51
|
Kim YA, Oh SH, Lee GH, Hoa PT, Jin SW, Chung YC, Lee YC, Jeong HG. Platycodon grandiflorum-derived saponin attenuates the eccentric exercise-induced muscle damage. Food Chem Toxicol 2018; 112:150-156. [DOI: 10.1016/j.fct.2017.12.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/11/2023]
|
52
|
Kataoka T, Etani R, Kanzaki N, Kobashi Y, Yunoki Y, Ishida T, Sakoda A, Ishimori Y, Yamaoka K. Radon inhalation induces manganese-superoxide dismutase in mouse brain via nuclear factor-κB activation. JOURNAL OF RADIATION RESEARCH 2017; 58:887-893. [PMID: 28992350 PMCID: PMC5710606 DOI: 10.1093/jrr/rrx048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/19/2017] [Indexed: 06/01/2023]
Abstract
Although radon inhalation increases superoxide dismutase (SOD) activities in mouse organs, the mechanisms and pathways have not yet been fully clarified. The aim of this study was to determine the details of SOD activation in mouse brain tissue following the inhalation of radon at concentrations of 500 or 2000 Bq/m3 for 24 h. After inhalation, brains were removed quickly for analysis. Radon inhalation increased the manganese (Mn)-SOD level and mitochondrial SOD activity. However, the differences were not significant. There were no changes in the Cu/Zn-SOD level or cytosolic SOD activity. Radon inhalation increased the brain nuclear factor (NF)-κB content, which regulates the induction of Mn-SOD, in the nuclear and cytosolic compartments. The level of inhibitor of nuclear factor κB kinase subunit β (IKK-β), which activates NF-κB, was slightly increased by radon inhalation. The expression of cytoplasmic ataxia-telangiectasia mutated kinase in mice inhaling radon at 500 Bq/m3 was 50% higher than in control mice. In addition, NF-κB-inducing kinase was slightly increased after inhaling radon at 2000 Bq/m3. These findings suggest that radon inhalation might induce Mn-SOD protein via NF-κB activation that occurs in response to DNA damage and oxidative stress.
Collapse
Affiliation(s)
- Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Reo Etani
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
- Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Oita City, Oita 870-1201Japan
| | - Norie Kanzaki
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Yusuke Kobashi
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Yuto Yunoki
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Tsuyoshi Ishida
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Akihiro Sakoda
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Yuu Ishimori
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Kiyonori Yamaoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
53
|
Oghbaei H, Ahmadi Asl N, Sheikhzadeh F. Can regular moderate exercise lead to changes in miRNA-146a and its adapter proteins in the kidney of streptozotocin-induced diabetic male rats? Endocr Regul 2017; 51:145-152. [DOI: 10.1515/enr-2017-0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Objective. The aim of this study was to assess whether microRNA-146a and its adapter proteins TNF receptor associated factor6 (TRAF6) and interleukin-1 receptor-associated kinase-1 (IRAK1) may be changed in the kidney of streptozotocin-induced diabetic rats, following regular moderate exercise.
Methods. Forty adult male Wistar rats were allocated randomly into four groups (n=10), including sedentary control (SC), sedentary diabetic (SD), healthy sixty-day exercise (H60E), and diabetic sixty-day exercise (D60E) groups. Diabetes was induced by an intraperitoneal injection of 60 mg/kg streptozotocin. After 48 h, blood glucose levels >250 mg/dl was included to diabetic rats. After 2 days of diabetes induction, the exercise protocol began. Animals were exposed to 5 days of consecutive treadmill exercise for 60 min/day with the 22 m/min speed for 60 days. The kidneys of the rats were removed and microRNA was extracted from them using the miRCURYTM RNA isolation kit.
Results. In diabetic rats, statistical analysis revealed a significant decrease in miR-146a expression, non-significant decrease in IRAK1 mRNA expression, and non-significant increase in TRAF6 and NF-kB mRNA expression compared to the SC group. Exercise led to a non-significant increase in the expression of miR-146a and NF-kB mRNA in the kidneys of the diabetic group as compared to the SD group, significant increase in TRAF6 and IRAK1 mRNA expression compared to the H60E group, and significant increase in TRAF6 mRNA expression compared to the SD group.
Conclusion. The present data indicate that exercise might be able to help in the prevention in the diabetic nephropathy development.
Collapse
Affiliation(s)
- H Oghbaei
- Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran (Islamic Republic of)
| | - N Ahmadi Asl
- Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran (Islamic Republic of)
| | - F Sheikhzadeh
- Department of Animal Biology, Faculty of Natural Sciences , University of Tabriz , Tabriz , Iran (Islamic Republic of)
| |
Collapse
|
54
|
Park JW, Song KD, Kim NY, Choi JY, Hong SA, Oh JH, Kim SW, Lee JH, Park TS, Kim JK, Kim JG, Cho BW. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1471-1477. [PMID: 28854781 PMCID: PMC5582333 DOI: 10.5713/ajas.17.0409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/24/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase (AXL) gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form) in equine skeletal muscle to gain insight(s) into the role of each alternative transcript during exercise. METHODS We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR), and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR). RESULTS Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D) prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3) and immunoglobin (Ig) domain was different between two alternative isoforms. CONCLUSION It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an NF-κB signaling pathway. Further study is necessary to uncover biological function(s) and significance of the alternative splicing isoforms in race horse skeletal muscle.
Collapse
Affiliation(s)
- Jeong-Woong Park
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National, University, Jeonju 54896, Korea
| | - Nam Young Kim
- National Institute of Animal Science, Rural Development Administration, Jeju 63242, Korea
| | - Jae-Young Choi
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| | - Seul A Hong
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| | - Jin Hyeog Oh
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| | - Si Won Kim
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jeong Hyo Lee
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jin-Kyoo Kim
- Department of Microbiology, College of Natural Sciences, Changwon National University, Changwon 51140, Korea
| | - Jong Geun Kim
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| |
Collapse
|
55
|
Kim M, Chun J, Jung HA, Choi JS, Kim YS. Capillarisin attenuates exercise-induced muscle damage through MAPK and NF-κB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 32:30-36. [PMID: 28732805 DOI: 10.1016/j.phymed.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 02/23/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Intense exercise has the potential to increase oxidative stress and cause muscle damage. Mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) are two major regulators of gene transcription in response to oxidative stress in the skeletal muscle. Pure capillarisin (CAP) isolated from Artemisia capillaris Thunberg is known to have antioxidant and anti-inflammatory effects. HYPOTHESIS/PURPOSE We hypothesized CAP to exert antioxidant activity against exercise-induced oxidative stress and suppress acute inflammatory response. We aimed to investigate skeletal muscle recovery after intense exercise with or without CAP administration. STUDY DESIGN Eccentric exercise was conducted to induce muscle damage (C57BL6 mice, 13m/min for 60min downhill running). Mice were divided into four groups (n=6): the rested control, exercised, and exercised with CAP treatments (20mg/kg and 80mg/kg, ip injection 24h prior to exercise) groups. METHOD After the intense exercise, mice were sacrificed immediately, and after 24h the gastrocnemius muscles and blood plasma were collected for further study. The DCFH-DA and TBARS assays were conducted for anti-oxidative capacity. Muscle damage markers, creatinine phosphate kinase (CPK) and lactate dehydrogenase (LDH) were investigated at plasma level. Muscle data were examined with H&E staining and microscopy. MAPK and NF-κB pathway, chemokine and cytokine productions were confirmed by western blotting and RT-PCR. RESULTS From DCFH-DA and TBARS assays, exercise increased the level of ROS production, but these changes were suppressed by CAP treatment. Exercise induced muscle damage by raising the levels of soluble muscle enzymes, such as CPK and LDH. However, this result was improved in CAP-treated groups at plasma level. Exercise activated MAPK (ERK 1/2 and JNK but not p38) and NF-κB (nuclear p50 and p65, and cytosolic p-IκBα) subunits at protein level but CAP attenuated these increase in a dose dependent manner. At the mRNA level, the chemokines CINC-1 and MCP-1, and cytokine IL-6 in gastrocnemius muscle were increased by exercise, whereas CAP suppressed these increase. CONCLUSION Overall, our results indicate that CAP, as a single compound, can attenuate muscle damage by exerting antioxidant and anti-inflammatory effects. Thus, CAP is a potential candidate for the muscle protective agent in the future.
Collapse
Affiliation(s)
- Minjee Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaemoo Chun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae Sue Choi
- Department of Food Science & Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
56
|
Navas-Enamorado I, Bernier M, Brea-Calvo G, de Cabo R. Influence of anaerobic and aerobic exercise on age-related pathways in skeletal muscle. Ageing Res Rev 2017; 37:39-52. [PMID: 28487241 PMCID: PMC5549001 DOI: 10.1016/j.arr.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Ignacio Navas-Enamorado
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla 41013, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
57
|
Couto M, Barbosa C, Silva D, Rudnitskaya A, Delgado L, Moreira A, Rocha SM. Oxidative stress in asthmatic and non-asthmatic adolescent swimmers-A breathomics approach. Pediatr Allergy Immunol 2017; 28:452-457. [PMID: 28452071 DOI: 10.1111/pai.12729] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2017] [Indexed: 02/04/2023]
Abstract
UNLABELLED We hypothesize that oxidative stress induced by trichloramine exposure during swimming could be related to etiopathogenesis of asthma among elite swimmers. AIM To investigate the effect of a swimming training session on oxidative stress markers of asthmatic compared to non-asthmatic elite swimmers using exhaled breath (EB) metabolomics. METHODS Elite swimmers annually screened in our department (n=27) were invited and those who agreed to participate (n=20, of which 9 with asthma) had EB collected (Tedlar® bags) before and after a swimming training session. SPME fiber (DVB/CAR/PDMS) was used to extract EB metabolites followed by a multidimensional gas chromatography analysis (GC×GC-ToFMS). Dataset comprises eight metabolites end products of lipid peroxidation: five aliphatic alkanes (nonane, 2,2,4,6,6-pentamethylheptane, decane, dodecane, and tetradecane) and three aldehydes (nonanal, decanal, and dodecanal). To assess exercise impact on lipid peroxidation markers, data were analyzed using principle component analysis (PCA), which was run on the original data set and on the data set constructed using differences in the metabolite total areas before and after exercise session. RESULTS Heatmap representation revealed that metabolites content decreased after exercise, both for control and asthma groups; however, the greater decrease was observed for controls. Asthmatics and controls did not form separated clusters; however, control swimmers demonstrated a more varied response to the exercise being dispersed along all score plot. CONCLUSION In well-trained athletes, swimming is associated with a decrease in oxidative stress markers independently of the presence of asthma, although a more pronounced decrease was seen in controls.
Collapse
Affiliation(s)
- Mariana Couto
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Immunoallergology, Hospital & Instituto CUF Porto, Porto, Portugal.,CINTESIS, University of Porto, Porto, Portugal
| | - Corália Barbosa
- Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| | - Diana Silva
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Imunoalergologia, Centro Hospitalar São João, EPE, Porto, Portugal
| | - Alisa Rudnitskaya
- Department of Chemistry & CESAM, University of Aveiro, Aveiro, Portugal
| | - Luís Delgado
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS, University of Porto, Porto, Portugal.,Imunoalergologia, Centro Hospitalar São João, EPE, Porto, Portugal
| | - André Moreira
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Imunoalergologia, Centro Hospitalar São João, EPE, Porto, Portugal.,EPIUnit Institute of Public Health, University of Porto, Porto, Portugal
| | - Sílvia M Rocha
- Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
58
|
The role of attenuated redox and heat shock protein responses in the age-related decline in skeletal muscle mass and function. Essays Biochem 2017; 61:339-348. [PMID: 28698308 DOI: 10.1042/ebc20160088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/29/2017] [Accepted: 05/11/2017] [Indexed: 11/17/2022]
Abstract
The loss of muscle mass and weakness that accompanies ageing is a major contributor to physical frailty and loss of independence in older people. A failure of muscle to adapt to physiological stresses such as exercise is seen with ageing and disruption of redox regulated processes and stress responses are recognized to play important roles in theses deficits. The role of redox regulation in control of specific stress responses, including the generation of heat shock proteins (HSPs) by muscle appears to be particularly important and affected by ageing. Transgenic and knockout studies in experimental models in which redox and HSP responses were modified have demonstrated the importance of these processes in maintenance of muscle mass and function during ageing. New data also indicate the potential of these processes to interact with and influence ageing in other tissues. In particular the roles of redox signalling and HSPs in regulation of inflammatory pathways appears important in their impact on organismal ageing. This review will briefly indicate the importance of this area and demonstrate how an understanding of the manner in which redox and stress responses interact and how they may be controlled offers considerable promise as an approach to ameliorate the major functional consequences of ageing of skeletal muscle (and potentially other tissues) in man.
Collapse
|
59
|
Turk BR, Theisen BE, Nemeth CL, Marx JS, Shi X, Rosen M, Jones RO, Moser AB, Watkins PA, Raymond GV, Tiffany C, Fatemi A. Antioxidant Capacity and Superoxide Dismutase Activity in Adrenoleukodystrophy. JAMA Neurol 2017; 74:519-524. [PMID: 28288261 DOI: 10.1001/jamaneurol.2016.5715] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance X-linked adrenoleukodystrophy (ALD) may switch phenotype to the fatal cerebral form (ie, cerebral ALD [cALD]), the cause of which is unknown. Determining differences in antioxidant capacity and superoxide dismutase (SOD) levels between phenotypes may allow for the generation of a clinical biomarker for predicting the onset of cALD, as well as initiating a more timely lifesaving therapy. Objective To identify variations in the levels of antioxidant capacity and SOD activity between ALD phenotypes in patients with cALD or adrenomyeloneuropathy (AMN), heterozygote female carriers, and healthy controls and, in addition, correlate antioxidant levels with clinical outcome scores to determine a possible predictive value. Design, Setting, and Participants Samples of monocytes and blood plasma were prospectively collected from healthy controls, heterozygote female carriers, and patients with AMN or cALD. We are counting each patient as 1 sample in our study. Because adrenoleukodystrophy is an X-linked disease, the affected group populations of cALD and AMN are all male. The heterozygote carriers are all female. The samples were assayed for total antioxidant capacity and SOD activity. The data were collected in an academic hospital setting. Eligibility criteria included patients who received a diagnosis of ALD and heterozygote female carriers, both of which groups were compared with age-matched controls. The prospective samples (n = 30) were collected between January 2015 to January 2016, and existing samples were collected from tissue storage banks at the Kennedy Krieger Institute (n = 30). The analyses were performed during the first 3 months of 2016. Main Outcome and Measures Commercially available total antioxidant capacity and SOD assays were performed on samples of monocytes and blood plasma and correlated with magnetic resonance imaging severity score. Results A reduction in antioxidant capacity was shown between the healthy controls (0.225 mmol trolox equivalent) and heterozygote carriers (0.181 mmol trolox equivalent), and significant reductions were seen between healthy controls and patients with AMN (0.102 mmol trolox equivalent; P < .01), as well as healthy controls and patients with cALD (0.042 mmol trolox equivalent; P < .01). Superoxide dismutase activity in human blood plasma mirrored these reductions between prospectively collected samples from healthy controls (2.66 units/mg protein) and samples from heterozygote female carriers (1.91 units/mg protein), patients with AMN (1.39 units/mg protein; P = .01), and patients with cALD (0.8 units/mg protein; P < .01). Further analysis of SOD activity in biobank samples showed significant reductions between patients with AMN (0.89 units/mg protein) and patients with cALD (0.18 units/mg protein) (P = .03). Plasma SOD levels from patients with cALD demonstrated an inverse correlation to brain magnetic resonance imaging severity score (R2 = 0.75, P < .002). Longitudinal plasma SOD samples from the same patients (n = 4) showed decreased activity prior to and at the time of cerebral diagnosis over a period of 13 to 42 months (mean period, 24 months). Conclusions and Relevance Plasma SOD may serve as a potential biomarker for cerebral disease in ALD following future prospective studies.
Collapse
Affiliation(s)
- Bela R Turk
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Benjamin E Theisen
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christina L Nemeth
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Joel S Marx
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Xiaohai Shi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Melissa Rosen
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Richard O Jones
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ann B Moser
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Paul A Watkins
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | - Carol Tiffany
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
60
|
Zembron-Lacny A, Ziemann E, Zurek P, Hübner-Wozniak E. Heat Shock Protein 27 Response to Wrestling Training in Relation to the Muscle Damage and Inflammation. J Strength Cond Res 2017; 31:1221-1228. [PMID: 26466130 DOI: 10.1519/jsc.0000000000001236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Zembron-Lacny, A, Ziemann, E, Zurek, P, and Hübner-Wozniak, E. Heat shock protein 27 response to wrestling training in relation to the muscle damage and inflammation. J Strength Cond Res 31(5): 1221-1228, 2017-One of the unique features of an exercise is that it leads to a simultaneous increase of antagonistic mediators. On the one hand, exercise elevates catabolic proinflammatory cytokines. On the other hand, exercise stimulates anabolic components such as heat shock proteins (HSPs), which protect against stressors. Therefore, the study was designed to evaluate the blood level of HSP27 and its relationship with muscle damage and inflammatory mediators in elite Greco-Roman wrestlers during training periods differed in type and intensity exercise. Ten male wrestlers (21.2 ± 2.1 years) were observed during the conditioning camps at preseason (January), at the beginning of tournament season (April), and during tournament season (June). Twelve healthy and untrained men (19.2 ± 0.4 years) were considered a reference group. The serum levels of inflammatory mediators and HSP27 in wrestlers were significantly different from nonathletes. In wrestlers, reactive oxygen and nitrogen species H2O2, NO, and 3-nitro, cytokines interleukin-1β and tumor necrosis factor α, and also HSP27 reached the highest levels at preseason (January) or tournament season (June) when the special training predominated (>30% training load) over directed training (approximately 10% training load). Creatine kinase activity also demonstrated the highest level during the same training periods (January 2,315 ± 806 IU·L; June 3,139 ± 975 IU·L). The regression analysis revealed the relationship of HSP27 level with muscle damage (rs = -0.613, p < 0.001), and also with inflammatory mediators. The results of this study show that wrestling training modulates HSP27 level, which is significantly related with skeletal muscle damage and inflammatory response, and suggest that measure of HSP27 level can be useful diagnostic tool in biochemical assessment of athletes to increase their performance.
Collapse
Affiliation(s)
- Agnieszka Zembron-Lacny
- 1Department of Applied and Clinical Physiology, University of Zielona Gora, Poland; 2Department of Physiology, Academy of Physical Education and Sport Gdansk, Poland; 3Department of Sport Theory, Faculty of Physical Culture Gorzow Wielkopolski, University School of Physical Education Poznan, Poland; and 4Department of Biochemistry, Faculty of Physical Education, University of Physical Education Warsaw, Poland
| | | | | | | |
Collapse
|
61
|
The effect of exercise-intensity on skeletal muscle stress kinase and insulin protein signaling. PLoS One 2017; 12:e0171613. [PMID: 28182793 PMCID: PMC5300197 DOI: 10.1371/journal.pone.0171613] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/23/2017] [Indexed: 12/30/2022] Open
Abstract
Background Stress and mitogen activated protein kinase (SAPK) signaling play an important role in glucose homeostasis and the physiological adaptation to exercise. However, the effects of acute high-intensity interval exercise (HIIE) and sprint interval exercise (SIE) on activation of these signaling pathways are unclear. Methods Eight young and recreationally active adults performed a single cycling session of HIIE (5 x 4 minutes at 75% Wmax), SIE (4 x 30 second Wingate sprints), and continuous moderate-intensity exercise work-matched to HIIE (CMIE; 30 minutes at 50% of Wmax), separated by a minimum of 1 week. Skeletal muscle SAPK and insulin protein signaling were measured immediately, and 3 hours after exercise. Results SIE elicited greater skeletal muscle NF-κB p65 phosphorylation immediately after exercise (SIE: ~40%; HIIE: ~4%; CMIE; ~13%; p < 0.05) compared to HIIE and CMIE. AS160Ser588 phosphorylation decreased immediately after HIIE (~-27%; p < 0.05), and decreased to the greatest extent immediately after SIE (~-60%; p < 0.05). Skeletal muscle JNK (~42%; p < 0.05) and p38 MAPK (~171%; p < 0.05) phosphorylation increased, and skeletal muscle AktSer473 phosphorylation (~-32%; p < 0.05) decreased, to a similar extent immediately after all exercise protocols. AS160Ser588 phosphorylation was similar to baseline three hours after SIE (~-12%; p > 0.05), remained lower 3 hours after HIIE (~-34%; p < 0.05), and decreased 3 hours after CMIE (~-33%; p < 0.05). Conclusion Despite consisting of less total work than CMIE and HIIE, SIE proved to be an effective stimulus for the activation of stress protein kinase signaling pathways linked to exercise-mediated adaptation of skeletal muscle. Furthermore, post-exercise AS160Ser588 phosphorylation decreased in an exercise-intensity and post-exercise time-course dependent manner.
Collapse
|
62
|
Jackson MJ, McArdle A. Role of reactive oxygen species in age-related neuromuscular deficits. J Physiol 2016; 594:1979-88. [PMID: 26870901 DOI: 10.1113/jp270564] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 01/06/2016] [Indexed: 01/06/2023] Open
Abstract
Although it is now clear that reactive oxygen species (ROS) are not the key determinants of longevity, a number of studies have highlighted the key role that these species play in age-related diseases and more generally in determining individual health span. Age-related loss of skeletal muscle mass and function is a key contributor to physical frailty in older individuals and our current understanding of the key areas in which ROS contribute to age-related deficits in muscle is through defective redox signalling and key roles in maintenance of neuromuscular integrity. This topical review will describe how ROS stimulate adaptations to contractile activity in muscle that include up-regulation of short-term stress responses, an increase in mitochondrial biogenesis and an increase in some catabolic processes. These adaptations occur through stimulation of redox-regulated processes that lead to the activation of transcription factors such as NF-κB, AP-1 and HSF1 which mediate changes in gene expression. They are attenuated during ageing and this appears to occur through an age-related increase in mitochondrial hydrogen peroxide production. The potential for redox-mediated cross-talk between motor neurons and muscle is also described to illustrate how ROS released from muscle fibres during exercise may help maintain the integrity of axons and how the degenerative changes in neuromuscular structure that occur with ageing may contribute to mitochondrial ROS generation in skeletal muscle fibres.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA, UK
| | - Anne McArdle
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA, UK
| |
Collapse
|
63
|
Gomez-Cabrera MC, Viña J, Ji LL. Role of Redox Signaling and Inflammation in Skeletal Muscle Adaptations to Training. Antioxidants (Basel) 2016; 5:E48. [PMID: 27983587 PMCID: PMC5187546 DOI: 10.3390/antiox5040048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/30/2016] [Accepted: 12/08/2016] [Indexed: 12/22/2022] Open
Abstract
The inflammatory response to exercise-induced muscle damage has been extensively described. Exercise has important modulatory effects on immune function. These effects are mediated by diverse factors including pro-inflammatory cytokines, classical stress hormones, and hemodynamic effects leading to cell redistribution. As has been reported regarding oxidative stress, inflammation can have both detrimental and beneficial effects in skeletal muscle. In this review we will address the role of inflammation on protein metabolism in skeletal muscle. Specifically, we will review studies showing that treatment with cyclooxygenase-inhibiting drugs modulate the protein synthesis response to one bout of resistance exercise and to training. Understanding how these drugs work is important for the millions of individuals worldwide that consume them regularly. We will also discuss the importance of reactive oxygen species and inflammatory cytokines in muscle adaptations to exercise and the Janus faced of the use of antioxidant and anti-inflammatory drugs by athletes for optimizing their performance, especially during the periods in which muscle hypertrophy is expected.
Collapse
Affiliation(s)
- Maria Carmen Gomez-Cabrera
- Department of Physiology, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, University of Valencia, València 46010, Spain.
| | - Jose Viña
- Department of Physiology, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, University of Valencia, València 46010, Spain.
| | - Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA.
| |
Collapse
|
64
|
Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2840643. [PMID: 27974950 PMCID: PMC5126438 DOI: 10.1155/2016/2840643] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC) to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20 mg/kg/day) immediately after a muscle-damaging exercise protocol (300 eccentric contractions) and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules) was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA+ macrophages, and 11B+ macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation.
Collapse
|
65
|
Ji LL, Kang C, Zhang Y. Exercise-induced hormesis and skeletal muscle health. Free Radic Biol Med 2016; 98:113-122. [PMID: 26916558 DOI: 10.1016/j.freeradbiomed.2016.02.025] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022]
Abstract
Hormesis refers to the phenomenon that an exposure or repeated exposures of a toxin can elicit adaptive changes within the organism to resist to higher doses of toxin with reduced harm. Skeletal muscle shows considerable plasticity and adaptions in response to a single bout of acute exercise or chronic training, especially in antioxidant defense capacity and metabolic functions mainly due to remodeling of mitochondria. It has thus been hypothesized that contraction-induced production of reactive oxygen species (ROS) may stimulate the hormesis-like adaptations. Furthermore, there has been considerable evidence that select ROS such as hydrogen peroxide and nitric oxide, or even oxidatively degraded macromolecules, may serve as signaling molecules to stimulate such hermetic adaptations due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of nuclear factor (NF) κB, mitogen-activated protein kinase (MAPK), and peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), along with other newly discovered signaling pathways, in some of the most vital biological functions such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. The inability of the cell to maintain proper redox signaling underlies mechanisms of biological aging, during which inflammatory and catabolic pathways prevail. Research evidence and mechanisms connecting exercise-induced hormesis and redox signaling are reviewed.
Collapse
Affiliation(s)
- Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA.
| | - Chounghun Kang
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sport Science, Tianjin University of Sport, China
| |
Collapse
|
66
|
Qaisar R, Bhaskaran S, Van Remmen H. Muscle fiber type diversification during exercise and regeneration. Free Radic Biol Med 2016; 98:56-67. [PMID: 27032709 DOI: 10.1016/j.freeradbiomed.2016.03.025] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/01/2016] [Accepted: 03/24/2016] [Indexed: 01/15/2023]
Abstract
The plasticity of skeletal muscle can be traced down to extensive metabolic, structural and molecular remodeling at the single fiber level. Skeletal muscle is comprised of different fiber types that are the basis of muscle plasticity in response to various functional demands. Resistance and endurance exercises are two external stimuli that differ in their duration and intensity of contraction and elicit markedly different responses in muscles adaptation. Further, eccentric contractions that are associated with exercise-induced injuries, elicit varied muscle adaptation and regenerative responses. Most adaptive changes are fiber type-specific and are highly influenced by diverse structural, metabolic and functional characteristics of individual fiber types. Regulation of signaling pathways by reactive oxygen species (ROS) and oxidative stress also plays an important role in muscle fiber adaptation during exercise. This review focuses on cellular and molecular responses that regulate the adaptation of skeletal muscle to exercise and exercise-related injuries.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA.
| |
Collapse
|
67
|
Townsend JR, Stout JR, Jajtner AR, Church DD, Beyer KS, Oliveira LP, La Monica MB, Riffe JJ, Muddle TWD, Baker KM, Fukuda DH, Roberts MD, Hoffman JR. Resistance exercise increases intramuscular NF-κb signaling in untrained males. Eur J Appl Physiol 2016; 116:2103-2111. [PMID: 27582262 DOI: 10.1007/s00421-016-3463-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE The NF-κB signaling pathway regulates multiple cellular processes following exercise stress. This study aims to examine the effects of an acute lower-body resistance exercise protocol and subsequent recovery on intramuscular NF-κB signaling. METHODS Twenty-eight untrained males were assigned to either a control (CON; n = 11) or exercise group (EX; n = 17) and completed a lower-body resistance exercise protocol consisting of the back squat, leg press, and leg extension exercises. Skeletal muscle microbiopsies were obtained from the vastus lateralis pre-exercise (PRE), 1-hour (1H), 5-hours (5H), and 48-hours (48H) post-resistance exercise. Multiplex signaling assay kits (EMD Millipore, Billerica, MA, USA) were used to quantify the total protein (TNFR1, c-Myc) or phosphorylation status of proteins belonging to the NF-κB signaling pathway (IKKa/b, IkBα, NF-κB) using multiplex protein assay. Repeated measures ANOVA analysis was used to determine the effects of the exercise bout on intramuscular signaling at each time point. Additionally, change scores were analyzed by magnitude based inferences to determine a mechanistic interpretation. RESULTS Repeated measures ANOVA indicated a trend for a two-way interaction between the EX and CON Group (p = 0.064) for c-Myc post resistance exercise. Magnitude based inference analysis suggest a "Very Likely" increase in total c-Myc from PRE-5H and a "Likely" increase in IkBα phosphorylation from PRE-5H post-resistance exercise. CONCLUSION Results indicated that c-Myc transcription factor is elevated following acute intense resistance exercise in untrained males. Future studies should examine the role that post-resistance exercise NF-κβ signaling plays in c-Myc induction, ribosome biogenesis and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Jeremy R Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN, 37215, USA
| | - Jeffrey R Stout
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA.
| | - Adam R Jajtner
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - David D Church
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Kyle S Beyer
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Leonardo P Oliveira
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Michael B La Monica
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Joshua J Riffe
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Tyler W D Muddle
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Kayla M Baker
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - David H Fukuda
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Michael D Roberts
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - Jay R Hoffman
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
68
|
Ahmed HH, Morsy FA, El-Nabarawy SK, Ahmed MA, Ali NA. Lycopene: an effective neuroprotective option against neurodeterioration induced by formaldehyde inhalation. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s00580-016-2323-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
69
|
Henríquez-Olguín C, Díaz-Vegas A, Utreras-Mendoza Y, Campos C, Arias-Calderón M, Llanos P, Contreras-Ferrat A, Espinosa A, Altamirano F, Jaimovich E, Valladares DM. NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout. Front Physiol 2016; 7:282. [PMID: 27471471 PMCID: PMC4944119 DOI: 10.3389/fphys.2016.00282] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/22/2016] [Indexed: 01/07/2023] Open
Abstract
Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho–p47phox levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47phox–gp91phox interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de ChileSantiago, Chile; Laboratory of Exercise Sciences, Clínica MEDSSantiago, Chile
| | - Alexis Díaz-Vegas
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Yildy Utreras-Mendoza
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Cristian Campos
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Manuel Arias-Calderón
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Paola Llanos
- Facultad de Odontología, Institute for Research in Dental Sciences, Universidad de Chile Santiago, Chile
| | - Ariel Contreras-Ferrat
- Facultad de Medicina, School of Medical Technology, Universidad de Chile Santiago, Chile
| | - Alejandra Espinosa
- Facultad de Medicina, School of Medical Technology, Universidad de Chile Santiago, Chile
| | - Francisco Altamirano
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Enrique Jaimovich
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Denisse M Valladares
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| |
Collapse
|
70
|
Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise. Br J Nutr 2016; 116:470-9. [PMID: 27215379 DOI: 10.1017/s0007114516001999] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.
Collapse
|
71
|
Goljanek-Whysall K, Iwanejko LA, Vasilaki A, Pekovic-Vaughan V, McDonagh B. Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression. Mamm Genome 2016; 27:341-57. [PMID: 27215643 PMCID: PMC4935741 DOI: 10.1007/s00335-016-9643-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 12/17/2022]
Abstract
Ageing is associated with a progressive loss of skeletal muscle mass, quality and function—sarcopenia, associated with reduced independence and quality of life in older generations. A better understanding of the mechanisms, both genetic and epigenetic, underlying this process would help develop therapeutic interventions to prevent, slow down or reverse muscle wasting associated with ageing. Currently, exercise is the only known effective intervention to delay the progression of sarcopenia. The cellular responses that occur in muscle fibres following exercise provide valuable clues to the molecular mechanisms regulating muscle homoeostasis and potentially the progression of sarcopenia. Redox signalling, as a result of endogenous generation of ROS/RNS in response to muscle contractions, has been identified as a crucial regulator for the adaptive responses to exercise, highlighting the redox environment as a potentially core therapeutic approach to maintain muscle homoeostasis during ageing. Further novel and attractive candidates include the manipulation of microRNA expression. MicroRNAs are potent gene regulators involved in the control of healthy and disease-associated biological processes and their therapeutic potential has been researched in the context of various disorders, including ageing-associated muscle wasting. Finally, we discuss the impact of the circadian clock on the regulation of gene expression in skeletal muscle and whether disruption of the peripheral muscle clock affects sarcopenia and altered responses to exercise. Interventions that include modifying altered redox signalling with age and incorporating genetic mechanisms such as circadian- and microRNA-based gene regulation, may offer potential effective treatments against age-associated sarcopenia.
Collapse
Affiliation(s)
- Katarzyna Goljanek-Whysall
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK.
| | - Lesley A Iwanejko
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK
| | - Aphrodite Vasilaki
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK
| | - Vanja Pekovic-Vaughan
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK
| | - Brian McDonagh
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK.
| |
Collapse
|
72
|
Jackson MJ. Reactive oxygen species in sarcopenia: Should we focus on excess oxidative damage or defective redox signalling? Mol Aspects Med 2016; 50:33-40. [PMID: 27161871 DOI: 10.1016/j.mam.2016.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022]
Abstract
Physical frailty in the elderly is driven by loss of muscle mass and function and hence preventing this is the key to reduction in age-related physical frailty. Our current understanding of the key areas in which ROS contribute to age-related deficits in muscle is through increased oxidative damage to cell constituents and/or through induction of defective redox signalling. Recent data have argued against a primary role for ROS as a regulator of longevity, but studies have persistently indicated that aspects of the aging phenotype and age-related disorders may be mediated by ROS. There is increasing interest in the effects of defective redox signalling in aging and some studies now indicate that this process may be important in reducing the integrity of the aging neuromuscular system. Understanding how redox-signalling pathways are altered by aging and the causes of the defective redox homeostasis seen in aging muscle provides opportunities to identify targeted interventions with the potential to slow or prevent age-related neuromuscular decline with a consequent improvement in quality of life for older people.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA, UK.
| |
Collapse
|
73
|
Greiwe L, Vinck M, Suhr F. The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments. Acta Physiol (Oxf) 2016; 217:61-79. [PMID: 26601802 DOI: 10.1111/apha.12633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/14/2015] [Accepted: 11/16/2015] [Indexed: 12/13/2022]
Abstract
AIM Lymphatic vessels are of special importance for tissue homeostasis, and increases of their density may foster tissue regeneration. Exercise could be a relevant tool to increase lymphatic vessel density (LVD); however, a significant lack of knowledge remains to understand lymphangiogenesis in skeletal muscles upon training. Interestingly, training-induced lymphangiogenesis has never been studied in the heart. We studied lymphangiogenesis and LVD upon chronic concentric and chronic eccentric muscle contractions in both rat skeletal (Mm. Edl and Sol) and cardiac muscles. METHODS/RESULTS We found that LVD decreased in both skeletal muscles specifically upon eccentric training, while this contraction increased LVD in cardiac tissue. These observations were supported by opposing local remodelling of lymphatic vessel-specific extracellular matrix components in skeletal and cardiac muscles and protein levels of lymphatic markers (Lyve-1, Pdpn, Vegf-C/D). Confocal microscopy further revealed transformations of lymphatic vessels into vessels expressing both blood (Cav-1) and lymphatic (Vegfr-3) markers upon eccentric training specifically in skeletal muscles. In addition and phenotype supportive, we found increased inflammation (NF-κB/p65, Il-1β, Ifn-γ, Tnf-α and MPO(+) cells) in eccentrically stressed skeletal, but decreased levels in cardiac muscles. CONCLUSION Our data provide novel mechanistic insights into lymphangiogenic processes in skeletal and cardiac muscles upon chronic muscle contraction modes and demonstrate that both tissues adapt in opposing manners specifically to eccentric training. These data are highly relevant for clinical applications, because eccentric training serves as a sufficient strategy to increase LVD and to decrease inflammation in cardiac tissue, for example in order to reduce tissue abortion in transplantation settings.
Collapse
Affiliation(s)
- L. Greiwe
- Department of Molecular and Cellular Sport Medicine; Institute of Cardiovascular Research and Sport Medicine; German Sport University Cologne; Cologne Germany
| | - M. Vinck
- Department of Molecular and Cellular Sport Medicine; Institute of Cardiovascular Research and Sport Medicine; German Sport University Cologne; Cologne Germany
| | - F. Suhr
- Department of Molecular and Cellular Sport Medicine; Institute of Cardiovascular Research and Sport Medicine; German Sport University Cologne; Cologne Germany
| |
Collapse
|
74
|
Effects of Methane-Rich Saline on the Capability of One-Time Exhaustive Exercise in Male SD Rats. PLoS One 2016; 11:e0150925. [PMID: 26942576 PMCID: PMC4778848 DOI: 10.1371/journal.pone.0150925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/22/2016] [Indexed: 12/05/2022] Open
Abstract
Purpose To explore the effects of methane-rich saline (CH4 saline) on the capability of one-time exhaustive exercise in male SD rats. Methods Thirty rats were equally divided into to three groups at random: control group (C), placebo group (P) and methane saline group (M). Rats in M group underwent intraperitoneal injection of CH4 saline, and the other two groups simultaneously underwent intraperitoneal injection of normal saline. Then, the exercise capability of rats was tested through one-time exhaustive treadmill exercise except C group. Exercise time and body weight were recorded before and after one-time exhaustive exercise. After exhaustive exercise, the blood and gastrocnemius samples were collected from all rats to detect biochemical parameters in different methods. Results It was found that the treadmill running time was significantly longer in rats treated with CH4 saline. At the same time, CH4 saline reduced the elevation of LD and UN in blood caused by one-time exhaustive exercise. The low level of blood glucose induced by exhaustive exercise was also normalized by CH4 saline. Also CH4 saline lowered the level of CK in plasma. Furthermore, this research indicated that CH4 saline markedly increased the volume of T-AOC in plasma and alleviated the peak of TNF-α in both plasma and gastrocnemius. From H&E staining, CH4 saline effectively improved exercise-induced structural damage in gastrocnemius. Conclusions CH4 saline could enhance exercise capacity in male SD rats through increase of glucose aerobic oxidation, improvement of metabolic clearance and decrease of exhaustive exercise-induced gastrocnemius injury.
Collapse
|
75
|
Barcelos RP, Bresciani G, Rodriguez-Miguelez P, Cuevas MJ, Soares FAA, Barbosa NV, González-Gallego J. Diclofenac pretreatment effects on the toll-like receptor 4/nuclear factor kappa B-mediated inflammatory response to eccentric exercise in rat liver. Life Sci 2016; 148:247-53. [DOI: 10.1016/j.lfs.2016.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/04/2015] [Accepted: 02/03/2016] [Indexed: 01/22/2023]
|
76
|
Chen T, Moore TM, Ebbert MTW, McVey NL, Madsen SR, Hallowell DM, Harris AM, Char RE, Mackay RP, Hancock CR, Hansen JM, Kauwe JS, Thomson DM. Liver kinase B1 inhibits the expression of inflammation-related genes postcontraction in skeletal muscle. J Appl Physiol (1985) 2016; 120:876-88. [PMID: 26796753 DOI: 10.1152/japplphysiol.00727.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/20/2016] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle-specific liver kinase B1 (LKB1) knockout mice (skmLKB1-KO) exhibit elevated mitogen-activated protein kinase (MAPK) signaling after treadmill running. MAPK activation is also associated with inflammation-related signaling in skeletal muscle. Since exercise can induce muscle damage, and inflammation is a response triggered by damaged tissue, we therefore hypothesized that LKB1 plays an important role in dampening the inflammatory response to muscle contraction, and that this may be due in part to increased susceptibility to muscle damage with contractions in LKB1-deficient muscle. Here we studied the inflammatory response and muscle damage with in situ muscle contraction or downhill running. After in situ muscle contractions, the phosphorylation of both NF-κB and STAT3 was increased more in skmLKB1-KO vs. wild-type (WT) muscles. Analysis of gene expression via microarray and RT-PCR shows that expression of many inflammation-related genes increased after contraction only in skmLKB1-KO muscles. This was associated with mild skeletal muscle fiber membrane damage in skmLKB1-KO muscles. Gene markers of oxidative stress were also elevated in skmLKB1-KO muscles after contraction. Using the downhill running model, we observed significantly more muscle damage after running in skmLKB1-KO mice, and this was associated with greater phosphorylation of both Jnk and STAT3 and increased expression of SOCS3 and Fos. In conclusion, we have shown that the lack of LKB1 in skeletal muscle leads to an increased inflammatory state in skeletal muscle that is exacerbated by muscle contraction. Increased susceptibility of the muscle to damage may underlie part of this response.
Collapse
Affiliation(s)
- Ting Chen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Timothy M Moore
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Mark T W Ebbert
- Department of Biology, Brigham Young University, Provo, Utah
| | - Natalie L McVey
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Steven R Madsen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - David M Hallowell
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Alexander M Harris
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Robin E Char
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Ryan P Mackay
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Chad R Hancock
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, Utah; and
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - John S Kauwe
- Department of Biology, Brigham Young University, Provo, Utah
| | - David M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah;
| |
Collapse
|
77
|
Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Morán M, Emanuele E, Joyner MJ, Lucia A. Exercise attenuates the major hallmarks of aging. Rejuvenation Res 2016; 18:57-89. [PMID: 25431878 DOI: 10.1089/rej.2014.1623] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regular exercise has multi-system anti-aging effects. Here we summarize how exercise impacts the major hallmarks of aging. We propose that, besides searching for novel pharmaceutical targets of the aging process, more research efforts should be devoted to gaining insights into the molecular mediators of the benefits of exercise and to implement effective exercise interventions for elderly people.
Collapse
Affiliation(s)
- Nuria Garatachea
- 1 Faculty of Health and Sport Science, University of Zaragoza , Huesca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil 2016; 36:377-93. [PMID: 26728750 PMCID: PMC4762917 DOI: 10.1007/s10974-015-9438-9] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are generated in skeletal muscle both during the rest and contractile activity. Myogenic cells are equipped with antioxidant enzymes, like superoxide dismutase, catalase, glutathione peroxidase, γ-glutamylcysteine synthetase and heme oxygenase-1. These enzymes not only neutralise excessive ROS, but also affect myogenic regeneration at several stages: influence post-injury inflammatory reaction, enhance viability and proliferation of muscle satellite cells and myoblasts and affect their differentiation. Finally, antioxidant enzymes regulate also processes accompanying muscle regeneration-induce angiogenesis and reduce fibrosis. Elevated ROS production was also observed in Duchenne muscular dystrophy (DMD), a disease characterised by degeneration of muscle tissue and therefore-increased rate of myogenic regeneration. Antioxidant enzymes are consequently considered as target for therapies counteracting dystrophic symptoms. In this review we present current knowledge regarding the role of oxidative stress and systems of enzymatic antioxidant defence in muscular regeneration after both acute injury and persistent muscular degeneration.
Collapse
Affiliation(s)
- Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Katarzyna Pietraszek-Gremplewicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland. .,Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
79
|
Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7239639. [PMID: 26823952 PMCID: PMC4707375 DOI: 10.1155/2016/7239639] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
Abstract
Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual's characteristics; therefore, the development of personalized exercise programs is essential.
Collapse
|
80
|
Beck WR, Botezelli JD, Pauli JR, Ropelle ER, Gobatto CA. Melatonin Has An Ergogenic Effect But Does Not Prevent Inflammation and Damage In Exhaustive Exercise. Sci Rep 2015; 5:18065. [PMID: 26669455 PMCID: PMC4680866 DOI: 10.1038/srep18065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
It is well documented that exhaustive physical exercise leads to inflammation and skeletal muscle tissue damage. With this in mind, melatonin has been acutely administered before physical exercise; nevertheless, the use of melatonin as an ergogenic agent to prevent tissue inflammation and damage remains uncertain. We evaluated the effects of melatonin on swimming performance, muscle inflammation and damage and several physiological parameters after exhaustive exercise at anaerobic threshold intensity (iLAn) performed during light or dark circadian periods. The iLAn was individually determined and two days later, the animals performed an exhaustive exercise bout at iLAn 30 minutes after melatonin administration. The exercise promoted muscle inflammation and damage, mainly during the dark period, and the exogenous melatonin promoted a high ergogenic effect. The expressive ergogenic effect of melatonin leads to longer periods of muscle contraction, which superimposes a possible melatonin protective effect on the tissue damage and inflammation.
Collapse
Affiliation(s)
- Wladimir Rafael Beck
- Laboratory of Applied Sport Physiology, School of Applied Sciences, Department of Sport Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza-Postal Code 13484-350-Limeira-São Paulo
| | - José Diego Botezelli
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, Department of Sport Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza-Postal Code 13484-350-Limeira-São Paulo
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, Department of Sport Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza-Postal Code 13484-350-Limeira-São Paulo
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, Department of Sport Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza-Postal Code 13484-350-Limeira-São Paulo
| | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, Department of Sport Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza-Postal Code 13484-350-Limeira-São Paulo
| |
Collapse
|
81
|
Ji LL. Redox signaling in skeletal muscle: role of aging and exercise. ADVANCES IN PHYSIOLOGY EDUCATION 2015; 39:352-359. [PMID: 26628659 DOI: 10.1152/advan.00106.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Skeletal muscle contraction is associated with the production of ROS due to altered O2 distribution and flux in the cell. Despite a highly efficient antioxidant defense, a small surplus of ROS, such as hydrogen peroxide and nitric oxide, may serve as signaling molecules to stimulate cellular adaptation to reach new homeostasis largely due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of NF-κB, MAPK, and peroxisome proliferator-activated receptor-γ coactivator-1α, along with other newly discovered signaling pathways, in some of the most vital biological functions, such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. There is evidence that the inability of the cell to maintain proper redox signaling underlies some basic mechanisms of biological aging, during which inflammatory and catabolic pathways eventually predominate. Physical exercise has been shown to activate various redox signaling pathways that control the adaptation and remodeling process. Although this stimulatory effect of exercise declines with aging, it is not completed abolished. Thus, aged people can still benefit from regular physical activity in the appropriate forms and at proper intensity to preserve muscle function.
Collapse
Affiliation(s)
- Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
82
|
Kapilevich LV, Kironenko TA, Zaharova AN, Kotelevtsev YV, Dulin NO, Orlov SN. Skeletal muscle as an endocrine organ: Role of [Na +] i/[K +] i-mediated excitation-transcription coupling. Genes Dis 2015; 2:328-336. [PMID: 27610402 PMCID: PMC5012537 DOI: 10.1016/j.gendis.2015.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/21/2015] [Indexed: 01/20/2023] Open
Abstract
During the last two decades numerous research teams demonstrated that skeletal muscles function as an exercise-dependent endocrine organ secreting dozens of myokines. Variety of physiological and pathophysiological implications of skeletal muscle myokines secretion has been described; however, upstream signals and sensing mechanisms underlying this phenomenon remain poorly understood. It is well documented that in skeletal muscles intensive exercise triggers dissipation of transmembrane gradient of monovalent cations caused by permanent activation of voltage-gated Na+ and K+ channels. Recently, we demonstrated that sustained elevation of the [Na+]i/[K+]i ratio triggers expression of dozens ubiquitous genes including several canonical myokines, such as interleukin 6 and cyclooxygenase 2, in the presence of intra- and extracellular Ca2+ chelators. These data allowed us to suggest a novel [Na+]i/[K+]i-sensitive, Ca2+i-independent mechanism of excitation-transcription coupling which triggers myokine production. This pathway exists in parallel with canonical signaling mediated by Ca2+i, AMP-activated protein kinase and hypoxia-inducible factor 1α (HIF-1α). In our mini-review we briefly summarize data supporting this hypothesis as well as unresolved issues aiming to forthcoming studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergei N. Orlov
- National Research Tomsk State University, Tomsk, Russia
- Siberian Medical University, Tomsk, Russia
- M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
83
|
Gomez-Cabrera MC, Salvador-Pascual A, Cabo H, Ferrando B, Viña J. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol Med 2015; 86:37-46. [PMID: 25889822 DOI: 10.1016/j.freeradbiomed.2015.04.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 11/30/2022]
Abstract
Physical exercise increases the cellular production of reactive oxygen species (ROS) in muscle, liver, and other organs. This is unlikely due to increased mitochondrial production but rather to extramitochondrial sources such as NADPH oxidase or xanthine oxidase. We have reported a xanthine oxidase-mediated increase in ROS production in many experimental models from isolated cells to humans. Originally, ROS were considered as detrimental and thus as a likely cause of cell damage associated with exhaustion. In the past decade, evidence showing that ROS act as signals has been gathered and thus the idea that antioxidant supplementation in exercise is always recommendable has proved incorrect. In fact, we proposed that exercise itself can be considered as an antioxidant because training increases the expression of classical antioxidant enzymes such as superoxide dismutase and glutathione peroxidase and, in general, lowering the endogenous antioxidant enzymes by administration of antioxidant supplements may not be a good strategy when training. Antioxidant enzymes are not the only ones to be activated by training. Mitochondriogenesis is an important process activated in exercise. Many redox-sensitive enzymes are involved in this process. Important signaling molecules like MAP kinases, NF-κB, PGC-1α, p53, heat shock factor, and others modulate muscle adaptation to exercise. Interventions aimed at modifying the production of ROS in exercise must be performed with care as they may be detrimental in that they may lower useful adaptations to exercise.
Collapse
Affiliation(s)
- Mari Carmen Gomez-Cabrera
- Department of Physiology, University of Valencia, Investigación Hospital Clínico Universitario/INCLIVA, Spain
| | - Andrea Salvador-Pascual
- Department of Physiology, University of Valencia, Investigación Hospital Clínico Universitario/INCLIVA, Spain
| | - Helena Cabo
- Department of Physiology, University of Valencia, Investigación Hospital Clínico Universitario/INCLIVA, Spain
| | - Beatriz Ferrando
- Department of Physiology, University of Valencia, Investigación Hospital Clínico Universitario/INCLIVA, Spain
| | - Jose Viña
- Department of Physiology, University of Valencia, Investigación Hospital Clínico Universitario/INCLIVA, Spain.
| |
Collapse
|
84
|
Jackson MJ. Redox regulation of muscle adaptations to contractile activity and aging. J Appl Physiol (1985) 2015; 119:163-71. [PMID: 25792715 PMCID: PMC4526708 DOI: 10.1152/japplphysiol.00760.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/08/2015] [Indexed: 11/22/2022] Open
Abstract
Superoxide and nitric oxide are generated by skeletal muscle, and these species are increased by contractile activity. Mitochondria have long been assumed to play the primary role in generation of superoxide in muscle, but recent studies indicate that, during contractile activity, membrane-localized NADPH oxidase(s) rapidly generate(s) superoxide that plays a role in redox signaling. This process is important in upregulation of rapid and specific cytoprotective responses that aid maintenance of cell viability following contractile activity, but the overall extent to which redox signaling contributes to regulation of muscle metabolism and homeostasis following contractile activity is currently unclear, as is identification of key redox-sensitive protein targets involved in these processes. Reactive oxygen and nitrogen species have also been implicated in the loss of muscle mass and function that occurs with aging, although recent work has questioned whether oxidative damage plays a key role in these processes. A failure of redox signaling occurs in muscle during aging and may contribute to the age-related loss of muscle fibers. Whether such changes in redox signaling reflect primary age-related changes or are secondary to the fundamental mechanisms is unclear. For instance, denervated muscle fibers within muscles from aged rodents or humans appear to generate large amounts of mitochondrial hydrogen peroxide that could influence adjacent innervated fibers. Thus, in this instance, a "secondary" source of reactive oxygen species may be potentially generated as a result of a primary age-related pathology (loss of neurons), but, nevertheless, may contribute to loss of muscle mass and function during aging.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
85
|
Impact of oxidative stress on exercising skeletal muscle. Biomolecules 2015; 5:356-77. [PMID: 25866921 PMCID: PMC4496677 DOI: 10.3390/biom5020356] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 01/01/2023] Open
Abstract
It is well established that muscle contractions during exercise lead to elevated levels of reactive oxygen species (ROS) in skeletal muscle. These highly reactive molecules have many deleterious effects, such as a reduction of force generation and increased muscle atrophy. Since the discovery of exercise-induced oxidative stress several decades ago, evidence has accumulated that ROS produced during exercise also have positive effects by influencing cellular processes that lead to increased expression of antioxidants. These molecules are particularly elevated in regularly exercising muscle to prevent the negative effects of ROS by neutralizing the free radicals. In addition, ROS also seem to be involved in the exercise-induced adaptation of the muscle phenotype. This review provides an overview of the evidences to date on the effects of ROS in exercising muscle. These aspects include the sources of ROS, their positive and negative cellular effects, the role of antioxidants, and the present evidence on ROS-dependent adaptations of muscle cells in response to physical exercise.
Collapse
|
86
|
Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never! Biogerontology 2014; 16:249-64. [PMID: 25537184 DOI: 10.1007/s10522-014-9546-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023]
Abstract
Ageing is associated with several physiological declines to both the cardiovascular (e.g. reduced aerobic capacity) and musculoskeletal system (muscle function and mass). Ageing may also impair the adaptive response of skeletal muscle mitochondria and redox-regulated stress responses to an acute exercise bout, at least in mice and rodents. This is a functionally important phenomenon, since (1) aberrant mitochondrial and redox homeostasis are implicated in the pathophysiology of musculoskeletal ageing and (2) the response to repeated exercise bouts promotes exercise adaptations and some of these adaptations (e.g. improved aerobic capacity and exercise-induced mitochondrial remodelling) offset age-related physiological decline. Exercise-induced mitochondrial remodelling is mediated by upstream signalling events that converge on downstream transcriptional co-factors and factors that orchestrate a co-ordinated nuclear and mitochondrial transcriptional response associated with mitochondrial remodelling. Recent translational human investigations have demonstrated similar exercise-induced mitochondrial signalling responses in older compared with younger skeletal muscle, regardless of training status. This is consistent with data indicating normative mitochondrial remodelling responses to long-term exercise training in the elderly. Thus, human ageing is not accompanied by diminished mitochondrial plasticity to acute and chronic exercise stimuli, at least for the signalling pathways measured to date. Exercise-induced increases in reactive oxygen and nitrogen species promote an acute redox-regulated stress response that manifests as increased heat shock protein and antioxidant enzyme content. In accordance with previous reports in rodents and mice, it appears that sedentary ageing is associated with a severely attenuated exercise-induced redox stress response that might be related to an absent redox signal. In this regard, regular exercise training affords some protection but does not completely override age-related defects. Despite some failed redox-regulated stress responses, it seems mitochondrial responses to exercise training are intact in skeletal muscle with age and this might underpin the protective effect of exercise training on age-related musculoskeletal decline. Whilst further investigation is required, recent data suggest that it is never too late to begin exercise training and that lifelong training provides protection against several age-related declines at both the molecular (e.g. reduced mitochondrial function) and whole-body level (e.g. aerobic capacity).
Collapse
|
87
|
Castorena CM, Arias EB, Sharma N, Cartee GD. Effects of a brief high-fat diet and acute exercise on the mTORC1 and IKK/NF-κB pathways in rat skeletal muscle. Appl Physiol Nutr Metab 2014; 40:251-62. [PMID: 25706655 DOI: 10.1139/apnm-2014-0412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One exercise session can improve subsequent insulin-stimulated glucose uptake by skeletal muscle in healthy and insulin-resistant individuals. Our first aim was to determine whether a brief (2 weeks) high-fat diet (HFD) that caused muscle insulin resistance would activate the mammalian target of rapamycin complex 1 (mTORC1) and/or inhibitor of κB kinase/nuclear factor κB (IKK/NF-κB) pathways, which are potentially linked to induction of insulin resistance. Our second aim was to determine whether acute exercise that improved insulin-stimulated glucose uptake by muscles would attenuate activation of these pathways. We compared HFD-fed rats with rats fed a low-fat diet (LFD). Some animals from each diet group were sedentary and others were studied 3 h postexercise, when insulin-stimulated glucose uptake was increased. The results did not provide evidence that brief HFD activated either the mTORC1 (including phosphorylation of mTOR(Ser2448), TSC2(Ser939), p70S6K(Thr412), and RPS6(Ser235/236)) or the IKK/NF-κB (including abundance of IκBα or phosphorylation of NF-κB(Ser536), IKKα/β(Ser177/181), and IκB(Ser32)) pathway in insulin-resistant muscles. Exercise did not oppose the activation of either pathway, as evidenced by no attenuation of phosphorylation of key proteins in the IKK/NF-κB pathway (NF-κB(Ser536), IKKα/β(Ser177/181), and IκB(Ser32)), unaltered IκBα abundance, and no attenuation of phosphorylation of key proteins in the mTORC1 pathway (mTOR(Ser2448), TSC2(Ser939), and RPS6(Ser235/236)). Instead, exercise induced greater phosphorylation of 2 proteins of the mTORC1 pathway (PRAS40(Thr246) and p70S6K(Thr412)) in insulin-stimulated muscles, regardless of diet. Insulin resistance induced by a brief HFD was not attributable to greater activation of the mTORC1 or the IKK/NF-κB pathway in muscle, and exercise-induced improvement in insulin sensitivity was not attributable to attenuated activation of these pathways in muscle.
Collapse
Affiliation(s)
- Carlos M Castorena
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2214, USA
| | | | | | | |
Collapse
|
88
|
Slattery K, Bentley D, Coutts AJ. The Role of Oxidative, Inflammatory and Neuroendocrinological Systems During Exercise Stress in Athletes: Implications of Antioxidant Supplementation on Physiological Adaptation During Intensified Physical Training. Sports Med 2014; 45:453-71. [DOI: 10.1007/s40279-014-0282-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
89
|
Kruk J, Duchnik E. Oxidative stress and skin diseases: possible role of physical activity. Asian Pac J Cancer Prev 2014; 15:561-8. [PMID: 24568458 DOI: 10.7314/apjcp.2014.15.2.561] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The skin is the largest body organ that regulates excretion of metabolic waste products, temperature, and plays an important role in body protection against environmental physical and chemical, as well as biological factors. These include agents that may act as oxidants or catalysts of reactions producing reactive oxygen species (ROS), reactive nitrogen species (RNS), and other oxidants in skin cells. An increased amount of the oxidants, exceeding the antioxidant defense system capacity is called oxidative stress, leading to chronic inflammation, which, in turn, can cause collagen fragmentation and disorganization of collagen fibers and skin cell functions, and thus contribute to skin diseases including cancer. Moreover, research suggests that oxidative stress participates in all stages of carcinogenesis. We report here a summary of the present state of knowledge on the role of oxidative stress in pathogenesis of dermatologic diseases, defensive systems against ROS/RNS, and discuss how physical activity may modulate skin diseases through effects on oxidative stress. The data show duality of physical activity actions: regular moderate activity protects against ROS/RNS damage, and endurance exercise with a lack of training mediates oxidative stress. These findings indicate that the redox balance should be considered in the development of new antioxidant strategies linked to the prevention and therapy of skin diseases.
Collapse
Affiliation(s)
- Joanna Kruk
- Faculty of Physical Culture and Health Promotion, University of Szczecin, Szczecin, Poland E-mail :
| | | |
Collapse
|
90
|
Vella L, Markworth JF, Peake JM, Snow RJ, Cameron-Smith D, Russell AP. Ibuprofen supplementation and its effects on NF-κB activation in skeletal muscle following resistance exercise. Physiol Rep 2014; 2:2/10/e12172. [PMID: 25344476 PMCID: PMC4254097 DOI: 10.14814/phy2.12172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Resistance exercise triggers a subclinical inflammatory response that plays a pivotal role in skeletal muscle regeneration. Nuclear factor‐κB (NF‐κB) is a stress signalling transcription factor that regulates acute and chronic states of inflammation. The classical NF‐κB pathway regulates the early activation of post‐exercise inflammation; however there remains scope for this complex transcription factor to play a more detailed role in post‐exercise muscle recovery. Sixteen volunteers completed a bout of lower body resistance exercise with the ingestion of three 400 mg doses of ibuprofen or a placebo control. Muscle biopsy samples were obtained prior to exercise and at 0, 3 and 24 h post‐exercise and analysed for key markers of NF‐κB activity. Phosphorylated p65 protein expression and p65 inflammatory target genes were elevated immediately post‐exercise independent of the two treatments. These changes did not translate to an increase in p65 DNA binding activity. NF‐κB p50 protein expression and NF‐κB p50 binding activity were lower than pre‐exercise at 0 and 3 h post‐exercise, but were elevated at 24 h post‐exercise. These findings provide novel evidence that two distinct NF‐κB pathways are active in skeletal muscle after resistance exercise. The initial wave of activity involving p65 resembles the classical pathway and is associated with the onset of an acute inflammatory response. The second wave of NF‐κB activity comprises the p50 subunit, which has been previously shown to resolve an acute inflammatory program. The current study showed no effect of the ibuprofen treatment on markers of the NF‐κB pathway, however examination of the within group effects of the exercise protocol suggests that this pathway warrants further research. The current study aimed to explore the regulation of the NF‐κB pathway following an acute bout of resistance exercise. Findings demonstrated two distinct phases of NF‐κB activity: an initial wave of activity comprising the p65 subunit, and a delayed second wave involving the p50 subunit.
Collapse
Affiliation(s)
- Luke Vella
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Vic., Australia
| | | | - Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - Rod J Snow
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Vic., Australia
| | | | - Aaron P Russell
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Vic., Australia
| |
Collapse
|
91
|
Guellich A, Negroni E, Decostre V, Demoule A, Coirault C. Altered cross-bridge properties in skeletal muscle dystrophies. Front Physiol 2014; 5:393. [PMID: 25352808 PMCID: PMC4196474 DOI: 10.3389/fphys.2014.00393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022] Open
Abstract
Force and motion generated by skeletal muscle ultimately depends on the cyclical interaction of actin with myosin. This mechanical process is regulated by intracellular Ca2+ through the thin filament-associated regulatory proteins i.e.; troponins and tropomyosin. Muscular dystrophies are a group of heterogeneous genetic affections characterized by progressive degeneration and weakness of the skeletal muscle as a consequence of loss of muscle tissue which directly reduces the number of potential myosin cross-bridges involved in force production. Mutations in genes responsible for skeletal muscle dystrophies (MDs) have been shown to modify the function of contractile proteins and cross-bridge interactions. Altered gene expression or RNA splicing or post-translational modifications of contractile proteins such as those related to oxidative stress, may affect cross-bridge function by modifying key proteins of the excitation-contraction coupling. Micro-architectural change in myofilament is another mechanism of altered cross-bridge performance. In this review, we provide an overview about changes in cross-bridge performance in skeletal MDs and discuss their ultimate impacts on striated muscle function.
Collapse
Affiliation(s)
- Aziz Guellich
- Service de Cardiologie, Hôpital Henri Mondor, University Paris-Est Créteil Créteil, France ; Equipe 8, Institut National de la Santé et de la Recherche Médicale Créteil, France
| | - Elisa Negroni
- UMRS 974, Institut National de la Santé et de la Recherche Médicale Paris, France ; UM 76, Université Pierre et Marie Curie, Sorbonne Universités Paris, France ; UMR 7215, Centre National de la Recherche Scientifique Paris, France ; Institut de Myologie Paris, France
| | | | - Alexandre Demoule
- UMRS 974, Institut National de la Santé et de la Recherche Médicale Paris, France ; UM 76, Université Pierre et Marie Curie, Sorbonne Universités Paris, France ; UMR 7215, Centre National de la Recherche Scientifique Paris, France ; Institut de Myologie Paris, France ; Assistance Publique-Hopitaux de Paris, Service de Pneumologie et Reanimation Medicale Paris, France
| | - Catherine Coirault
- UMRS 974, Institut National de la Santé et de la Recherche Médicale Paris, France ; UM 76, Université Pierre et Marie Curie, Sorbonne Universités Paris, France ; UMR 7215, Centre National de la Recherche Scientifique Paris, France ; Institut de Myologie Paris, France
| |
Collapse
|
92
|
Nyberg M, Mortensen SP, Cabo H, Gomez-Cabrera MC, Viña J, Hellsten Y. Roles of sedentary aging and lifelong physical activity in exchange of glutathione across exercising human skeletal muscle. Free Radic Biol Med 2014; 73:166-73. [PMID: 24858720 DOI: 10.1016/j.freeradbiomed.2014.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/10/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
Reactive oxygen species (ROS) are important signaling molecules with regulatory functions, and in young and adult organisms, the formation of ROS is increased during skeletal muscle contractions. However, ROS can be deleterious to cells when not sufficiently counterbalanced by the antioxidant system. Aging is associated with accumulation of oxidative damage to lipids, DNA, and proteins. Given the pro-oxidant effect of skeletal muscle contractions, this effect of age could be a result of excessive ROS formation. We evaluated the effect of acute exercise on changes in blood redox state across the leg of young (23 ± 1 years) and older (66 ± 2 years) sedentary humans by measuring the whole blood concentration of the reduced (GSH) and oxidized (GSSG) forms of the antioxidant glutathione. To assess the role of physical activity, lifelong physically active older subjects (62 ± 2 years) were included. Exercise increased the venous concentration of GSSG in an intensity-dependent manner in young sedentary subjects, suggesting an exercise-induced increase in ROS formation. In contrast, venous GSSG levels remained unaltered during exercise in the older sedentary and active groups despite a higher skeletal muscle expression of the superoxide-generating enzyme NADPH oxidase. Arterial concentration of GSH and expression of antioxidant enzymes in skeletal muscle of older active subjects were increased. The potential impairment in exercise-induced ROS formation may be an important mechanism underlying skeletal muscle and vascular dysfunction with sedentary aging. Lifelong physical activity upregulates antioxidant systems, which may be one of the mechanisms underlying the lack of exercise-induced increase in GSSG.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; Copenhagen Muscle Research Centre and University of Southern Denmark, Copenhagen, Denmark.
| | - Stefan P Mortensen
- Copenhagen Muscle Research Centre and University of Southern Denmark, Copenhagen, Denmark; Department of Cardiovascular and Renal Research, University of Southern Denmark, Copenhagen, Denmark
| | - Helena Cabo
- Department of Physiology, Faculty of Medicine, University of Valencia, and Fundación Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Mari-Carmen Gomez-Cabrera
- Department of Physiology, Faculty of Medicine, University of Valencia, and Fundación Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Jose Viña
- Department of Physiology, Faculty of Medicine, University of Valencia, and Fundación Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Ylva Hellsten
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; Copenhagen Muscle Research Centre and University of Southern Denmark, Copenhagen, Denmark
| |
Collapse
|
93
|
Vitamin E in sarcopenia: current evidences on its role in prevention and treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:914853. [PMID: 25097722 PMCID: PMC4109111 DOI: 10.1155/2014/914853] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/06/2014] [Indexed: 01/01/2023]
Abstract
Sarcopenia is a geriatric syndrome that is characterized by gradual loss of muscle mass and strength with increasing age. Although the underlying mechanism is still unknown, the contribution of increased oxidative stress in advanced age has been recognized as one of the risk factors of sarcopenia. Thus, eliminating reactive oxygen species (ROS) can be a strategy to combat sarcopenia. In this review, we discuss the potential role of vitamin E in the prevention and treatment of sarcopenia. Vitamin E is a lipid soluble vitamin, with potent antioxidant properties and current evidence suggesting a role in the modulation of signaling pathways. Previous studies have shown its possible beneficial effects on aging and age-related diseases. Although there are evidences suggesting an association between vitamin E and muscle health, they are still inconclusive compared to other more extensively studied chronic diseases such as neurodegenerative diseases and cardiovascular diseases. Therefore, we reviewed the role of vitamin E and its potential protective mechanisms on muscle health based on previous and current in vitro and in vivo studies.
Collapse
|
94
|
Xin L, Hyldahl RD, Chipkin SR, Clarkson PM. A contralateral repeated bout effect attenuates induction of NF-κB DNA binding following eccentric exercise. J Appl Physiol (1985) 2014; 116:1473-80. [DOI: 10.1152/japplphysiol.00133.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We investigated the existence of contralateral repeated bout effect and tested if the attenuation of nuclear factor-kappa B (NF-κB; an important regulator of muscle inflammation) induction following eccentric exercise is a potential mechanism. Thirty-one healthy men performed two bouts of knee extension eccentric exercise, initially with one leg and then with the opposite leg 4 wk later. Vastus lateralis muscle biopsies of both exercised and control legs were taken 3 h postexercise. Knee extension isometric and isokinetic strength (60°/sec and 180°/sec) were measured at baseline, pre-exercise, immediately postexercise, and 1/day for 5 days postexercise. Serum creatine kinase (CK) activity and muscle soreness were assessed at baseline and 1/day for 5 days postexercise. NF-κB (p65) DNA-binding activity was measured in the muscle biopsies. Isometric strength loss was lower in bout 2 than in bout 1 at 24, 72, and 96 h postexercise ( P < 0.05). Isokinetic strength (60°/s and 180°/s) was reduced less in bout 2 than in bout 1 at 72 h postexercise ( P < 0.01). There were no significant differences between bouts for postexercise CK activity or muscle soreness. p65 DNA-binding activity was increased following eccentric exercise (compared with the control leg) in bout 1 (122.9% ± 2.6%; P < 0.001) and bout 2 (109.1% ± 3.0%; P < 0.05). Compared with bout 1, the increase in NF-κB DNA-binding activity postexercise was attenuated after bout 2 ( P = 0.0008). Repeated eccentric exercise results in a contralateral repeated bout effect, which could be due to the attenuated increase in NF-κB activity postexercise.
Collapse
Affiliation(s)
- Ling Xin
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts; and
| | - Robert D. Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Stuart R. Chipkin
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts; and
| | - Priscilla M. Clarkson
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts; and
| |
Collapse
|
95
|
Vezzoli A, Pugliese L, Marzorati M, Serpiello FR, La Torre A, Porcelli S. Time-course changes of oxidative stress response to high-intensity discontinuous training versus moderate-intensity continuous training in masters runners. PLoS One 2014; 9:e87506. [PMID: 24498121 PMCID: PMC3909150 DOI: 10.1371/journal.pone.0087506] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/25/2013] [Indexed: 12/23/2022] Open
Abstract
Beneficial systemic effects of regular physical exercise have been demonstrated to reduce risks of a number of age-related disorders. Antioxidant capacity adaptations are amongst these fundamental changes in response to exercise training. However, it has been claimed that acute physical exercise performed at high intensity (>60% of maximal oxygen uptake) may result in oxidative stress, due to reactive oxygen species being generated excessively by enhanced oxygen consumption. The aim of this study was to evaluate the effect of high-intensity discontinuous training (HIDT), characterized by repeated variations of intensity and changes of redox potential, on oxidative damage. Twenty long-distance masters runners (age 47.8 ± 7.8 yr) on the basis of the individual values of gas exchange threshold were assigned to a different 8-weeks training program: continuous moderate-intensity training (MOD, n = 10) or HIDT (n = 10). In both groups before (PRE) and after (POST) training we examined the following oxidative damage markers: thiobarbituric acid reactive substances (TBARS) as marker of lipid peroxidation; protein carbonyls (PC) as marker of protein oxidation; 8-hydroxy-2-deoxy-guanosine (8-OH-dG) as a biomarker of DNA base modifications; and total antioxidant capacity (TAC) as indicator of the overall antioxidant system. Training induced a significant (p<0.05) decrease in resting plasma TBARS concentration in both MOD (7.53 ± 0.30 and 6.46 ± 0.27 µM, PRE and POST respectively) and HIDT (7.21 ± 0.32 and 5.85 ± 0.46 µM, PRE and POST respectively). Resting urinary 8-OH-dG levels were significantly decreased in both MOD (5.50 ± 0.66 and 4.16 ± 0.40 ng mg(-1)creatinine, PRE and POST respectively) and HIDT (4.52 ± 0.50 and 3.18 ± 0.34 ng mg(-1)creatinine, PRE and POST respectively). Training both in MOD and HIDT did not significantly modify plasma levels of PC. Resting plasma TAC was reduced in MOD while no significant changes were observed in HIDT. In conclusion, these results suggest that in masters runners high-intensity discontinuous does not cause higher level of exercise-induced oxidative stress than continuous moderate-intensity training, inducing similar beneficial effects on redox homeostasis.
Collapse
Affiliation(s)
- Alessandra Vezzoli
- Institute of Bioimaging and Molecular Physiology, CNR, Segrate (Milano), Italy
| | - Lorenzo Pugliese
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Mauro Marzorati
- Institute of Bioimaging and Molecular Physiology, CNR, Segrate (Milano), Italy
| | - Fabio Rubens Serpiello
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Antonio La Torre
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Simone Porcelli
- Institute of Bioimaging and Molecular Physiology, CNR, Segrate (Milano), Italy
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
96
|
The protection of salidroside of the heart against acute exhaustive injury and molecular mechanism in rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:507832. [PMID: 24454984 PMCID: PMC3880758 DOI: 10.1155/2013/507832] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/04/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the protection of salidroside of the heart against acute exhaustive injury and its mechanism of antioxidative stress and MAPKs signal transduction. METHOD Adult male SD rats were divided into four groups randomly. Cardiomyocytes ultrastructure was observed by optical microscopy and transmission electron microscopy. The contents of CK, CK-MB, LDH, MDA, and SOD were determined by ELISA method, and the phosphorylation degrees of ERK and p38 MAPK were assayed by Western blotting. Cardiac function of isolated rat heart ischemia/reperfusion was detected by Langendorff technique. RESULTS Salidroside reduced the myocardium ultrastructure injury caused by exhaustive swimming, decreased the contents of CK, CK-MB, and LDH, improved the LVDP, ±LV dp/dt(max) under the basic condition, reduced the content of MDA and the phosphorylation degree of p38 MAPK, and increased the content of SOD and the phosphorylation degree of ERK in acute exhaustive rats. CONCLUSION Salidroside has the protection of the heart against acute exhaustive injury. The cardioprotection is mainly mediated by antioxidative stress and MAPKs signal transduction through reducing the content of MDA, increasing the content of SOD, and increasing p-ERK and decreasing p-p38 protein expressions in rat myocardium, which might be the mechanisms of the cardioprotective effect of salidroside.
Collapse
|
97
|
Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology. Semin Immunopathol 2013; 36:27-53. [DOI: 10.1007/s00281-013-0406-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/29/2013] [Indexed: 02/06/2023]
|
98
|
Abstract
Inflammation has been characterized as a double-edged sword, requiring a balance between health as maintained by regular exercise and activities that would exacerbate inflammatory diseases. The influence of exercise on inflammation is complex and has been widely studied in both healthy patient populations as well as populations of patients with many inflammatory and/or autoimmune rheumatic diseases. Inflammatory markers can be affected by the type of exercise and muscle contraction, as well as the intensity, duration, and consistency of the exercise sessions. Because of these potentially important effects, many members of the general public, as well as some clinicians, believe that exercise could exacerbate symptoms and accelerate the progression of such conditions. The effects of different types of exercise have been studied among patients with inflammatory conditions such as ankylosing spondylitis, systemic lupus erythematosus, rheumatoid arthritis, osteoarthritis, fibromyalgia, and idiopathic inflammatory myopathies, as well as congestive heart failure, type 2 diabetes mellitus, and metabolic syndrome, which are considered low-grade systemic inflammatory diseases. This review will help exercise professionals and clinicians understand the effects of exercise on inflammatory markers, as well as offer effective treatment options and recommendations for patients exercising with rheumatic or inflammatory conditions.
Collapse
Affiliation(s)
- Jennifer L Thomas
- Health Educator, Sandia National Laboratories, Albuquerque, NM; Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM.
| |
Collapse
|
99
|
Ji LL, Zhang Y. Antioxidant and anti-inflammatory effects of exercise: role of redox signaling. Free Radic Res 2013; 48:3-11. [PMID: 24083482 DOI: 10.3109/10715762.2013.844341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Contraction-induced production of reactive oxygen species (ROS) has been implicated in oxidative stress to skeletal muscle for the past few decades. As research advances more evidence has revealed a more complete role of ROS under both physiological and pathological conditions. The current review postulated that moderate intensity of physical exercise has antioxidant and anti-inflammatory effects due to the operation and cross-talks of several redox-sensitive signal transduction pathways. The functional roles and mechanisms of action of the nuclear factor κB, mitogen-activated protein kinase, and peroxisome proliferator-activated receptor γ co-activator 1α are highlighted.
Collapse
Affiliation(s)
- L L Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities , Minneapolis, MN , USA
| | | |
Collapse
|
100
|
Zhao H, Liu J, Pan S, Sun Y, Li Q, Li F, Ma L, Guo Q. SOD mRNA and MDA expression in rectus femoris muscle of rats with different eccentric exercise programs and time points. PLoS One 2013; 8:e73634. [PMID: 24058480 PMCID: PMC3772806 DOI: 10.1371/journal.pone.0073634] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/30/2013] [Indexed: 01/28/2023] Open
Abstract
Purpose Although superoxide dismutase (SOD) and malondialdehyde (MDA) affect Delayed Onset Muscle Soreness (DOMS), their effects are unclear in rectus femoris muscles (RFM) of rats with different eccentric exercise programs and time points. The purpose of this study is to investigate the effects of the various eccentric exercise programs at different time points on the SOD mRNA expression and MDA using rat as the animal model. Methods 248 male rats were randomly divided into 4 groups: control group (CTL, n = 8), once-only exercise group (OEG, n = 80), continuous exercise group (CEG, n = 80), and intermittent exercise group (IEG, n = 80). Each exercise group was divided into 10 subgroups that exercised 0.5 h, 6 h, 12 h, 24 h, 48 h, 72 h, 96 h, 120 h, 144 h, or 168 h. Rats were sacrificed and their SOD mRNA expression, and MDA concentrations of skeletal muscle tissue were measured. Results The specimen in all eccentric exercise programs showed increased RFM SOD1 mRNA expression levels at 0.5 h (P<0.05), and decreased RFM SOD3 mRNA expression at 0.5 h (P<0.05). The continuous eccentric exercise (CE) significantly enhanced muscle SOD2 mRNA level at 0.5 h (P<0.05). After once-only eccentric exercise (OE), SOD1, SOD2, and SOD3 mRNA expression significantly increased at 96 h, whereas MDA concentrations decreased at 96 h. After CE, the correlation coefficients of SOD1, SOD2, SOD3 mRNA expression levels and MDA concentrations were −0.814, −0.763, −0.845 (all P<0.05) at 12 h. Conclusion Regular eccentric exercise, especially CE could enhance SOD1 and SOD2 mRNA expression in acute stage and the SOD2 mRNA expression correlates to MDA concentration in vivo, which may improve the oxidative adaption ability of skeletal muscles.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiani Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shinong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- * E-mail:
| | - Yingwei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Ma
- Central Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|