51
|
Finan GM, Realubit R, Chung S, Lütjohann D, Wang N, Cirrito JR, Karan C, Kim TW. Bioactive Compound Screen for Pharmacological Enhancers of Apolipoprotein E in Primary Human Astrocytes. Cell Chem Biol 2016; 23:1526-1538. [DOI: 10.1016/j.chembiol.2016.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/13/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
|
52
|
Abstract
Oxysterols have long been known for their important role in cholesterol homeostasis, where they are involved in both transcriptional and posttranscriptional mechanisms for controlling cholesterol levels. However, they are increasingly associated with a wide variety of other, sometimes surprising cell functions. They are activators of the Hedgehog pathway (important in embryogenesis), and they act as ligands for a growing list of receptors, including some that are of importance to the immune system. Oxysterols have also been implicated in several diseases such as neurodegenerative diseases and atherosclerosis. Here, we explore the latest research into the roles oxy-sterols play in different areas, and we evaluate the current evidence for these roles. In addition, we outline critical concepts to consider when investigating the roles of oxysterols in various situations, which includes ensuring that the concentration and form of the oxysterol are relevant in that context--a caveat with which many studies have struggled.
Collapse
Affiliation(s)
- Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Isabelle Capell-Hattam
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Ingrid C Gelissen
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia;
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| |
Collapse
|
53
|
Casado ME, Pastor O, García-Seisdedos D, Huerta L, Kraemer FB, Lasunción MA, Martín-Hidalgo A, Busto R. Hormone-sensitive lipase deficiency disturbs lipid composition of plasma membrane microdomains from mouse testis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1142-1150. [DOI: 10.1016/j.bbalip.2016.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/01/2016] [Accepted: 06/24/2016] [Indexed: 11/17/2022]
|
54
|
Zhong LY, Cayabyab FS, Tang CK, Zheng XL, Peng TH, Lv YC. Sortilin: A novel regulator in lipid metabolism and atherogenesis. Clin Chim Acta 2016; 460:11-7. [PMID: 27312323 DOI: 10.1016/j.cca.2016.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/07/2016] [Accepted: 06/11/2016] [Indexed: 11/26/2022]
Abstract
Several lines of evidence have shown that SORT1 gene within 1p13.3 locus is an important modulator of the low-density lipoprotein-cholesterol (LDL-C) level and atherosclerosis risk. Here, we summarize the effects of SORT1, which codes for sortilin, on lipid metabolism and development of atherosclerosis and explore the mechanisms underlying sortilin effects on lipid metabolism especially in hepatocytes and macrophages. Recent epidemiological evidence demonstrated that sortilin has been implicated as the causative factor and regulates lipid metabolism in vivo. Hepatic sortilin overexpression leads to both increased and decreased LDL-C levels by several different mechanisms, suggesting the complex roles of sortilin in hepatic lipid metabolism. Macrophage sortilin causes internalization of LDL and probably a reduction in cholesterol efflux, resulting in the intracellular accumulation of excessive lipids. In addition, sortilin deficiency in an atherosclerotic mouse model results in decreased aortic atherosclerotic lesion. Sortilin involves in lipid metabolism, promotes the development of atherosclerosis, and possibly becomes a potential therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Li-Yuan Zhong
- Laboratory of Clinical Anatomy, University of South China, Hengyang 421001, China
| | - Francisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang 421001, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Tian-Hong Peng
- Laboratory of Clinical Anatomy, University of South China, Hengyang 421001, China.
| | - Yun-Cheng Lv
- Laboratory of Clinical Anatomy, University of South China, Hengyang 421001, China.
| |
Collapse
|
55
|
Hegyi Z, Homolya L. Functional Cooperativity between ABCG4 and ABCG1 Isoforms. PLoS One 2016; 11:e0156516. [PMID: 27228027 PMCID: PMC4882005 DOI: 10.1371/journal.pone.0156516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
ABCG4 belongs to the ABCG subfamily, the members of which are half transporters composed of a single transmembrane and a single nucleotide-binding domain. ABCG proteins have a reverse domain topology as compared to other mammalian ABC transporters, and have to form functional dimers, since the catalytic sites for ATP binding and hydrolysis, as well as the transmembrane domains are composed of distinct parts of the monomers. Here we demonstrate that ABCG4 can form homodimers, but also heterodimers with its closest relative, ABCG1. Both the full-length and the short isoforms of ABCG1 can dimerize with ABCG4, whereas the ABCG2 multidrug transporter is unable to form a heterodimer with ABCG4. We also show that contrary to that reported in some previous studies, ABCG4 is predominantly localized to the plasma membrane. While both ABCG1 and ABCG4 have been suggested to be involved in lipid transport or regulation, in accordance with our previous results regarding the long version of ABCG1, here we document that the expression of both the short isoform of ABCG1 as well as ABCG4 induce apoptosis in various cell types. This apoptotic effect, as a functional read-out, allowed us to demonstrate that the dimerization between these half transporters is not only a physical interaction but functional cooperativity. Given that ABCG4 is predominantly expressed in microglial-like cells and endothelial cells in the brain, our finding of ABCG4-induced apoptosis may implicate a new role for this protein in the clearance mechanisms within the central nervous system.
Collapse
Affiliation(s)
- Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
56
|
Tarling EJ, Edwards PA. Intracellular Localization of Endogenous Mouse ABCG1 Is Mimicked by Both ABCG1-L550 and ABCG1-P550-Brief Report. Arterioscler Thromb Vasc Biol 2016; 36:1323-7. [PMID: 27230131 DOI: 10.1161/atvbaha.116.307414] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/10/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE In a recent article in Arteriosclerosis, Thrombosis, and Vascular Biology, it was reported that ATP-binding cassette transporter G1 (ABCG1) containing leucine at position 550 (ABCG1-L550) was localized to the plasma membrane, whereas ABCG1-P550 (proline at position 550) was intracellular. Because the published data on the subcellular localization of ABCG1 are controversial, we performed additional experiments to determine the importance of leucine or proline at amino acid 550. APPROACH AND RESULTS We transfected multiple cell lines (CHO-K1, Cos-7, and HEK293 [human embryonic kidney]) with untagged or FLAG-tagged ABCG1 containing either leucine or proline at position 550. Immunofluorescence studies demonstrated that in all cases, ABCG1 localized to intracellular endosomal vesicles. We also show that both ABCG1-L550 and ABCG1-P550 are equally active in both promoting the efflux of cellular cholesterol to exogenous high-density lipoprotein and in inducing the activity of sterol regulatory element-binding protein-2, presumably as a result of redistributing intracellular sterols away from the endoplasmic reticulum. Importantly, we treated nontransfected primary peritoneal macrophages with a liver X receptor agonist and demonstrate, using immunofluorescence, that although endogenous ABCG1 localizes to intracellular endosomes, none was detectable at the cell surface/plasma membrane. CONCLUSIONS ABCG1, irrespective of either a leucine or proline at position 550, is an intracellular protein that localizes to vesicles of the endosomal pathway where it functions to mobilize sterols away from the endoplasmic reticulum and out of the cell.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily G, Member 1/deficiency
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Amino Acid Sequence
- Animals
- Biological Transport
- CHO Cells
- COS Cells
- Chlorocebus aethiops
- Cholesterol/metabolism
- Cholesterol, HDL/metabolism
- Cricetulus
- Endosomes/metabolism
- Genotype
- HEK293 Cells
- Humans
- Leucine
- Liver X Receptors/agonists
- Liver X Receptors/metabolism
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Primary Cell Culture
- Proline
- Sterol Regulatory Element Binding Protein 2/metabolism
- Transfection
Collapse
Affiliation(s)
- Elizabeth J Tarling
- From the Departments of Biological Chemistry (P.A.E.) and Medicine (E.J.T.), David Geffen School of Medicine at the University of California, Los Angeles.
| | - Peter A Edwards
- From the Departments of Biological Chemistry (P.A.E.) and Medicine (E.J.T.), David Geffen School of Medicine at the University of California, Los Angeles
| |
Collapse
|
57
|
Sano O, Tsujita M, Shimizu Y, Kato R, Kobayashi A, Kioka N, Remaley AT, Michikawa M, Ueda K, Matsuo M. ABCG1 and ABCG4 Suppress γ-Secretase Activity and Amyloid β Production. PLoS One 2016; 11:e0155400. [PMID: 27196068 PMCID: PMC4872999 DOI: 10.1371/journal.pone.0155400] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/28/2016] [Indexed: 11/19/2022] Open
Abstract
ATP-binding cassette G1 (ABCG1) and ABCG4, expressed in neurons and glia in the central nervous system, mediate cholesterol efflux to lipid acceptors. The relationship between cholesterol level in the central nervous system and Alzheimer's disease has been reported. In this study, we examined the effects of ABCG1 and ABCG4 on amyloid precursor protein (APP) processing, the product of which, amyloid β (Aβ), is involved in the pathogenesis of Alzheimer's disease. Expression of ABCG1 or ABCG4 in human embryonic kidney 293 cells that stably expressed Swedish-type mutant APP increased cellular and cell surface APP levels. Products of cleavage from APP by α-secretase and by β-secretase also increased. The levels of secreted Aβ, however, decreased in the presence of ABCG1 and ABCG4, but not ABCG4-KM, a nonfunctional Walker-A lysine mutant. In contrast, secreted Aβ levels increased in differentiated SH-SY5Y neuron-like cells in which ABCG1 and ABCG4 were suppressed. Furthermore, Aβ42 peptide in the cerebrospinal fluid from Abcg1 null mice significantly increased compared to the wild type mice. To examine the underlying mechanism, we analyzed the activity and distribution of γ-secretase. ABCG1 and ABCG4 suppressed γ-secretase activity and disturbed γ-secretase localization in the raft domains where γ-secretase functions. These results suggest that ABCG1 and ABCG4 alter the distribution of γ-secretase on the plasma membrane, leading to the decreased γ-secretase activity and suppressed Aβ secretion. ABCG1 and ABCG4 may inhibit the development of Alzheimer's disease and can be targets for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Osamu Sano
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Maki Tsujita
- Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467–8601, Japan
| | - Yuji Shimizu
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Reiko Kato
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Aya Kobayashi
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Noriyuki Kioka
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, NHLBI, National Institutes of Health, Bethesda, MD, 20892–1508, United States of America
| | - Makoto Michikawa
- Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467–8601, Japan
| | - Kazumitsu Ueda
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
- iCeMS, Kyoto University, Kyoto, 606–8502, Japan
| | - Michinori Matsuo
- iCeMS, Kyoto University, Kyoto, 606–8502, Japan
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women’s University, Kyoto, 605–8501, Japan
- * E-mail:
| |
Collapse
|
58
|
Mahley RW. Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol Metabolism. Arterioscler Thromb Vasc Biol 2016; 36:1305-15. [PMID: 27174096 DOI: 10.1161/atvbaha.116.307023] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/29/2016] [Indexed: 12/19/2022]
Abstract
ApoE on high-density lipoproteins is primarily responsible for lipid transport and cholesterol homeostasis in the central nervous system (CNS). Normally produced mostly by astrocytes, apoE is also produced under neuropathologic conditions by neurons. ApoE on high-density lipoproteins is critical in redistributing cholesterol and phospholipids for membrane repair and remodeling. The 3 main structural isoforms differ in their effectiveness. Unlike apoE2 and apoE3, apoE4 has markedly altered CNS metabolism, is associated with Alzheimer disease and other neurodegenerative disorders, and is expressed at lower levels in brain and cerebrospinal fluid. ApoE4-expressing cultured astrocytes and neurons have reduced cholesterol and phospholipid secretion, decreased lipid-binding capacity, and increased intracellular degradation. Two structural features are responsible for apoE4 dysfunction: domain interaction, in which arginine-61 interacts ionically with glutamic acid-255, and a less stable conformation than apoE3 and apoE2. Blocking domain interaction by gene targeting (replacing arginine-61 with threonine) or by small-molecule structure correctors increases CNS apoE4 levels and lipid-binding capacity and decreases intracellular degradation. Small molecules (drugs) that disrupt domain interaction, so-called structure correctors, could prevent the apoE4-associated neuropathology by blocking the formation of neurotoxic fragments. Understanding how to modulate CNS cholesterol transport and metabolism is providing important insights into CNS health and disease.
Collapse
Affiliation(s)
- Robert W Mahley
- From the Gladstone Institute of Neurological Disease, San Francisco, CA; and Departments of Pathology and Medicine, University of California, San Francisco.
| |
Collapse
|
59
|
Wang N, Tall AR. Cholesterol in platelet biogenesis and activation. Blood 2016; 127:1949-53. [PMID: 26929273 PMCID: PMC4841038 DOI: 10.1182/blood-2016-01-631259] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Hypercholesterolemia is a risk factor for atherothrombotic disease, largely attributed to its impact on atherosclerotic lesional cells such as macrophages. Platelets are involved in immunity and inflammation and impact atherogenesis, primarily by modulating immune and inflammatory effector cells. There is evidence that hypercholesterolemia increases the risk of atherosclerosis and thrombosis by modulating platelet biogenesis and activity. This review highlights recent findings on the impact of aberrant cholesterol metabolism on platelet biogenesis and activity and their relevance in atherosclerosis and thrombosis.
Collapse
Affiliation(s)
- Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
60
|
Stäubert C, Krakowsky R, Bhuiyan H, Witek B, Lindahl A, Broom O, Nordström A. Increased lanosterol turnover: a metabolic burden for daunorubicin-resistant leukemia cells. Med Oncol 2015; 33:6. [PMID: 26698156 PMCID: PMC4689760 DOI: 10.1007/s12032-015-0717-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
The cholesterol metabolism is essential for cancer cell proliferation. We found the expression of genes involved in the cholesterol biosynthesis pathway up-regulated in the daunorubicin-resistant leukemia cell line CEM/R2, which is a daughter cell line to the leukemia cell line CCRF-CEM (CEM). Cellular (2)H2O labelling, mass spectrometry, and isotopomer analysis revealed an increase in lanosterol synthesis which was not accompanied by an increase in cholesterol flux or pool size in CEM/R2 cells. Exogenous addition of lanosterol had a negative effect on CEM/R2 and a positive effect on sensitive CEM cell viability. Treatment of CEM and CEM/R2 cells with cholesterol biosynthesis inhibitors acting on the enzymes squalene epoxidase and lanosterol synthase, both also involved in the 24,25-epoxycholesterol shunt pathway, revealed a connection of this pathway to lanosterol turnover. Our data highlight that an increased lanosterol flux poses a metabolic weakness of resistant cells that potentially could be therapeutically exploited.
Collapse
Affiliation(s)
- Claudia Stäubert
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.,Department of Forest Genetics and Plant Physiology, Swedish Metabolomics Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.,Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Rosanna Krakowsky
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Hasanuzzaman Bhuiyan
- Doping Laboratory, Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Barbara Witek
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Anna Lindahl
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Broom
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Anders Nordström
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden. .,Department of Forest Genetics and Plant Physiology, Swedish Metabolomics Centre, Swedish University of Agricultural Sciences, Umeå, Sweden. .,Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
61
|
Graham A. Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radic Biol Med 2015; 89:982-92. [PMID: 26416507 DOI: 10.1016/j.freeradbiomed.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
Abstract
This review explores the relationship between mitochondrial structure and function in the regulation of macrophage cholesterol metabolism and proposes that mitochondrial dysfunction contributes to loss of the elegant homeostatic mechanisms which normally maintain cellular sterol levels within defined limits. Mitochondrial sterol 27-hydroxylase (CYP27A1) can generate oxysterol activators of liver X receptors which heterodimerise with retinoid X receptors, enhancing the transcription of ATP binding cassette transporters (ABCA1, ABCG1, and ABCG4), that can remove excess cholesterol via efflux to apolipoproteins A-1, E, and high density lipoprotein, and inhibit inflammation. The activity of CYP27A1 is regulated by the rate of supply of cholesterol substrate to the inner mitochondrial membrane, mediated by a complex of proteins. The precise identity of this dynamic complex remains controversial, even in steroidogenic tissues, but may include steroidogenic acute regulatory protein and the 18 kDa translocator protein, together with voltage-dependent anion channels, ATPase AAA domain containing protein 3A, and optic atrophy type 1 proteins. Certainly, overexpression of StAR and TSPO proteins can enhance macrophage cholesterol efflux to apoA-I and/or HDL, while perturbations in mitochondrial function, or changes in the expression of mitochondrial fusion proteins, alter the efficiency of cholesterol efflux. Molecules which can sustain or improve mitochondrial function or increase the activity of the protein complex involved in cholesterol transfer may have utility in resolving the problem of dysregulated macrophage cholesterol homeostasis, a condition which may contribute to inflammation, atherosclerosis, nonalcoholic steatohepatitis, osteoblastic bone resorption, and some disorders of the central nervous system.
Collapse
Affiliation(s)
- Annette Graham
- Department of Life Sciences, School of Health and Life Sciences, and Institute for Applied Health Research, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
62
|
Yamauchi Y, Yokoyama S, Chang TY. ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis. J Lipid Res 2015; 57:77-88. [PMID: 26497474 DOI: 10.1194/jlr.m063784] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 01/28/2023] Open
Abstract
Mammalian cells synthesize various sterol molecules, including the C30 sterol, lanosterol, as cholesterol precursors in the endoplasmic reticulum. The build-up of precursor sterols, including lanosterol, displays cellular toxicity. Precursor sterols are found in plasma HDL. How these structurally different sterols are released from cells is poorly understood. Here, we show that newly synthesized precursor sterols arriving at the plasma membrane (PM) are removed by extracellular apoA-I in a manner dependent on ABCA1, a key macromolecule for HDL biogenesis. Analysis of sterol molecules by GC-MS and tracing the fate of radiolabeled acetate-derived sterols in normal and mutant Niemann-Pick type C cells reveal that ABCA1 prefers newly synthesized sterols, especially lanosterol, as the substrates before they are internalized from the PM. We also show that ABCA1 resides in a cholesterol-rich membrane domain resistant to the mild detergent, Brij 98. Blocking ACAT activity increases the cholesterol contents of this domain. Newly synthesized C29/C30 sterols are transiently enriched within this domain, but rapidly disappear from this domain with a half-life of less than 1 h. Our work shows that substantial amounts of precursor sterols are transported to a certain PM domain and are removed by the ABCA1-dependent pathway.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Shinji Yokoyama
- Nutritional Health Science Research Center and Department of Food and Nutritional Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Ta-Yuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
63
|
Aleidi SM, Howe V, Sharpe LJ, Yang A, Rao G, Brown AJ, Gelissen IC. The E3 ubiquitin ligases, HUWE1 and NEDD4-1, are involved in the post-translational regulation of the ABCG1 and ABCG4 lipid transporters. J Biol Chem 2015; 290:24604-13. [PMID: 26296893 DOI: 10.1074/jbc.m115.675579] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette transporter ABCG1 has an essential role in cellular cholesterol homeostasis, and dysregulation has been associated with a number of high burden diseases. Previous studies reported that ABCG1 is ubiquitinated and degraded via the ubiquitin proteasome system. However, so far the molecular mechanism, including the identity of any of the rate-limiting ubiquitination enzymes, or E3 ligases, is unknown. Using liquid chromatography mass spectrometry, we identified two HECT domain E3 ligases associated with ABCG1, named HUWE1 (HECT, UBA, and WWE domain containing 1, E3 ubiquitin protein ligase) and NEDD4-1 (Neural precursor cell-expressed developmentally down regulated gene 4), of which the latter is the founding member of the NEDD4 family of ubiquitin ligases. Silencing both HUWE1 and NEDD4-1 in cells overexpressing human ABCG1 significantly increased levels of the ABCG1 monomeric and dimeric protein forms, however ABCA1 protein expression was unaffected. In addition, ligase silencing increased ABCG1-mediated cholesterol export to HDL in cells overexpressing the transporter as well as in THP-1 macrophages. Reciprocally, overexpression of both ligases resulted in a significant reduction in protein levels of both the ABCG1 monomeric and dimeric forms. Like ABCG1, ABCG4 protein levels and cholesterol export activity were significantly increased after silencing both HUWE1 and NEDD4-1 in cells overexpressing this closely related ABC half-transporter. In summary, we have identified for the first time two E3 ligases that are fundamental enzymes in the post-translational regulation of ABCG1 and ABCG4 protein levels and cellular cholesterol export activity.
Collapse
Affiliation(s)
- Shereen M Aleidi
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and
| | - Vicky Howe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney NSW 2052 Australia
| | - Laura J Sharpe
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney NSW 2052 Australia
| | - Alryel Yang
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and
| | - Geetha Rao
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney NSW 2052 Australia
| | - Ingrid C Gelissen
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and
| |
Collapse
|
64
|
The impairment of cholesterol metabolism in Huntington disease. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1095-105. [DOI: 10.1016/j.bbalip.2014.12.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 02/02/2023]
|
65
|
Sharpe LJ, Rao G, Jones PM, Glancey E, Aleidi SM, George AM, Brown AJ, Gelissen IC. Cholesterol sensing by the ABCG1 lipid transporter: Requirement of a CRAC motif in the final transmembrane domain. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:956-64. [DOI: 10.1016/j.bbalip.2015.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/11/2015] [Accepted: 02/22/2015] [Indexed: 12/22/2022]
|
66
|
Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer's disease. Front Aging Neurosci 2015; 7:119. [PMID: 26150787 PMCID: PMC4473000 DOI: 10.3389/fnagi.2015.00119] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD), the most common neurodegenerative disorder associated with dementia, is typified by the pathological accumulation of amyloid Aβ peptides and neurofibrillary tangles (NFT) within the brain. Considerable evidence indicates that many events contribute to AD progression, including oxidative stress, inflammation, and altered cholesterol metabolism. The brain’s high lipid content makes it particularly vulnerable to oxidative species, with the consequent enhancement of lipid peroxidation and cholesterol oxidation, and the subsequent formation of end products, mainly 4-hydroxynonenal and oxysterols, respectively from the two processes. The chronic inflammatory events observed in the AD brain include activation of microglia and astrocytes, together with enhancement of inflammatory molecule and free radical release. Along with glial cells, neurons themselves have been found to contribute to neuroinflammation in the AD brain, by serving as sources of inflammatory mediators. Oxidative stress is intimately associated with neuroinflammation, and a vicious circle has been found to connect oxidative stress and inflammation in AD. Alongside oxidative stress and inflammation, altered cholesterol metabolism and hypercholesterolemia also significantly contribute to neuronal damage and to progression of AD. Increasing evidence is now consolidating the hypothesis that oxidized cholesterol is the driving force behind the development of AD, and that oxysterols are the link connecting the disease to altered cholesterol metabolism in the brain and hypercholesterolemia; this is because of the ability of oxysterols, unlike cholesterol, to cross the blood brain barrier (BBB). The key role of oxysterols in AD pathogenesis has been strongly supported by research pointing to their involvement in modulating neuroinflammation, Aβ accumulation, and cell death. This review highlights the key role played by cholesterol and oxysterols in the brain in AD pathogenesis.
Collapse
Affiliation(s)
- Paola Gamba
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| |
Collapse
|
67
|
Ono K, Horie T, Nishino T, Baba O, Kuwabara Y, Kimura T. MicroRNAs and High-Density Lipoprotein Cholesterol Metabolism. Int Heart J 2015; 56:365-71. [PMID: 26084456 DOI: 10.1536/ihj.15-019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MicroRNAs (miRNAs) are small non-protein-coding RNAs that negatively regulate gene expression. They bind to the 3'-untranslated region of specific mRNAs and inhibit translation or promote mRNA degradation. Dyslipidemia/hyperlipidemia is a well-accepted risk factor for the development of atherosclerosis. The pathogenesis factors involved in lipid abnormalities are being examined extensively, and there is emerging evidence linking miRNAs to lipid metabolism. Among them, recent studies, including ours, have demonstrated that miRNAs control the expression of genes associated with high-density lipoprotein (HDL) cholesterol (HDL-C) metabolism, including ABCA1, ABCG1, and scavenger receptor class B, type I. Moreover, HDL-C itself was proved to carry miRNAs and deliver them to several different types of cells. In this review, we describe the current understanding of the functions of miRNAs in HDL metabolism and their potential in therapy for treating cardiometabolic diseases.
Collapse
Affiliation(s)
- Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | | | | | | | | | | |
Collapse
|
68
|
Gál Z, Hegedüs C, Szakács G, Váradi A, Sarkadi B, Özvegy-Laczka C. Mutations of the central tyrosines of putative cholesterol recognition amino acid consensus (CRAC) sequences modify folding, activity, and sterol-sensing of the human ABCG2 multidrug transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:477-87. [DOI: 10.1016/j.bbamem.2014.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/30/2014] [Accepted: 11/06/2014] [Indexed: 02/07/2023]
|
69
|
Cantarelli MDG, Tramontina AC, Leite MC, Gonçalves CA. Potential neurochemical links between cholesterol and suicidal behavior. Psychiatry Res 2014; 220:745-51. [PMID: 25457283 DOI: 10.1016/j.psychres.2014.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 12/16/2022]
Abstract
The role of cholesterol in psychiatric diseases has aroused the interest of the medical community, particularly in association with violent and suicidal behavior. Herein, we discuss some aspects of brain cholesterol metabolism, exploring possible mechanisms underlying the findings and reviewing the available literature on the possible neurochemical link between suicide and low or reduced levels of serum cholesterol. Most of the current hypotheses suggest a decreased serotonergic activity due to a decrease in cholesterol in the lipid rafts of synaptic membranes. Some aspects and limitations of this assumption are emphasized. In addition to serotonin hypofunction, other mechanisms have been proposed to explain increased impulsivity in suicidal individuals, including steroid modulation and brain-derived neurotrophic factor decrease, which could also be related to changes in lipid rafts. Other putative markers of suicidal behavior (e.g. protein S100B) are discussed in connection with cholesterol metabolism in the brain tissue.
Collapse
|
70
|
Sano O, Ito S, Kato R, Shimizu Y, Kobayashi A, Kimura Y, Kioka N, Hanada K, Ueda K, Matsuo M. ABCA1, ABCG1, and ABCG4 are distributed to distinct membrane meso-domains and disturb detergent-resistant domains on the plasma membrane. PLoS One 2014; 9:e109886. [PMID: 25302608 PMCID: PMC4193829 DOI: 10.1371/journal.pone.0109886] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022] Open
Abstract
ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters.
Collapse
Affiliation(s)
- Osamu Sano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Shiho Ito
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Reiko Kato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Yuji Shimizu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Aya Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto, Japan
| | - Michinori Matsuo
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women’s University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
71
|
Tint GS, Pan L, Shang Q, Sharpe LJ, Brown AJ, Li M, Yu H. Desmosterol in brain is elevated because DHCR24 needs REST for Robust Expression but REST is poorly expressed. Dev Neurosci 2014; 36:132-42. [PMID: 24861183 DOI: 10.1159/000362363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/19/2014] [Indexed: 11/19/2022] Open
Abstract
Cholesterol synthesis in the fetal brain is inhibited because activity of DHCR24 (24-dehydrocholesterol reductase) is insufficient, causing concentrations of the precursor desmosterol to increase temporarily to 15-25% of total sterols at birth. We demonstrate that failure of DHCR24 to be adequately upregulated during periods of elevated cholesterol synthesis in the brain results from the presence in its promoter of the repressor element 1 (RE1) nucleotide sequence that binds the RE1-silencing transcription factor (REST) and that REST, generally reduced in neural tissues, uncharacteristically but not without precedent, enhances DHCR24 transcription. DHCR24 and REST mRNA levels are reduced 3- to 4-fold in fetal mouse brain compared to liver (p < 0.001). Chromatin immunoprecipitation assays suggested that REST binds to the human DHCR24 promoter in the vicinity of the predicted human RE1 sequence. Luminescent emission from a human DHCR24 promoter construct with a mutated RE1 sequence was reduced 2-fold compared to output from a reporter with wild-type RE1 (p < 0.005). Silencing REST in HeLa cells resulted in significant reductions of DHCR24 mRNA (2-fold) and DHCR24 protein (4-fold). As expected, relative concentrations of Δ(24)-cholesterol precursor sterols increased 3- to 4-fold, reflecting the inhibition of DHCR24 enzyme activity. In contrast, mRNA levels of DHCR7 (sterol 7-dehydrocholesterol reductase), a gene essential for cholesterol synthesis lacking an RE1 sequence, and concentrations of HMGR (3-hydroxy-3-methyl-glutaryl-CoA reductase) enzyme protein were both unaffected. Surprisingly, a dominant negative fragment of REST consisting of just the DNA binding domain (about 20% of the protein) and full-length REST enhanced DHCR24 expression equally well. Furthermore, RE1 and the sterol response element (SRE), the respective binding sites for REST and the SRE binding protein (SREBP), are contiguous. These observations led us to hypothesize that REST acts because it is bound in close proximity to SREBP, thus amplifying its ability to upregulate DHCR24. It is likely that modulation of DHCR24 expression by REST persisted in the mammalian genome either because it does no harm or because suppressing metabolically active DHCR24 while providing abundant quantities of the multifunctional sterol desmosterol during neural development proved useful.
Collapse
Affiliation(s)
- G S Tint
- Research Service, Department of Veterans Affairs Medical Center, East Orange, N.J., USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Telbisz Á, Hegedüs C, Váradi A, Sarkadi B, Özvegy-Laczka C. Regulation of the function of the human ABCG2 multidrug transporter by cholesterol and bile acids: effects of mutations in potential substrate and steroid binding sites. Drug Metab Dispos 2014; 42:575-85. [PMID: 24384916 PMCID: PMC3965895 DOI: 10.1124/dmd.113.055731] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/02/2014] [Indexed: 11/22/2022] Open
Abstract
ABCG2 (ATP-binding cassette, subfamily G, member 2) is a plasma membrane glycoprotein that actively extrudes xenobiotics and endobiotics from the cells and causes multidrug resistance in cancer. In the liver, ABCG2 is expressed in the canalicular membrane of hepatocytes and excretes its substrates into the bile. ABCG2 is known to require high membrane cholesterol content for maximal activity, and by examining purified ABCG2 reconstituted in proteoliposomes we have recently shown that cholesterol is an essential activator, while bile acids significantly modify the activity of this protein. In the present work, by using isolated insect cell membrane preparations expressing human ABCG2 and its mutant variants, we have analyzed whether certain regions in this protein are involved in sterol recognition. We found that replacing ABCG2-R482 with large amino acids does not affect cholesterol dependence, but changes to small amino acids cause altered cholesterol sensitivity. When leucines in the potential steroid-binding element (SBE, aa 555-558) of ABCG2 were replaced by alanines, cholesterol dependence of ABCG2 activity was strongly reduced, although the L558A mutant variant when purified and reconstituted still required cholesterol for full activity. Regarding the effect of bile acids in isolated membranes, we found that these compounds decreased ABCG2-ATPase in the absence of drug substrates, which did not significantly affect substrate-stimulated ATPase activity. These ABCG2 mutant variants also altered bile acid sensitivity, although cholic acid and glycocholate were not transported by the protein. We suggest that the aforementioned two regions in ABCG2 are important for sterol sensing and may represent potential targets for pharmacologic modulation of ABCG2 function.
Collapse
Affiliation(s)
- Ágnes Telbisz
- Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences (A.T., B.S.); Molecular Biophysics Research Group, Hungarian Academy of Sciences and Semmelweis University (C.H.); and Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences (A.V., C.O.-L.), Budapest, Hungary
| | | | | | | | | |
Collapse
|
73
|
Li G, Gu HM, Zhang DW. ATP-binding cassette transporters and cholesterol translocation. IUBMB Life 2014; 65:505-12. [PMID: 23983199 DOI: 10.1002/iub.1165] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/22/2013] [Indexed: 01/26/2023]
Abstract
Cholesterol, a major component of mammalian cell membranes, plays important structural and functional roles. However, accumulation of excessive cholesterol is toxic to cells. Aberrant cholesterol trafficking and accumulation is the molecular basis for many diseases, such as atherosclerotic cardiovascular disease and Tangier's disease. Accumulation of excessive cholesterol is also believed to contribute to the early onset of Alzheimer's disease. Thus, cellular cholesterol homeostasis is tightly regulated by uptake, de novo synthesis, and efflux. Any surplus of cholesterol must either be stored in the cytosol in the form of esters or released from the cell. Recently, several ATP-binding cassette (ABC) transporters, such as ABCA1, ABCG1, ABCG5, and ABCG8 have been shown to play important roles in the regulation of cellular cholesterol homeostasis by mediating cholesterol efflux. Mutations in ABC transporters are associated with several human diseases. In this review, we discuss the physiological roles of ABC transporters and the underlying mechanisms by which they mediate cholesterol translocation.
Collapse
Affiliation(s)
- Ge Li
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
74
|
Westerterp M, Bochem AE, Yvan-Charvet L, Murphy AJ, Wang N, Tall AR. ATP-Binding Cassette Transporters, Atherosclerosis, and Inflammation. Circ Res 2014; 114:157-70. [DOI: 10.1161/circresaha.114.300738] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Marit Westerterp
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Andrea E. Bochem
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Laurent Yvan-Charvet
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Andrew J. Murphy
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Nan Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| | - Alan R. Tall
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W., A.E.B., L.Y.-C., A.J.M., N.W., A.R.T.); Departments of Medical Biochemistry (M.W.) and Vascular Medicine (A.E.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.)
| |
Collapse
|
75
|
Choi H, Ohyama K, Kim YY, Jin JY, Lee SB, Yamaoka Y, Muranaka T, Suh MC, Fujioka S, Lee Y. The role of Arabidopsis ABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat. THE PLANT CELL 2014; 26:310-24. [PMID: 24474628 PMCID: PMC3963578 DOI: 10.1105/tpc.113.118935] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/11/2013] [Accepted: 01/09/2014] [Indexed: 05/17/2023]
Abstract
The pollen coat protects pollen grains from harmful environmental stresses such as drought and cold. Many compounds in the pollen coat are synthesized in the tapetum. However, the pathway by which they are transferred to the pollen surface remains obscure. We found that two Arabidopsis thaliana ATP binding cassette transporters, ABCG9 and ABCG31, were highly expressed in the tapetum and are involved in pollen coat deposition. Upon exposure to dry air, many abcg9 abcg31 pollen grains shriveled up and collapsed, and this phenotype was restored by complementation with ABCG9pro:GFP:ABCG9. GFP-tagged ABCG9 or ABCG31 localized to the plasma membrane. Electron microscopy revealed that the mutant pollen coat resembled the immature coat of the wild type, which contained many electron-lucent structures. Steryl glycosides were reduced to about half of wild-type levels in the abcg9 abcg31 pollen, but no differences in free sterols or steryl esters were observed. A mutant deficient in steryl glycoside biosynthesis, ugt80A2 ugt80B1, exhibited a similar phenotype. Together, these results indicate that steryl glycosides are critical for pollen fitness, by supporting pollen coat maturation, and that ABCG9 and ABCG31 contribute to the accumulation of this sterol on the surface of pollen.
Collapse
Affiliation(s)
- Hyunju Choi
- Pohang University of Science and Technology–University of Zurich Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kiyoshi Ohyama
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 244-0045, Japan
- Department of Chemistry and Materials Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Yu-Young Kim
- Pohang University of Science and Technology–University of Zurich Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jun-Young Jin
- Pohang University of Science and Technology–University of Zurich Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Saet Buyl Lee
- Department of Bioenergy Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Yasuyo Yamaoka
- Pohang University of Science and Technology–University of Zurich Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Toshiya Muranaka
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 244-0045, Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Shozo Fujioka
- RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198, Japan
| | - Youngsook Lee
- Pohang University of Science and Technology–University of Zurich Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
- Address correspondence to
| |
Collapse
|
76
|
Wang F, Li G, Gu HM, Zhang DW. Characterization of the role of a highly conserved sequence in ATP binding cassette transporter G (ABCG) family in ABCG1 stability, oligomerization, and trafficking. Biochemistry 2013; 52:9497-509. [PMID: 24320932 PMCID: PMC3880014 DOI: 10.1021/bi401285j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
ATP-binding cassette transporter
G1 (ABCG1) mediates cholesterol
and oxysterol efflux onto lipidated lipoproteins and plays an important
role in macrophage reverse cholesterol transport. Here, we identified
a highly conserved sequence present in the five ABCG transporter family
members. The conserved sequence is located between the nucleotide
binding domain and the transmembrane domain and contains five amino
acid residues from Asn at position 316 to Phe at position 320 in ABCG1
(NPADF). We found that cells expressing mutant ABCG1, in which Asn316,
Pro317, Asp319, and Phe320 in the conserved sequence were replaced
with Ala simultaneously, showed impaired cholesterol efflux activity
compared with wild type ABCG1-expressing cells. A more detailed mutagenesis
study revealed that mutation of Asn316 or Phe 320 to Ala significantly
reduced cellular cholesterol and 7-ketocholesterol efflux conferred
by ABCG1, whereas replacement of Pro317 or Asp319 with Ala had no
detectable effect. To confirm the important role of Asn316 and Phe320,
we mutated Asn316 to Asp (N316D) and Gln (N316Q), and Phe320 to Ile
(F320I) and Tyr (F320Y). The mutant F320Y showed the same phenotype
as wild type ABCG1. However, the efflux of cholesterol and 7-ketocholesterol
was reduced in cells expressing ABCG1 mutant N316D, N316Q, or F320I
compared with wild type ABCG1. Further, mutations N316Q and F320I
impaired ABCG1 trafficking while having no marked effect on the stability
and oligomerization of ABCG1. The mutant N316Q and F320I could not
be transported to the cell surface efficiently. Instead, the mutant
proteins were mainly localized intracellularly. Thus, these findings
indicate that the two highly conserved amino acid residues, Asn and
Phe, play an important role in ABCG1-dependent export of cellular
cholesterol, mainly through the regulation of ABCG1 trafficking.
Collapse
Affiliation(s)
- Faqi Wang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, ‡Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
77
|
Cui HL, Guo B, Scicluna B, Coleman BM, Lawson VA, Ellett L, Meikle PJ, Bukrinsky M, Mukhamedova N, Sviridov D, Hill AF. Prion infection impairs cholesterol metabolism in neuronal cells. J Biol Chem 2013; 289:789-802. [PMID: 24280226 PMCID: PMC3887205 DOI: 10.1074/jbc.m113.535807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conversion of prion protein (PrP(C)) into a pathological isoform (PrP(Sc)) during prion infection occurs in lipid rafts and is dependent on cholesterol. Here, we show that prion infection increases the abundance of cholesterol transporter, ATP-binding cassette transporter type A1 (ATP-binding cassette transporter type A1), but reduces cholesterol efflux from neuronal cells leading to the accumulation of cellular cholesterol. Increased abundance of ABCA1 in prion disease was confirmed in prion-infected mice. Mechanistically, conversion of PrP(C) to the pathological isoform led to PrP(Sc) accumulation in rafts, displacement of ABCA1 from rafts and the cell surface, and enhanced internalization of ABCA1. These effects were abolished with reversal of prion infection or by loading cells with cholesterol. Stimulation of ABCA1 expression with liver X receptor agonist or overexpression of heterologous ABCA1 reduced the conversion of prion protein into the pathological form upon infection. These findings demonstrate a reciprocal connection between prion infection and cellular cholesterol metabolism, which plays an important role in the pathogenesis of prion infection in neuronal cells.
Collapse
Affiliation(s)
- Huanhuan L Cui
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria 8008, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Ghanbari-Niaki A, Rahmati-Ahmadabad S. Effects of a fixed-intensity of endurance training and pistacia atlantica supplementation on ATP-binding cassette G4 expression. Chin Med 2013; 8:23. [PMID: 24267473 PMCID: PMC4175503 DOI: 10.1186/1749-8546-8-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 11/21/2013] [Indexed: 01/06/2023] Open
Abstract
Background Adenosine triphosphate-cassette binding protein (ABC) type G is considered as a part of reverse cholesterol transport (RCT) process in modification and metabolism of plasma and tissue cholesterol. This study aims to evaluate the effect of endurance training with or without Pistacia atlantica (Baneh) supplementation on the female rat tissues ABC type G expression and its correlation with plasma high-density lipoprotein cholesterol (HDL-C) concentration. Methods Twenty Wistar rats (six to eight weeks old, 125–135 g weight) were arbitrarily allocated into training (n = 10) and control (n = 10) groups and further divided into saline-control (n = 5), saline-training (n = 5), Baneh-control (n = 5), and Baneh-training (n = 5). The training groups were given exercise on a motor-driven treadmill at 25 m/min (0% grade) for 60 min/day, 5 days/week for eight weeks. The rats were fed orally with Baneh extract and saline for six weeks. Seventy-two hours after the last training session, the rats were sacrificed and their tissues were excised for tissues ABCG4 expression which was detected by Real-time PCR method. Results The ABCG4 gene expressions were significantly higher in liver (P = 02), small intestine (P = 06), and visceral fat tissues (P = 04) of the trained rats compared to the tissues of the control rats, but were lower in Baneh treated rats (liver P = 045, small intestine P = 06 and visceral fat P = 004) with lower HDL-C concentrations (P = 008). Conclusions The Baneh administration lowered tissues ABCG4 expression and plasma HDL-C concentrations while endurance training increased the expression in female rat tissues.
Collapse
Affiliation(s)
- Abbass Ghanbari-Niaki
- Department of Physical Education and Sport Science, University of Mazandaran, Baboulsar, Iran.
| | | |
Collapse
|
79
|
Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis. Prog Lipid Res 2013; 52:666-80. [PMID: 24095826 DOI: 10.1016/j.plipres.2013.09.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/25/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023]
Abstract
3β-Hydroxysterol Δ(24)-reductase (DHCR24) catalyzes the conversion of desmosterol to cholesterol. This ultimate step of cholesterol biosynthesis appears to be remarkable in its diverse functions and the number of diseases it is implicated in from vascular disease to Hepatitis C virus (HCV) infection to cancer to Alzheimer's disease. This review summarizes the present knowledge on the DHCR24 gene, sterol Δ(24)-reductase protein and the regulation of both. In addition, the functions of desmosterol, DHCR24 and their roles in human diseases are discussed. It is apparent that DHCR24 exerts more complex effects than what would be expected based on the enzymatic activity of sterol Δ(24)-reduction alone, such as its influence in modulating oxidative stress. Increasing information about DHCR24 membrane association, processing, enzymatic regulation and interaction partners will provide further fundamental insights into DHCR24 and its many and varied biological roles.
Collapse
|
80
|
Leoni V, Caccia C. Potential diagnostic applications of side chain oxysterols analysis in plasma and cerebrospinal fluid. Biochem Pharmacol 2013; 86:26-36. [DOI: 10.1016/j.bcp.2013.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/20/2022]
|
81
|
Coram M, Duan Q, Hoffmann T, Thornton T, Knowles J, Johnson N, Ochs-Balcom H, Donlon T, Martin L, Eaton C, Robinson J, Risch N, Zhu X, Kooperberg C, Li Y, Reiner A, Tang H. Genome-wide characterization of shared and distinct genetic components that influence blood lipid levels in ethnically diverse human populations. Am J Hum Genet 2013; 92:904-16. [PMID: 23726366 DOI: 10.1016/j.ajhg.2013.04.025] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/18/2013] [Accepted: 04/26/2013] [Indexed: 11/26/2022] Open
Abstract
Blood lipid concentrations are heritable risk factors associated with atherosclerosis and cardiovascular diseases. Lipid traits exhibit considerable variation among populations of distinct ancestral origin as well as between individuals within a population. We performed association analyses to identify genetic loci influencing lipid concentrations in African American and Hispanic American women in the Women's Health Initiative SNP Health Association Resource. We validated one African-specific high-density lipoprotein cholesterol locus at CD36 as well as 14 known lipid loci that have been previously implicated in studies of European populations. Moreover, we demonstrate striking similarities in genetic architecture (loci influencing the trait, direction and magnitude of genetic effects, and proportions of phenotypic variation explained) of lipid traits across populations. In particular, we found that a disproportionate fraction of lipid variation in African Americans and Hispanic Americans can be attributed to genomic loci exhibiting statistical evidence of association in Europeans, even though the precise genes and variants remain unknown. At the same time, we found substantial allelic heterogeneity within shared loci, characterized both by population-specific rare variants and variants shared among multiple populations that occur at disparate frequencies. The allelic heterogeneity emphasizes the importance of including diverse populations in future genetic association studies of complex traits such as lipids; furthermore, the overlap in lipid loci across populations of diverse ancestral origin argues that additional knowledge can be gleaned from multiple populations.
Collapse
|
82
|
Matsuda A, Nagao K, Matsuo M, Kioka N, Ueda K. 24(S)-hydroxycholesterol is actively eliminated from neuronal cells by ABCA1. J Neurochem 2013; 126:93-101. [PMID: 23600914 DOI: 10.1111/jnc.12275] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/13/2013] [Accepted: 04/13/2013] [Indexed: 02/05/2023]
Abstract
High cholesterol turnover catalyzed by cholesterol 24-hydroxylase is essential for neural functions, especially learning. Because 24(S)-hydroxycholesterol (24-OHC), produced by 24-hydroxylase, induces apoptosis of neuronal cells, it is vital to eliminate it rapidly from cells. Here, using differentiated SH-SY5Y neuron-like cells as a model, we examined whether 24-OHC is actively eliminated via transporters induced by its accumulation. The expression of ABCA1 and ABCG1 was induced by 24-OHC, as well as TO901317 and retinoic acid, which are ligands of the nuclear receptors liver X receptor/retinoid X receptor (LXR/RXR). When the expression of ABCA1 and ABCG1 was induced, 24-OHC efflux was stimulated in the presence of high-density lipoprotein (HDL), whereas apolipoprotein A-I was not an efficient acceptor. The efflux was suppressed by the addition of siRNA against ABCA1, but not by ABCG1 siRNA. To confirm the role of each transporter, we analyzed human embryonic kidney 293 cells stably expressing human ABCA1 or ABCG1; we clearly observed 24-OHC efflux in the presence of HDL, whereas efflux in the presence of apolipoprotein A-I was marginal. Furthermore, the treatment of primary cerebral neurons with LXR/RXR ligands suppressed the toxicity of 24-OHC. These results suggest that ABCA1 actively eliminates 24-OHC in the presence of HDL as a lipid acceptor and protects neuronal cells.
Collapse
Affiliation(s)
- Akihiro Matsuda
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, Japan
| | | | | | | | | |
Collapse
|
83
|
Li G, Gu HM, Zhang DW. ATP-binding cassette transporters and cholesterol translocation. IUBMB Life 2013:n/a-n/a. [PMID: 23625363 DOI: 10.1002/iub.01165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/22/2013] [Indexed: 11/08/2022]
Abstract
Cholesterol, a major component of mammalian cell membranes, plays important structural and functional roles. However, accumulation of excessive cholesterol is toxic to cells. Aberrant cholesterol trafficking and accumulation is the molecular basis for many diseases, such as atherosclerotic cardiovascular disease and Tangier's disease. Accumulation of excessive cholesterol is also believed to contribute to the early onset of Alzheimer's disease. Thus, cellular cholesterol homeostasis is tightly regulated by uptake, de novo synthesis, and efflux. Any surplus of cholesterol must either be stored in the cytosol in the form of esters or released from the cell. Recently, several ATP-binding cassette (ABC) transporters, such as ABCA1, ABCG1, ABCG5, and ABCG8 have been shown to play important roles in the regulation of cellular cholesterol homeostasis by mediating cholesterol efflux. Mutations in ABC transporters are associated with several human diseases. In this review, we discuss the physiological roles of ABC transporters and the underlying mechanisms by which they mediate cholesterol translocation. © 2013 IUBMB Life, 2013.
Collapse
Affiliation(s)
- Ge Li
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
84
|
Abstract
PURPOSE OF REVIEW To offer a comprehensive review on the role of ABCG1 in cellular sterol homeostasis. RECENT FINDINGS Early studies with Abcg1 mice indicated that ABCG1 was crucial for tissue lipid homeostasis, especially in the lung. More recent studies have demonstrated that loss of ABCG1 has wide-ranging consequences and impacts lymphocyte and stem cell proliferation, endothelial cell function, macrophage foam cell formation, as well as insulin secretion from pancreatic β cells. Recent studies have also demonstrated that ABCG1 functions as an intracellular lipid transporter, localizes to intracellular vesicles/endosomes, and that the transmembrane domains are sufficient for localization and transport function. SUMMARY ABCG1 plays a crucial role in maintaining intracellular sterol and lipid homeostasis. Loss of this transporter has significant, cell-type-specific consequences ranging from effects on cellular proliferation, to surfactant production and/or insulin secretion. Elucidation of the mechanisms by which ABCG1 affects intracellular sterol flux/movement should provide important information that may link ABCG1 to diseases of dysregulated tissue lipid homeostasis.
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Departments of Biological Chemistry and Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1737, USA.
| |
Collapse
|
85
|
Interrelationship between ATP-binding cassette transporters and oxysterols. Biochem Pharmacol 2013; 86:80-8. [PMID: 23500544 DOI: 10.1016/j.bcp.2013.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 12/11/2022]
Abstract
ATP-binding cassette (ABC) transporters constitute a ubiquitous superfamily of membrane proteins responsible for the translocation of several substances across membranes using the chemical energy provided by ATP hydrolysis. ABC transporters participate in many physiological and pathophysiological processes, including cholesterol and lipid transportation and multidrug resistance. Oxysterols are the products of cholesterol oxidation, formed by both enzymatic and non-enzymatic mechanisms. The role of oxysterols in cholesterol metabolism and several diseases has been widely investigated, but many questions remain to be answered. Several lines of evidence link ABC transporter functions with cholesterol and oxysterol metabolism. This review discusses ABC transporters, oxysterols, and how they interact with each other.
Collapse
|
86
|
Jansen M, Wang W, Greco D, Bellenchi GC, Porzio U, Brown AJ, Ikonen E. What dictates the accumulation of desmosterol in the developing brain? FASEB J 2012; 27:865-70. [DOI: 10.1096/fj.12-211235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maurice Jansen
- Institute of Biomedicine, AnatomyUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Wei Wang
- Institute of Biomedicine, AnatomyUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Dario Greco
- Research Unit of Molecular MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Bioscience and NutritionKarolinska InstituteStockholmSweden
| | | | | | - Andrew J. Brown
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Elina Ikonen
- Institute of Biomedicine, AnatomyUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| |
Collapse
|
87
|
Abuznait AH, Kaddoumi A. Role of ABC transporters in the pathogenesis of Alzheimer's disease. ACS Chem Neurosci 2012. [PMID: 23181169 DOI: 10.1021/cn300077c] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of age-related dementia that begins with memory loss and progresses to include severe cognitive impairment. A major pathological hallmark of AD is the accumulation of beta amyloid peptide (Aβ) in senile plaques in the brain of AD patients. The exact mechanism by which AD takes place remains unknown. However, an increasing number of studies suggests that ATP-binding cassette (ABC) transporters, which are localized on the surface of brain endothelial cells of the blood-brain barrier (BBB) and brain parenchyma, may contribute to the pathogenesis of AD. Recent studies have unraveled important roles of ABC transporters including ABCB1 (P-glycoprotein, P-gp), ABCG2 (breast cancer resistant protein, BCRP), ABCC1 (multidrug resistance protein 1, MRP1), and the cholesterol transporter ABCA1 in the pathogenesis of AD and Aβ peptides deposition inside the brain. Therefore, understanding the mechanisms by which these transporters contribute to Aβ deposition in the brain is important for the development of new therapeutic strategies against AD. This review summarizes and highlights the accumulating evidence in the literature which describe the role of altered function of various ABC transporters in the pathogenesis and progression of AD and the implications of modulating their functions for the treatment of AD.
Collapse
Affiliation(s)
- Alaa H. Abuznait
- Department of Basic Pharmaceutical
Sciences, College
of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical
Sciences, College
of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| |
Collapse
|
88
|
Dietary β-carotene regulates interleukin-1β-induced expression of apolipoprotein E in astrocytes isolated from stroke-prone spontaneously hypertensive rats. Neurochem Int 2012; 62:43-9. [PMID: 23147682 DOI: 10.1016/j.neuint.2012.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 12/31/2022]
Abstract
Stroke-prone spontaneously hypertensive rats (SHRSP) have an abnormality in cholesterol synthesis, but the pathological relevance of this to stroke and related neuronal disorders is not yet clear. The induction of astrocyte-derived cholesterol transportation to neurons by apolipoprotein E (apoE) promotes neuronal repair after brain injuries such as stroke. Such repair is reduced by interleukin-1 beta (IL-1β) and stroke conditions. Furthermore, fibroblast growth factor 1 (FGF1) regulates the production of apoE-cholesterol-rich high density lipoproteins (HDL) and induces gliosis of astrocytes. On the other hand, high levels of plasma carotenoids reduce the risk of ischemic stroke. Thus, we investigated the expression of apoE in primary astrocytes that had been treated with IL-1β or β-carotene. In addition, we compared the expression levels of Apoe genes in astrocytes from SHRSP/Izm and normal control rats, Wistar-Kyoto rats (WKY/Izm) following hypoxia/reoxygenation (H/R). The expression levels of genes and proteins were investigated by RT-PCR, Western blotting (WB), and immunofluorescence analysis. IL-1β decreased the expression levels of the Apoe gene. Conversely, β-carotene significantly enhanced the expression levels of genes related to cholesterol regulation, including Abca1, Abcg1, Hmgcr as well as Apoe. During H/R, the gene expression levels of Apoe were decreased in the SHRSP/Izm rats in comparison with the WKY/Izm rats. These results suggest that IL-1β decreases Apoe expression levels, whereas β-carotene strongly elevates Apoe levels and inhibits FGF1-mediated gliosis of astrocytes. Furthermore, under hypoxic stress, astrocytes isolated from SHRSP/Izm rats displayed altered regulation of Apoe compared with those from WKY/Izm rats.
Collapse
|
89
|
Coleman JA, Quazi F, Molday RS. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:555-74. [PMID: 23103747 DOI: 10.1016/j.bbalip.2012.10.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 02/08/2023]
Abstract
Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P(4)-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P(4)-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P(4)-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Jonathan A Coleman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | | |
Collapse
|
90
|
Leoni V, Caccia C. 24S-hydroxycholesterol in plasma: a marker of cholesterol turnover in neurodegenerative diseases. Biochimie 2012; 95:595-612. [PMID: 23041502 DOI: 10.1016/j.biochi.2012.09.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/20/2012] [Indexed: 01/09/2023]
Abstract
Brain cholesterol is mainly involved in the cell membrane structure, in signal transduction, neurotransmitter release, synaptogenesis and membrane trafficking. Impairment of brain cholesterol metabolism was described in neurodegenerative diseases, such as Multiple Sclerosis, Alzheimer and Huntington Diseases. Since the blood-brain barrier efficiently prevents cholesterol uptake from the circulation into the brain, de novo synthesis is responsible for almost all cholesterol present there. Cholesterol is converted into 24S-hydroxycholesterol (24OHC) by cholesterol 24-hydroxylase (CYP46A1) expressed in neural cells. Plasma concentration of 24OHC depends upon the balance between cerebral production and hepatic elimination and is related to the number of metabolically active neurons in the brain. Factors affecting brain cholesterol turnover and liver elimination of oxysterols, together with the metabolism of plasma lipoproteins, genetic background, nutrition and lifestyle habits were found to significantly affect its plasma levels. Either increased or decreased plasma 24OHC concentrations were described in patients with neurodegenerative diseases. A group of evidence suggests that reduced levels of 24OHC are related to the loss of metabolically active cells and the degree of brain atrophy. Inflammation, dysfunction of BBB, increased cholesterol turnover might counteract this tendency resulting in increased levels or, in some cases, in unsignificant changes. The study of plasma 24OHC is likely to offer an insight about brain cholesterol turnover with a limited diagnostic power.
Collapse
Affiliation(s)
- Valerio Leoni
- Laboratory of Clinical Pathology and Medical Genetics, Foundation IRCCS Institute of Neurology Carlo Besta, Milan, Italy.
| | | |
Collapse
|
91
|
Kang J, Rivest S. Lipid metabolism and neuroinflammation in Alzheimer's disease: a role for liver X receptors. Endocr Rev 2012; 33:715-46. [PMID: 22766509 DOI: 10.1210/er.2011-1049] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver X receptors (LXR) are nuclear receptors that have emerged as key regulators of lipid metabolism. In addition to their functions as cholesterol sensors, LXR have also been found to regulate inflammatory responses in macrophages. Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive cognitive decline associated with inflammation. Evidence indicates that the initiation and progression of AD is linked to aberrant cholesterol metabolism and inflammation. Activation of LXR can regulate neuroinflammation and decrease amyloid-β peptide accumulation. Here, we highlight the role of LXR in orchestrating lipid homeostasis and neuroinflammation in the brain. In addition, diabetes mellitus is also briefly discussed as a significant risk factor for AD because of the appearing beneficial effects of LXR on glucose homeostasis. The ability of LXR to attenuate AD pathology makes them potential therapeutic targets for this neurodegenerative disease.
Collapse
Affiliation(s)
- Jihong Kang
- Department of Physiology and Pathophysiology and Key Laboratory of Molecular Cardiovascular Sciences, State Education Ministry, Peking University Health Science Center, Beijing 100191, China
| | | |
Collapse
|
92
|
Lee S, Wang PY, Jeong Y, Mangelsdorf DJ, Anderson RGW, Michaely P. Sterol-dependent nuclear import of ORP1S promotes LXR regulated trans-activation of apoE. Exp Cell Res 2012; 318:2128-42. [PMID: 22728266 DOI: 10.1016/j.yexcr.2012.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 01/30/2023]
Abstract
Oxysterol binding protein related protein 1S (ORP1S) is a member of a family of sterol transport proteins. Here we present evidence that ORP1S translocates from the cytoplasm to the nucleus in response to sterol binding. The sterols that best promote nuclear import of ORP1S also activate the liver X receptor (LXR) transcription factors and we show that ORP1S binds to LXRs, promotes binding of LXRs to LXR response elements (LXREs) and specifically enhances LXR-dependent transcription via the ME.1 and ME.2 enhancer elements of the apoE gene. We propose that ORP1S is a cytoplasmic sterol sensor, which transports sterols to the nucleus and promotes LXR-dependent gene transcription through select enhancer elements.
Collapse
Affiliation(s)
- Sungsoo Lee
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, United States.
| | | | | | | | | | | |
Collapse
|
93
|
Kerr ID, Haider AJ, Gelissen IC. The ABCG family of membrane-associated transporters: you don't have to be big to be mighty. Br J Pharmacol 2012; 164:1767-79. [PMID: 21175590 DOI: 10.1111/j.1476-5381.2010.01177.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Along with many other mammalian ATP-binding cassette (ABC) transporters, members of the ABCG group are involved in the regulated transport of hydrophobic compounds across cellular membranes. In humans, five ABCG family members have been identified, encoding proteins ranging from 638 to 678 amino acids in length. All five have been the subject of intensive investigation to better understand their physiological roles, expression patterns, interactions with substrates and inhibitors, and regulation at both the transcript and protein level. The principal substrates for at least four of the ABCG proteins are endogenous and dietary lipids, with ABCG1 implicated in particular in the export of cholesterol, and ABCG5 and G8 forming a functional heterodimer responsible for plant sterol elimination from the body. ABCG2 has a much broader substrate specificity and its ability to transport numerous diverse pharmaceuticals has implications for the absorption, distribution, metabolism, excretion and toxicity (ADMETOx) profile of these compounds. ABCG2 is one of at least three so-called multidrug resistant ABC transporters expressed in humans, and its activity is associated with decreased efficacy of anti-cancer agents in several carcinomas. In addition to its role in cancer, ABCG2 also plays a role in the normal physiological transport of urate and haem, the implications of which are described. We summarize here data on all five human ABCG transporters and provide a current perspective on their roles in human health and disease.
Collapse
Affiliation(s)
- Ian D Kerr
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham.
| | | | | |
Collapse
|
94
|
Liu X, Xiong SL, Yi GH. ABCA1, ABCG1, and SR-BI: Transit of HDL-associated sphingosine-1-phosphate. Clin Chim Acta 2012; 413:384-90. [DOI: 10.1016/j.cca.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/28/2011] [Accepted: 11/03/2011] [Indexed: 01/07/2023]
|
95
|
Ramirez CM, Dávalos A, Goedeke L, Salerno AG, Warrier N, Cirera-Salinas D, Suárez Y, Fernández-Hernando C. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 2012; 31:2707-14. [PMID: 21885853 DOI: 10.1161/atvbaha.111.232066] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The ATP-binding cassette transporter A1 (ABCA1) is a major regulator of macrophage cholesterol efflux and protects cells from excess intracellular cholesterol accumulation; however, the mechanism involved in posttranscriptional regulation of ABCA1 is poorly understood. We previously showed that microRNA-33 (miR-33) is 1 regulator. Here, we investigated the potential contribution of other microRNAs (miRNAs) to posttranscriptional regulation of ABCA1 and macrophage cholesterol efflux. METHODS AND RESULTS We performed a bioinformatic analysis for identifying miRNA target prediction sites in ABCA1 gene and an unbiased genome-wide screen to identify miRNAs modulated by cholesterol excess in mouse peritoneal macrophages. Quantitative real-time reverse transcription-polymerase chain reaction confirmed that miR-758 is repressed in cholesterol-loaded macrophages. Under physiological conditions, high dietary fat excess in mice repressed miR-758 both in peritoneal macrophages and, to a lesser extent, in the liver. In mouse and human cells in vitro, miR-758 repressed the expression of ABCA1, and conversely, the inhibition of this miRNA by using anti-miR-758 increased ABCA1 expression. In mouse cells, miR-758 reduced cellular cholesterol efflux to apolipoprotein A1 (apoA1), and anti-miR-758 increased it. miR-758 directly targets the 3'-untranslated region of Abca1 as assessed by 3'-untranslated region luciferase reporter assays. Interestingly, miR-758 is highly expressed in the brain, where it also targets several genes involved in neurological functions, including Slc38a1, Ntm, Epha7, and Mytl1. CONCLUSION We identified miR-758 as a novel miRNA that posttranscriptionally controls ABCA1 levels in different cells and regulates macrophage cellular cholesterol efflux to apoA1, opening new avenues to increase apoA1 and raise high-density lipoprotein levels.
Collapse
Affiliation(s)
- Cristina M Ramirez
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Zhu R, Ou Z, Ruan X, Gong J. Role of liver X receptors in cholesterol efflux and inflammatory signaling (review). Mol Med Rep 2012; 5:895-900. [PMID: 22267249 PMCID: PMC3493071 DOI: 10.3892/mmr.2012.758] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/27/2011] [Indexed: 01/10/2023] Open
Abstract
Liver X receptors (LXRs) are nuclear receptors that play a central role in cholesterol metabolism. When activated, LXRs induce a series of genes that are involved in cholesterol efflux, absorption, transport and excretion. In recent studies, LXRs have also been shown to play an important role in inflammatory signaling. LXR agonists show promise as potential therapeutics, given their anti-atherogenic and anti-inflammatory properties. The function of LXRs in cholesterol efflux and inflammatory signaling make them attractive as therapies for cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Rongtao Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | | | | | | |
Collapse
|
97
|
Hayashi H. Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 2011; 34:453-61. [PMID: 21467629 DOI: 10.1248/bpb.34.453] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoproteins in the central nervous system (CNS) are not incorporated from the blood but are formed mainly by glial cells within the CNS. In addition, cholesterol in the CNS is synthesized endogenously because the blood-brain barrier segregates the CNS from the peripheral circulation. Apolipoprotein (apo) E is a major apo in the CNS. In normal condition, apo E is secreted from glia, mainly from astrocytes, and forms cholesterol-rich lipoproteins by ATP-binding cassette transporters. Subsequently, apo E-containing glial lipoproteins supply cholesterol and other components to neurons via a receptor-mediated process. Recent findings demonstrated that receptors of the low density lipoprotein (LDL) receptor family not only internalize lipoproteins into the cells but also, like signaling receptors, transduce signals upon binding the ligands. In this review, the regulation of lipid homeostasis will be discussed as well as roles of lipoproteins and functions of receptors of LDL receptor family in the CNS. Furthermore, the relation between lipid metabolism and Alzheimer's disease (AD) is discussed.
Collapse
Affiliation(s)
- Hideki Hayashi
- Priority Organization for Innovation and Excellence, Kumamoto University, Honjo, Japan.
| |
Collapse
|
98
|
|
99
|
Liu X, Zhang QH, Yi GH. Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells. Mol Cell Biochem 2011; 363:21-33. [DOI: 10.1007/s11010-011-1154-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023]
|
100
|
Kellner-Weibel G, de la Llera-Moya M. Update on HDL receptors and cellular cholesterol transport. Curr Atheroscler Rep 2011; 13:233-41. [PMID: 21302003 DOI: 10.1007/s11883-011-0169-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Efflux is central to maintenance of tissue and whole body cholesterol homeostasis. The discovery of cell surface receptors that bind high-density lipoprotein (HDL) with high specificity and affinity to promote cholesterol release has significantly advanced our understanding of cholesterol efflux. We now know that 1) cells have several mechanisms to promote cholesterol release, including a passive mechanism that depends on the physico-chemical properties of cholesterol molecules and their interactions with phospholipids; 2) a variety of HDL particles can interact with receptors to promote cholesterol transport from tissues to the liver for excretion; and 3) interactions between HDL and receptors show functional synergy. Therefore, efflux efficiency depends both on the arrays of receptors on tissue cells and HDL particles in serum.
Collapse
Affiliation(s)
- Ginny Kellner-Weibel
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., ARC1102G, Philadelphia, PA 19104-4318, USA.
| | | |
Collapse
|