51
|
Kaasbøll OJ, Moe IT, Ahmed MS, Stang E, Hagelin EMV, Attramadal H. CTGF/CCN2 Postconditioning Increases Tolerance of Murine Hearts towards Ischemia-Reperfusion Injury. PLoS One 2016; 11:e0149000. [PMID: 26872261 PMCID: PMC4752337 DOI: 10.1371/journal.pone.0149000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/26/2016] [Indexed: 01/20/2023] Open
Abstract
Background and Purpose Previous studies of ischemia-reperfusion injury (IRI) in hearts from mice with cardiac-restricted overexpression of CCN2 have shown that CCN2 increases tolerance towards IRI. The objectives of this study were to investigate to what extent post-ischemic administration of recombinant human CCN2 (rhCCN2) would limit infarct size and improve functional recovery and what signaling pathways are involved. Experimental Approach Isolated mice hearts were perfused ad modum Langendorff, subjected to no-flow, global ischemia, and subsequently, exposed to mammalian cell derived, full-length (38-40kDa) rhCCN2 (250 nM) or vehicle during the first 15 min of a 60 min reperfusion period. Key Results Post-ischemic administration of rhCCN2 resulted in attenuation of infarct size from 58 ± 4% to 34 ± 2% (p < 0.001) which was abrogated by concomitant administration of the PI3 kinase inhibitor LY294002 (45 ± 3% vs. 50 ± 3%, ns). In congruence with reduction of infarct size rhCCN2 also improved recovery of left ventricular developed pressure (p < 0.05). Western blot analyses of extracts of ex vivo-perfused murine hearts also revealed that rhCCN2 evoked concentration-dependent increase of cardiac phospho-GSK3β (serine-9) contents. Conclusions and Implications We demonstrate that post-ischemic administration of rhCCN2 increases the tolerance of ex vivo-perfused murine hearts to IRI. Mechanistically, this postconditioning effect of rhCCN2 appeared to be mediated by activation of the reperfusion injury salvage kinase pathway as demonstrated by sensitivity to PI3 kinase inhibition and increased CCN2-induced phosphorylation of GSK3β (Ser-9). Thus, the rationale for testing rhCCN2-mediated post-ischemic conditioning of the heart in more complex models is established.
Collapse
Affiliation(s)
- Ole Jørgen Kaasbøll
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Ingvild Tronstad Moe
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Mohammad Shakil Ahmed
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Espen Stang
- Dept. of Pathology, Oslo University Hospital, Oslo, Norway
| | - Else Marie Valbjørn Hagelin
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
52
|
Alteration of Connective Tissue Growth Factor (CTGF) Expression in Orbital Fibroblasts from Patients with Graves' Ophthalmopathy. PLoS One 2015; 10:e0143514. [PMID: 26599235 PMCID: PMC4657967 DOI: 10.1371/journal.pone.0143514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
Graves’ ophthalmopathy (GO) is a disfiguring and sometimes blinding disease, which is characterized by inflammation and swelling of orbital tissues, with fibrosis and adipogenesis being predominant features. The aim of this study is to investigate whether the expression levels of fibrosis-related genes, especially that of connective tissue growth factor (CTGF), are altered in orbital fibroblasts of patients with GO. The role of oxidative stress in the regulation of CTGF expression in GO orbital fibroblasts is also examined. By a SYBR Green-based real time quantitative PCR (RT-QPCR), we demonstrated that the mRNA expression levels of fibronectin, apolipoprotein J, and CTGF in cultured orbital fibroblasts from patients with GO were significantly higher than those of age-matched normal controls (p = 0.007, 0.037, and 0.002, respectively). In addition, the protein expression levels of fibronectin, apolipoprotein J, and CTGF analyzed by Western blot were also significantly higher in GO orbital fibroblasts (p = 0.046, 0.032, and 0.008, respectively) as compared with the control. Furthermore, after treatment of orbital fibroblasts with a sub-lethal dose of hydrogen peroxide (200 μM H2O2), we found that the H2O2-induced increase of CTGF expression was more pronounced in the GO orbital fibroblasts as compared with those in normal controls (20% vs. 7%, p = 0.007). Importantly, pre-incubation with antioxidants including N-acetylcysteine (NAC) and vitamin C, respectively, resulted in significant attenuation of the induction of CTGF in GO orbital fibroblasts in response to H2O2 (p = 0.004 and 0.015, respectively). Taken together, we suggest that oxidative stress plays a role in the alteration of the expression of CTGF in GO orbital fibroblasts that may contribute to the pathogenesis and progression of GO. Antioxidants may be used in combination with the therapeutic agents for effective treatment of GO.
Collapse
|
53
|
Marti P, Stein C, Blumer T, Abraham Y, Dill MT, Pikiolek M, Orsini V, Jurisic G, Megel P, Makowska Z, Agarinis C, Tornillo L, Bouwmeester T, Ruffner H, Bauer A, Parker CN, Schmelzle T, Terracciano LM, Heim MH, Tchorz JS. YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors. Hepatology 2015; 62:1497-510. [PMID: 26173433 DOI: 10.1002/hep.27992] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 07/13/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED The Yes-associated protein (YAP)/Hippo pathway has been implicated in tissue development, regeneration, and tumorigenesis. However, its role in cholangiocarcinoma (CC) is not established. We show that YAP activation is a common feature in CC patient biopsies and human CC cell lines. Using microarray expression profiling of CC cells with overexpressed or down-regulated YAP, we show that YAP regulates genes involved in proliferation, apoptosis, and angiogenesis. YAP activity promotes CC growth in vitro and in vivo by functionally interacting with TEAD transcription factors (TEADs). YAP activity together with TEADs prevents apoptosis induced by cytotoxic drugs, whereas YAP knockdown sensitizes CC cells to drug-induced apoptosis. We further show that the proangiogenic microfibrillar-associated protein 5 (MFAP5) is a direct transcriptional target of YAP/TEAD in CC cells and that secreted MFAP5 promotes tube formation of human microvascular endothelial cells. High YAP activity in human CC xenografts and clinical samples correlates with increased MFAP5 expression and CD31(+) vasculature. CONCLUSIONS These findings establish YAP as a key regulator of proliferation and antiapoptotic mechanisms in CC and provide first evidence that YAP promotes angiogenesis by regulating the expression of secreted proangiogenic proteins.
Collapse
Affiliation(s)
- Patricia Marti
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Claudia Stein
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Tanja Blumer
- Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Yann Abraham
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Michael T Dill
- Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Monika Pikiolek
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Vanessa Orsini
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Giorgia Jurisic
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Philippe Megel
- Novartis Institutes for Biomedical Research, Oncology, Novartis Pharma AG, Basel, Switzerland
| | - Zuzanna Makowska
- Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Claudia Agarinis
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Luigi Tornillo
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - Tewis Bouwmeester
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Heinz Ruffner
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Andreas Bauer
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Christian N Parker
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Tobias Schmelzle
- Novartis Institutes for Biomedical Research, Oncology, Novartis Pharma AG, Basel, Switzerland
| | | | - Markus H Heim
- Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Jan S Tchorz
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
54
|
Branco A, Bartley SM, King SN, Jetté ME, Thibeault SL. Vocal fold myofibroblast profile of scarring. Laryngoscope 2015; 126:E110-7. [PMID: 26344050 DOI: 10.1002/lary.25581] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/24/2015] [Accepted: 07/27/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVES/HYPOTHESIS Vocal fold fibroblasts (VFF) are responsible for extracellular matrix synthesis supporting lamina propria in normal and diseased conditions. When tissue is injured, VFF become activated and differentiate into myofibroblasts to facilitate wound healing response. We investigated if vocal fold myofibroblasts can be utilized as surrogate cells for scarred VFF. STUDY DESIGN In vitro. METHODS Normal VFF cell lines from a 21-year-old male (N21), 59-year-old female (N59), and a scar VFF cell line from a 56-year-old female (S56) were used in this study. 10 ng/mL of transforming growth factor (TGFβ1) was applied for 5 days to normal VFF. Myofibroblast differentiation was determined with immunocytochemistry and western blot, measuring alpha smooth muscle actin (α-SMA). Cell growth, proliferation, contractile properties, and gene expression profiles were evaluated. RESULTS N21, N59, and S56 VFF presented elongated configuration. N21+ and N21- VFF demonstrated significantly greater proliferation compared to N59+, N59-, and S56 VFF at 6 days. α-SMA was expressed in all cells. Fibronectin, alpha smooth actin, connective tissue growth factor, and metallopeptidase inhibitor were the highest genes expression in VFF treated with transforming growth factor β1 (TGFβ1). At 24 hours, S56 VFF showed lower contraction compared to N21+ and N59+ VFF, but at 60 hours S56 VFF had lower collagen contraction compared to all cell groups. Highest collagen contraction matrices were measured with VFF treated with TGFβ1 at 24 hours and N59- VFF at 60 hours. CONCLUSION VFF treated with TGFβ1 (myofibroblasts) appear to have similar phenotypic characteristics but different genotypic behavior compared to scar VFF. LEVEL OF EVIDENCE N/A. Laryngoscope, 126:E110-E117, 2016.
Collapse
Affiliation(s)
- Anete Branco
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.,Ophthalmology, Otorhinolaryngology and Head and Neck Surgery Department, Universidade Estadual Paulista, Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - Stephanie M Bartley
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Suzanne N King
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, U.S.A
| | - Marie E Jetté
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Susan L Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
55
|
Mendes FA, Coelho Aguiar JM, Kahn SA, Reis AH, Dubois LG, Romão LF, Ferreira LSS, Chneiweiss H, Moura Neto V, Abreu JG. Connective-Tissue Growth Factor (CTGF/CCN2) Induces Astrogenesis and Fibronectin Expression of Embryonic Neural Cells In Vitro. PLoS One 2015; 10:e0133689. [PMID: 26241738 PMCID: PMC4524627 DOI: 10.1371/journal.pone.0133689] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/01/2015] [Indexed: 02/06/2023] Open
Abstract
Connective-tissue growth factor (CTGF) is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61), CTGF and nephroblastoma overexpressed (NOV). CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFβ, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling. Additionally, CTGF-induced differentiation of glioblastoma stem cells into a less-tumorigenic state could increase the chances of successful intervention, since differentiated cells are more vulnerable to cancer treatments.
Collapse
Affiliation(s)
- Fabio A. Mendes
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana M. Coelho Aguiar
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana A. Kahn
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Alice H. Reis
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luiz Gustavo Dubois
- Instituto Estadual do Cérebro Paulo Niemeyer (IEC), Rio de Janeiro, RJ, Brazil
| | | | - Lais S. S. Ferreira
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hervé Chneiweiss
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Vivaldo Moura Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IEC), Rio de Janeiro, RJ, Brazil
| | - José G. Abreu
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
56
|
Chen YM, Liapis H. Focal segmental glomerulosclerosis: molecular genetics and targeted therapies. BMC Nephrol 2015; 16:101. [PMID: 26156092 PMCID: PMC4496884 DOI: 10.1186/s12882-015-0090-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/16/2015] [Indexed: 12/18/2022] Open
Abstract
Recent advances show that human focal segmental glomerulosclerosis (FSGS) is a primary podocytopathy caused by podocyte-specific gene mutations including NPHS1, NPHS2, WT-1, LAMB2, CD2AP, TRPC6, ACTN4 and INF2. This review focuses on genes discovered in the investigation of complex FSGS pathomechanisms that may have implications for the current FSGS classification scheme. It also recounts recent recommendations for clinical management of FSGS based on translational studies and clinical trials. The advent of next-generation sequencing promises to provide nephrologists with rapid and novel approaches for the diagnosis and treatment of FSGS. A stratified and targeted approach based on the underlying molecular defects is evolving.
Collapse
Affiliation(s)
- Ying Maggie Chen
- Renal Division, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| | - Helen Liapis
- , Nephropath, Little Rock, Arkansas
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
57
|
Jeon KI, Phipps RP, Sime PJ, Huxlin KR. Inhibitory effects of PPARγ ligands on TGF-β1-induced CTGF expression in cat corneal fibroblasts. Exp Eye Res 2015; 138:52-8. [PMID: 26142957 DOI: 10.1016/j.exer.2015.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 12/16/2022]
Abstract
Ligands of Peroxisome Proliferator Activated Receptor gamma (PPARγ) possess strong anti-fibrotic properties in the cornea and several other body tissues. In the cornea, we recently showed this class of molecules to prevent stromal myofibroblast differentiation partially by blocking the actions of p38 mitogen-activated protein kinase (MAPK). However, given the important role assigned to connective tissue growth factor (CTGF) in mediating corneal fibrosis, here we asked whether PPARγ ligands also act by affecting transforming growth factor-β (TGF-β) 1-induced expression of CTGF in cultured corneal fibroblasts. Corneal keratocytes were isolated from young, adult cats and early passage cells were exposed to TGF-β1 with or without the PPARγ ligands Rosiglitazone, Troglitazone and 15d-PGJ2. Western blots were used to assay levels of CTGF and alpha smooth muscle actin (αSMA), a marker of myofibroblast differentiation. CTGF siRNA demonstrated a critical role for CTGF in TGF-β1-mediated myofibroblast differentiation, while exogenously applied CTGF potentiated the pro-fibrogenic effects of TGF-β1. TGF-β1-mediated increases in CTGF and αSMA expression were strongly inhibited by all three PPARγ ligands tested, and by a c-jun N-terminal kinase (JNK) inhibitor. However, while extracellular signal-regulated kinase (ERK) 1/2, protein kinase B (AKT) and p38 MAPK inhibitors also blocked TGF-β1-induced αSMA induction, they did not dampen TGF-β1-induced increases in levels of CTGF. Thus, we conclude that PPARγ ligands block TGF-β1-induced increases in CTGF levels in cat corneal fibroblasts. They appear to do this in addition to their anti-fibrotic effect on p38 MAPK, providing a second intracellular pathway by which PPARγ ligands block αSMA induction.
Collapse
Affiliation(s)
- Kye-Im Jeon
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - Richard P Phipps
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester, Rochester, NY, USA; Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA; Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Krystel R Huxlin
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA; Center for Visual Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
58
|
Pi L, Jorgensen M, Oh SH, Protopapadakis Y, Gjymishka A, Brown A, Robinson P, Liu C, Scott EW, Schultz GS, Petersen BE. A disintegrin and metalloprotease with thrombospondin type I motif 7: a new protease for connective tissue growth factor in hepatic progenitor/oval cell niche. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1552-1563. [PMID: 25843683 PMCID: PMC4450322 DOI: 10.1016/j.ajpath.2015.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 12/14/2022]
Abstract
Hepatic progenitor/oval cell (OC) activation occurs when hepatocyte proliferation is inhibited and is tightly associated with the fibrogenic response during severe liver damage. Connective tissue growth factor (CTGF) is important for OC activation and contributes to the pathogenesis of liver fibrosis. By using the Yeast Two-Hybrid approach, we identified a disintegrin and metalloproteinase with thrombospondin repeat 7 (ADAMTS7) as a CTGF binding protein. In vitro characterization demonstrated CTGF binding and processing by ADAMTS7. Moreover, Adamts7 mRNA was induced during OC activation, after the implantation of 2-acetylaminofluorene with partial hepatectomy in rats or on feeding a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet in mice. X-Gal staining showed Adamts7 expression in hepatocyte nuclear factor 4α(+) hepatocytes and desmin(+) myofibroblasts surrounding reactive ducts in DDC-treated Adamts7(-/-) mice carrying a knocked-in LacZ gene. Adamts7 deficiency was associated with higher transcriptional levels of Ctgf and OC markers and enhanced OC proliferation compared to Adamts7(+/+) controls during DDC-induced liver injury. We also observed increased α-smooth muscle actin and procollagen type I mRNAs, large fibrotic areas in α-smooth muscle actin and Sirius red staining, and increased production of hepatic collagen by hydroxyproline measurement. These results suggest that ADAMTS7 is a new protease for CTGF protein and a novel regulator in the OC compartment, where its absence causes CTGF accumulation, leading to increased OC activation and biliary fibrosis.
Collapse
Affiliation(s)
- Liya Pi
- Department of Pediatrics, University of Florida, Gainesville, Florida.
| | - Marda Jorgensen
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Seh-Hoon Oh
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | | | - Altin Gjymishka
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Alicia Brown
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Paulette Robinson
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Chuanju Liu
- Departments of Orthopaedic Surgery and Cell Biology, New York University School of Medicine, New York, New York
| | - Edward W Scott
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida
| | - Gregory S Schultz
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida
| | - Bryon E Petersen
- Department of Pediatrics, University of Florida, Gainesville, Florida
| |
Collapse
|
59
|
Klaassen I, van Geest RJ, Kuiper EJ, van Noorden CJF, Schlingemann RO. The role of CTGF in diabetic retinopathy. Exp Eye Res 2015; 133:37-48. [PMID: 25819453 DOI: 10.1016/j.exer.2014.10.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 10/23/2022]
Abstract
Connective tissue growth factor (CTGF, CCN2) contributes to fibrotic responses in diabetic retinopathy, both before clinical manifestations occur in the pre-clinical stage of diabetic retinopathy (PCDR) and in proliferative diabetic retinopathy (PDR), the late clinical stage of the disease. CTGF is a secreted protein that modulates the actions of many growth factors and extracellular matrix (ECM) proteins, leading to tissue reorganization, such as ECM formation and remodeling, basal lamina (BL) thickening, pericyte apoptosis, angiogenesis, wound healing and fibrosis. In PCDR, CTGF contributes to thickening of the retinal capillary BL and is involved in loss of pericytes. In this stage, CTGF expression is induced by advanced glycation end products, and by growth factors such as vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β. In PDR, the switch from neovascularization to a fibrotic phase - the angio-fibrotic switch - in PDR is driven by CTGF, in a critical balance with vascular endothelial growth factor (VEGF). We discuss here the roles of CTGF in the pathogenesis of DR in relation to ECM remodeling and wound healing mechanisms, and explore whether CTGF may be a potential novel therapeutic target in the clinical management of early as well as late stages of DR.
Collapse
Affiliation(s)
- Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Rob J van Geest
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther J Kuiper
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Sciences, Amsterdam, The Netherlands
| |
Collapse
|
60
|
TGF-Beta Blockade Increases Renal Inflammation Caused by the C-Terminal Module of the CCN2. Mediators Inflamm 2015; 2015:506041. [PMID: 26074680 PMCID: PMC4436472 DOI: 10.1155/2015/506041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 11/25/2022] Open
Abstract
The CCN family member 2 (CCN2, also known as
connective tissue growth factor) may behave as a risk
biomarker and a potential therapeutic target for renal
disease. CCN2 participates in the regulation of
inflammation and fibrosis. TGF-β is considered
the main fibrogenic cytokine; however, in some
pathological settings TGF-β also has
anti-inflammatory properties. CCN2 has been proposed
as a downstream profibrotic mediator of TGF-β,
but data on TGF-β role in CCN2 actions are
scarce. Our aim was to evaluate the effect of
TGF-β blockade in CCN2-mediated experimental
renal damage. Systemic administration of the
C-terminal module of CCN2 to mice caused sustained
renal inflammation. In these mice, TGF-β
blockade, using an anti-TGF-β neutralizing
antibody, significantly increased renal expression of
the NGAL (a kidney injury biomarker), kidney
infiltration by monocytes/macrophages, and
upregulation of MCP-1 expression. The
anti-inflammatory effect of TGF-β seems to be
mediated by a dysregulation of the systemic Treg
immune response, shown by decreased levels of
circulating CD4+/Foxp3+Treg
cells. Our experimental data support the idea that
TGF-β exerts anti-inflammatory actions in the
kidney and suggest that it is not an optimal
therapeutic target.
Collapse
|
61
|
Dostal D, Glaser S, Baudino TA. Cardiac Fibroblast Physiology and Pathology. Compr Physiol 2015; 5:887-909. [DOI: 10.1002/cphy.c140053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
62
|
Zielins ER, Brett EA, Luan A, Hu MS, Walmsley GG, Paik K, Senarath-Yapa K, Atashroo DA, Wearda T, Lorenz HP, Wan DC, Longaker MT. Emerging drugs for the treatment of wound healing. Expert Opin Emerg Drugs 2015; 20:235-46. [PMID: 25704608 DOI: 10.1517/14728214.2015.1018176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Wound healing can be characterized as underhealing, as in the setting of chronic wounds, or overhealing, occurring with hypertrophic scar formation after burn injury. Topical therapies targeting specific biochemical and molecular pathways represent a promising avenue for improving and, in some cases normalizing, the healing process. AREAS COVERED A brief overview of both normal and pathological wound healing has been provided, along with a review of the current clinical guidelines and treatment modalities for chronic wounds, burn wounds and scar formation. Next, the major avenues for wound healing drugs, along with drugs currently in development, are discussed. Finally, potential challenges to further drug development, and future research directions are discussed. EXPERT OPINION The large body of research concerning wound healing pathophysiology has provided multiple targets for topical therapies. Growth factor therapies with the ability to be targeted for localized release in the wound microenvironment are most promising, particularly when they modulate processes in the proliferative phase of wound healing.
Collapse
Affiliation(s)
- Elizabeth R Zielins
- Stanford University School of Medicine, Division of Plastic Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine , 257 Campus Drive, Stanford, CA 94305-5148 , USA +1 650 736 1707 ; +1 650 736 1705 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Takigawa M. Terminology of CCN1-6 should not be applicable for their fragments and be limited to only full length CCN1-6. J Cell Commun Signal 2015; 9:81-3. [PMID: 25698662 DOI: 10.1007/s12079-015-0269-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022] Open
Affiliation(s)
- Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan,
| |
Collapse
|
64
|
Li S, Huo Y, Tian H, Zhang Q, Lv Y, Hao Z. In vitro selection and characterization of deoxyribonucleic acid aptamers against connective tissue growth factor. Biochem Biophys Res Commun 2015; 457:640-6. [PMID: 25603056 DOI: 10.1016/j.bbrc.2015.01.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/10/2015] [Indexed: 01/20/2023]
Abstract
Connective tissue growth factor (CTGF) is a secreted matricellular protein possessing complex biological functions. CTGF modulates a number of signaling pathways that are involved in cell adhesion, migration, angiogenesis, myofibroblast activation, extracellular matrix deposition and tissue remodeling. Aptamers are oligonucleic acid chains or polypeptides that bind with specific target molecules hence have the potential to be used in the detection and blockade of the targets. In this study, we selected CTGF-targeting DNA aptamers by using systematic evolution of ligands by exponential enrichment (SELEX). After 8 iterative rounds of selection, cloning, DNA sequencing and affinity determination, six aptamers with high affinities to CTGF were obtained. Among them, one (C-ap17P) binds with the N-terminal region (aa 1-190) and the other five (C-ap11, 12, 14, 15 and 18) bind with the C-terminal region (aa 191-350) of hCTGF specifically. The biological stability assay indicated that a representative aptamer, C-ap17P, could keep its integrity at a rather high level for at least 24 h in complete DMEM cell culture medium. These CTGF aptamers might be used as a easy and fast detection tool for CTGF and be developed as CTGF-specific inhibitors for both research works and clinical applications.
Collapse
Affiliation(s)
- Shuang Li
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Yongwei Huo
- Research Center of Reproductive Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Hong Tian
- Research Center of Reproductive Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Qiannan Zhang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Yifei Lv
- Department of Gastroenterology, Shaanxi Provincial People's Hospital and the Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710068, PR China.
| | - Zhiming Hao
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China; Department of Rheumatology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
65
|
Wang S, Li B, Li C, Cui W, Miao L. Potential Renoprotective Agents through Inhibiting CTGF/CCN2 in Diabetic Nephropathy. J Diabetes Res 2015; 2015:962383. [PMID: 26421309 PMCID: PMC4572424 DOI: 10.1155/2015/962383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/28/2015] [Accepted: 03/25/2015] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). The development and progression of DN might involve multiple factors. Connective tissue growth factor (CCN2, originally known as CTGF) is the one which plays a pivotal role. Therefore, increasing attention is being paid to CCN2 as a potential therapeutic target for DN. Up to date, there are also many drugs or agents which have been shown for their protective effects against DN via different mechanisms. In this review, we only focus on the potential renoprotective therapeutic agents which can specifically abolish CCN2 expression or nonspecifically inhibit CCN2 expression for retarding the development and progression of DN.
Collapse
Affiliation(s)
- Songyan Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
- Department of Nephrology, Jilin Province People's Hospital, Changchun 130021, China
| | - Bing Li
- Department of Nephrology, Jilin Province People's Hospital, Changchun 130021, China
| | - Chunguang Li
- Department of Urology, The 2nd Hospital of Changchun, Changchun 130061, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
- *Lining Miao:
| |
Collapse
|
66
|
Williamson JD, Sadofsky LR, Hart SP. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis. Exp Lung Res 2014; 41:57-73. [PMID: 25514507 DOI: 10.3109/01902148.2014.979516] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.
Collapse
Affiliation(s)
- James D Williamson
- Hull York Medical School, Centre for Cardiovascular and Metabolic Research, Academic Respiratory Medicine , Castle Hill Hospital, Hull , United Kingdom
| | | | | |
Collapse
|
67
|
Gao W, Cai L, Xu X, Fan J, Xue X, Yan X, Qu Q, Wang X, Zhang C, Wu G. Anti-CTGF single-chain variable fragment dimers inhibit human airway smooth muscle (ASM) cell proliferation by down-regulating p-Akt and p-mTOR levels. PLoS One 2014; 9:e113980. [PMID: 25478966 PMCID: PMC4257608 DOI: 10.1371/journal.pone.0113980] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/02/2014] [Indexed: 11/19/2022] Open
Abstract
Connective tissue growth factor (CTGF) contributes to airway smooth muscle (ASM) cell hyperplasia in asthma. Humanized single-chain variable fragment antibody (scFv) was well characterized as a CTGF antagonist in the differentiation of fibroblast into myofibroblast and pulmonary fibrosis in our previous studies. To further improve the bioactivity of scFv, we constructed a plasmid to express scFv-linker-matrilin-6×His fusion proteins that could self-assemble into the scFv dimers by disulfide bonds in matrilin under non-reducing conditions. An immunoreactivity assay demonstrated that the scFv dimer could highly bind to CTGF in a concentration-dependent manner. The MTT and EdU assay results revealed that CTGF (≥10 ng/mL) promoted the proliferation of ASM cells, and this effect was inhibited when the cells were treated with anti-CTGF scFv dimer. The western blot analysis results showed that increased phosphorylation of Akt and mTOR induced by CTGF could be suppressed by this scFv dimer. Based on these findings, anti-CTGF scFv dimer may be a potential agent for the prevention of airway remodeling in asthma.
Collapse
Affiliation(s)
- Wei Gao
- Medical School, Southeast University, Nanjing 210009, China
| | - Liting Cai
- Medical School, Southeast University, Nanjing 210009, China
| | - Xudong Xu
- Department of Biological engineering, Southeast University, Nanjing 210009, China
| | - Juxiang Fan
- Medical School, Southeast University, Nanjing 210009, China
| | - Xiulei Xue
- Medical School, Southeast University, Nanjing 210009, China
| | - Xuejiao Yan
- Medical School, Southeast University, Nanjing 210009, China
| | - Qinrong Qu
- Medical School, Southeast University, Nanjing 210009, China
| | - Xihua Wang
- Department of Respiration, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Chen Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, China
| |
Collapse
|
68
|
Gingery A, Yang TH, Passe SM, An KN, Zhao C, Amadio PC. TGF-β signaling regulates fibrotic expression and activity in carpal tunnel syndrome. J Orthop Res 2014; 32:1444-50. [PMID: 25073432 PMCID: PMC4222071 DOI: 10.1002/jor.22694] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/23/2014] [Indexed: 02/04/2023]
Abstract
Fibrosis of the subsynovial connective tissue (SSCT) is a predominant feature of carpal tunnel syndrome (CTS). While the nature of CTS has been extensively studied, little is known about the etiology of this disease. We investigated SSCT tissue from patients with CTS and control subjects using fibrosis arrays and cell culture analysis. Twofold changes in fibrotic gene expression were found in multiple genes from patient SSCT using fibrosis arrays. This data was confirmed via qRT-PCR on a subset of genes; collagen I (Col1), collagen III (Col3), connective tissue growth factor (CTGF), transforming growth factor β (TGF-β), and SMAD3 (P < 0.05) which significantly corroborate the fold changes found in the fibrosis arrays. To further explore the nature of SSCT fibrosis, cells were isolated from patient and control tissue. Col1, Col3, TGF-β, and SMAD3 were highly expressed in patient SSCT fibroblasts as compared to control (P < 0.05). Further, fibrotic genes expression was decreased by inhibiting TGF-β receptor I (TβRI) activity (P < 0.05). TGF-β second messenger SMAD activity was significantly activated in SSCT fibroblasts from patients and this activation was abrogated by inhibiting TβRI signaling (P < 0.05). These findings suggest that blocking TGF-β signaling may be an important therapeutic approach to treating the underlying fibrosis of SSCT in CTS patients.
Collapse
Affiliation(s)
- Anne Gingery
- Department of Biochemistry and Molecular Biology, Biomechanics and Tendon & Soft Tissue Biology Laboratory Mayo Clinic, Rochester, MN
| | - Tai-Hua Yang
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory Mayo Clinic, Rochester, MN
| | - Sandra M. Passe
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory Mayo Clinic, Rochester, MN
| | - Kai-Nan An
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory Mayo Clinic, Rochester, MN
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory Mayo Clinic, Rochester, MN
| | - Peter C. Amadio
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory Mayo Clinic, Rochester, MN
| |
Collapse
|
69
|
Liu S, Thompson K, Leask A. CCN2 expression by fibroblasts is not required for cutaneous tissue repair. Wound Repair Regen 2014; 22:119-24. [PMID: 24393160 DOI: 10.1111/wrr.12131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 10/10/2013] [Indexed: 12/17/2022]
Abstract
The CCN family of matricellular proteins, which includes CCN2 and CCN1, is believed to have a major in vivo role in controlling tissue morphogenesis and repair. In adult skin, the proadhesive matricellular protein connective tissue growth factor (CTGF/CCN2) is specifically up-regulated in fibrosis and wound healing. In mice, CCN2 is required for dermal fibrogenesis, but whether CCN2 is required for cutaneous tissue repair is unknown. To address this question, in this report we subjected adult mice bearing a fibroblast-specific deletion of CCN2 to the dermal punch model of cutaneous tissue repair. Loss of CCN2 did not appreciably affect the kinetics of tissue repair, collagen content, or the number of α-smooth muscle actin-positive cells. CCN1 (cyr61), which has in vitro effect similar to CCN2, is also induced in cutaneous tissue repair. Fibroblast-specific CCN1/CCN2 double knockout mice were also generated; loss of both CCN1 and CCN2 together did not appreciably affect cutaneous tissue repair. However, loss of CCN2 resulted in impaired recruitment of NG2-positive pericyte-like cells to the wound area. Collectively, these results indicate that neither CCN2 nor CCN1 is essential for cutaneous tissue repair; CCN2 appears to be required for recruitment of pericyte-like cells and may represent a specific antifibrotic target.
Collapse
Affiliation(s)
- Shangxi Liu
- Department of Dentistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
70
|
Iso Y, Rao KS, Poole CN, Zaman AKMT, Curril I, Sobel BE, Kajstura J, Anversa P, Spees JL. Priming with ligands secreted by human stromal progenitor cells promotes grafts of cardiac stem/progenitor cells after myocardial infarction. Stem Cells 2014; 32:674-83. [PMID: 24022988 DOI: 10.1002/stem.1546] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 03/10/2013] [Accepted: 08/13/2013] [Indexed: 01/01/2023]
Abstract
Transplantation of culture-expanded adult stem/progenitor cells often results in poor cellular engraftment, survival, and migration into sites of tissue injury. Mesenchymal cells including fibroblasts and stromal cells secrete factors that protect injured tissues, promote tissue repair, and support many types of stem/progenitor cells in culture. We hypothesized that secreted factors in conditioned medium (CdM) from adult bone marrow-derived multipotent stromal cells (MSCs) could be used to prime adult cardiac stem/progenitor cells (CSCs/CPCs) and improve graft success after myocardial infarction (MI). Incubation of adult rat CPCs in CdM from human MSCs isolated by plastic adherence or by magnetic sorting against CD271 (a.k.a., p75 low-affinity nerve growth factor receptor; p75MSCs) induced phosphorylation of STAT3 and Akt in CPCs, supporting their proliferation under normoxic conditions and survival under hypoxic conditions (1% oxygen). Priming CSCs with 30× p75MSC CdM for 30 minutes prior to transplantation into subepicardial tissue 1 day after MI markedly increased engraftment compared with vehicle priming. Screening CdM with neutralizing/blocking antibodies identified connective tissue growth factor (CTGF) and Insulin as key factors in p75MSC CdM that protected CPCs. Human CTGF peptide (CTGF-D4) and Insulin synergistically promoted CPC survival during hypoxia in culture. Similar to CdM priming, priming of CSCs with CTGF-D4 and Insulin for 30 minutes prior to transplantation promoted robust engraftment, survival, and migration of CSC derivatives at 1 week and 1 month after MI. Our results indicate that short-term priming of human CSCs with CTGF-D4 and Insulin may improve graft success and cardiac regeneration in patients with MI.
Collapse
Affiliation(s)
- Yoshitaka Iso
- Department of Medicine, Stem Cell Core and, Cardiovascular Research Institute, University of Vermont, Colchester, Vermont, USA; Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, Vermont, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Maluf DG, Dumur CI, Suh JL, Lee JK, Cathro EP, King AL, Gallon L, Brayman KL, Mas VR. Evaluation of molecular profiles in calcineurin inhibitor toxicity post-kidney transplant: input to chronic allograft dysfunction. Am J Transplant 2014; 14:1152-1163. [PMID: 24698514 PMCID: PMC4377109 DOI: 10.1111/ajt.12696] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 01/21/2014] [Accepted: 01/28/2014] [Indexed: 02/05/2023]
Abstract
The molecular basis of calcineurin inhibitor toxicity (CNIT) in kidney transplantation (KT) and its contribution to chronic allograft dysfunction (CAD) with interstitial fibrosis (IF) and tubular atrophy (TA) were evaluated by: (1) identifying specific CNIT molecular pathways that associate with allograft injury (cross-sectional study) and (2) assessing the contribution of the identified CNIT signature in the progression to CAD with IF/TA (longitudinal study). Kidney biopsies from well-selected transplant recipients with histological diagnosis of CNIT (n = 14), acute rejection (n = 13) and CAD with IF/TA (n = 10) were evaluated. Normal allografts (n = 18) were used as controls. To test CNIT contribution to CAD progression, an independent set of biopsies (n = 122) from 61 KT patients collected at 3 and ~12 months post-KT (range = 9-18) were evaluated. Patients were classified based on 2-year post-KT graft function and histological findings as progressors (n = 30) or nonprogressors to CAD (n = 31). Molecular signatures characterizing CNIT samples were identified. Patients classified as progressors showed an overlap of 7% and 22% with the CNIT signature at 3 and at ~12 months post-KT, respectively, while the overlap was <1% and 1% in nonprogressor patients, showing CNIT at the molecular level as a nonimmunological factor involved in the progression to CAD.
Collapse
Affiliation(s)
- DG Maluf
- University of Virginia, Department of Surgery PO Box 800679, Charlottesville, VA 22908-0679
| | - CI Dumur
- University of Virginia, Department of Pathology PO Box 800904, VA 22908-0214
| | - JL Suh
- University of Virginia, Department of Surgery PO Box 800679, Charlottesville, VA 22908-0679
| | - JK Lee
- University of Virginia, Division of Biostatistics PO Box 800717, VA 22298-0717
| | - EP Cathro
- University of Virginia, Department of Pathology PO Box 800904, VA 22908-0214
| | - AL King
- Virginia Commonwealth University, Division of Nephrology PO Box 980662, VA 23298-0662
| | - L Gallon
- Northwestern University, Division of Nephrology, Department of Internal Medicine, Comprehensive Transplant Center Chicago, IL 60611
| | - KL Brayman
- University of Virginia, Department of Surgery PO Box 800679, Charlottesville, VA 22908-0679
| | - VR Mas
- University of Virginia, Department of Surgery PO Box 800679, Charlottesville, VA 22908-0679
| |
Collapse
|
72
|
Leptin induces cardiac fibrosis through galectin-3, mTOR and oxidative stress. J Hypertens 2014; 32:1104-14; discussion 1114. [DOI: 10.1097/hjh.0000000000000149] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
73
|
San Martin R, Barron DA, Tuxhorn JA, Ressler SJ, Hayward SW, Shen X, Laucirica R, Wheeler TM, Gutierrez C, Ayala GE, Ittmann M, Rowley DR. Recruitment of CD34(+) fibroblasts in tumor-associated reactive stroma: the reactive microvasculature hypothesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1860-70. [PMID: 24713391 DOI: 10.1016/j.ajpath.2014.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/06/2014] [Accepted: 02/19/2014] [Indexed: 01/31/2023]
Abstract
Reactive stroma co-evolves with cancer, exhibiting tumor-promoting properties. It is also evident at sites of wound repair and fibrosis, playing a key role in tissue homeostasis. The specific cell types of origin and the spatial/temporal patterns of reactive stroma initiation are poorly understood. In this study, we evaluated human tumor tissue arrays by using multiple labeled, quantitative, spectral deconvolution microscopy. We report here a novel CD34/vimentin dual-positive reactive fibroblast that is observed in the cancer microenvironment of human breast, colon, lung, pancreas, thyroid, prostate, and astrocytoma. Recruitment of these cells occurred in xenograft tumors and Matrigel plugs in vivo and was also observed in stromal nodules associated with human benign prostatic hyperplasia. Because spatial and temporal data suggested the microvasculature as a common site of origin for these cells, we analyzed microvasculature fragments in organ culture. Interestingly, fibroblasts with identical phenotypic properties and markers expanded radially from microvasculature explants. We propose the concept of reactive microvasculature for the evolution of reactive stroma at sites of epithelial disruption common in both benign and malignant disorders. Data suggest that the reactive stroma response is conserved among tissues, in normal repair, and in different human cancers. A more clear understanding of the nature and origin of reactive stroma is needed to identify novel therapeutic targets in cancer and fibrosis.
Collapse
Affiliation(s)
- Rebeca San Martin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - David A Barron
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jennifer A Tuxhorn
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Steven J Ressler
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Simon W Hayward
- Department of Urology, Vanderbilt University, School of Medicine, Nashville, Tennessee
| | - Xiaoyun Shen
- Department of Pathology and Immunolog, Baylor College of Medicine, Houston, Texas
| | - Rodolfo Laucirica
- Department of Pathology and Immunolog, Baylor College of Medicine, Houston, Texas
| | - Thomas M Wheeler
- Department of Pathology and Immunolog, Baylor College of Medicine, Houston, Texas
| | - Carolina Gutierrez
- Department of Pathology and Immunolog, Baylor College of Medicine, Houston, Texas
| | - Gustavo E Ayala
- Department of Pathology and Immunolog, Baylor College of Medicine, Houston, Texas
| | - Michael Ittmann
- Department of Pathology and Laboratory Medicine, Michael E. DeBakey VA Medical Center, Houston, Texas
| | - David R Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
74
|
Tong Z, Zerdoum AB, Duncan RL, Jia X. Dynamic vibration cooperates with connective tissue growth factor to modulate stem cell behaviors. Tissue Eng Part A 2014; 20:1922-34. [PMID: 24456068 DOI: 10.1089/ten.tea.2013.0496] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vocal fold disorders affect 3-9% of the U.S. population. Tissue engineering offers an alternative strategy for vocal fold repair. Successful engineering of vocal fold tissues requires a strategic combination of therapeutic cells, biomimetic scaffolds, and physiologically relevant mechanical and biochemical factors. Specifically, we aim to create a vocal fold-like microenvironment to coax stem cells to adopt the phenotype of vocal fold fibroblasts (VFFs). Herein, high frequency vibratory stimulations and soluble connective tissue growth factor (CTGF) were sequentially introduced to mesenchymal stem cells (MSCs) cultured on a poly(ɛ-caprolactone) (PCL)-derived microfibrous scaffold for a total of 6 days. The initial 3-day vibratory culture resulted in an increased production of hyaluronic acids (HA), tenascin-C (TNC), decorin (DCN), and matrix metalloproteinase-1 (MMP1). The subsequent 3-day CTGF treatment further enhanced the cellular production of TNC and DCN, whereas CTGF treatment alone without the vibratory preconditioning significantly promoted the synthesis of collagen I (Col 1) and sulfated glycosaminoglycans (sGAGs). The highest level of MMP1, TNC, Col III, and DCN production was found for cells being exposed to the combined vibration and CTGF treatment. Noteworthy, the vibration and CTGF elicited a differential stimulatory effect on elastin (ELN), HA synthase 1 (HAS1), and fibroblast-specific protein-1 (FSP-1). The mitogenic activity of CTGF was only elicited in naïve cells without the vibratory preconditioning. The combined treatment had profound, but opposite effects on mitogen-activated protein kinase (MAPK) pathways, Erk1/2 and p38, and the Erk1/2 pathway was critical for the observed mechano-biochemical responses. Collectively, vibratory stresses and CTGF signals cooperatively coaxed MSCs toward a VFF-like phenotype and accelerated the synthesis and remodeling of vocal fold matrices.
Collapse
Affiliation(s)
- Zhixiang Tong
- 1 Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware , Newark, Delaware
| | | | | | | |
Collapse
|
75
|
Liu Y, Li W, Liu H, Peng Y, Yang Q, Xiao L, Liu Y, Liu F. Inhibition effect of small interfering RNA of connective tissue growth factor on the expression of extracellular matrix molecules in cultured human renal proximal tubular cells. Ren Fail 2013; 36:278-84. [DOI: 10.3109/0886022x.2013.846866] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
76
|
RNA Interference Targeting Connective Tissue Growth Factor Inhibits the Transforming Growth Factor- β 2 Induced Proliferation in Human Tenon Capsule Fibroblasts. J Ophthalmol 2013; 2013:354798. [PMID: 24288593 PMCID: PMC3830853 DOI: 10.1155/2013/354798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022] Open
Abstract
Purpose. This study was to determine the effect of CTGF-small interfering RNA (siRNA) on TGF- β 2-induced proliferation in human Tenon capsule fibroblasts (HTFs). Methods. HTFs were transfected with four of CTGF-siRNAs separately for screening of gene silencing efficacy that was determined by transcript level measured by quantitative real-time PCR (qRT-PCR). Recombinant TGF- β 2 was added into the culture to stimulate the proliferation of HTFs. The gene silencing efficacy of the siRNAs was evaluated by qRT-PCR and immunofluorescence of CTGF transcript and protein levels. The viability of HTFs was determined by cell counting kit-8 (CCK-8). FCM was used to assess cell cycle after CTGF-siRNA transfection. Results. The expression of CTGF and proliferation of HTFs were increased significantly by TGF- β 2 stimulation. The transfection of CTGF-siRNA abolished the upregulation of CTGF and cell proliferation induced by TGF- β 2. The analysis of cell cycle indicated that CTGF-siRNA treatment stimulated cells from S phase to G0/G1 phase in comparison with the inverse physiologic function of TGF- β 2. Conclusion. CTGF targeting siRNA could effectively suppress the expression of CTGF and attenuate the proliferation of HTFs. The siRNA approach may provide a therapeutic option for eliminating filtration bleb scarring after glaucoma filtration surgery (GFS).
Collapse
|
77
|
Robinson PM, Chuang TD, Sriram S, Pi L, Luo XP, Petersen BE, Schultz GS. MicroRNA signature in wound healing following excimer laser ablation: role of miR-133b on TGFβ1, CTGF, SMA, and COL1A1 expression levels in rabbit corneal fibroblasts. Invest Ophthalmol Vis Sci 2013; 54:6944-6951. [PMID: 24065814 PMCID: PMC3808100 DOI: 10.1167/iovs.13-12621] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The role of microRNA (miRNA) regulation in corneal wound healing and scar formation has yet to be elucidated. This study analyzed the miRNA expression pattern involved in corneal wound healing and focused on the effect of miR-133b on expression of several profibrotic genes. METHODS Laser-ablated mouse corneas were collected at 0 and 30 minutes and 2 days. Ribonucleic acid was collected from corneas and analyzed using cell differentiation and development miRNA PCR arrays. Luciferase assay was used to determine whether miR-133b targeted the 3' untranslated region (UTR) of transforming growth factor β1 (TGFβ1) and connective tissue growth factor (CTGF) in rabbit corneal fibroblasts (RbCF). Quantitative real-time PCR (qRT-PCR) and Western blots were used to determine the effect of miR-133b on CTGF, smooth muscle actin (SMA), and collagen (COL1A1) in RbCF. Migration assay was used to determine the effect of miR-133b on RbCF migration. RESULTS At day 2, 37 of 86 miRNAs had substantial expression fold changes. miR-133b had the greatest fold decrease at -14.33. Pre-miR-133b targeted the 3' UTR of CTGF and caused a significant decrease of 38% (P < 0.01). Transforming growth factor β1-treated RbCF had a significant decrease of miR-133b of 49% (P < 0.01), whereas CTGF, SMA, and COL1A1 had significant increases of 20%, 54%, and 37% (P < 0.01), respectively. The RbCF treated with TGFβ1 and pre-miR133b showed significant decreases in expression of CTGF, SMA, and COL1A1 of 30%, 37%, and 28% (P < 0.01), respectively. Finally, there was significant decrease in migration of miR-133b-treated RbCF. CONCLUSIONS Significant changes occur in key miRNAs during early corneal wound healing, suggesting novel miRNA targets to reduce scar formation.
Collapse
Affiliation(s)
| | - Tsai-Der Chuang
- Institute for Wound Research, Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida
| | - Sriniwas Sriram
- Institute for Wound Research, Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida
| | - Liya Pi
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Xiao Ping Luo
- Institute for Wound Research, Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida
| | - Bryon E. Petersen
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Gregory S. Schultz
- Institute for Wound Research, Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida
| |
Collapse
|
78
|
Zhang JY, Gao P, Ye W, Xiao YQ. Functional characteristics of connective tissue growth factor on human tenon's capsule fibroblast. Curr Eye Res 2013; 39:53-61. [PMID: 24074434 DOI: 10.3109/02713683.2013.833245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF THE STUDY To explore the characteristic of connective tissue growth factor (CTGF) on the phenotype transition, extracellular matrix (ECM) synthesis and proliferation of human Tenon's capsule fibroblasts (HTFs). MATERIALS AND METHODS HTFs were obtained from patients during cataract surgery and induced by CTGF (1 to 100 µg/L). Western blot and immunofluorescence were performed to observe the expression of alpha smooth muscle actin (α-SM-actin) protein. The levels of mRNAs were quantified by real-time PCR. Col I and FN expression at both protein and RNA levels were tested after induction by CTGF and transforming growth factor β (TGF-β), respectively. Statistical significance was assumed if p < 0.05. RESULTS CTGF upregulated the expression of α-SM-actin in cultured HTFs. Its maximum effect at protein level attained under the optimal concentration of 50 μg/L at the peak time of 48 hours, though still weaker than the effect of TGF-β1 (10 μg/L, p < 0.05). The expression of Col I and FN at both protein and mRNA levels was elevated by the induction of CTGF (50 μg/L) (p < 0.01) and TGF-β1 (10 μg/L) (p < 0.05), while CTGF (50 μg/L) showed a greater effect than the latter (p < 0.05). CTGF (1 to100 μg/L) increased the proliferation of HTFs significantly (p < 0.05). CONCLUSIONS CTGF induced the phenotype transition of HTFs individually and significantly promoted their proliferation. Moreover, it promoted ECM synthesis, thus demonstrating its role as a crucial factor in fibrosis. Thus, CTGF could potentially be a safer and more efficient target than TGF-β at suppressing scar formation after filtering surgery.
Collapse
Affiliation(s)
- Jia-Ying Zhang
- Department of Ophthalmology, Huashan Hospital Fudan University , Shanghai , China
| | | | | | | |
Collapse
|
79
|
Hann S, Kvenvold L, Newby BN, Hong M, Warman ML. A Wisp3 Cre-knockin allele produces efficient recombination in spermatocytes during early prophase of meiosis I. PLoS One 2013; 8:e75116. [PMID: 24040393 PMCID: PMC3769254 DOI: 10.1371/journal.pone.0075116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/09/2013] [Indexed: 12/13/2022] Open
Abstract
Individuals with the autosomal recessive skeletal disorder Progressive Pseudorheumatoid Dysplasia have loss-of-function mutations in WISP3, and aberrant WISP3 expression has been detected in tumors from patients with colon and breast cancer. In mice however, neither absence nor over-expression of WISP3 was found to cause a phenotype, and endogenous Wisp3 expression has been difficult to detect. To confirm that Wisp3 knockout mice have no phenotype and to identify potential sites of endogenous Wisp3 expression, we generated mice with a knockin allele (Wisp3 (GFP-Cre)) designed to express Green Fluorescent Protein (GFP) and Cre-recombinase instead of WISP3. Heterozygous and homozygous knockin mice were fertile and indistinguishable from their wild-type littermates, confirming that mice lacking Wisp3 have no phenotype. We could not detect GFP-expression from the knockin allele, but we could detect Cre-expression after crossing mice with the knockin allele to Cre-reporter mice; the double heterozygous offspring had evidence of Cre-mediated recombination in several tissues. The only tissue that had high levels of Cre-mediated recombination was the testis, where recombination in spermatocytes occurred by early prophase of meiosis I. As a consequence, males that were double heterozygous for a Wisp3 (GFP-Cre) and a floxed allele only contributed a recombined allele to their offspring. We detected no evidence of Cre-mediated recombination in the female ovary, although when double heterozygous females contributed the reporter allele to their offspring it had recombined ~7% of the time. Wisp3 (GFP-Cre) expression therefore occurs less frequently and most likely at a later stage of oocyte development in female mice compared to male mice. We conclude that although WISP3 is dispensable in mice, male mice with a Wisp3 (GFP-Cre) allele (Jackson Laboratory stock # 017685) will be useful for studying early prophase of meiosis I and for efficiently recombining floxed alleles that are passed to offspring.
Collapse
Affiliation(s)
- Steven Hann
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| | - Laura Kvenvold
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Brittney N. Newby
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Minh Hong
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Matthew L. Warman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
80
|
Sakai N, Tager AM. Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:911-21. [PMID: 23499992 PMCID: PMC4041487 DOI: 10.1016/j.bbadis.2013.03.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the "pas de deux" (steps of two), or perhaps more appropriate to IPF pathogenesis, the "folie à deux" (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their "fibrosis of two", including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Norihiko Sakai
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
| | - Andrew M. Tager
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
| |
Collapse
|
81
|
Abstract
PURPOSE OF REVIEW Connective tissue growth factor, more recently officially known as CCN-2, is a member of the CCN family of secreted cysteine-rich modular matricellular proteins. Here, we review CCN-2 in diabetic nephropathy with focus on its regulation of extracellular matrix. RECENT FINDINGS CCN-2 is upregulated in the clinical and preclinical models of diabetic nephropathy by multiple stimuli, including elevated glucose, advanced glycation, some types of lipid, various hemodynamic factors, as well as hypoxia and oxidative stress. CCN-2 has bioactivities that suggest it may mediate diabetic nephropathy pathogenesis, especially in extracellular matrix accumulation, through both induction of new matrix and inhibition of matrix degradation. CCN-2 also has proinflammatory functions. Moreover, recent studies using antibodies or antisense technologies in animal and early phase clinical trial settings have shown that inhibition of renal CCN-2 expression or action may prevent diabetic nephropathy. Additionally, determination of renal and blood levels of CCN-2 as a marker of diabetic renal disease and its progression appears to have value. SUMMARY Recent publications implicate CCN-2 as both an evolving marker and mediator of diabetic nephropathy.
Collapse
|
82
|
Yijing L, Liu H, Yuan C, Wang B, Ren M, Yan L, Wang X, Zhang J. The effects of qindan-capsule-containing serum on the TGF-β1/ERK signaling pathway, matrix metalloproteinase synthesis and cell function in adventitial fibroblasts. PHARMACEUTICAL BIOLOGY 2013; 51:712-721. [PMID: 23373709 DOI: 10.3109/13880209.2013.764328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Qindan capsule (QC), a compound used in traditional Chinese medicine, has been used as an anti-hypertensive agent in clinical settings for years. Our previous studies have shown that QC can improve the morphological index of the artery, down-regulate the collagen volume fraction in the media and inhibit the transformation of smooth muscle cells. However, the detailed mechanisms underlying its effects require further investigation, which might provide more scientific evidence for the clinical treatment of hypertensive vascular remodeling (VR). OBJECTIVE We investigated the effects of QC-containing serum on the TGF-β1/ERK signaling pathway, cell proliferation, migration, the cell cycle, apoptosis and matrix metalloproteinase synthesis (MMPs) in rat aortic adventitial fibroblasts (AFs). MATERIALS AND METHODS AFs were cultured through tissue explants in vitro. The levels of extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-ERK1/2 (p-ERK1/2), connective tissue growth factor (CTGF), MMP2 and MMP9 expression were measured by western blotting and RT-PCR. The proliferation and migration of AFs were measured by MTT and transwell migration assays. Cell cycle progression and apoptosis in AFs were analyzed by flow cytometry. RESULTS The proliferation and migration rates of AFs treated with transforming growth factor β1 (TGF-β1) for 24 h were 2.4 ± 0.75 and 2.2 ± 0.06 times higher than those of untreated AFs, and increases in the expression of p-ERK1/2 (3.7 ± 0.15 times), CTGF (3.3 ± 0.24 times), MMP2 (5.7 ± 0.37 times) and MMP9 (5.4 ± 0.46 times) (p < 0.05) were observed. Treatment with QC-containing serum significantly down-regulated cell proliferation (1.9 ± 0.06 times), migration (1.6 ± 0.05 times) and the expression of p-ERK1/2 (1.3 ± 0.75 times), CTGF (1.8 ± 0.64 times), MMP2 (1.6 ± 0.65 times) and MMP9 (1.4 ± 0.46 times) (p < 0.05). We also found that QC-containing serum down-regulated the percentage of cells in the G1 phase by 1.6 ± 0.43 times and increased early-phase apoptosis by 2.3 ± 0.33 times (p < 0.05) in AFs. CONCLUSIONS QC effectively inhibits the proliferation and migration of AFs and changes cell bioactivity and MMPs, possibly through the TGF-β/ERK/CTGF signaling pathway. Our findings may provide new insights into the potential function of QC in preventing or treating hypertension.
Collapse
Affiliation(s)
- Lv Yijing
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Nozawa K, Fujishiro M, Kawasaki M, Yamaguchi A, Ikeda K, Morimoto S, Iwabuchi K, Yanagida M, Ichinose S, Morioka M, Ogawa H, Takamori K, Takasaki Y, Sekigawa I. Inhibition of Connective Tissue Growth Factor Ameliorates Disease in a Murine Model of Rheumatoid Arthritis. ACTA ACUST UNITED AC 2013; 65:1477-86. [DOI: 10.1002/art.37902] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 02/07/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Kazuhisa Nozawa
- Juntendo University School of Medicine, Tokyo, Japan, and Juntendo University Graduate School of Medicine; Chiba; Japan
| | - Maki Fujishiro
- Juntendo University Graduate School of Medicine; Chiba; Japan
| | - Mikiko Kawasaki
- Juntendo University Graduate School of Medicine; Chiba; Japan
| | - Ayako Yamaguchi
- Juntendo University School of Medicine, Tokyo, Japan, and Juntendo University Graduate School of Medicine; Chiba; Japan
| | - Keigo Ikeda
- Juntendo University Graduate School of Medicine and Juntendo University Urayasu Hospital; Chiba; Japan
| | - Shinji Morimoto
- Juntendo University Graduate School of Medicine and Juntendo University Urayasu Hospital; Chiba; Japan
| | - Kazuhisa Iwabuchi
- Juntendo University School of Medicine, Tokyo, Japan, and Juntendo University Graduate School of Medicine; Chiba; Japan
| | | | - Shouzo Ichinose
- Juntendo University Graduate School of Medicine; Chiba; Japan
| | | | - Hideoki Ogawa
- Juntendo University Graduate School of Medicine; Chiba; Japan
| | - Kenji Takamori
- Juntendo University Graduate School of Medicine; Chiba; Japan
| | | | - Iwao Sekigawa
- Juntendo University Graduate School of Medicine and Juntendo University Urayasu Hospital; Chiba; Japan
| |
Collapse
|
84
|
Tomita N, Hattori T, Itoh S, Aoyama E, Yao M, Yamashiro T, Takigawa M. Cartilage-specific over-expression of CCN family member 2/connective tissue growth factor (CCN2/CTGF) stimulates insulin-like growth factor expression and bone growth. PLoS One 2013; 8:e59226. [PMID: 23555635 PMCID: PMC3610707 DOI: 10.1371/journal.pone.0059226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/12/2013] [Indexed: 01/04/2023] Open
Abstract
Previously we showed that CCN family member 2/connective tissue growth factor (CCN2) promotes the proliferation, differentiation, and maturation of growth cartilage cells in vitro. To elucidate the specific role and molecular mechanism of CCN2 in cartilage development in vivo, in the present study we generated transgenic mice overexpressing CCN2 and analyzed them with respect to cartilage and bone development. Transgenic mice were generated expressing a ccn2/lacZ fusion gene in cartilage under the control of the 6 kb-Col2a1-enhancer/promoter. Changes in cartilage and bone development were analyzed histologically and immunohistologically and also by micro CT. Primary chondrocytes as well as limb bud mesenchymal cells were cultured and analyzed for changes in expression of cartilage-related genes, and non-transgenic chondrocytes were treated in culture with recombinant CCN2. Newborn transgenic mice showed extended length of their long bones, increased content of proteoglycans and collagen II accumulation. Micro-CT analysis of transgenic bones indicated increases in bone thickness and mineral density. Chondrocyte proliferation was enhanced in the transgenic cartilage. In in vitro short-term cultures of transgenic chondrocytes, the expression of col2a1, aggrecan and ccn2 genes was substantially enhanced; and in long-term cultures the expression levels of these genes were further enhanced. Also, in vitro chondrogenesis was strongly enhanced. IGF-I and IGF-II mRNA levels were elevated in transgenic chondrocytes, and treatment of non-transgenic chondrocytes with recombinant CCN2 stimulated the expression of these mRNA. The addition of CCN2 to non-transgenic chondrocytes induced the phosphorylation of IGFR, and ccn2-overexpressing chondrocytes showed enhanced phosphorylation of IGFR. Our data indicates that the observed effects of CCN2 may be mediated in part by CCN2-induced overexpression of IGF-I and IGF-II. These findings indicate that CCN2-overexpression in transgenic mice accelerated the endochondral ossification processes, resulting in increased length of their long bones. Our results also indicate the possible involvement of locally enhanced IGF-I or IGF-II in this extended bone growth.
Collapse
Affiliation(s)
- Nao Tomita
- Department of Biochemistry and Molecular Dentistry, Okayama University Dental School, Okayama, Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Dental School, Okayama, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Dental School, Okayama, Japan
| | - Shinsuke Itoh
- Department of Biochemistry and Molecular Dentistry, Okayama University Dental School, Okayama, Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Dental School, Okayama, Japan
| | - Eriko Aoyama
- Biodental Research Center, Okayama University Dental School, Okayama, Japan
| | - Mayumi Yao
- Department of Biochemistry and Molecular Dentistry, Okayama University Dental School, Okayama, Japan
| | - Takashi Yamashiro
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Dental School, Okayama, Japan
| | - Masaharu Takigawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Dental School, Okayama, Japan
- Biodental Research Center, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
85
|
Klingberg F, Hinz B, White ES. The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol 2013; 229:298-309. [PMID: 22996908 DOI: 10.1002/path.4104] [Citation(s) in RCA: 556] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/09/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022]
Abstract
Myofibroblasts, and the extracellular matrix (ECM) in which they reside, are critical components of wound healing and fibrosis. The ECM, traditionally viewed as the structural elements within which cells reside, is actually a functional tissue whose components possess not only scaffolding characteristics, but also growth factor, mitogenic, and other bioactive properties. Although it has been suggested that tissue fibrosis simply reflects an 'exuberant' wound-healing response, examination of the ECM and the roles of myofibroblasts during fibrogenesis instead suggest that the organism may be attempting to recapitulate developmental programmes designed to regenerate functional tissue. Evidence of this is provided by the temporospatial re-emergence of embryonic ECM proteins by fibroblasts and myofibroblasts that induce cellular programmatic responses intended to produce a functional tissue. In the setting of wound healing (or physiological fibrosis), this occurs in a highly regulated and exquisitely choreographed fashion which results in cessation of haemorrhage, restoration of barrier integrity, and re-establishment of tissue function. However, pathological tissue fibrosis, which oftentimes causes organ dysfunction and significant morbidity or mortality, likely results from dysregulation of normal wound-healing processes or abnormalities of the process itself. This review will focus on the myofibroblast ECM and its role in both physiological and pathological fibrosis, and will discuss the potential for therapeutically targeting ECM proteins for treatment of fibrotic disorders.
Collapse
Affiliation(s)
- Franco Klingberg
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5S 3E2, Canada
| | | | | |
Collapse
|
86
|
Sakai N, Chun J, Duffield JS, Wada T, Luster AD, Tager AM. LPA1-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation. FASEB J 2013; 27:1830-46. [PMID: 23322166 DOI: 10.1096/fj.12-219378] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There has been much recent interest in lysophosphatidic acid (LPA) signaling through one of its receptors, LPA1, in fibrotic diseases, but the mechanisms by which LPA-LPA1 signaling promotes pathological fibrosis remain to be fully elucidated. Using a mouse peritoneal fibrosis model, we demonstrate central roles for LPA and LPA1 in fibroblast proliferation. Genetic deletion or pharmacological antagonism of LPA1 protected mice from peritoneal fibrosis, blunting the increases in peritoneal collagen by 65.4 and 52.9%, respectively, compared to control animals and demonstrated that peritoneal fibroblast proliferation was highly LPA1 dependent. Activation of LPA1 on mesothelial cells induced these cells to express connective tissue growth factor (CTGF), driving fibroblast proliferation in a paracrine fashion. Activation of mesothelial cell LPA1 induced CTGF expression by inducing cytoskeleton reorganization in these cells, causing nuclear translocation of myocardin-related transcription factor (MRTF)-A and MRTF-B. Pharmacological inhibition of MRTF-induced transcription also diminished CTGF expression and fibrosis in the peritoneal fibrosis model, mitigating the increase in peritoneal collagen content by 57.9% compared to controls. LPA1-induced cytoskeleton reorganization therefore makes a previously unrecognized but critically important contribution to the profibrotic activities of LPA by driving MRTF-dependent CTGF expression, which, in turn, drives fibroblast proliferation.
Collapse
Affiliation(s)
- Norihiko Sakai
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
87
|
Rosin NL, Falkenham A, Sopel MJ, Lee TDG, Légaré JF. Regulation and role of connective tissue growth factor in AngII-induced myocardial fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:714-26. [PMID: 23287510 DOI: 10.1016/j.ajpath.2012.11.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 11/09/2012] [Accepted: 11/15/2012] [Indexed: 02/06/2023]
Abstract
Exposure of rodents to angiotensin II (AngII) is a common model of fibrosis. We have previously shown that cellular infiltration of bone marrow-derived progenitor cells (fibrocytes) occurs before deposition of extracellular matrix and is associated with the production of connective tissue growth factor (CTGF). In the present study, we characterized the role of CTGF in promoting fibrocyte accumulation and regulation after AngII exposure. In animals exposed to AngII using osmotic minipumps (2.0 μg/kg per min), myocardial CTGF mRNA peaked at 6 hours (21-fold; P < 0.01), whereas transforming growth factor-β (TGF-β) peaked at 3 days (fivefold; P < 0.05) compared with saline control. Early CTGF expression occurred before fibrocyte migration (1 day) into the myocardium or ECM deposition (3 days). CTGF protein expression was evident by day 3 of AngII exposure and seemed to be localized to resident cells. Isolated cardiomyocytes and microvascular endothelial cells responded to AngII with increased CTGF production (2.1-fold and 2.8-fold, respectively; P < 0.05), which was abolished with the addition of anti-TGF-β neutralizing antibody. The effect of CTGF on isolated fibrocytes suggested a role in fibrocyte proliferation (twofold; P < 0.05) and collagen production (2.3-fold; P < 0.05). In summary, we provide strong evidence that AngII exposure first resulted in Smad2-dependent production of CTGF by resident cells (6 hours), well before the accumulation of fibrocytes or TGF-β mRNA up-regulation. In addition, CTGF contributes to fibrocyte proliferation in the myocardium and enhances fibrocyte differentiation into a myofibroblast phenotype responsible for ECM deposition.
Collapse
Affiliation(s)
- Nicole L Rosin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
88
|
Goel SA, Guo LW, Shi XD, Kundi R, Sovinski G, Seedial S, Liu B, Kent KC. Preferential secretion of collagen type 3 versus type 1 from adventitial fibroblasts stimulated by TGF-β/Smad3-treated medial smooth muscle cells. Cell Signal 2012; 25:955-60. [PMID: 23280188 DOI: 10.1016/j.cellsig.2012.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/12/2012] [Accepted: 12/24/2012] [Indexed: 01/08/2023]
Abstract
Restenosis, or arterial lumen re-narrowing, occurs in 30-50% of the patients undergoing angioplasty. Adaptive remodeling is the compensatory enlargement of the vessel size, and has been reported to prevent the deleterious effects of restenosis. Our previous studies have shown that elevated transforming growth factor (TGF-β) and its signaling protein Smad3 in the media layer induce adaptive remodeling of angioplastied rat carotid artery accompanying an increase of total collagen in the adventitia. In order to gain insights into a possible role of collagen in Smad3-induced adaptive remodeling, here we have investigated a mechanism of cell-cell communication between medial smooth muscle cells (SMCs) and adventitial fibroblasts in regulating the secretion of two major collagen subtypes. We have identified a preferential collagen-3 versus collagen-1 secretion by adventitial fibroblasts following stimulation by the conditioned medium from the TGF-β1-treated/Smad3-expressing medial smooth muscle cells (SMCs), which contained higher levels of CTGF and IGF2 as compared to control medium. Treating the TGF-β/Smad3-stimulated SMCs with an siRNA to either CTGF or IGF2 reversed the effect of conditioned media on preferential collagen-3 secretion from fibroblasts. Moreover, recombinant CTGF and IGF2 together stimulated adventitial fibroblasts to preferentially secrete collagen-3 versus collagen-1. This is the first study to identify a preferential secretion of collagen-3 versus collagen-1 from adventitial fibroblasts as a result of TGF-β/Smad3 stimulation of medial SMCs, and that CTGF and IGF2 function together to mediate this signaling communication between the two cell types.
Collapse
Affiliation(s)
- Shakti A Goel
- Department of Surgery, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Robinson PM, Smith TS, Patel D, Dave M, Lewin AS, Pi L, Scott EW, Tuli SS, Schultz GS. Proteolytic processing of connective tissue growth factor in normal ocular tissues and during corneal wound healing. Invest Ophthalmol Vis Sci 2012; 53:8093-8103. [PMID: 23139278 PMCID: PMC3522436 DOI: 10.1167/iovs.12-10419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/11/2012] [Accepted: 11/02/2012] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Connective tissue growth factor (CTGF) is a fibrogenic cytokine that is up-regulated by TGF-β and mediates most key fibrotic actions of TGF-β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. This study addresses the role of proteolytic processing of CTGF in human corneal fibroblasts (HCF) stimulated with TGF-β, normal ocular tissues and wounded corneas. METHODS Proteolytic processing of CTGF in HCF cultures, normal animal eyes, and excimer laser wounded rat corneas were examined by Western blot. The identity of a 21-kDa band was determined by tandem mass spectrometry, and possible alternative splice variants of CTGF were assessed by 5' Rapid Amplification of cDNA Ends (RACE). RESULTS HCF stimulated by TGF-β contained full length 38-kDa CTGF and fragments of 25, 21, 18, and 13 kDa, while conditioned medium contained full length 38- and a 21-kDa fragment of CTGF that contained the middle "hinge" region of CTGF. Fragmentation of recombinant CTGF incubated in HCF extracts was blocked by the aspartate protease inhibitor, pepstatin. Normal mouse, rat, and rabbit whole eyes and rabbit ocular tissues contained abundant amounts of C-terminal 25- and 21-kDa fragments and trace amounts of 38-kDa CTGF, although no alternative transcripts were detected. All forms of CTGF (38, 25, and 21 kDa) were detected during healing of excimer ablated rat corneas, peaking on day 11. CONCLUSIONS Proteolytic processing of 38-kDa CTGF occurs during corneal wound healing, which may have important implications in regulation of corneal scar formation.
Collapse
Affiliation(s)
| | | | - Dilan Patel
- From the Department of Obstetrics and Gynecology, the
| | - Meera Dave
- From the Department of Obstetrics and Gynecology, the
| | | | - Liya Pi
- Department of Molecular Genetics and Microbiology, and the
| | | | - Sonal S. Tuli
- Department of Ophthalmology, Institute for Wound Research, University of Florida, Gainesville, Florida
| | | |
Collapse
|
90
|
Radhakrishnan SS, Blalock TD, Robinson PM, Secker G, Daniels J, Grotendorst GR, Schultz GS. Effect of connective tissue growth factor on protein kinase expression and activity in human corneal fibroblasts. Invest Ophthalmol Vis Sci 2012; 53:8076-85. [PMID: 23139271 DOI: 10.1167/iovs.12-10790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To investigate signal transduction pathways for connective tissue growth factor (CTGF) in human corneal fibroblasts (HCF). METHODS Expression of 75 kinases in cultures of serum-starved (HCF) were investigated using protein kinase screens, and changes in levels of phosphorylation of 31 different phosphoproteins were determined at 0, 5, and 15 minutes after treatment with CTGF. Levels of phosphorylation of three signal transducing phosphoproteins (extracellular regulated kinase 1 [ERK1], extracellular regulated kinase 2 [ERK2] [MAPKs], and signal transducer and activator of transcription 3 [STAT3]) were measured at nine time points after exposure to CTGF using Western immunoblots. Inhibition of Ras, MEK1/2 (MAPKK), and ERK1/2, on CTGF-stimulated fibroblast proliferation and collagen gel contraction was assessed using selective inhibitors farnesylthiosalicylic acid, PD-98059, and SB203580, respectively. RESULTS Thirty two of the 75 kinases (43%) evaluated by the kinase screen were detected in extracts of quiescent HCF, suggesting these kinases are available to respond acutely to CTGF exposure. Addition of CTGF increased levels of phosphorylation of five phosphoproteins (ERK1 and 2, MEK1/2 [MAPKK], STAT3, and SAPK/JNK), and decreased levels of phosphorylation of 14 phosphoproteins (including protein kinases B and C) after 5 and 15 minutes. Further analysis of ERK1 and 2 and STAT3 phosphorylation showed rapid increases within 1 minute of CTGF exposure that peaked between 5 and 10 minutes then returned to pretreatment levels by 30 minutes. Treatment of HCF with selective inhibitors of Ras, MEK 1/2, and ERK1/2 individually blocked both CTGF induced cell proliferation, and collagen gel contraction. CONCLUSIONS Results from protein kinase screens and selective kinase inhibitors demonstrate Ras/MEK/ERK/STAT3 pathway is required for CTGF signaling in HCF.
Collapse
Affiliation(s)
- Siva S Radhakrishnan
- Institute for Wound Research, University of Florida, Gainesville, Florida 32610-0294, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Chintala H, Liu H, Parmar R, Kamalska M, Kim YJ, Lovett D, Grant MB, Chaqour B. Connective tissue growth factor regulates retinal neovascularization through p53 protein-dependent transactivation of the matrix metalloproteinase (MMP)-2 gene. J Biol Chem 2012; 287:40570-85. [PMID: 23048035 DOI: 10.1074/jbc.m112.386565] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of connective tissue growth factor (CTGF/CCN2) in pathological angiogenesis in the retina is unknown. RESULTS CTGF/CCN2 stimulates retinal neovascularization through transactivation of p53 target genes such as matrix metalloproteinase (MMP)-2. CONCLUSION CTGF/CCN2 effects on abnormal vessel formation in the retina are mediated by p53 and MMP-2. SIGNIFICANCE CTGF/CCN2 and its downstream effectors are potential targets in the development of new antiangiogenic treatments. Pathological angiogenesis in the retina is driven by dysregulation of hypoxia-driven stimuli that coordinate physiological vessel growth. How the various components of the neovascularization signaling network are integrated to yield pathological changes has not been defined. Connective tissue growth factor (CTGF/CCN2) is an inducible matricellular protein that plays a major role in fibroproliferative disorders. Here, we show that CTGF/CCN2 was dynamically expressed in the developing murine retinal vasculature and was abnormally increased and localized within neovascular tufts in the mouse eye with oxygen-induced retinopathy. Consistent with its propitious vascular localization, ectopic expression of the CTGF/CCN2 gene further accelerated neovascularization, whereas lentivirus-mediated loss-of-function or -expression of CTGF/CCN2 harnessed ischemia-induced neovessel outgrowth in oxygen-induced retinopathy mice. The neovascular effects of CTGF/CCN2 were mediated, at least in part, through increased expression and activity of matrix metalloproteinase (MMP)-2, which drives vascular remodeling through degradation of matrix and non matrix proteins, migration and invasion of endothelial cells, and formation of new vascular patterns. In cultured cells, CTGF/CCN2 activated the MMP-2 promoter through increased expression and tethering of the p53 transcription factor to a highly conserved p53-binding sequence within the MMP-2 promoter. Concordantly, the neovascular effects of CTGF/CCN2 were suppressed by p53 inhibition that culminated in reduced enrichment of the MMP-2 promoter with p53 and decreased MMP-2 gene expression. Our data identified new gene targets and downstream effectors of CTGF/CCN2 and provided the rational basis for targeting the p53 pathway to curtail the effects of CTGF/CCN2 on neovessel formation associated with ischemic retinopathy.
Collapse
Affiliation(s)
- Hembindu Chintala
- State University of New York Eye Institute, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Gruhle S, Sauter M, Szalay G, Ettischer N, Kandolf R, Klingel K. The prostacyclin agonist iloprost aggravates fibrosis and enhances viral replication in enteroviral myocarditis by modulation of ERK signaling and increase of iNOS expression. Basic Res Cardiol 2012; 107:287. [PMID: 22836587 DOI: 10.1007/s00395-012-0287-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/06/2012] [Accepted: 07/13/2012] [Indexed: 12/19/2022]
Abstract
Enteroviruses, such as coxsackieviruses of group B (CVB), are able to induce a chronic inflammation of the myocardium, which may finally lead to the loss of functional tissue, remodeling processes and the development of fibrosis, thus affecting the proper contractile function of the heart. In other fibrotic diseases like scleroderma, the prostacyclin agonist iloprost was found to inhibit the extracellular signal-regulated kinase (ERK, p44/42 MAPK), a mitogen-activated protein kinase, and consecutively, the expression of the profibrotic cytokine connective tissue growth factor (CTGF), thereby preventing the development of fibrosis. As CTGF was found to mediate fibrosis in chronic CVB3 myocarditis as well, we evaluated whether the in vivo application of iloprost is capable to reduce the development of ERK/CTGF-mediated fibrosis in enteroviral myocarditis. Unexpectedly, the application of iloprost resulted in a prolonged myocardial inflammation and an aggravated fibrosis and failed to reduce activation of ERK and expression of CTGF at later stages of the disease. In addition, viral replication was found to be increased in iloprost-treated mice. Notably, the expression of cardiac inducible nitric oxide synthase (iNOS), which is known to aggravate myocardial damage in CVB3-infected mice, was strongly enhanced by iloprost. Using cultivated bone marrow macrophages (BMM), we confirmed these results, proving that iloprost potentiates the expression of iNOS mRNA and protein in CVB3-infected and IFN-gamma stimulated BMM. In conclusion, these results suggest a critical reflection of the clinical use of iloprost, especially in patients possibly suffering from an enteroviral myocarditis.
Collapse
Affiliation(s)
- Stefan Gruhle
- Department of Molecular Pathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstrasse 8, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
93
|
Abstract
The term matricellular proteins describes a family of structurally unrelated extracellular macromolecules that, unlike structural matrix proteins, do not play a primary role in tissue architecture, but are induced following injury and modulate cell-cell and cell-matrix interactions. When released to the matrix, matricellular proteins associate with growth factors, cytokines, and other bioactive effectors and bind to cell surface receptors transducing signaling cascades. Matricellular proteins are upregulated in the injured and remodeling heart and play an important role in regulation of inflammatory, reparative, fibrotic and angiogenic pathways. Thrombospondin (TSP)-1, -2, and -4 as well as tenascin-C and -X secreted protein acidic and rich in cysteine (SPARC), osteopontin, periostin, and members of the CCN family (including CCN1 and CCN2/connective tissue growth factor) are involved in a variety of cardiac pathophysiological conditions, including myocardial infarction, cardiac hypertrophy and fibrosis, aging-associated myocardial remodeling, myocarditis, diabetic cardiomyopathy, and valvular disease. This review discusses the properties and characteristics of the matricellular proteins and presents our current knowledge on their role in cardiac adaptation and disease. Understanding the role of matricellular proteins in myocardial pathophysiology and identification of the functional domains responsible for their actions may lead to design of peptides with therapeutic potential for patients with heart disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer G46B, Bronx, NY 10461, USA.
| |
Collapse
|
94
|
Jacobson A, Cunningham JL. Connective tissue growth factor in tumor pathogenesis. FIBROGENESIS & TISSUE REPAIR 2012; 5:S8. [PMID: 23259759 PMCID: PMC3368788 DOI: 10.1186/1755-1536-5-s1-s8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Key roles for connective tissue growth factor (CTGF/CCN2) are demonstrated in the wound repair process where it promotes myofibroblast differentiation and angiogenesis. Similar mechanisms are active in tumor-reactive stroma where CTGF is expressed. Other potential roles include prevention of hypoxia-induced apoptosis and promoting epithelial-mesenchymal transistion (EMT). CTGF expression in tumors has been associated to both tumor suppression and progression. For example, CTGF expression in acute lymphoblastic leukemia, breast, pancreas and gastric cancer correlates to worse prognosis whereas the opposite is true for colorectal, lung and ovarian cancer. This discrepancy is not yet understood. High expression of CTGF is a hallmark of ileal carcinoids, which are well-differentiated endocrine carcinomas with serotonin production originating from the small intestine and proximal colon. These tumors maintain a high grade of differentiation and low proliferation. Despite this, they are malignant and most patients have metastatic disease at diagnosis. These tumors demonstrate several phenotypes potentially related to CTGF function namely: cell migration, absent tumor cell apoptosis, as well as, reactive and well vascularised myofibroblast rich stroma and fibrosis development locally and in distal organs. The presence of CTGF in other endocrine tumors indicates a role in the progression of well-differentiated tumors.
Collapse
Affiliation(s)
- Annica Jacobson
- Section of Osteoporosis and Clinical Pharmacogenetics, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
95
|
Blalock TD, Gibson DJ, Duncan MR, Tuli SS, Grotendorst GR, Schultz GS. A connective tissue growth factor signaling receptor in corneal fibroblasts. Invest Ophthalmol Vis Sci 2012; 53:3387-94. [PMID: 22511630 DOI: 10.1167/iovs.12-9425] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To biochemically characterize the receptor for connective tissue growth factor (CTGF) of human corneal fibroblasts (HCF). METHODS Radiolabeled recombinant human CTGF was used to determine the specificity and time course of binding to low-passage cultures of HCF. The affinity and number of receptors present were calculated by Scatchard and best-fit analyses. In vitro immunoprecipitation assays with radiolabeled CTGF and soluble mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF-2-R) alone, or with CTGF-related growth factors were conducted. Additionally, (125)I-CTGF-binding and CTGF-stimulated proliferation were measured in cultures of M6P/IGF-2-R knockout fibroblasts. RESULTS Binding of (125)I-CTGF to fibroblast cultures was significantly displaced by CTGF, but not by related growth factors. Scatchard plot analysis indicated the presence of both a high-affinity, low-abundance binding site, and a low-affinity, high-abundance binding site; whereas, the best-fit analysis suggests a single high-affinity, low-abundance binding site. A 280 kDa complex containing cross-linked (125)I-CTGF was immunoprecipitated by antibodies to CTGF or M6P/IGF-2-R. M6P/IGF-2-R knockout cells have a reduced proliferative response to TGF-β, and don't proliferate at all in response to CTGF. CONCLUSIONS CTGF binds to the M6P/IGF-2-R with high affinity, and the M6P/IGF-2-R is required for CTGF-stimulated proliferation in fibroblasts. These observations suggest that the M6P/IGF-2-R may be a new antifibrotic target.
Collapse
Affiliation(s)
- Timothy D Blalock
- Institute for Wound Research, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
96
|
Surmann-Schmitt C, Sasaki T, Hattori T, Eitzinger N, Schett G, von der Mark K, Stock M. The Wnt antagonist Wif-1 interacts with CTGF and inhibits CTGF activity. J Cell Physiol 2012; 227:2207-16. [PMID: 21928342 DOI: 10.1002/jcp.22957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wnt inhibitory factor 1 (Wif-1) is a secreted antagonist of Wnt signalling. We recently demonstrated that this molecule is expressed predominantly in superficial layers of epiphyseal cartilage but also in bone and tendon. Moreover, we showed that Wif-1 is capable of binding to several cartilage-related Wnt ligands and interferes with Wnt3a-dependent Wnt signalling in chondrogenic cells. Here we provide evidence that the biological function of Wif-1 may not be confined to the modulation of Wnt signalling but appears to include the regulation of other signalling pathways. Thus, we show that Wif-1 physically binds to connective tissue growth factor (CTGF/CCN2) in vitro, predominantly by interaction with the C-terminal cysteine knot domain of CTGF. In vivo such an interaction appears also likely since the expression patterns of these two secreted proteins overlap in peripheral zones of epiphyseal cartilage. In chondrocytes CTGF has been shown to induce the expression of cartilage matrix genes such as aggrecan (Acan) and collagen2a1 (Col2a1). In this study we demonstrate that Wif-1 is capable to interfere with CTGF-dependent induction of Acan and Col2a1 gene expression in primary murine chondrocytes. Conversely, CTGF does not interfere with Wif-1-dependent inhibition of Wnt signalling. These results indicate that Wif-1 may be a multifunctional modulator of signalling pathways in the cartilage compartment.
Collapse
Affiliation(s)
- Cordula Surmann-Schmitt
- Department of Experimental Medicine I, Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
97
|
Robinson PM, Blalock TD, Yuan R, Lewin AS, Schultz GS. Hammerhead ribozyme-mediated knockdown of mRNA for fibrotic growth factors: transforming growth factor-beta 1 and connective tissue growth factor. Methods Mol Biol 2012; 820:117-32. [PMID: 22131029 DOI: 10.1007/978-1-61779-439-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor-β (TGF-β) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF-β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF-β cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF-β and CTGF in cell cultures.
Collapse
Affiliation(s)
- Paulette M Robinson
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
98
|
Gerritsen KG, Abrahams AC, Peters HP, Nguyen TQ, Koeners MP, den Hoedt CH, Dendooven A, van den Dorpel MA, Blankestijn PJ, Wetzels JF, Joles JA, Goldschmeding R, Kok RJ. Effect of GFR on plasma N-terminal connective tissue growth factor (CTGF) concentrations. Am J Kidney Dis 2012; 59:619-27. [PMID: 22342213 DOI: 10.1053/j.ajkd.2011.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/20/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND Connective tissue growth factor (CTGF) has a key role in the pathogenesis of renal and cardiac fibrosis. Its amino-terminal fragment (N-CTGF), the predominant form of CTGF detected in plasma, has a molecular weight in the middle molecular range (18 kDa). However, it is unknown whether N-CTGF is a uremic retention solute that accumulates in chronic kidney disease (CKD) due to decreased renal clearance and whether it can be removed by hemodiafiltration. STUDY DESIGN 4 observational studies in patients and 2 pharmacokinetic studies in rodents. SETTING & PARTICIPANTS 4 single-center studies. First study (cross-sectional): 88 patients with CKD not receiving kidney replacement therapy. Second study (cross-sectional): 23 patients with end-stage kidney disease undergoing low-flux hemodialysis. Third study: 9 kidney transplant recipients before and 6 months after transplant. Fourth study: 11 low-flux hemodialysis patients and 12 hemodiafiltration patients before and after one dialysis session. PREDICTOR First, second, and third study: (residual) glomerular filtration rate (GFR). Fourth study: dialysis modality. OUTCOMES & MEASUREMENTS Plasma (N-)CTGF concentrations, measured by enzyme-linked immunosorbent assay. RESULTS In patients with CKD, we observed an independent association between plasma CTGF level and estimated GFR (β = -0.72; P < 0.001). In patients with end-stage kidney disease, plasma CTGF level correlated independently with residual kidney function (β = -0.55; P = 0.046). Successful kidney transplant resulted in a decrease in plasma CTGF level (P = 0.008) proportional to the increase in estimated GFR. Plasma CTGF was not removed by low-flux hemodialysis, whereas it was decreased by 68% by a single hemodiafiltration session (P < 0.001). Pharmacokinetic studies in nonuremic rodents confirmed that renal clearance is the major elimination route of N-CTGF. LIMITATIONS Observational studies with limited number of patients. Fourth study: nonrandomized, evaluation of the effect of one session; randomized longitudinal study is warranted. CONCLUSION Plasma (N-)CTGF is eliminated predominantly by the kidney, accumulates in CKD, and is decreased substantially by a single hemodiafiltration session.
Collapse
Affiliation(s)
- Karin G Gerritsen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Arnott JA, Lambi AG, Mundy C, Hendesi H, Pixley RA, Owen TA, Safadi FF, Popoff SN. The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis. Crit Rev Eukaryot Gene Expr 2012; 21:43-69. [PMID: 21967332 DOI: 10.1615/critreveukargeneexpr.v21.i1.40] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Connective tissue growth factor (CTGF) is a 38 kDa, cysteine rich, extracellular matrix protein composed of 4 domains or modules. CTGF has been shown to regulate a diverse array of cellular functions and has been implicated in more complex biological processes such as angiogenesis, chondrogenesis, and osteogenesis. A role for CTGF in the development and maintenance of skeletal tissues first came to light in studies demonstrating its expression in cartilage and bone cells, which was dramatically increased during skeletal repair or regeneration. The physiological significance of CTGF in skeletogenesis was confirmed in CTGF-null mice, which exhibited multiple skeletal dysmorphisms as a result of impaired growth plate chondrogenesis, angiogenesis, and bone formation/mineralization. Given the emerging importance of CTGF in osteogenesis and chondrogenesis, this review will focus on its expression in skeletal tissues, its effects on osteoblast and chondrocyte differentiation and function, and the skeletal implications of ablation or over-expression of CTGF in knockout or transgenic mouse models, respectively. In addition, this review will examine the role of integrin-mediated signaling and the regulation of CTGF expression as it relates to skeletogenesis. We will emphasize CTGF studies in bone or bone cells, and will identify opportunities for future investigations concerning CTGF and chondrogenesis/osteogenesis.
Collapse
Affiliation(s)
- John A Arnott
- Basic Sciences Department, The Commonwealth Medical College, Scranton, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
A novel single-chain Fv antibody for connective tissue growth factor against the differentiation of fibroblast into myofibroblast. Appl Microbiol Biotechnol 2011; 93:2475-82. [PMID: 22159610 DOI: 10.1007/s00253-011-3755-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 11/06/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
This study was aimed to investigate the effect of a single-chain fragment variable antibody of connective tissue growth factor (anti-CTGF scFv) against the differentiation of fibroblast into myofibroblast. The scFv antibody was firstly expressed in Escherichia coli cells and was then purified by affinity chromatography. The yield scFv protein reached a purity over 95% after purification. Immunoreactivity assay demonstrated that scFv possessed a special affinity toward CTGF. RT-PCR, western blot, and immunofluorescence experiments showed that increased expression of α-smooth muscle actin induced by TGF-β1 could be suppressed by this scFv antibody through inhibiting the phosphorylation of Akt.
Collapse
|