chan PH. Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 2004; 1:17-25. [PMID: 15717004 PMCID: PMC534909 DOI: 10.1602/neurorx.1.1.17] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cumulative evidence suggests that apoptosis plays a pivotal role in cell death in vitro after hypoxia. Apoptotic cell death pathways have also been implicated in ischemic cerebral injury in in vivo ischemia models. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides a substrate for numerous enzymatic oxidation reactions. Oxygen radicals damage cellular lipids, proteins and nucleic acids, and initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways may provide novel therapeutic strategies in clinical stroke.
Collapse
Affiliation(s)
- Taku Sugawara
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5487, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Chen Q, Crosby M, Almasan A. Redox Regulation of Apoptosis before and after Cytochrome C Release. KOREAN JOURNAL OF BIOLOGICAL SCIENCES 2003; 7:1-9. [PMID: 16467897 PMCID: PMC1343461 DOI: 10.1080/12265071.2003.9647675] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Programmed cell death, or apoptosis, is one of the most studied areas of modern biology. Apoptosis is a genetically regulated process, which plays an essential role in the development and homeostasis of higher organisms. Mitochondria, known to play a central role in regulating cellular metabolism, was found to be critical for regulating apoptosis induced under both physiological and pathological conditions. Mitochondria are a major source of reactive oxygen species (ROS) but they can also serve as its target during the apoptosis process. Release of apoptogenic factors from mitochondria, the best known of which is cytochrome c, leads to assembly of a large apoptosis-inducing complex called the apoptosome. Cysteine proteases (called caspases) are recruited to this complex and, following their activation by proteolytic cleavage, activate other caspases, which in turn target for specific cleavage a large number of cellular proteins. The redox regulation of apoptosis during and after cytochrome c release is an area of intense investigation. This review summarizes what is known about the biological role of ROS and its targets in apoptosis with an emphasis on its intricate connections to mitochondria and the basic components of cell death.
Collapse
Affiliation(s)
- Quan Chen
- *To whom correspondence should be addressed, Tel: 86-10-6252-9232, Fax: +6256-5689, E-mail:
| | | | | |
Collapse
|