51
|
Cadet JL, Krasnova IN. Molecular bases of methamphetamine-induced neurodegeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:101-19. [PMID: 19897076 DOI: 10.1016/s0074-7742(09)88005-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant drug, whose abuse has reached epidemic proportions worldwide. The addiction to METH is a major public concern because its chronic abuse is associated with serious health complications including deficits in attention, memory, and executive functions in humans. These neuropsychiatric complications might, in part, be related to drug-induced neurotoxic effects, which include damage to dopaminergic and serotonergic terminals, neuronal apoptosis, as well as activated astroglial and microglial cells in the brain. Thus, the purpose of the present paper is to review cellular and molecular mechanisms that might be responsible for METH neurotoxicity. These include oxidative stress, activation of transcription factors, DNA damage, excitotoxicity, blood-brain barrier breakdown, microglial activation, and various apoptotic pathways. Several approaches that allow protection against METH-induced neurotoxic effects are also discussed. Better understanding of the cellular and molecular mechanisms involved in METH toxicity should help to generate modern therapeutic approaches to prevent or attenuate the long-term consequences of psychostimulant use disorders in humans.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Branch, NIDA-Intramural Research Program, NIH/DHHS, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
52
|
Abstract
Neuronal dysfunction in the prefrontal cortex, limbic structures, nucleus accumbens and ventral tegmental area is considered to underlie the general physiopathological mechanisms for substance use disorders. Glutamatergic, dopaminergic and opioidoergic neuronal mechanisms in those brain areas have been targeted in the development of pharmacotherapies for drug abuse and dependence. However, despite the pivotal role of neurons in the mechanisms of addiction, these cells are not the only cell type in charge of sustaining and regulating neurotransmission. Glial cells, particularly astrocytes, play essential roles in the regulation of glutamatergic neurotransmission, neurotransmitter metabolism, and supply of energy substrates for synaptic transmission. In addition, astrocytes are markedly affected by exposure to ethanol and other substances of abuse. These features of astrocytes suggest that alterations in the function of astrocytes and other glial cells in reward circuits may contribute to drug addiction. Recent research has shown that the control of glutamate uptake and the release of neurotrophic factors by astrocytes influences behaviors of addiction and may play modulatory roles in psychostimulant, opiate, and alcohol abuse. Less is known about the contributions of microglia and oligodendrocytes to drug abuse, although, given the ability of these cells to produce growth factors and cytokines in response to alterations in synaptic transmission, further research should better define their role in drug addiction. The available knowledge on the involvement of glial cells in addictive behaviors suggests that regulation of glutamate transport and neurotrophins may constitute new avenues for the treatment of drug addiction.
Collapse
Affiliation(s)
- Jose Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
53
|
Saavedra A, Baltazar G, Duarte EP. Driving GDNF expression: the green and the red traffic lights. Prog Neurobiol 2008; 86:186-215. [PMID: 18824211 DOI: 10.1016/j.pneurobio.2008.09.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 06/18/2008] [Accepted: 09/03/2008] [Indexed: 01/28/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is widely recognized as a potent survival factor for dopaminergic neurons of the nigrostriatal pathway that degenerate in Parkinson's disease (PD). In animal models of PD, GDNF delivery to the striatum or the substantia nigra protects dopaminergic neurons against subsequent toxin-induced injury and rescues previously damaged neurons, promoting recovery of the motor function. Thus, GDNF was proposed as a potential therapy to PD aimed at slowing down, halting or reversing neurodegeneration, an issue addressed in previous reviews. However, the use of GDNF as a therapeutic agent for PD is hampered by the difficulty in delivering it to the brain. Another potential strategy is to stimulate the endogenous expression of GDNF, but in order to do that we need to understand how GDNF expression is regulated. The aim of this review is to do a comprehensive analysis of the state of the art on the control of endogenous GDNF expression in the nervous system, focusing mainly on the nigrostriatal pathway. We address the control of GDNF expression during development, in the adult brain and after injury, and how damaged neurons signal glial cells to up-regulate GDNF. Pharmacological agents or natural molecules that increase GDNF expression and show neuroprotective activity in animal models of PD are reviewed. We also provide an integrated overview of the signalling pathways linking receptors for these molecules to the induction of GDNF gene, which might also become targets for neuroprotective therapies in PD.
Collapse
Affiliation(s)
- Ana Saavedra
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Carrer Casanova 143, 08036 Barcelona, Spain.
| | | | | |
Collapse
|
54
|
Matsushita Y, Nakajima K, Tohyama Y, Kurihara T, Kohsaka S. Activation of microglia by endotoxin suppresses the secretion of glial cell line-derived neurotrophic factor (GDNF) through the action of protein kinase C alpha (PKCalpha) and mitogen-activated protein kinases (MAPKS). J Neurosci Res 2008; 86:1959-71. [PMID: 18438912 DOI: 10.1002/jnr.21657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability of microglia to produce/secrete glial cell line-derived neurotrophic factor (GDNF) in vitro was examined. Immunoblotting analysis revealed that nonstimulated microglia release limited amounts of GDNF with molecular sizes of 14 and 17 kDa. However, the secreted amounts significantly decreased when the microglia were activated with the endotoxin lipopolysaccharide (LPS). Comparison of the amounts of GDNF in the cells and the conditioned medium between the nonstimulated microglia and LPS-stimulated microglia clarified that the secretion of GDNF, but not its production, is strongly suppressed when the microglia are activated with LPS. The inhibitor experiments suggested that the GDNF secretion is depressed by a signaling cascade associated with protein kinase C alpha (PKCalpha) and/or mitogen-activated protein kinases (MAPKs). As expected from the above results, a PKC activator suppressed the secretion of GDNF in nonstimulated microglia. Taken together, these results demonstrated that microglia have the ability to produce and secrete GDNF in vitro, and that the secretion is suppressed by stimulation with endotoxin, probably due to a signaling mechanism involving PKCalpha and/or MAPKs.
Collapse
Affiliation(s)
- Yuichi Matsushita
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | | | | | | | | |
Collapse
|
55
|
Abstract
Typically patients with multiple sclerosis (MS) experience acute episodes of neurological dysfunction, which recover followed, at a later stage, by slow and insidious accumulation of disability (disease progression). Disease progression reflects axon damage and loss within the central nervous system. However, the precise mechanism of axon injury in MS is not clear. Inflammation occurring during acute relapses undoubtedly causes some degree of acute axon damage, but epidemiological data and treatment studies have suggested that inflammation alone is not the sole cause of axonopathy. Indeed, there appears to be dissociation between inflammation and disease progression once a certain level of clinical disability has been reached because immune suppression in patients who have established disease progression does not halt the slow decrease of function. The slow and insidious loss of neurological function that occurs during the progressive phase of the disease implies a degenerative process. Whether axon drop-out occurs at these later stages because of previous inflammatory damage to axons; because of low grade inflammation causing damage to already vulnerable demyelinated axons; because of loss of trophic environment for axons to survive; or as part of a completely independent neurodegenerative process is not clear. Understanding disease mechanisms involved in the axonopathy of MS allows for the development of rational therapies for disease progression.
Collapse
Affiliation(s)
- A Wilkins
- Department of Neurology, Institute of Clinical Neurosciences, University of Bristol, Frenchay Hospital, Bristol, UK.
| | | |
Collapse
|
56
|
Tanaka T, Oh-hashi K, Ito M, Shitara H, Hirata Y, Kiuchi K. Identification of a novel GDNF mRNA induced by LPS in immune cell lines. Neurosci Res 2008; 61:11-7. [DOI: 10.1016/j.neures.2008.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 12/18/2007] [Accepted: 01/09/2008] [Indexed: 11/24/2022]
|
57
|
Fetal striatum- and ventral mesencephalon-derived expanded neurospheres rescue dopaminergic neurons in vitro and the nigro-striatal system in vivo. Neuroscience 2008; 154:606-20. [PMID: 18472226 DOI: 10.1016/j.neuroscience.2008.03.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 03/12/2008] [Accepted: 03/20/2008] [Indexed: 01/19/2023]
Abstract
The pathogenesis of Parkinson's disease (PD) involves ongoing apoptotic loss of dopaminergic neurons in the substantia nigra pars compacta. Local delivery of the trophic factors can rescue dopaminergic neurons and halt the progression of PD. In this study we show that fetal E11 striatum-derived neurospheres and E14.5 ventral mesencephalon (VM) -derived neurospheres (NS E11 and NSvm, respectively) are a source of factors that rescue dopaminergic neurons. First, long-term expanded NS E11 and NSvm rescued primary dopaminergic neurons from serum-deprivation induced apoptosis and promoted survival of dopaminergic neurons for 14 days in vitro and this effect was due to soluble contact-independent factor/s. Second, green fluorescent protein-expressing NS E11 and NSvm grafted into the midbrain of mice with unilateral 6-hydroxydopamine-induced Parkinsonism resulted in partial rescue of the nigro-striatal system and improvement of the hypo-dopaminergic behavioral deficit. Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that intact NS E11 and NSvm expressed fibroblast growth factor-2, brain-derived neurotrophic factor (BDNF), pleiotrophin, neurotrophin-3, but not glial cell line-derived neurotrophic factor (GDNF). GDNF expression was also undetectable in vivo in grafted NS E11 and NSvm suggesting that NS-derived factor/s other than GDNF mediated the rescue of nigral dopaminergic neurons. Identification of NS-derived soluble factor(s) may lead to development of novel neuroprotective therapies for PD. An unexpected observation of the present study was the detection of the ectopic host-derived tyrosine hydroxylase (TH) -expressing cells in sham-grafted mice and NS E11- and NSvm -grafted mice. We speculate that injury-derived signals (such as inflammatory cytokines that are commonly released during transplantation) induce TH expression in susceptible cells.
Collapse
|
58
|
Hozumi H, Asanuma M, Miyazaki I, Fukuoka S, Kikkawa Y, Kimoto N, Kitamura Y, Sendo T, Kita T, Gomita Y. Protective effects of interferon-γ against methamphetamine-induced neurotoxicity. Toxicol Lett 2008; 177:123-9. [DOI: 10.1016/j.toxlet.2008.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/08/2008] [Accepted: 01/08/2008] [Indexed: 12/26/2022]
|
59
|
Ichikawa M, Yoshida J, Saito K, Sagawa H, Tokita Y, Watanabe M. Differential effects of two ROCK inhibitors, Fasudil and Y-27632, on optic nerve regeneration in adult cats. Brain Res 2008; 1201:23-33. [PMID: 18313036 DOI: 10.1016/j.brainres.2008.01.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/19/2022]
Abstract
A ROCK inhibitor Fasudil is widely administered to relieve vasospasm in patients after subarachnoid hemorrhage in Japan. We investigated the difference of Fasudil and Y-27632, a common ROCK inhibitor, on neurite regeneration in culture and axonal regeneration after injuring the optic nerve (OpN) in cats. The optimal dose of Y-27632, determined by counting the number and length of neurites in retinal explants, was found to be 100 microM: the only effect of Fasudil was to promote extension of glial processes. We next examined the effects of Fasudil (10 microM-100 microM) and Y-27632 (10 microM-300 microM) on axonal regeneration in the crushed OpN model in vivo. Immediately after crushing the left OpN, Fasudil or Y-27632 was injected into the vitreous and the crushed site. Injection of 10 microM and 100 microM Y-27632 induced extension of the optic axons beyond the crush site, with the latter dosage giving stronger regeneration. Very few axons passed beyond the crush site in the optic nerve with phosphate-buffered saline injection, and no axons elongated in the OpN with Fasudil injection.
Collapse
Affiliation(s)
- Masahiro Ichikawa
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Tsuruma-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
60
|
Hauk TG, Müller A, Lee J, Schwendener R, Fischer D. Neuroprotective and axon growth promoting effects of intraocular inflammation do not depend on oncomodulin or the presence of large numbers of activated macrophages. Exp Neurol 2008; 209:469-82. [DOI: 10.1016/j.expneurol.2007.09.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 09/03/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
|
61
|
Esseghir S, Todd SK, Hunt T, Poulsom R, Plaza-Menacho I, Reis-Filho JS, Isacke CM. A role for glial cell derived neurotrophic factor induced expression by inflammatory cytokines and RET/GFR alpha 1 receptor up-regulation in breast cancer. Cancer Res 2008; 67:11732-41. [PMID: 18089803 DOI: 10.1158/0008-5472.can-07-2343] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By screening a tissue microarray of invasive breast tumors, we have shown that the receptor tyrosine kinase RET (REarranged during Transfection) and its coreceptor GFR alpha 1 (GDNF receptor family alpha-1) are overexpressed in a subset of estrogen receptor-positive tumors. Germ line-activating oncogenic mutations in RET allow this receptor to signal independently of GFR alpha 1 and its ligand glial cell-derived neurotrophic factor (GDNF) to promote a spectrum of endocrine neoplasias. However, it is not known whether tumor progression can also be driven by receptor overexpression and whether expression of GDNF, as has been suggested for other neurotrophic factors, is regulated in response to the inflammatory microenvironment surrounding many epithelial cancers. Here, we show that GDNF stimulation of RET(+)/GFR alpha 1(+) MCF7 breast cancer cells in vitro enhanced cell proliferation and survival, and promoted cell scattering. Moreover, in tumor xenografts, GDNF expression was found to be up-regulated on the infiltrating endogenous fibroblasts and to a lesser extent by the tumor cells themselves. Finally, the inflammatory cytokines tumor necrosis factor-alpha and interleukin-1 beta, which are involved in tumor promotion and development, were found to act synergistically to up-regulate GDNF expression in both fibroblasts and tumor cells. These data indicate that GDNF can act as an important component of the inflammatory response in breast cancers and that its effects are mediated by both paracrine and autocrine stimulation of tumor cells via signaling through the RET and GFR alpha 1 receptors.
Collapse
Affiliation(s)
- Selma Esseghir
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
62
|
Yu ACH, Liu RY, Zhang Y, Sun HR, Qin LY, Lau LT, Wu BY, Hui HK, Heung MY, Han JS. Glial cell line-derived neurotrophic factor protects astrocytes from staurosporine- and ischemia- induced apoptosis. J Neurosci Res 2007; 85:3457-64. [PMID: 17497674 DOI: 10.1002/jnr.21345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) promotes the survival and functions of neurons. It has been shown to be a promising candidate in the treatment of ischemia and other neurodegenerative diseases. We transfected mouse astrocytes in primary cultures with a human GDNF gene and found that their conditioned medium could not only support the growth and survival of cultured dopaminergic neurons but also protect astrocytes from staurosporine- and ischemia-induced apoptosis. This indicated that these transfected astrocytes could release GDNF. A similar protective effect on astrocytes against apoptosis was evident when recombinant human GDNF was used. Moreover, GDNF reduced caspase-3 activity but not that of caspase-1 in cultured astrocytes after ischemia treatment. Thus, GDNF protects astrocytes from apoptosis by inhibiting the activation of caspase-3.
Collapse
|
63
|
Niwa M, Nitta A, Yamada Y, Nakajima A, Saito K, Seishima M, Shen L, Noda Y, Furukawa S, Nabeshima T. An inducer for glial cell line-derived neurotrophic factor and tumor necrosis factor-alpha protects against methamphetamine-induced rewarding effects and sensitization. Biol Psychiatry 2007; 61:890-901. [PMID: 17046726 DOI: 10.1016/j.biopsych.2006.06.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND There are few efficacious medications for drug dependence. We investigated the potential of Leu-Ile, which induces the expression of glial cell line-derived neurotrophic factor (GDNF) and tumor necrosis factor-alpha (TNF-alpha), as a novel therapeutic agent for methamphetamine (METH)-induced dependence. METHODS The levels of GDNF and TNF-alpha messenger RNA (mRNA) were determined by real-time reverse transcription polymerase chain reaction. Enzyme immunoassays and immunohistochemistry were employed to determine levels of these proteins. Effects of Leu-Ile on METH-induced rewarding effects and sensitization were investigated with conditioned place preference and locomotor activity tests. Extracellular dopamine (DA) levels and DA uptake into synaptosomes were examined with an in vivo microdialysis and trititated thymidine ([(3)H]) DA uptake assay. RESULTS Leu-Ile induced the expression of not only GDNF but also TNF-alpha. Pretreatment with Leu-Ile blocked the acquisition of METH-induced place preference and sensitization. Interestingly, post-treatment with Leu-Ile attenuated them even after their development. An inhibitory effect of Leu-Ile on METH-induced place preference was observed in neither GDNF heterozygous nor TNF-alpha knockout mice. Leu-Ile inhibited DA release in the nucleus accumbens and the decrease in synaptosomal DA uptake in the midbrain induced by repeated METH treatment. CONCLUSIONS These results suggest that Leu-Ile inhibits METH-induced rewarding effects and sensitization by regulating extracellular DA levels via the induction of GDNF and TNF-alpha expression.
Collapse
Affiliation(s)
- Minae Niwa
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Shibata SB, Osumi Y, Yagi M, Kanda S, Kawamoto K, Kuriyama H, Nishiyama T, Yamashita T. Administration of amitriptyline attenuates noise-induced hearing loss via glial cell line-derived neurotrophic factor (GDNF) induction. Brain Res 2007; 1144:74-81. [PMID: 17331482 DOI: 10.1016/j.brainres.2007.01.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 12/20/2022]
Abstract
Antidepressant treatments have been described to induce neurotrophic factors (NTFs) and reverse the cell loss observed in rodent stress models. Amitriptyline (AT), a tricyclic antidepressant agent, has been reported in recent studies to induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. GDNF has shown protection against acoustic trauma in previous studies. Therefore, we investigated whether AT could induce GDNF synthesis in the cochlea and attenuate cochlea damage against acoustic trauma. We used Hartley guinea pigs and injected AT (30 mg/kg) or saline into the peritoneum. Subjects were exposed to 117 dB SPL octave band noise centered at 4 kHz for 24 h. Noise-induced hearing loss (NIHL) was assessed with auditory brain stem response (ABR) at 4, 8 and 16 kHz measured prior to the injection, 3 days and 7 days after noise exposure. For histological assessment, we observed the sensory epithelium using a surface preparation technique and assessed the quantitative hair cell (HC) damage. We evaluated GDNF synthesis with or without intense noise exposure at 3, 12 and 24 h after the administration of AT in the cochlea using Western blot analysis. GDNF expression was shown 3 h and 12 h after the injection without noise, whereas with noise the GDNF expression lasted for 24 h. The AT-administrated group showed significantly reduced ABR threshold shift and less HC damage than the saline-administrated group. These findings suggest that the administration of AT-induced GDNF levels in the cochlea and attenuated cochlea damage from NIHL.
Collapse
MESH Headings
- Amitriptyline/administration & dosage
- Analgesics, Non-Narcotic/administration & dosage
- Animals
- Auditory Threshold/drug effects
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Gene Expression Regulation/radiation effects
- Glial Cell Line-Derived Neurotrophic Factor/metabolism
- Guinea Pigs
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/physiology
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
Collapse
Affiliation(s)
- Seiji Bruce Shibata
- Department of Otolaryngology, Kansai Medical University Takii Hospital, 10-15 Fumizonocho Moriguchi-shi, Osaka 570-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Niwa M, Nitta A, Yamada K, Nabeshima T. The Roles of Glial Cell Line-Derived Neurotrophic Factor, Tumor Necrosis Factor-α, and an Inducer of These Factors in Drug Dependence. J Pharmacol Sci 2007; 104:116-21. [PMID: 17538232 DOI: 10.1254/jphs.cp0070017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
There are few efficacious medications for drug dependence at present. Recent evidence has suggested that various cytokines are involved in the effects of abused drugs, suggesting that these factors play a role in drug dependence. In this article, the roles of glial cell line-derived neurotrophic factor (GDNF) and tumor necrosis factor-alpha (TNF-alpha) in drug dependence are discussed. GDNF inhibits the cocaine-induced upregulation of tyrosine hydroxylase activity in the ventral tegmental area and blocks behavioral responses to cocaine. TNF-alpha attenuates rewarding effects and locomotor sensitization induced by methamphetamine (METH) and morphine (MOR). Moreover, we mentioned the potential of Leu-Ile, which induces the expression of GDNF and TNF-alpha, as a novel therapeutic agent for drug dependence. Leu-Ile inhibits not only the development but also the maintenance of METH- or MOR-induced place preference and locomotor sensitization in mice. The inhibitory effect of Leu-Ile on METH- or MOR-induced place preference is not observed in GDNF heterozygous and TNF-alpha knockout mice. Leu-Ile inhibits METH- or MOR-induced place preference and sensitization by attenuating the METH- or MOR-induced increase in extracellular dopamine levels in the nucleus accumbens via the induction of GDNF and TNF-alpha expression. These findings suggest that Leu-Ile could be a novel therapeutic agent for drug dependence.
Collapse
Affiliation(s)
- Minae Niwa
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | | | | | | |
Collapse
|
66
|
Kipp M, Karakaya S, Pawlak J, Araujo-Wright G, Arnold S, Beyer C. Estrogen and the development and protection of nigrostriatal dopaminergic neurons: concerted action of a multitude of signals, protective molecules, and growth factors. Front Neuroendocrinol 2006; 27:376-90. [PMID: 16949139 DOI: 10.1016/j.yfrne.2006.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 07/03/2006] [Accepted: 07/10/2006] [Indexed: 01/03/2023]
Abstract
The nigrostriatal dopamine system comprises the dopaminergic neurons located in the ventral midbrain, their axonal connections to the forebrain, and their direct cellular target cells in the striatal complex, i.e. GABAergic neurons. The major function of the nigrostriatal dopaminergic unit is the coordination and fine tuning of motor functions at the extrapyramidal level. Numerous biologically active factors including different types of growth factors (neurotrophins, members of the TGFbeta family, IGFs) and peptide/steroid hormones have been identified in the past to be implicated in the regulation of developmental aspects of this neural system. Some of these developmentally active determinants have in addition been found to play a crucial role in the mediation of neuroprotection concerning dopaminergic neurons. Estrogen was identified as such a compound interfering with embryonic neuronal differentiation and cell survival. The physiological mechanisms underlying these effects are very complex and include interactions with other developmental signals (growth factors), inflammatory processes as well as apoptotic events, but also require the activation of nonneuronal cells such as astrocytes. It appears that estrogen is assuming control over or at least influences a multitude of developmental and protective cellular mechanisms rather than taking over the part of a singular protagonist.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Neuroanatomy, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
67
|
Saavedra A, Baltazar G, Duarte EP. Interleukin-1beta mediates GDNF up-regulation upon dopaminergic injury in ventral midbrain cell cultures. Neurobiol Dis 2006; 25:92-104. [PMID: 17027275 DOI: 10.1016/j.nbd.2006.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 08/24/2006] [Accepted: 08/25/2006] [Indexed: 01/25/2023] Open
Abstract
We recently proposed the involvement of diffusible modulators in signalling astrocytes to increase glial cell line-derived neurotrophic factor (GDNF) expression after selective dopaminergic injury by H2O2 or L-DOPA. Here we report that interleukin-1beta (IL-1beta) is involved in this crosstalk between injured neurons and astrocytes. IL-1beta was detected only in the media from challenged neuron-glia cultures. Exogenous IL-1beta did not change GDNF protein levels in astrocyte cultures, and diminished GDNF levels in neuron-glia cultures. This decrease was not due to cell loss, as assessed by the MTT assay and immunocytochemistry. Neither H2O2 nor L-DOPA induced microglia proliferation or appeared to change its activation state. The IL-1 receptor antagonist (IL-1ra) prevented GDNF up-regulation in challenged cultures, showing that IL-1beta is involved in the signalling between injured neurons and astrocytes. Since IL-1ra decreased the number of dopaminergic neurons in H2O2-treated cultures, we propose that IL-1 has a neuroprotective role in this system involving GDNF up-regulation.
Collapse
Affiliation(s)
- Ana Saavedra
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
68
|
Kuno R, Yoshida Y, Nitta A, Nabeshima T, Wang J, Sonobe Y, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A. The role of TNF-alpha and its receptors in the production of NGF and GDNF by astrocytes. Brain Res 2006; 1116:12-8. [PMID: 16956589 DOI: 10.1016/j.brainres.2006.07.120] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/22/2006] [Accepted: 07/29/2006] [Indexed: 12/31/2022]
Abstract
The neurotrophic factors, nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF), are produced by astrocytes, and are induced by inflammatory stimuli including bacterial lipopolysaccharide and pro-inflammatory cytokines. In this study, we examined the regulatory mechanisms of tumor necrosis factor-alpha (TNF-alpha)-induced production of neurotrophic factors. We show here that cultured astrocytes express both TNF-alpha receptor 1 (TNFR1) and TNFR2, and that activation of these receptors by TNF-alpha promotes expression of both NGF and GDNF. In addition, we observe that not only exogenous TNF-alpha but also TNF-alpha produced by astrocytes induce NGF and GDNF production in astrocytes. These results suggest that an autocrine loop involving TNF-alpha contributes to the production of neurotrophic factors in response to inflammation.
Collapse
Affiliation(s)
- Reiko Kuno
- Department of Neuroimmunology, Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Caumont AS, Octave JN, Hermans E. Specific regulation of rat glial cell line-derived neurotrophic factor gene expression by riluzole in C6 glioma cells. J Neurochem 2006; 97:128-39. [PMID: 16524382 DOI: 10.1111/j.1471-4159.2006.03711.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Contrasting with its robust expression during embryogenesis, the glial cell line-derived neurotrophic factor (GDNF) is repressed in the adult organism. However, rapid induction of this neuronal growth factor is observed following diverse neuronal insults and it is now widely accepted that the control of its expression could constitute a powerful target in neuropharmacology. We investigated the effects of the neuroprotective drug, riluzole, on the GDNF gene expression in glial cells. Exposure of C6 glioma cells to riluzole (1 microM) significantly increased GDNF protein and mRNA levels. Using luciferase reporter gene constructs encoding fragments of the 5' untranslated region of the rat GDNF gene, we demonstrated that riluzole mediates its effect at the transcription level. Furthermore, luciferase assays revealed the presence of a negative regulatory region within the +343/+587 region of exon 1. This region was shown to contribute to the high sensitivity and specificity of the induction mediated by riluzole in the C6 glioma cell line at pharmacologically relevant concentrations. The effects of riluzole were inhibited by the mitogen-activated protein kinase extracellular signal-related kinase (MEK) inhibitor PD 98059. Together, these results indicated that the induction of GDNF release by riluzole in the C6 glioma cells results from the activation of its corresponding gene promoter through a signalling pathway involving MEK activity. This study suggests that the regulation of GDNF gene transcription in glial cells could contribute to the pharmacological properties of riluzole and possibly other neuroprotective drugs.
Collapse
Affiliation(s)
- Anne-Sophie Caumont
- Laboratoire de Pharmacologie Expérimentale, Université catholique de Louvain, 54.10, Avenue Hippocrate 54, 1200 Bruxelles, Belgium
| | | | | |
Collapse
|
70
|
Elovitz MA, Mrinalini C, Sammel MD. Elucidating the early signal transduction pathways leading to fetal brain injury in preterm birth. Pediatr Res 2006; 59:50-5. [PMID: 16327009 DOI: 10.1203/01.pdr.0000191141.21932.b6] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Adverse neurologic outcome, including cerebral palsy, is a significant contributor to long-term morbidity in preterm neonates. However, the mechanisms leading to brain injury in the setting of a preterm birth are poorly understood. In the last decade, there has been a growing body of evidence correlating infection or inflammation with preterm birth. The presence of intrauterine inflammation significantly increases the risk for adverse neurologic outcome in the neonate. These studies were performed to elucidate the early signal transduction pathways activated in the fetal brain that may result in long-term neurologic injury. Using our mouse model of localized intrauterine inflammation, the activation of TH1/TH2 pathways in the placenta, fetus corpus, fetal liver, and fetal brain was investigated. Additional studies determined whether activation of TH1/TH2 pathways could promote cell death and alter glial development. Real-time PCR studies demonstrated that a robust TH1/TH2 response occurs rapidly in the fetal brain after exposure to intrauterine inflammation. The cytokine response in the fetus and placenta was not significantly correlated with the response in the fetal brain. Along with an immune response, cell death pathways were activated early in the fetal brain in response to intrauterine LPS. Implicating TH1/TH2 and cell death pathways in permanent brain injury are our findings of an increase in GFAP mRNA and protein as well as a loss of pro-oligodendrocytes. With increased understanding of the mechanisms by which inflammation promotes brain injury in the preterm neonate, identification of potential targets to limit adverse neonatal outcomes becomes possible.
Collapse
Affiliation(s)
- Michal A Elovitz
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia 19104-6142, USA.
| | | | | |
Collapse
|
71
|
Caumont AS, Octave JN, Hermans E. Amantadine and memantine induce the expression of the glial cell line-derived neurotrophic factor in C6 glioma cells. Neurosci Lett 2005; 394:196-201. [PMID: 16298481 DOI: 10.1016/j.neulet.2005.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 01/24/2023]
Abstract
Aminoadamantanes are commonly used in the treatment of Parkinson's and Alzheimer's diseases. While these drugs are shown to antagonise ionotropic glutamate receptors on neuronal cells, additional mechanisms could contribute to their neuroprotective properties. The aim of the present study was to investigate the effect of aminoadamantanes on the production of the glial cell line-derived neurotrophic factor (GDNF) in glial cells. For this purpose, we measured the modulation of GDNF release in C6 glioma cell cultures treated for 24 h with amantadine and memantine. Both drugs dose-dependently increased GDNF level in the culture medium with similar potency (submicromolar range) and efficacy (three to four-fold induction). RT-PCR studies revealed that both compounds also increased GDNF mRNA levels and their influence on the GDNF gene transcription was further evidenced using a rat GDNF promoter luciferase reporter assay. Together, these results demonstrate that the neuroprotective effect of amantadine and memantine could involve the regulation of GDNF production by glial cells.
Collapse
Affiliation(s)
- Anne-Sophie Caumont
- Laboratoire de Pharmacologie Expérimentale (FARL), Université catholique de Louvain, Avenue Hippocrate 54.10, 1200 Bruxelles, Belgium
| | | | | |
Collapse
|
72
|
Zhao C, Veltri K, Li S, Bain JR, Fahnestock M. NGF, BDNF, NT-3, and GDNF mRNA expression in rat skeletal muscle following denervation and sensory protection. J Neurotrauma 2005; 21:1468-78. [PMID: 15672636 DOI: 10.1089/neu.2004.21.1468] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Poor muscle and nerve functional recovery after nerve damage is a serious clinical problem, particularly if there is prolonged delay before nerve-muscle contact is reestablished. Our previous studies showed that sensory nerve cross-anastomosis (sensory protection) provides support to the denervated muscle. In the present study, we analyzed neurotrophic factor mRNA expression by RT-PCR in denervated rat gastrocnemius muscle receiving sensory protection with the saphenous nerve, compared to normal innervated muscle, to denervated muscle, and to denervated muscle repaired immediately with the peroneal (motor) nerve, after periods of 3 days to 3 months. No significant differences in mRNA levels of beta-actin, nerve growth factor, brain-derived neurotrophic factor or neurotrophin-3 were found between the sensory protection treatment and the denervated or the motor repair groups. However, sensory protection resulted in levels of muscle glial cell line-derived neurotrophic factor mRNA expression that were lower than in denervated muscle and higher than in muscle given immediate motor repair. These results demonstrate that glial cell line-derived neurotrophic factor mRNA is elevated following denervation but is partially down-regulated by sensory protection. Our study suggests that sensory protection provides a modified trophic environment by modulating neurotrophic factor synthesis in muscle.
Collapse
Affiliation(s)
- Chunnian Zhao
- Department of Psychiatry, McMaster University, Ontario, Canada
| | | | | | | | | |
Collapse
|
73
|
Koyama Y, Egawa H, Osakada M, Baba A, Matsuda T. Increase by FK960, a novel cognitive enhancer, in glial cell line-derived neurotrophic factor production in cultured rat astrocytes. Biochem Pharmacol 2004; 68:275-82. [PMID: 15193999 DOI: 10.1016/j.bcp.2004.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 03/19/2004] [Indexed: 01/19/2023]
Abstract
We examined the effect of N-(4-acetyl-1-piperazinyl)-p-fluorobenzamide monohydrate (FK960), a novel anti-dementia drug, on neurotrophic factor production in cultured rat astrocytes. FK960 (100nM) increased mRNA and protein levels of glial cell line-derived neurotrophic factor (GDNF). FK960 did not affect mRNA levels of neurotrophic factors other than GDNF. The effect of FK960 was not affected by antagonists of dopamine and alpha7-nicotinic acetylcholine receptors. FK960 stimulated phosphorylation of mitogen-activated protein/extracellular signal-regulated kinase (ERK) without any effect on phosphoryolation of p38 and c-Jun N-terminal kinase. FK960 increased the levels of c-Fos and phosphorylation of cAMP responsive element binding protein (CREB). The effect of FK960 on c-Fos was inhibited by PD98059 (10microM), an ERK kinase inhibitor, and cycloheximide (1microg/ml), a transcription inhibitor, and the effect of FK960 on CREB phosphorylation was blocked by PD98059. The effect of FK960 on GDNF mRNA expression was attenuated by PD98059, curcumin (10microM), an activator protein-1 inhibitor, cycloheximide and actinomycin D (10microg/ml). These results suggest that FK960 stimulates GDNF production in c-Fos- and CREB-dependent mechanisms in cultured astrocytes and that ERK signal is responsible for both c-Fos expression and CREB phosphorylation in the cascades.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
74
|
Hisaoka K, Nishida A, Takebayashi M, Koda T, Yamawaki S, Nakata Y. Serotonin increases glial cell line-derived neurotrophic factor release in rat C6 glioblastoma cells. Brain Res 2004; 1002:167-70. [PMID: 14988048 DOI: 10.1016/j.brainres.2004.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2004] [Indexed: 10/26/2022]
Abstract
Antidepressants, which increase monoamine levels, induce glial cell line-derived neurotrophic factor (GDNF) release in C6 cells. Thus, we examined whether monoamines affect on GDNF release in C6 cells. We found that serotonin (5-HT) specifically increased GDNF mRNA expression and GDNF release in a dose- and time-dependent manner. The 5-HT-induced GDNF release was mediated through the MEK/mitogen-activated protein kinase (MAPK) pathway and, at least, 5-HT(2A) receptors. The action of 5-HT on GDNF release may provide important insights into the mechanism of antidepressants.
Collapse
Affiliation(s)
- Kazue Hisaoka
- Department of Psychiatry and Neuroscience, Institute of Clinical Research, National Kure Medical Center, 3-1 Aoyama, Kure 737-0023, Japan.
| | | | | | | | | | | |
Collapse
|
75
|
Kawamoto K, Sha SH, Minoda R, Izumikawa M, Kuriyama H, Schacht J, Raphael Y. Antioxidant Gene Therapy Can Protect Hearing and Hair Cells from Ototoxicity. Mol Ther 2004; 9:173-81. [PMID: 14759801 DOI: 10.1016/j.ymthe.2003.11.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 11/16/2003] [Indexed: 02/07/2023] Open
Abstract
Aminoglycosides are commonly used antibiotics that often induce ototoxicity leading to permanent hair cell loss and hearing impairment. The ototoxic effects of aminoglycosides have been linked to oxidative stress. To determine the feasibility of antioxidant gene therapy for protecting the inner ear against aminoglycoside-induced oxidative stress, we used adenoviral vectors for overexpression of catalase, Cu/Zn superoxide dismutase (SOD1), and Mn superoxide dismutase (SOD2). We inoculated adenoviruses designated Ad.cat, Ad.SOD1, and Ad.SOD2 into the left guinea pig cochlea. Five days later, an ototoxic combination of kanamycin and ethacrynic acid was systemically administered. Artificial perilymph and adenovirus without a gene cassette (Ad.null) were used as controls. Biochemical analysis showed significant increase in catalase and a moderate elevation in SOD2 levels in tissues of the cochlea inoculated with the respective vectors. Auditory brain-stem responses were measured to monitor hearing thresholds. Animals were sacrificed 7 days after the ototoxic insult and their hair cells counted. Hair cells and hearing thresholds were significantly protected by Ad.cat and Ad.SOD2, while results with Ad.SOD1 were inconsistent. Control ears showed no significant protective effects. The results demonstrate that the expression of functional enzymes in the inner ear is feasible using adenoviral-mediated gene delivery. Furthermore, they confirm that reactive oxygen species contribute to aminoglycoside ototoxicity and suggest antioxidant gene therapy as a potential therapeutic strategy to reduce inner ear oxidative stress.
Collapse
Affiliation(s)
- Kohei Kawamoto
- Department of Otolaryngology, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
76
|
Rémy S, Naveilhan P, Paillé V, Brachet P, Neveu I. Lipopolysaccharide and TNFalpha regulate the expression of GDNF, neurturin and their receptors. Neuroreport 2003; 14:1529-34. [PMID: 12960779 DOI: 10.1097/00001756-200308060-00026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inflammatory processes in the brain may trigger specific neuroprotective responses in glial cells. Here, we show that bacterial lipopolysaccharide strongly up-regulates glial derived neurotrophic factor (GDNF) mRNA while it down-regulates that of neurturin. Tumor necrosis factor alpha (TNFalpha) had different effects since it stimulated neurturin expression without enhancing GDNF mRNA. Interestingly, both lipopolysaccharide and TNFalpha triggered a significant decrease in the expression of the GDNF receptor, GFRalpha1, in glial cells. While the significance of such down-regulation during inflammatory processes remains to be characterised, the differential regulation of GDNF and neurturin following lipopolysaccharide and TNFalpha treatments suggest specific neuroprotective responses of glial cells in case of bacterial infection, trauma, transplantation or neurodegenerative diseases.
Collapse
Affiliation(s)
- Séverine Rémy
- Institut National de la Santé et de la Recherche Médicale, Unite 437, Centre Hospitalier Universitaire de Nantes, 30 Boulevard Jean Monnet, 44093 Nantes, France
| | | | | | | | | |
Collapse
|
77
|
Koyama Y, Tsujikawa K, Matsuda T, Baba A. Intracerebroventricular administration of an endothelin ETB receptor agonist increases expressions of GDNF and BDNF in rat brain. Eur J Neurosci 2003; 18:887-94. [PMID: 12925014 DOI: 10.1046/j.1460-9568.2003.02797.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Endothelins (ETs) are suggested to be involved in functional alterations of astrocytes after brain injury, including proliferation, hypertrophy and production of neurotrophic factors. In this study, effects of Ala1,3,11,15-endothelin-1 (Ala1,3,11,15-ET-1), an ETB receptor selective agonist, on neurotrophic factor production were examined in rat brain. A continuous intracerebroventricular administration of Ala1,3,11,15-ET-1 (500 pmol/day for 7 days) increased the numbers of GFAP- and vimentin-positive astrocytes in the hippocampus, caudate putamen and cerebrum. Ala1,3,11,15-ET-1 did not induce neuronal degeneration and activation of microglia/macrophage in these brain regions. The intracerebroventricular administration of Ala1,3,11,15-ET-1 for 7 days caused two- to three-fold increases in glial cell line-derived neurotrophic factors (GDNF) mRNA in the hippocampus and cerebrum. The mRNA levels of brain-derived neurotrophic factors (BDNF) in caudate putamen were increased by Ala1,3,11,15-ET-1. Expressions of nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) mRNA in these regions were not largely affected by Ala1,3,11,15-ET-1, except cerebral NGF mRNA level was increased. The Ala1,3,11,15-ET-1-induced increases in GDNF and BDNF mRNA levels were accompanied by increases in immunoreactive GDNF and BDNF. Immunohistochemical observations showed that GFAP-positive astrocytes expressed GDNF and BDNF in the brain regions of Ala1,3,11,15-ET-1-infused rats. In cultured rat astrocytes, Ala1,3,11,15-ET-1 (100 nm) increased mRNA levels of GDNF and BDNF. These results suggest that activation of brain ETB receptors induced GDNF and BDNF expression in astrocytes.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-Oka 1-6 Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
78
|
Hanbury R, Ling ZD, Wuu J, Kordower JH. GFAP knockout mice have increased levels of GDNF that protect striatal neurons from metabolic and excitotoxic insults. J Comp Neurol 2003; 461:307-16. [PMID: 12746870 DOI: 10.1002/cne.10667] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In response to injury and degeneration, astrocytes hypertrophy, extend processes, and increase production of glial fibrillary acidic protein (GFAP), an intermediate filament protein located within their cytoplasm. The present study tested the hypothesis that GFAP expression alters the vulnerability of neurons to excitotoxic and metabolic insult induced by 3-nitroproprionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II activity or the excitotoxin quinolinic acid (QA). In this respect, adult GFAP knockout mice (KO) and wild-type control mice (WT) received unilateral intrastriatal injections of 3-NP (200 nmol/microl) or QA (100 nmol/microl) and were killed 1, 2, or 4 weeks later. Lesion volume and neuronal counts were quantified using unbiased stereologic principles. For both QA and 3-NP lesions, a significant decrease in lesion volume and an increase in striatal projection neurons were seen in GFAP KO mice compared with WT mice. Enzyme-linked immunoassay analysis revealed increased basal levels of glial cell derived neurotrophic factor (GDNF) relative to WT mice. In contrast, no differences were observed in the expression of ciliary neurotrophic factor or nerve growth factor. These data strongly suggest that the expression of GFAP is implicated with the production of GDNF to a degree that confers neuroprotection after an excitotoxic or metabolic insult.
Collapse
Affiliation(s)
- Rose Hanbury
- Research Center for Brain Repair and Department of Neurological Sciences, Rush Presbyterian Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
79
|
Steinkamp M, Geerling I, Seufferlein T, von Boyen G, Egger B, Grossmann J, Ludwig L, Adler G, Reinshagen M. Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells. Gastroenterology 2003; 124:1748-57. [PMID: 12806607 DOI: 10.1016/s0016-5085(03)00404-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Ablation of the enteric glia leads to a fulminant hemorrhagic jejunoileitis. We hypothesized that glial-derived neurotrophic factor (GDNF) may be involved in mucosal protection of the gut. Therefore, we examined the regulation of GDNF and its receptor (GFR-alpha1) in colonic inflammation and its effects on colonic epithelial cell apoptosis. METHODS The expression of GDNF and GFR-alpha1 was investigated in experimental colitis of rats and in human inflammatory bowel disease (IBD). GDNF-induced activation of Akt (protein kinase B [PKB]) and mitogen-activated protein kinase (MAPK) in the colonic epithelial cell lines HT-29 and SW480 was studied. Furthermore, the antiapoptotic potency of GDNF in SW480 cells was evaluated. RESULTS GDNF was specifically up-regulated in experimental rat colitis and in IBD. In contrast, GFR-alpha1 was constitutively expressed in rat and human colonic epithelium. GDNF potently activated MAPK and Akt (PKB) in colonic epithelial cells. Moreover, GDNF strongly prevented apoptosis in SW480 cells. Our data show that GDNF-mediated protection against apoptosis depends on activation of the MAPK and phosphatidylinositol 3-kinase/Akt (PKB) pathways. CONCLUSIONS GDNF is up-regulated in IBD and has strong antiapoptotic properties in colonic epithelial cells. This points to a novel role of the neurotrophic factor GDNF for mucosal protection and regeneration in IBD.
Collapse
Affiliation(s)
- Martin Steinkamp
- Department of Internal Medicine I, University of Ulm, Robert-Koch-Strasse 8, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Koyama Y, Tsujikawa K, Matsuda T, Baba A. Endothelin-1 stimulates glial cell line-derived neurotrophic factor expression in cultured rat astrocytes. Biochem Biophys Res Commun 2003; 303:1101-5. [PMID: 12684049 DOI: 10.1016/s0006-291x(03)00491-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effects of endothelin-1 (ET-1) on glial cell line-derived neurotrophic factor (GDNF) production in cultured astrocytes were examined. Treatment of cultured astrocytes with ET-1 (100 nM) increased mRNA levels of GDNF in 1-6h. The effect of ET-1 was inhibited by BQ788, an ET(B) receptor antagonist, but not by FR139317, an ET(A) receptor antagonist. ET-1 stimulated release of GDNF into culture medium. Dexamethasone (1 microM) and pyrrolidine dithiocarbamate (PDTC, 100 microM), which inhibit activation of NFkappaB, prevented the increases in GDNF mRNA by H(2)O(2). In contrast, the effect of ET-1 was not affected by dexamethasone and PDTC. The increase of astrocytic GDNF mRNA by ET-1 was inhibited by BAPTA/AM (30 microM) and PD98059 (50 microM), but not by calphostin C, staurosporine, and cyclosporine A. These results suggest that ET-1 stimulated expression of astrocytic GDNF through ET(B) receptor-mediated increases in cytosolic Ca(2+) and ERK activation.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Medicinal Pharmacology, Yamada-Oka 1-6, Suita 565-0871, Japan
| | | | | | | |
Collapse
|
81
|
Rousselet E, Callebert J, Parain K, Joubert C, Hunot S, Hartmann A, Jacque C, Perez-Diaz F, Cohen-Salmon C, Launay JM, Hirsch EC. Role of TNF-alpha receptors in mice intoxicated with the parkinsonian toxin MPTP. Exp Neurol 2002; 177:183-92. [PMID: 12429221 DOI: 10.1006/exnr.2002.7960] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The loss of dopaminergic neurons in Parkinson's disease is associated with a glial reaction and the overproduction of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha). TNF-alpha acts via two different receptors, TNFR1 and TNFR2, and is believed to have both a neuroprotective and a deleterious role for neurons. In order to analyze the putative role of TNF-alpha in parkinsonism, we compared the effect of the parkinsonian drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice lacking TNFR1, TNFR2, or both receptors and in wild-type littermates. We show that MPTP does not affect spontaneous activity or anxiety in any of the groups and that it reduces motor activity on a rotarod in double knock out mice but not in mice lacking only one receptor. Postmortem analysis revealed no differences in the number of nigral dopaminergic neurons whatever the group. In contrast, striatal dopamine level was slightly decreased in double knock-out mice and more reduced by MPTP in this group than in the other groups of mice. In addition, dopamine turnover was significantly more increased in double knock out mice after MPTP injection. These data suggest that TNF-alpha does not participate in the death of dopaminergic neurons in parkinsonism but that it slightly alters dopamine metabolism or the survival of dopaminergic terminals by a mechanism involving both receptors.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Animals
- Antigens, CD/genetics
- Dopamine/genetics
- Dopamine/metabolism
- MPTP Poisoning/genetics
- MPTP Poisoning/metabolism
- MPTP Poisoning/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Motor Activity/genetics
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Tumor Necrosis Factor-alpha/metabolism
Collapse
|
82
|
Wehrwein EA, Roskelley EM, Spitsbergen JM. GDNF is regulated in an activity-dependent manner in rat skeletal muscle. Muscle Nerve 2002; 26:206-11. [PMID: 12210384 DOI: 10.1002/mus.10179] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is produced by skeletal muscle and affects peripheral motor neurons. Elevated expression of GDNF in skeletal muscle leads to hyperinnervation of neuromuscular junctions, whereas postnatal administration of GDNF causes synaptic remodeling at the neuromuscular junction. Studies have demonstrated that altered physical activity causes changes in the neuromuscular junction. However, the role played by GDNF in this process in not known. The objective of this study was to determine whether changes in neuromuscular activity cause altered GDNF content in rat skeletal muscle. Following 4 weeks of walk-training on a treadmill, or 2 weeks of hindlimb unloading, soleus, gastrocnemius, and pectoralis major were removed and analyzed for GDNF content by enzyme-linked immunosorbant assay. Results indicated that walk-training is associated with increased GDNF content. Skeletal muscle from hindlimb-unloaded animals showed a decrease in GDNF in soleus and gastrocnemius, and an increase in pectoralis major. The altered production of GDNF may be responsible for activity-dependent remodeling of the neuromuscular junction and may aid in recovery from injury and disease.
Collapse
Affiliation(s)
- Erica A Wehrwein
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | | | | |
Collapse
|
83
|
Hisaoka K, Nishida A, Koda T, Miyata M, Zensho H, Morinobu S, Ohta M, Yamawaki S. Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. J Neurochem 2001; 79:25-34. [PMID: 11595754 DOI: 10.1046/j.1471-4159.2001.00531.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Modulation of neurotrophic factors to protect neurons from damage is proposed as a novel mechanism for the action of antidepressants. However, the effect of antidepressants on modulation of glial cell line-derived neurotrophic factor (GDNF), which has potent and widespread effects, remains unknown. Here, we demonstrated that long-term use of antidepressant treatment significantly increased GDNF mRNA expression and GDNF release in time- and concentration-dependent manners in rat C6 glioblastoma cells. Amitriptyline treatment also increased GDNF mRNA expression in rat astrocytes. GDNF release continued for 24 h following withdrawal of amitriptyline. Furthermore, following treatment with antidepressants belonging to several different classes (amitriptyline, clomipramine, mianserin, fluoxetine and paroxetine) significantly increased GDNF release, but which did not occur after treatment with non-antidepressant psychotropic drugs (haloperidol, diazepam and diphenhydramine). Amitriptyline-induced GDNF release was inhibited by U0126 (10 microM), a mitogen-activated protein kinase (MAPK)-extracellular signal-related kinase (ERK) kinase (MEK) inhibitor, but was not inhibited by H-89 (1 microM), a protein kinase A inhibitor, calphostin C (100 nM), a protein kinase C inhibitor and PD 169316 (10 microM), a p38 mitogen-activated protein kinase inhibitor. These results suggested that amitriptyline-induced GDNF synthesis and release occurred at the transcriptional level, and may be regulated by MEK/MAPK signalling. The enhanced and prolonged induction of GDNF by antidepressants could promote neuronal survival, and protect neurons from the damaging effects of stress. This may contribute to explain therapeutic action of antidepressants and suggest new strategies of pharmacological intervention.
Collapse
Affiliation(s)
- K Hisaoka
- Department of Psychiatry and Neuroscience, Institute of Clinical Research, National Kure Medical Center, Kure, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Zvalova D, Formstecher E, Fauquet M, Canton B, Chneiweiss H. Keeping TNF-induced apoptosis under control in astrocytes: PEA-15 as a 'double key' on caspase-dependent and MAP-kinase-dependent pathways. PROGRESS IN BRAIN RESEARCH 2001; 132:455-67. [PMID: 11545011 DOI: 10.1016/s0079-6123(01)32095-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- D Zvalova
- INSERM U114/Chaire de Neuropharmacologie, Collège de France, 75231 Paris, France
| | | | | | | | | |
Collapse
|
85
|
Kushikata T, Kubota T, Fang J, Krueger JM. Glial cell line-derived neurotrophic factor promotes sleep in rats and rabbits. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1001-6. [PMID: 11247820 DOI: 10.1152/ajpregu.2001.280.4.r1001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Various growth factors (e.g., growth hormone-releasing hormone, acidic fibroblast growth factor, nerve growth factor, brain-derived neurotrophic factor, and interleukin-1) are implicated in sleep regulation. It is hypothesized that neuronal activity enhances the production of such growth factors, and they in turn form part of the sleep regulatory mechanism. Glial cell line-derived neurotrophic factor (GDNF) promotes development, differentiation, maintenance, and regeneration of neurons, and its production is induced by well-characterized sleep regulatory substances such as interleukin-1 and tumor necrosis factor. Therefore, we investigated whether GDNF would promote sleep. Twenty-six male Sprague-Dawley rats and 30 male New Zealand White rabbits were surgically implanted with electroencephalogram (EEG) and electromyogram (EMG; rats only) electrodes, a brain thermistor, and a lateral intracerebroventricular cannula. The animals were injected intracerebroventricularly with pyrogen-free saline and on a separate day with one of the following doses of GDNF: 5, 50, and 500 ng in rabbits and 50 and 500 ng in rats. The EEG, brain temperature, EMG (in rats), and motor activity (in rabbits) were recorded for 23 h after the intracerebroventricular injection. GDNF (500-ng dose) increased the time spent in nonrapid eye movement sleep in both rats and rabbits. Rapid eye movement sleep was not affected by the lower doses of GDNF but was inhibited in rabbits after the high dose. EEG slow-wave activity was not affected by GDNF. The current results provide further evidence that various growth factors are involved in sleep regulation.
Collapse
Affiliation(s)
- T Kushikata
- Department of Veterinary and Comparative Anatomy, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | |
Collapse
|
86
|
Wang G, Lu C, Liu H, Jin W, Jiao X, Wei G, Chen J, Zhu Y. Immunohistochemical localization of interleukin-2 and its receptor subunits alpha, beta and gamma in the main olfactory bulb of the rat. Brain Res 2001; 893:244-52. [PMID: 11223012 DOI: 10.1016/s0006-8993(00)03317-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endogenous interleukin-2 (IL-2) was found in the adult rat brain, however, it has not been reported whether this cytokine is present in the olfactory bulb. Immunohistochemical techniques were used to examine the cellular localization of IL-2 and its receptor subunits in the main olfactory bulb of the rat. Strong IL-2 immunoreactivity was localized in glial cells, specifically in the olfactory nerve layer, glomerular layer and external plexiform layer. IL-2 mRNA was detected in the olfactory bulb by RT-PCR. All three IL-2 receptor subunits also showed distinct laminar distributions. The IL-2Ralpha and IL-2Rbeta immunoreactivity was found both in neurons and glial cells, whereas IL-2Rgamma imunoreactivity was found in glial cells, and thus resembled IL-2 immunostaining. The present results demonstrated a wide distribution of IL-2 and its receptor subunits in the main olfactory bulb of the rat, suggesting that IL-2 might play a role in the olfactory function through autocrine or paracrine pathways. The exclusive high expression of IL-2 in glial cells in distinct laminar structures, where neuron-glia interactions are closely associated with olfactory nerve regeneration, imply that IL-2 might be involved in the process of nerve regeneration in the olfactory bulb.
Collapse
Affiliation(s)
- G Wang
- Department of Physiology, Fourth Military Medical University, 17 Chang Le Xi Road, Xi'an, 710032, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Tanaka M, Ito S, Kiuchi K. Novel alternative promoters of mouse glial cell line-derived neurotrophic factor gene. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:63-74. [PMID: 11072069 DOI: 10.1016/s0167-4781(00)00218-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We previously isolated cDNA and genomic DNA of the mouse glial cell line-derived neurotrophic factor (GDNF) gene and found that the gene consists of three exons. Recently, it was suggested that an alternative promoter exists within intron 1 of the human GDNF gene, but this has not been confirmed. Novel cDNA clones of the mouse GDNF gene were isolated by 5'-rapid amplification of cDNA ends from postnatal day-14 striatum. A novel exon, containing 351 nucleotides, exists between exon 1 and exon 3 (referred to as exon 2 in our previous report). Luciferase reporter assay showed that a core promoter for the novel exon 2 requires its 5'-untranslated region. Primer extension analysis and reverse transcription-PCR identified another novel transcript that starts 39 bp upstream of exon 3, and the core promoter activity exists within a region containing putative Sp1 sites. Although the core promoters for the novel exons are different from those previously identified, transcripts derived from each promoter coincidentally increased with interleukin-1beta or tumor necrosis factor-alpha stimulation. Gel retardation assays suggested that the NF-kappaB binding site in intron 1 would be involved in the cytokine response of the mouse GDNF gene.
Collapse
Affiliation(s)
- M Tanaka
- Laboratory for Genes of Motor Systems, Bio-Mimetic Control Research Program, The Institute of Physical and Chemical Research Center (RIKEN), Moriyama, 463-0003, Nagoya, Japan
| | | | | |
Collapse
|
88
|
Hammarberg H, Piehl F, Risling M, Cullheim S. Differential regulation of trophic factor receptor mRNAs in spinal motoneurons after sciatic nerve transection and ventral root avulsion in the rat. J Comp Neurol 2000; 426:587-601. [PMID: 11027401 DOI: 10.1002/1096-9861(20001030)426:4<587::aid-cne7>3.0.co;2-r] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After sciatic nerve lesion in the adult rat, motoneurons survive and regenerate, whereas the same lesion in the neonatal animal or an avulsion of ventral roots from the spinal cord in adults induces extensive cell death among lesioned motoneurons with limited or no axon regeneration. A number of substances with neurotrophic effects have been shown to increase survival of motoneurons in vivo and in vitro. Here we have used semiquantitative in situ hybridization histochemistry to detect the regulation in motoneurons of mRNAs for receptors to ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) 1-42 days after the described three types of axon injury. After all types of injury, the mRNAs for GDNF receptors (GFRalpha-1 and c-RET) and the LIF receptor LIFR were distinctly (up to 300%) up-regulated in motoneurons. The CNTF receptor CNTFRalpha mRNA displayed only small changes, whereas the mRNA for membrane glycoprotein 130 (gp130), which is a critical receptor component for LIF and CNTF transduction, was profoundly down-regulated in motoneurons after ventral root avulsion. The BDNF full-length receptor trkB mRNA was up-regulated acutely after adult sciatic nerve lesion, whereas after ventral root avulsion trkB was down-regulated. The NT-3 receptor trkC mRNA was strongly down-regulated after ventral root avulsion. The results demonstrate that removal of peripheral nerve tissue from proximally lesioned motor axons induces profound down-regulations of mRNAs for critical components of receptors for CNTF, LIF, and NT-3 in affected motoneurons, but GDNF receptor mRNAs are up-regulated in the same situation. These results should be considered in relation to the extensive cell death among motoneurons after ventral root avulsion and should also be important for the design of therapeutical approaches in cases of motoneuron death.
Collapse
Affiliation(s)
- H Hammarberg
- Department of Neuroscience, Nobels v. 12A, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
89
|
Lu X, Bing G, Hagg T. Naloxone prevents microglia-induced degeneration of dopaminergic substantia nigra neurons in adult rats. Neuroscience 2000; 97:285-91. [PMID: 10799760 DOI: 10.1016/s0306-4522(00)00033-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Resident microglia are involved in immune responses of the central nervous system and may contribute to neuronal degeneration and death. Here, we tested in adult rats whether injection of bacterial lipopolysaccharide (which causes inflammation and microglial activation) just above the substantia nigra, results in the death of dopaminergic substantia nigra pars compacta neurons. Two weeks after lipopolysaccharide injection, microglial activation was evident throughout the nigra and the number of retrogradely-labeled substantia nigra neurons was reduced to 66% of normal. This suggests that inflammation and/or microglial activation can lead to neuronal cell death in a well-defined adult animal model. The opioid receptor antagonist naloxone reportedly reduces release of cytotoxic substances from microglia and protects cortical neurons in vitro. Here, a continuous two-week infusion of naloxone at a micromolar concentration close to the substantia nigra, prevented most of the neuronal death caused by lipopolysaccharide, i.e. 85% of the neurons survived. In addition, with systemic (subcutaneous) infusion of 0. 1mg/d naloxone, 94% of the neurons survived. Naloxone infusions did not obviously affect the morphological signs of microglial activation, suggesting that naloxone reduces the release of microglial-derived cytotoxic substances. Alternatively, microglia might not cause the neuronal loss, or naloxone might act by blocking opioid receptors on (dopaminergic or GABAergic) neurons.Thus, local inflammation induces and the opioid antagonist naloxone prevents the death of dopaminergic substantia nigra neurons in adult rats. This may be relevant to the understanding of the pathology and treatment of Parkinson's disease, where these neurons degenerate.
Collapse
Affiliation(s)
- X Lu
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Canada
| | | | | |
Collapse
|
90
|
Nam YJ, Stöver T, Hartman SS, Altschuler RA. Upregulation of glial cell line-derived neurotrophic factor (GDNF) in the rat cochlea following noise. Hear Res 2000; 146:1-6. [PMID: 10913878 DOI: 10.1016/s0378-5955(00)00072-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There are endogenous intracellular mechanisms that provide cells with protection from stress, as well as repair from damage. These pathways often involve stress proteins and neurotrophic factors. The present study used Western blot analysis to examine changes in glial cell line-derived neurotrophic factor (GDNF) following noise overstimulation. A noise exposure was utilized which causes a temporary threshold shift and has been previously shown to upregulate heat shock protein 72 in the rat cochlea. This noise exposure also provides protection from a second noise exposure that would otherwise cause a permanent threshold shift. Experimental animals were assessed 2, 4, 8 and 12 h after cessation of noise exposure. Control animals received the same treatment except for the noise exposure and were assessed at the 8 h time point. A moderate expression of GDNF was observed in the normal cochlea. No significant change in GDNF levels was observed at 2 or 4 h following noise overstimulation. However, a significant increase was found at 8 h. At 12 h following noise overstimulation, GDNF levels were no longer significantly elevated from normal. These results suggest that GDNF is involved in the endogenous stress response in the cochlea and are consistent with the protection that exogenously applied GDNF has been shown to provide.
Collapse
Affiliation(s)
- Y J Nam
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, MI 48109-0506, USA
| | | | | | | |
Collapse
|
91
|
Bresjanac M, Antauer G. Reactive astrocytes of the quinolinic acid-lesioned rat striatum express GFRalpha1 as well as GDNF in vivo. Exp Neurol 2000; 164:53-9. [PMID: 10877915 DOI: 10.1006/exnr.2000.7416] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanical injury of the rodent striatum has recently been shown to cause a local increase in expression of mRNAs for glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor in the inflammatory cells, i.e., macrophages and activated microglia, respectively (3). An earlier study demonstrated an increase in GDNF mRNA levels in the adult rat striatum after administration of subseizure doses of N-methyl-d,l-aspartate and kainic acid (20) and identified astrocytes as the likely source of GDNF mRNA in the injected striatum. Our own recent work suggests that quinolinic acid (QA) induces moderate immunoreactivity to GDNF in a population of cells resembling reactive astrocytes within 1 week following intrastriatal injection (9). Therefore, the present follow-up experiment was performed with the aims: (I) to look at GDNF expression in the QA-injected striatum at 28 days, (II) to look for possible immunohistochemical expression of GFRalpha1 in the QA-injected striatum at the same observation time, and (III) to use confocal microscopy of double-immunofluorescence labeling of glial-cell-specific markers to identify the cell types expressing GDNF and GFRalpha1 in the striatum at 28 days following a QA injection. Our data indicate that GDNF immunoreactivity is high in the QA-injected striatum at 28 days and that the vast majority of cells displaying high labeling for GDNF also express glial fibrillary acidic protein and have a phenotype of reactive astrocytes. Interestingly, the same cells that express GDNF also display strong cytoplasmic immunolabeling to GFRalpha1.
Collapse
Affiliation(s)
- M Bresjanac
- Laboratory for Neuronal Plasticity and Regeneration, School of Medicine, Institute of Pathophysiology, University of Ljubljana, Slovenia
| | | |
Collapse
|
92
|
Suzuki M, Yagi M, Brown JN, Miller AL, Miller JM, Raphael Y. Effect of transgenic GDNF expression on gentamicin-induced cochlear and vestibular toxicity. Gene Ther 2000; 7:1046-54. [PMID: 10871754 DOI: 10.1038/sj.gt.3301180] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Gentamicin administration often results in cochlear and/or vestibular hair cell loss and hearing and balance impairment. It has been demonstrated that adenovirus-mediated overexpression of glial cell line-derived neurotrophic factor (GDNF) can protect cochlear hair cells against ototoxic injury. In this study, we evaluated the protective effects of adenovirus-mediated overexpression of GDNF against gentamicin ototoxicity. An adenovirus vector expressing the human GDNF gene (Ad.GDNF) was administered into the scala vestibuli as a rescue agent at the same time as gentamicin, or as a protective agent, 7 days before gentamicin administration. Animals in the Rescue group displayed hearing thresholds that were significantly better than those measured in the Gentamicin or Ad.LacZ/Gentamicin groups. In the Protection group, Ad.GDNF afforded significant preservation of utricular hair cells. The data demonstrated protection of the inner ear structure, and rescue of the inner ear structure and function against ototoxic insults. These experiments suggest that inner ear gene therapy may be developed as a clinical tool for protecting the ear against environmentally induced insults.
Collapse
Affiliation(s)
- M Suzuki
- Kresge Hearing Research Institute, The University of Michigan, Ann Arbor 48109-0648, USA
| | | | | | | | | | | |
Collapse
|
93
|
McNaught KS, Jenner P. Dysfunction of rat forebrain astrocytes in culture alters cytokine and neurotrophic factor release. Neurosci Lett 2000; 285:61-5. [PMID: 10788708 DOI: 10.1016/s0304-3940(00)00982-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Altered glial cell function occurring in substantia nigra in Parkinson' disease may lead to the release of cytokines and impairment of neurotrophic factor production, which in turn, may cause dopaminergic apoptosis. To evaluate this concept, primary cultures of rat brain astrocytes were activated with lipopolysaccharide (LPS), depleted of glutathione with L-buthionine-[S,R]-sulfoximine or subjected to complex I inhibition with 1-methyl-4-phenylpyridinium. The effects on tumour necrosis factor-alpha (TNF-alpha) release, dopamine-stimulated glial cell line derived neurotrophic factor (GDNF) and brain derived neurotrophic factor (BDNF) release were determined. LPS activation or inhibition complex I activity, but not glutathione depletion, stimulated TNF-alpha release. Glutathione depletion or complex I inhibition, but not LPS-induced activation, impaired dopamine-stimulated GDNF release. None of these treatments altered BDNF release. Thus, altered glial function leading to TNF-alpha-mediated or GDNF withdrawal-induced dopaminergic apoptosis may contribute to nigral degeneration in Parkinson's disease.
Collapse
Affiliation(s)
- K S McNaught
- Neurodegenerative Disease Research Centre, Division of Pharmacology and Therapeutics, Hodgkin Building, GKT School of Biomedical Sciences, King's College London, Guy's Campus, London Bridge, London, UK
| | | |
Collapse
|
94
|
Barouch R, Appel E, Kazimirsky G, Braun A, Renz H, Brodie C. Differential regulation of neurotrophin expression by mitogens and neurotransmitters in mouse lymphocytes. J Neuroimmunol 2000; 103:112-21. [PMID: 10696906 DOI: 10.1016/s0165-5728(99)00233-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, we examined the expression of neurotrophins in mouse lymphocytes and the regulation of their expression by mitogens and neurotransmitters. We found that mixed splenocytes as well as T and B lymphocytes expressed mRNA for all the neurotrophins examined. Differential regulation of the neurotrophins was obtained upon stimulation of the cells. Thus, LPS increased the expression of NGF, BDNF and NT-3 in splenocytes and B cells, whereas Con-A increased the mRNA of NT-3 and NT-4 in T cells and NGF expression in splenocytes. The neurotransmitter substance P and the beta-adrenergic agonist, isoproterenol induced an increase in the expression of NGF. Our results suggest an important role for the different neurotrophins in the function of the immune system and point to a bi-directional interaction between neurotrophins and neurotransmitters in this system.
Collapse
Affiliation(s)
- R Barouch
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | | | | | | | | |
Collapse
|
95
|
Scherbel U, Raghupathi R, Nakamura M, Saatman KE, Trojanowski JQ, Neugebauer E, Marino MW, McIntosh TK. Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc Natl Acad Sci U S A 1999; 96:8721-6. [PMID: 10411942 PMCID: PMC17583 DOI: 10.1073/pnas.96.15.8721] [Citation(s) in RCA: 301] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present study evaluated behavioral and histopathological outcome after controlled cortical impact (CCI) brain injury in mice deficient in tumor necrosis factor [TNF(-/-)] and their wild-type (wt) littermates. Mice were subjected to CCI brain injury [TNF(-/-), n = 10; wt, n = 10] or served as uninjured controls [TNF(-/-), n = 10; wt, n = 10] and were evaluated for deficits in memory retention at 7 days postinjury. Although both brain-injured wt and TNF(-/-) mice exhibited significant memory dysfunction compared to uninjured controls (P < 0.02), the deficits in memory retention in injured TNF(-/-) mice were significantly less severe than in injured wt mice (P < 0.02). A second group of mice was subjected to CCI brain injury [TNF(-/-), n = 20; wt, n = 20] or served as uninjured controls [TNF(-/-), n = 15; wt, n = 15] and were evaluated over a 4-week period for neurological motor function. In the acute posttraumatic period (48 h postinjury), brain-injured TNF(-/-) mice were significantly less impaired than injured wt mice on composite neuroscore (P < 0.001), rotarod (P < 0.05), and beam balance (P < 0. 02) tests. However, wt mice recovered from brain injury by 2-3 weeks postinjury, whereas TNF(-/-) mice continued to demonstrate persistent motor deficits up to 4 weeks postinjury. Histopathological analysis at 2 and 4 weeks postinjury revealed that brain-injured TNF(-/-) mice had significantly more cortical tissue loss than wt mice (P < 0.02). Our results suggest that although the presence of TNF in the acute posttraumatic period may be deleterious, this cytokine may play a role in facilitating long-term behavioral recovery and histological repair after brain injury.
Collapse
Affiliation(s)
- U Scherbel
- Department of Neurosurgery, School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
The cytokine interleukin-1beta (IL-1) has been shown to induce the secretion of NGF and GDNF in several types of neuronal populations. IL-1 has also been shown to mediate immune response following trauma or presence of foreign antigens. We investigated the influence of an IL-1 antagonist on the survival of spiral ganglion neurons in inner ears in which hair cells have been eliminated. We used a replication-deficient adenoviral vector containing the human IL-1 receptor antagonist (IL-1ra) cDNA. Guinea pigs were bilaterally deafened with ototoxic drugs. One week later their left cochleae were inoculated with the IL-1ra vector, designated Ad.IL-1ra. The vector was delivered by injection through the cochlear round window. IL-1ra protein levels within the perilymph of Ad.IL-1ra-injected animals were measured with ELISA and found to be significantly elevated compared to our controls. Spiral ganglion cell counts in experimental ears revealed a lower density of neurons after Ad.IL-1ra inoculation. Taken together, the data suggest that the Ad.IL-1ra-infected cochlear cells synthesized the transgenic human IL-1ra protein, which was then secreted by the cells into the perilymph, resulting in an accelerated neuronal degeneration in hair cell-depleted ears.
Collapse
Affiliation(s)
- M Komeda
- Department of Internal Medicine, The University of Michigan Medical Center, Ann Arbor 48109-0680, USA
| | | | | |
Collapse
|
97
|
Verity AN, Wyatt TL, Lee W, Hajos B, Baecker PA, Eglen RM, Johnson RM. Differential regulation of glial cell line-derived neurotrophic factor (GDNF) expression in human neuroblastoma and glioblastoma cell lines. J Neurosci Res 1999; 55:187-97. [PMID: 9972821 DOI: 10.1002/(sici)1097-4547(19990115)55:2<187::aid-jnr6>3.0.co;2-t] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human SK-N-AS neuroblastoma and U-87MG glioblastoma cell lines were found to secrete relatively high levels of glial cell line-derived neurotrophic factor (GDNF). In response to growth factors, cytokines, and pharmacophores, the two cell lines differentially regulated GDNF release. A 24-hr exposure to tumor necrosis factor-alpha (TNFalpha; 10 ng/ml) or interleukin-1beta (IL-1,; 10 ng/ml) induced GDNF release in U-87MG cells, but repressed GDNF release from SK-N-AS cells. Fibroblast growth factors (FGF)-1, -2, and -9 (50 ng/ml), the prostaglandins PGA2, PGE2, and PGI2 (10 microM), phorbol 12,13-didecanoate (PDD; 10 nM), okadaic acid (10 nM), dexamethasone (1 microM), and vitamin D3 (1 microm) also differentially effected GDNF release from U-87MG and SK-N-AS cells. A result shared by both cell lines, was a two- to threefold increase in GDNF release by db-cAMP (1 mM), or forskolin (10 microM). In general, analysis of steady-state GDNF mRNA levels correlated with changes in extracellular GDNF levels in U-87MG cells but remained static in SK-N-AS cells. The data suggest that human GDNF synthesis/release can be regulated by numerous factors, signaling through multiple and diverse secondary messenger systems. Furthermore, we provide evidence of differential regulation of human GDNF synthesis/release in cells of glial (U-87MG) and neuronal (SK-N-AS) origin.
Collapse
Affiliation(s)
- A N Verity
- Department of Molecular and Cellular Biochemistry, Center for Biological Research, Roche Bioscience, Palo Alto, California 94304-1397, USA.
| | | | | | | | | | | | | |
Collapse
|
98
|
Grimm L, Holinski-Feder E, Teodoridis J, Scheffer B, Schindelhauer D, Meitinger T, Ueffing M. Analysis of the human GDNF gene reveals an inducible promoter, three exons, a triplet repeat within the 3'-UTR and alternative splice products. Hum Mol Genet 1998; 7:1873-86. [PMID: 9811930 DOI: 10.1093/hmg/7.12.1873] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a distant member of the TGF-beta superfamily, is a survival factor for various neurons, making it a potential therapeutic agent for neurodegenerative disorders. Here we present the genomic structure and characterization of the promoter of the human GDNF (hGDNF) gene. It contains three exons coding for a cDNA of 4.6 kb including large 5'- and 3'-untranslated regions (UTRs). The 3'-UTR contains a polymorphic AGG repeat that appears not to be expanded in patients suffering from different neurodegenerative disorders. RT-PCR results in at least three different hGDNF transcripts including one that lacks exon 2. Transient expression experiments reveal that exon 2 is essential for proper cellular processing to yield a secreted form of hGDNF, whereas expression of exon 3 alone is sufficient to code for a mature form of hGDNF retained within the cell. Our data show that the hGDNF gene is driven by a TATA-containing promoter preceding exon 1. A second promoter element has been mapped to a region 5' of exon 2. Both promoters are in close proximity to CpG islands covering exons 1 and 2. Using luciferase as a reporter gene, the TATA-containing hGDNF promoter facilitates a 20- to 40-fold increase in transcription when compared with a corresponding promoterless construct, whereas the second promoter confers only weak activity. Furthermore, fibroblast growth factor 2, tetradecanoyl 12-phorbol acetate, an inflammatory agent, and cAMP increase promoter activity, suggesting that GDNF transcriptional regulation is a target of exogenous signals.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Amino Acid Sequence
- Animals
- Bacteriophage P1/genetics
- Base Sequence
- Carcinogens/pharmacology
- Cell Line
- Cyclic AMP/pharmacology
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/genetics
- DNA, Recombinant
- Databases, Factual
- Eukaryotic Cells/cytology
- Eukaryotic Cells/drug effects
- Eukaryotic Cells/metabolism
- Exons/genetics
- Fibroblast Growth Factor 2/pharmacology
- Gene Expression
- Gene Expression Regulation/drug effects
- Gene Library
- Genes/genetics
- Genetic Vectors
- Glial Cell Line-Derived Neurotrophic Factor
- Humans
- Introns/genetics
- Mice
- Molecular Sequence Data
- Nerve Growth Factors
- Nerve Tissue Proteins/genetics
- Neurodegenerative Diseases/genetics
- Polymorphism, Genetic
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- Recombinant Fusion Proteins/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription, Genetic/genetics
- Trinucleotide Repeats/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L Grimm
- Department of Medical Genetics, University of Munich, Goethestrasse 29, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|