51
|
Nielsen HH, Soares CB, Høgedal SS, Madsen JS, Hansen RB, Christensen AA, Madsen C, Clausen BH, Frich LH, Degn M, Sibbersen C, Lambertsen KL. Acute Neurofilament Light Chain Plasma Levels Correlate With Stroke Severity and Clinical Outcome in Ischemic Stroke Patients. Front Neurol 2020; 11:448. [PMID: 32595585 PMCID: PMC7300211 DOI: 10.3389/fneur.2020.00448] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Ischemic stroke causes increased blood–brain barrier permeability and release of markers of axonal damage and inflammation. To investigate diagnostic and prognostic roles of neurofilament light chain (NF-L), we assessed levels of NF-L, S100B, interleukin-6 (IL-6), E-selectin, vascular endothelial growth factor-A (VEGF-A), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) in patients with acute ischemic stroke or transient ischemic attack (TIA) and healthy controls. Methods: We studied neurofilament (NF) expression in 2 cases of human postmortem ischemic stroke, representing infarcts aged 3- to >7-days. In a prospective study, we measured plasma NF-L and inflammatory markers <8 h of symptom onset and at 72 h in acute ischemic stroke (n = 31), TIA (n = 9), and healthy controls (n = 29). We assessed whether NF-L, S100B, and IL-6 were associated with clinical severity on admission (Scandinavian Stroke Scale, SSS), diagnosis of ischemic stroke vs. TIA, and functional outcome at 3 months (modified Rankin Scale, mRS). Results: NF expression increased in ischemic neurons and in the infarcted brain parenchyma after stroke. Plasma NF-L levels were higher in stroke patients than in TIA patients and healthy controls, but IL-6 levels were similar. Higher acute NF-L levels were associated with lower SSS scores at admission and higher mRS scores at 3 months. No correlation was observed between NF-L and S100B, NF-L and IL-6, nor between S100B or IL-6 and SSS or mRS. Compared to controls, stroke patients had significantly higher VEGF-A and VCAM-1 at <8 h that remained elevated at 72 h, with significantly higher VEGF-A at <8 h; ICAM-1 was significantly increased at <8 h, while S100B and E-selectin were unchanged. Conclusions: Plasma NF-L levels, but not IL-6 and S100B, were significant predictors of clinical severity on admission and functional outcome at 3 months. Plasma NF-L is a promising biomarker of functional outcome after ischemic stroke.
Collapse
Affiliation(s)
- Helle H Nielsen
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, Odense, Denmark
| | - Catarina B Soares
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sofie S Høgedal
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Jonna S Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Rikke B Hansen
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Charlotte Madsen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Bettina H Clausen
- Department of Neurology, Odense University Hospital, Odense, Denmark.,BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, Odense, Denmark
| | - Lars Henrik Frich
- The Orthopaedic Research Unit, Department of Clinical Research, Odense, Denmark.,OPEN, Open Patient data Explorative Network, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Matilda Degn
- Pediatric Oncology Laboratory, Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian Sibbersen
- BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, Odense, Denmark.,Mental Health Services in the Region of Southern Denmark, Odense, Denmark
| | - Kate L Lambertsen
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, Odense, Denmark.,OPEN, Open Patient data Explorative Network, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
52
|
Bhasin A, Srivastava MVP, Vivekanandhan S, Moganty R, Talwar T, Sharma S, Kuthiala N, Kumaran S, Bhatia R. Vascular Endothelial Growth Factor as Predictive Biomarker for Stroke Severity and Outcome; An Evaluation of a New Clinical Module in Acute Ischemic Stroke. Neurol India 2020; 67:1280-1285. [PMID: 31744959 DOI: 10.4103/0028-3886.271241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background The need to study prognosis after incidence of acute ischemic stroke (AIS) has fueled researchers to identify predictors apart from neurological, functional, or disability measures. The purpose of this study was to test and validate a newly developed clinico-biomarker assessment module in AIS and also to investigate the role of serum vascular endothelial growth factor (VEGF) after AIS. Materials and Methods A randomized controlled study with sample size of 250 patients suffering from AIS within 2 weeks of the index event were conducted and followed up for a period of three months. Age, gender, stroke subtype, previous stroke history, dysarthria, stroke localization, wakeup strokes, and Glasgow Coma Scale (GCS) were dichotomized as present or absent using the National Institute of Health Stroke Scale (NIHSS) which consists of four subcategories. The additional serum VEGF was scored between 1 and 4 (0-200 = 1, 200-300 = 2, 300-400 = 3, and 400-500 = 4). All these were summed under a clinical biomarker (CB) module with highest score of 30. Results The mean VEGF in 125 patients was 378.4 + 98.9 pg/ml, indicating a moderately high increase with a score of 3 on CB module. Multiple regression analysis revealed that the CB model was fit to predict prognosis and severity [R2 = 0.86, F (23.4, 6);P = 0.001], with NIHSS subscore, prestroke status, and VEGF being very strong predictors. When only the clinical module was tested on all 250 patients, it was found that the NIHSS subscore, time to stroke onset and prestroke functional status were the most common [R2 = 0.79; F (45,9);P = 0.005]. Conclusion This study demonstrates that VEGF is highly upregulated in AIS with severe disability as compared to healthy controls. This biomarker is a strong predictor of severity and functionality when combined with clinical variables three months post the ishemic event.
Collapse
Affiliation(s)
- Ashu Bhasin
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - M V Padma Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - S Vivekanandhan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajeshwary Moganty
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Tanu Talwar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sakshi Sharma
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Neha Kuthiala
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Senthil Kumaran
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Bhatia
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
53
|
Xin M, Feng J, Hao Y, You J, Wang X, Yin X, Shang P, Ma D. Cyclic adenosine monophosphate in acute ischemic stroke: some to update, more to explore. J Neurol Sci 2020; 413:116775. [PMID: 32197118 DOI: 10.1016/j.jns.2020.116775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
The development of effective treatment for ischemic stroke, which is a common cause of morbidity and mortality worldwide, remains an unmet goal because the current first-line treatment management interventional therapy has a strict time window and serious complications. In recent years, a growing body of evidence has shown that the elevation of intracellular and extracellular cyclic adenosine monophosphate (cAMP) alleviates brain damage after ischemic stroke by attenuating neuroinflammation in the central nervous system and peripheral immune system. In the central nervous system, upregulated intracellular cAMP signaling can alleviate immune-mediated damage by restoring neuronal morphology and function, inhibiting microglia migration and activation, stabilizing the membrane potential of astrocytes and improving the cellular functions of endothelial cells and oligodendrocytes. Enhancement of the extracellular cAMP signaling pathway can improve neurological function by activating the cAMP-adenosine pathway to reduce immune-mediated damage. In the peripheral immune system, cAMP can act on various immune cells to suppress peripheral immune function, which can alleviate the inflammatory response in the central nervous system and improve the prognosis of acute cerebral ischemic injury. Therefore, cAMP may play key roles in reducing post-stroke neuroinflammatory damage. The protective roles of the cAMP indicate that the cAMP enhancing drugs such as cAMP supplements, phosphodiesterase inhibitors, adenylate cyclase agonists, which are currently used in the treatment of heart and lung diseases. They are potentially able to be applied as a new therapeutic strategy in ischemic stroke. This review focuses on the immune-regulating roles and the clinical implication of cAMP in acute ischemic stroke.
Collapse
Affiliation(s)
- Meiying Xin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| | - Yulei Hao
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiulin You
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xiang Yin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Pei Shang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Di Ma
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| |
Collapse
|
54
|
Xie F, Liu H, Liu Y. Adult Neurogenesis Following Ischemic Stroke and Implications for Cell-Based Therapeutic Approaches. World Neurosurg 2020; 138:474-480. [PMID: 32147554 DOI: 10.1016/j.wneu.2020.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
Ischemic stroke is one of the most intractable diseases of the central nervous system and is also a major cause of mortality and disability in adult humans. Unfortunately, current therapies target vessel recanalization, which has a narrow treatment window, and the potential adverse effects lead to a low rate of clinical employment; in addition, neuroprotective strategies are not effective for stroke treatment. It is necessary to discover new approaches to develop neuroprotective, neuroregenerative treatment strategies for stroke. At present, accumulating evidence suggests that adult neurogenesis is a novel topic with extensive research on its potential to be harnessed for therapy in various neurologic disorders, and the neurogenesis capacity in the subventricular zone was shown to be increased in response to brain ischemic stroke. In this review, we describe the cellular and molecular mechanisms underlying potential adult neurogenesis and review current preclinical and clinical cell-based therapies for enhancing neural regeneration after adult ischemic stroke. Although stroke-induced neurogenesis in humans does not seem to translate to neurofunctional recovery, we also summarize factors of potential treatment strategies with transplanted cells, including transplantation time, cell dosage, and administration route, to achieve optimum and effective cell-based therapy, thereby harnessing this neuroregenerative response to improve neurofunctional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Fei Xie
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China; Department of Neurosurgery, Ziyang First People's Hospital, Ziyang, China
| | - Hongbin Liu
- Department of Neurosurgery, Ziyang First People's Hospital, Ziyang, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
55
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
56
|
Jin ML, Zou ZH, Tao T, Li J, Xu J, Luo KJ, Liu Z. Effect of the Recombinant Adenovirus-Mediated HIF-1 Alpha on the Expression of VEGF in the Hypoxic Brain Microvascular Endothelial Cells of Rats. Neuropsychiatr Dis Treat 2020; 16:397-406. [PMID: 32103959 PMCID: PMC7012637 DOI: 10.2147/ndt.s238616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To investigate the effect of recombinant adenovirus-mediated HIF-1 alpha (HIF-1α) on the expression of vascular endothelial growth factor (VEGFA) and HIF-1α in hypoxic brain microvascular endothelial cells (BMEC) in rats. METHODS Primary cultured rat BMEC in vitro were treated without or with either recombinant adenovirus-mediated hypoxia-inducible factor-1 alpha (AdHIF-1α) or recombinant adenovirus empty vector (Ad) in the presence of CoCl2 (simulating hypoxia conditions), or were grown under normoxia conditions. The expression of VEGFA and HIF-1α was analyzed at 12h, 24h, 48h and 72h incubation time, respectively. We also accessed a GEO dataset of stroke to analyze in vivo the alteration of HIF-1α and VEGFA expression, and the correlations between HIF-1α, VEGFA and CD31 mRNA levels in vascular vessels after stroke. RESULTS VEGFA and HIF-1α expression were significantly higher in at each time point in the AdHIF-1α than other groups (p<0.05), whereas the Ad group and hypoxia group, showed no statistically significant difference (p>0.05). Moreover, VEGFA and HIF-1α levels were significantly higher in BMEC under hypoxia conditions than normoxia conditions (p <0.05). Both HIF-1α and VEGFA expression significantly increased after stroke in vivo with 1.30 and 1.57 fold-change in log2, respectively. There were significantly positive associations between HIF-1α, VEGFA and CD31 mRNA levels in vivo after stroke. CONCLUSION Hypoxia-induced HIF-1α and VEGFA expression in vascular vessels, and recombinant AdHIF-1α could up-regulate VEGFA, and enhance HIF-1ααlevels in BMEC in vitro, which may play an important role in the recovery of stroke.
Collapse
Affiliation(s)
- Ming-Lu Jin
- Department of Rehabilitation Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, People's Republic of China.,Department of Neurology, Qijiang Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing 404100, People's Republic of China.,Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, People's Republic of China
| | - Zhe-Hua Zou
- Department of Rehabilitation Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, People's Republic of China.,Department of General Practice, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, People's Republic of China
| | - Tao Tao
- Department of Rehabilitation Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, People's Republic of China
| | - Jun Li
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, People's Republic of China.,Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, People's Republic of China
| | - Jian Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, People's Republic of China
| | - Kai-Jian Luo
- Guizhou Cancer Hospital, Guiyang, Guizhou 550000, People's Republic of China
| | - Zhi Liu
- Department of Pharmacy, The Affiliated Hospital Guizhou Medical University, Guiyang, Guizhou 550001, People's Republic of China
| |
Collapse
|
57
|
Qin C, Yan X, Jin H, Zhang R, He Y, Sun X, Zhang Y, Guo ZN, Yang Y. Effects of Remote Ischemic Conditioning on Cerebral Hemodynamics in Ischemic Stroke. Neuropsychiatr Dis Treat 2020; 16:283-299. [PMID: 32021218 PMCID: PMC6988382 DOI: 10.2147/ndt.s231944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is one of the most common cerebrovascular diseases and is the leading cause of disability all over the world. It is well known that cerebral blood flow (CBF) is disturbed or even disrupted when ischemic stroke happens. The imbalance between demand and shortage of blood supply makes ischemic stroke take place or worsen. The search for treatments that can preserve CBF, especially during the acute phase of ischemic stroke, has become a research hotspot. Animal and clinical experiments have proven that remote ischemic conditioning (RIC) is a beneficial therapeutic strategy for the treatment of ischemic stroke. However, the mechanism by which RIC affects CBF has not been fully understood. This review aims to discuss several possible mechanisms of RIC on the cerebral hemodynamics in ischemic stroke, such as the improvement of cardiac function and collateral circulation of cerebral vessels, the protection of neurovascular units, the formation of gas molecules, the effect on the function of vascular endothelial cells and the nervous system. RIC has the potential to become a therapeutic treatment to improve CBF in ischemic stroke. Future studies are needed to highlight our understanding of RIC as well as accelerate its clinical translation.
Collapse
Affiliation(s)
- Chen Qin
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Xiuli Yan
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Hang Jin
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Ruyi Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yaode He
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yihe Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Zhen-Ni Guo
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yi Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
58
|
Rust R, Weber RZ, Grönnert L, Mulders G, Maurer MA, Hofer AS, Sartori AM, Schwab ME. Anti-Nogo-A antibodies prevent vascular leakage and act as pro-angiogenic factors following stroke. Sci Rep 2019; 9:20040. [PMID: 31882970 PMCID: PMC6934709 DOI: 10.1038/s41598-019-56634-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis is a key restorative process following stroke but has also been linked to increased vascular permeability and blood brain barrier (BBB) disruption. Previous pre-clinical approaches primarily focused on the administration of vascular endothelial growth factor (VEGF) to promote vascular repair after stroke. Although shown to improve angiogenesis and functional recovery from stroke, VEGF increased the risk of blood brain barrier disruption and bleedings to such an extent that its clinical use is contraindicated. As an alternative strategy, antibodies against the neurite growth inhibitory factor Nogo-A have recently been shown to enhance vascular regeneration in the ischemic central nervous system (CNS); however, their effect on vascular permeability is unknown. Here, we demonstrate that antibody-mediated Nogo-A neutralization following stroke has strong pro-angiogenic effects but does not increase vascular permeability as opposed to VEGF. Moreover, VEGF-induced vascular permeability was partially prevented when VEGF was co-administered with anti-Nogo-A antibodies. This study may provide a novel therapeutic strategy for vascular repair and maturation in the ischemic brain.
Collapse
Affiliation(s)
- Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland. .,Dept. of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
| | | | - Lisa Grönnert
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Geertje Mulders
- Dept. of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Michael A Maurer
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Anna-Sophie Hofer
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,Dept. of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Andrea M Sartori
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,Dept. of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Martin E Schwab
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,Dept. of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
59
|
Lee S, Chung M, Lee SR, Jeon NL. 3D brain angiogenesis model to reconstitute functional human blood-brain barrier in vitro. Biotechnol Bioeng 2019; 117:748-762. [PMID: 31709508 DOI: 10.1002/bit.27224] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023]
Abstract
The human central nervous system (CNS) vasculature expresses a distinctive barrier phenotype, the blood-brain barrier (BBB). As the BBB contributes to low efficiency in CNS pharmacotherapy by restricting drug transport, the development of an in vitro human BBB model has been in demand. Here, we present a microfluidic model of CNS angiogenesis having three-dimensional (3D) lumenized vasculature in concert with perivascular cells. We confirmed the necessity of the angiogenic tri-culture system (brain endothelium in direct interaction with pericytes and astrocytes) to attain essential phenotypes of BBB vasculature, such as minimized vessel diameter and maximized junction expression. In addition, lower vascular permeability is achieved in the tri-culture condition compared to the monoculture condition. Notably, we focussed on reconstituting the functional efflux transporter system, including p-glycoprotein (p-gp), which is highly responsible for restrictive drug transport. By conducting the calcein-AM efflux assay on our 3D perfusable vasculature after treatment of efflux transporter inhibitors, we confirmed the higher efflux property and prominent effect of inhibitors in the tri-culture model. Taken together, we designed a 3D human BBB model with functional barrier properties based on a developmentally inspired CNS angiogenesis protocol. We expect the model to contribute to a deeper understanding of pathological CNS angiogenesis and the development of effective CNS medications.
Collapse
Affiliation(s)
- Somin Lee
- Program for Bioengineering, Seoul National University, Seoul, Korea
| | - Minhwan Chung
- Mechanical Engineering, Seoul National University, Seoul, Korea
| | - Seung-Ryeol Lee
- Mechanical Engineering, Seoul National University, Seoul, Korea
| | - Noo Li Jeon
- Program for Bioengineering, Seoul National University, Seoul, Korea.,Mechanical Engineering, Seoul National University, Seoul, Korea.,Institute of Advanced Machines and Design, Seoul National University, Seoul, Korea.,Institute of Bioengineering, Seoul National University, Seoul, Korea
| |
Collapse
|
60
|
Chen Z, Chopp M, Zacharek A, Li W, Venkat P, Wang F, Landschoot-Ward J, Chen J. Brain-Derived Microparticles (BDMPs) Contribute to Neuroinflammation and Lactadherin Reduces BDMP Induced Neuroinflammation and Improves Outcome After Stroke. Front Immunol 2019; 10:2747. [PMID: 31993045 PMCID: PMC6968774 DOI: 10.3389/fimmu.2019.02747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/08/2019] [Indexed: 12/28/2022] Open
Abstract
Microparticles (MPs, ~size between 0.1 and 1 mm) are lipid encased containers derived from intact cells which contain antigen from the parent cells. MPs are involved in intercellular communication and regulate inflammation. Stroke increases secretion of brain derived MP (BDMP) which activate macrophages/microglia and induce neuroinflammation. Lactadherin (Milk fat globule–EGF factor-8) binds to anionic phospholipids and extracellular matrices, promotes apoptotic cell clearance and limits pathogenic antigen cross presentation. In this study, we investigate whether BDMP affects stroke-induced neuroinflammation and whether Lactadherin treatment reduces stroke initiated BDMP-induced neuroinflammation, thereby improving functional outcome after stroke. Middle aged (8–9 months old) male C57BL/6J mice were subjected to distal middle cerebral artery occlusion (dMCAo) stroke, and BDMPs were extracted from ischemic brain 24 h after dMCAo by ultracentrifugation. Adult male C57BL/6J mice were subjected to dMCAo and treated via tail vein injection at 3 h after stroke with: (A) +PBS (n = 5/group); (B) +BDMPs (1.5 × 108, n = 6/group); (C) +Lactadherin (400 μg/kg, n = 5/group); (D) +BDMP+Lactadherin (n = 6/group). A battery of neurological function tests were performed and mice sacrificed for immunostaining at 14 days after stroke. Blood plasma was used for Western blot assay. Our data indicate: (1) treatment of Stroke with BDMP significantly increases lesion volume, neurological deficits, blood brain barrier (BBB) leakage, microglial activation, inflammatory cell infiltration (CD45, microglia/macrophages, and neutrophils) into brain, inflammatory factor (TNFα, IL6, and IL1β) expression in brain, increases axon/white matter (WM) damage identified by decreased axon and myelin density, and increases inflammatory factor expression in the plasma when compared to PBS treated stroke mice; (2) when compared to PBS and BDMP treated stroke mice, Lactadherin and BDMP+Lactadherin treatment significantly improves neurological outcome, and decreases lesion volume, BBB leakage, axon/WM injury, inflammatory cell infiltration and inflammatory factor expression in the ischemic brain, respectively. Lactadherin treatment significantly increases anti-inflammatory factor (IL10) expression in ischemic brain and decreases IL1β expression in plasma compared to PBS and BDMP treated stroke mice, respectively. BDMP increases neuroinflammation and aggravates ischemic brain damage after stroke. Thus, Lactadherin exerts anti-inflammatory effects and improves the clearance of MPs to reduce stroke and BDMP induced neurological deficits.
Collapse
Affiliation(s)
- Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Wei Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Fenjie Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
61
|
Kanazawa M, Takahashi T, Kawamura K, Shimohata T. [VEGF-A therapeutic target against hemorrhagic transformation after t-PA treatment]. Rinsho Shinkeigaku 2019; 59:699-706. [PMID: 31656268 DOI: 10.5692/clinicalneurol.cn-001346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tissue plasminogen activator (t-PA) treatment is beneficial for patients with ischemic stroke within 4.5 h of stroke onset, because the risk of intracerebral hemorrhagic transformation (HT) increases with delayed t-PA treatment. The benefits of t-PA thrombolysis are heavily dependent on time to treatment. Development of vasoprotective drugs that attenuate HT after delayed t-PA treatment might improve the prognosis of stroke patients and extend the therapeutic time window of t-PA and endovascular thrombolysis. An angiogenic factor, vascular endothelial growth factor (VEGF), might be associated with the blood-brain barrier (BBB) disruption after focal cerebral ischemia. By using a rat thromboembolic model, delayed t-PA treatment at 4 h after ischemia promoted expression of VEGF in BBB, matrix metalloproteinase-9 (MMP-9) activation, degradation of BBB components, and HT. We demonstrated that HT was inhibited by intravenous administration of an anti-VEGF neutralizing antibody/VEGF receptor antagonist. In addition, for clinical application, reverse translation studies, a path from bedside to bench, are necessary.
Collapse
Affiliation(s)
- Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University
| | - Tetsuya Takahashi
- Department of Neurology, National Hospital Organization Nishiniigata Chuo Hospital
| | | | | |
Collapse
|
62
|
Yasmeen S, Akram BH, Hainsworth AH, Kruuse C. Cyclic nucleotide phosphodiesterases (PDEs) and endothelial function in ischaemic stroke. A review. Cell Signal 2019; 61:108-119. [PMID: 31132399 DOI: 10.1016/j.cellsig.2019.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Endothelial dysfunction is a hallmark of cerebrovascular disease, including ischemic stroke. Modulating endothelial signalling by cyclic nucleotides, cAMP and cGMP, is a potential therapeutic target in stroke. Inhibitors of the cyclic nucleotide degrading phosphodiesterase (PDE) enzymes may restore cerebral endothelial function. Current knowledge on PDE distribution and function in cerebral endothelial cells is sparse. This review explores data on PDE distribution and effects of PDEi in cerebral endothelial cells and identifies which PDEs are potential treatment targets in stroke. METHOD We performed a systematic search of electronic databases (Medline and Embase). Our search terms were cerebral ischaemia, cerebral endothelial cells, cyclic nucleotide, phosphodiesterase and phosphodiesterase inhibitors. RESULTS We found 23 publications which described effects of selective inhibitors of only three PDE families on endothelial function in ischemic stroke. PDE3 inhibitors (PDE3i) (11 publications) and PDE4 inhibitors (PDE4i) (3 publications) showed anti-inflammatory, anti-apoptotic or pro-angiogenic effects. PDE3i also reduced leucocyte infiltration and MMP-9 expression. Both PDE3i and PDE4i increased expression of tight junction proteins and protected the blood-brain barrier. PDE5 inhibitors (PDE5i) (6 publications) reduced inflammation and apoptosis. In preclinical models, PDE5i enhanced cGMP/NO signalling associated with microvascular angiogenesis, increased cerebral blood flow and improved functional recovery. Non-specific PDEi (3 publications) had mainly anti-inflammatory effects. CONCLUSION This review demonstrates that non-selective and selective PDEi of PDE3, PDE4 and PDE5 modulated endothelial function in cerebral ischemic stroke by regulating processes involved in vascular repair and neuroprotection and thus reduced cell death and inflammation. Of note, they promoted angiogenesis, microcirculation and improved functional recovery; all are important in stroke prevention and recovery, and effects should be further evaluated in humans.
Collapse
Affiliation(s)
- Saiqa Yasmeen
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bilal Hussain Akram
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Atticus H Hainsworth
- Clinical Neuroscience, Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Christina Kruuse
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
63
|
Ceci M, Mariano V, Romano N. Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment. Rev Neurosci 2019; 30:45-66. [PMID: 30067512 DOI: 10.1515/revneuro-2018-0020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
The review is an overview of the current knowledge of neuronal regeneration properties in mammals and fish. The ability to regenerate the damaged parts of the nervous tissue has been demonstrated in all vertebrates. Notably, fish and amphibians have the highest capacity for neurogenesis, whereas reptiles and birds are able to only regenerate specific regions of the brain, while mammals have reduced capacity for neurogenesis. Zebrafish (Danio rerio) is a promising model of study because lesions in the brain or complete cross-section of the spinal cord are followed by an effective neuro-regeneration that successfully restores the motor function. In the brain and the spinal cord of zebrafish, stem cell activity is always able to re-activate the molecular programs required for central nervous system regeneration. In mammals, traumatic brain injuries are followed by reduced neurogenesis and poor axonal regeneration, often insufficient to functionally restore the nervous tissue, while spinal injuries are not repaired at all. The environment that surrounds the stem cell niche constituted by connective tissue and stimulating factors, including pro-inflammation molecules, seems to be a determinant in triggering stem cell proliferation and/or the trans-differentiation of connective elements (mainly fibroblasts). Investigating and comparing the neuronal regeneration in zebrafish and mammals may lead to a better understanding of the mechanisms behind neurogenesis, and the failure of the regenerative response in mammals, first of all, the role of inflammation, considered the main inhibitor of the neuronal regeneration.
Collapse
Affiliation(s)
- Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nicla Romano
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| |
Collapse
|
64
|
Influencing neuroplasticity in stroke treatment with advanced biomaterials-based approaches. Adv Drug Deliv Rev 2019; 148:204-218. [PMID: 30579882 DOI: 10.1016/j.addr.2018.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/05/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
Since the early 1990s, we have known that the adult brain is not static and has the capacity to repair itself. The delivery of various therapeutic factors and cells have resulted in some exciting pre-clinical and clinical outcomes in stroke models by targeting post-injury plasticity to enhance recovery. Developing a deeper understanding of the pathways that modulate plasticity will enable us to optimize delivery strategies for therapeutics and achieve more robust effects. Biomaterials are a key tool for the optimization of these potential treatments, owing to their biocompatibility and tunability. In this review, we identify factors and targets that impact plastic processes known to contribute to recovery, discuss the role of biomaterials in enhancing the efficacy of treatment strategies, and suggest combinatorial approaches based on the stage of injury progression.
Collapse
|
65
|
Durán-Laforet V, Fernández-López D, García-Culebras A, González-Hijón J, Moraga A, Palma-Tortosa S, García-Yébenes I, Vega-Pérez A, Lizasoain I, Moro MÁ. Delayed Effects of Acute Reperfusion on Vascular Remodeling and Late-Phase Functional Recovery After Stroke. Front Neurosci 2019; 13:767. [PMID: 31396042 PMCID: PMC6664024 DOI: 10.3389/fnins.2019.00767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/09/2019] [Indexed: 11/24/2022] Open
Abstract
Tissue perfusion is a necessary condition for vessel survival that can be compromised under ischemic conditions. Following stroke, delayed effects of early brain reperfusion on the vascular substrate necessary for remodeling, perfusion and maintenance of proper peri-lesional hemodynamics are unknown. Such aspects of ischemic injury progression may be critical for neurological recovery in stroke patients. This study aims to describe the impact of early, non-thrombolytic reperfusion on the vascular brain component and its potential contribution to tissue remodeling and long-term functional recovery beyond the acute phase after stroke in 3-month-old male C57bl/6 mice. Permanent (pMCAO) and transient (60 min, tMCAO) brain ischemia mouse models were used for characterizing the effect of early, non-thrombolytic reperfusion on the brain vasculature. Analysis of different vascular parameters (vessel density, proliferation, degeneration and perfusion) revealed that, while early middle cerebral artery recanalization was not sufficient to prevent sub-acute vascular degeneration within the ischemic brain regions, brain reperfusion promoted a secondary wave of vascular remodeling in the peri-lesional regions, which led to improved perfusion of the ischemic boundaries and late-phase neurological recovery. This study concluded that acute, non-thrombolytic artery recanalization following stroke favors late-phase vascular remodeling and improves peri-lesional perfusion, contributing to secondary functional recovery.
Collapse
Affiliation(s)
- Violeta Durán-Laforet
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - David Fernández-López
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alicia García-Culebras
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Juan González-Hijón
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Sara Palma-Tortosa
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Isaac García-Yébenes
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Adrián Vega-Pérez
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Ángeles Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
66
|
Cárdenas-Rivera A, Campero-Romero AN, Heras-Romero Y, Penagos-Puig A, Rincón-Heredia R, Tovar-Y-Romo LB. Early Post-stroke Activation of Vascular Endothelial Growth Factor Receptor 2 Hinders the Receptor 1-Dependent Neuroprotection Afforded by the Endogenous Ligand. Front Cell Neurosci 2019; 13:270. [PMID: 31312121 PMCID: PMC6614187 DOI: 10.3389/fncel.2019.00270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) has long been connected to the development of tissue lesion following ischemic stroke. Contradictory findings either situate VEGF as a promoter of large infarct volumes or as a potential attenuator of damage due to its well documented neuroprotective capability. The core of this discrepancy mostly lies on the substantial number of pleiotropic functions driven by VEGF. Mechanistically, these effects are activated through several VEGF receptors for which various closely related ligands exist. Here, we tested in an experimental model of stroke how the differential activation of VEGF receptors 1 and 2 would modify functional and histological outcomes in the acute phase post-ischemia. We also assessed whether VEGF-mediated responses would involve the modulation of inflammatory mechanisms and how this trophic factor acted specifically on neuronal receptors. We produced ischemic infarcts in adult rats by transiently occluding the middle cerebral artery and induced the pharmacological inhibition of VEGF receptors by i.c.v. administration of the specific VEGFR2 inhibitor SU1498 and the pan-VEGFR blocker Axitinib. We evaluated the neurological performance of animals at 24 h following stroke and the occurrence of brain infarctions analyzed at the gross metabolic and neuronal viability levels. We also assessed the induction of peripheral pro- and anti-inflammatory cytokines in the cerebrospinal fluid and blood and assessed the polarization of activated microglia. Finally, we studied the direct involvement of cortical neuronal receptors for VEGF with in vitro assays of excitotoxic damage. Preferential VEGFR1 activation by the endogenous ligand promotes neuronal protection and prevents the presentation of large volume infarcts that highly correlate with neurological performance, while the concomitant activation of VEGFR2 reduces this effect, even in the presence of exogenous ligand. This process partially involves the polarization of microglia to the state M2. At the cellular level, neurons also responded better to the preferential activation of VEGFR1 when challenged to N-methyl-D-aspartate-induced excitotoxicity. Endogenous activation of VEGFR2 hinders the neuroprotective mechanisms mediated by the activation of VEGFR1. The selective modulation of these concurrent processes might enable the development of therapeutic approaches that target specific VEGFR1-mediated signaling during the acute phase post-stroke.
Collapse
Affiliation(s)
- Alfredo Cárdenas-Rivera
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aura N Campero-Romero
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yessica Heras-Romero
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andrés Penagos-Puig
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Microscopy Core Unit, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis B Tovar-Y-Romo
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
67
|
Uric acid treatment after stroke modulates the Krüppel-like factor 2-VEGF-A axis to protect brain endothelial cell functions: Impact of hypertension. Biochem Pharmacol 2019; 164:115-128. [DOI: 10.1016/j.bcp.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/03/2019] [Indexed: 12/29/2022]
|
68
|
Ek Olofsson H, Englund E. A cortical microvascular structure in vascular dementia, Alzheimer's disease, frontotemporal lobar degeneration and nondemented controls: a sign of angiogenesis due to brain ischaemia? Neuropathol Appl Neurobiol 2019; 45:557-569. [PMID: 30957900 PMCID: PMC6850314 DOI: 10.1111/nan.12552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
Aims We observed a microvascular structure in the cerebral cortex that has not, to our knowledge, been previously described. We have termed the structure a ‘raspberry’, referring to its appearance under a bright‐field microscope. We hypothesized that raspberries form through angiogenesis due to some form of brain ischaemia or hypoperfusion. The aims of this study were to quantify raspberry frequency within the cerebral cortex according to diagnosis (vascular dementia, Alzheimer's disease, frontotemporal lobar degeneration and nondemented controls) and brain regions (frontal, temporal, parietal and occipital cortices, regardless of diagnosis). Materials and methods In each of 10 age‐matched subjects per group, a 20‐mm section of the cerebral cortex was examined in haematoxylin‐and‐eosin‐stained sections of the frontal, temporal and parietal, and/or occipital lobes. Tests were performed to validate the haematoxylin‐and‐eosin‐based identification of relative differences between the groups, and to investigate inter‐rater variability. Results Raspberry frequency was highest in subjects with vascular dementia, followed by those with frontotemporal lobar degeneration, Alzheimer's disease and last, nondemented controls. The frequency of raspberries in subjects with vascular dementia differed from that of all other groups at a statistically significant level. In the cerebral lobes, there was a statistically significant difference between the frontal and occipital cortices. Conclusions We believe the results support the hypothesis that raspberries are a sign of angiogenesis in the adult brain. It is pertinent to discuss possible proangiogenic stimuli, including brain ischaemia (such as mild hypoperfusion due to a combination of small vessel disease and transient hypotension), neuroinflammation and protein pathology.
Collapse
Affiliation(s)
- H Ek Olofsson
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - E Englund
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| |
Collapse
|
69
|
Du K, Zhao C, Wang L, Wang Y, Zhang KZ, Shen XY, Sun HX, Gao W, Lu X. MiR-191 inhibit angiogenesis after acute ischemic stroke targeting VEZF1. Aging (Albany NY) 2019; 11:2762-2786. [PMID: 31064890 PMCID: PMC6535071 DOI: 10.18632/aging.101948] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/29/2019] [Indexed: 04/13/2023]
Abstract
Acute ischemic stroke (AIS) is a major public health problem in China. Impaired angiogenesis plays crucial roles in the development of ischemic cerebral injury. Recent studies have identified that microRNAs (miRNAs) are important regulators of angiogenesis, but little is known the exact effects of angiogenesis-associated miRNAs in AIS. In the present study, we detected the expression levels of angiogenesis-associated miRNAs in AIS patients, middle cerebral artery occlusion (MCAO) rats, and oxygen-glucose deprivation/reoxygenation (OGD/R) human umbilical vein endothelial cells (HUVECs). MiR-191 was increased in the plasma of AIS patients, OGD/R HUVECs, and the plasma and brain of MCAO rats. Over-expression of miR-191 promoted apoptosis, but reduced the proliferation, migration, tube-forming and spheroid sprouting activity in HUVECs OGD/R model. Mechanically, vascular endothelial zinc finger 1 (VEZF1) was identified as the direct target of miR-191, and could be regulated by miR-191 at post-translational level. In vivo studies applying miR-191 antagomir demonstrated that inhibition of miR-191 reduced infarction volume in MCAO rats. In conclusion, our data reveal a novel role of miR-191 in promoting ischemic brain injury through inhibiting angiogenesis via targeting VEZF1. Therefore, miR-191 may serve as a biomarker or a therapeutic target for AIS.
Collapse
Affiliation(s)
- Kang Du
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Equal contribution
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Equal contribution
| | - Li Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Yue Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Kang-Zhen Zhang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Xi-Yu Shen
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Hui-Xian Sun
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| |
Collapse
|
70
|
Ogata T, Dohgu S, Takano K, Inoue T, Arima H, Takata F, Kataoka Y, Tsuboi Y. Increased Plasma VEGF Levels in Patients with Cerebral Large Artery Disease Are Associated with Cerebral Microbleeds. Cerebrovasc Dis Extra 2019; 9:25-30. [PMID: 31039570 PMCID: PMC6528098 DOI: 10.1159/000497215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/23/2019] [Indexed: 12/03/2022] Open
Abstract
Background/Purpose Because atherosclerotic factors and antithrombotic agents sometimes induce cerebral microbleeds (CMBs), patients with cerebral large artery disease (CLAD) tend to have more CMBs than control subjects. On the other hand, VEGF contributes to the disruption of the blood-brain barrier, and it may induce parenchymal edema and bleeding. We conducted a study to evaluate the role of vascular endothelial growth factor (VEGF) in the occurrence of CMBs in patients with CLAD. Methods CLAD is defined as stenosis or occlusion of either the carotid artery or the middle cerebral artery of 50% or more. We prospectively registered patients with CLAD who were hospitalized in our neurocenter. Biological backgrounds, atherosclerotic risk factors, administration of antithrombotics before hospitalization, and levels of cytokines and chemokines were evaluated. Susceptibility-weighted imaging or T2*-weighted MR angiography was used to evaluate CMBs. The Brain Observer MicroBleed Scale (BOMBS) was used for CMB assessments. Images were analyzed with regard to the presence or absence of CMBs. We also examined plasma VEGF concentrations using a commercial ELISA kit. Because more than half showed plasma VEGF levels below assay detection limits (3.2 pg/mL), the patients were dichotomized by plasma VEGF levels into two groups (above and below the detection limit). After univariate analyses, logistic regression analysis was conducted to determine the factors associated with the CMBs after adjustment for age, sex, the presence of hypertension, and administration of antithrombotic agents. A similar analysis with CMBs separated by location (cortex, subcortex, or posterior circulation) was also conducted. Results Sixty-six patients (71.1 ± 8.9 years, 53 males and 13 females) were included in this study. Plasma VEGF levels were not correlated with age, sex, and atherosclerotic risk factors; however, patients with VEGF levels >3.2 pg/mL tended toward more frequent CMBs (60.0 vs. 32.6%, in the presence and absence of CMBs, p = 0.056). With regard to the location of CMBs, those in the cortex and/or at the gray-white junction were observed more frequently in the patients with VEGF levels >3.2 pg/mL after multivariable analyses (odds ratio: 3.80; 95% confidence interval: 1.07–13.5; p = 0.039). Conclusions In patients with CLAD, elevated plasma VEGF might be associated with CMBs, especially those located in the cortex and/or at the gray-white junction.
Collapse
Affiliation(s)
- Toshiyasu Ogata
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Koichi Takano
- Department of Radiology, Fukuoka University, Fukuoka, Japan
| | - Tooru Inoue
- Department of Neurosurgery, Fukuoka University, Fukuoka, Japan
| | - Hisatomi Arima
- Department of Preventive Medicine and Public Health, Fukuoka University, Fukuoka, Japan
| | - Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yasufumi Kataoka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan,
| |
Collapse
|
71
|
Dl-3-n-Butylphthalide regulates the Ang-1/Ang-2/Tie-2 signaling axis to promote neovascularization in chronic cerebral hypoperfusion. Biomed Pharmacother 2019; 113:108757. [DOI: 10.1016/j.biopha.2019.108757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 12/29/2022] Open
|
72
|
Kanazawa M, Takahashi T, Ishikawa M, Onodera O, Shimohata T, Del Zoppo GJ. Angiogenesis in the ischemic core: A potential treatment target? J Cereb Blood Flow Metab 2019; 39:753-769. [PMID: 30841779 PMCID: PMC6501515 DOI: 10.1177/0271678x19834158] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ischemic penumbra is both a concept in understanding the evolution of cerebral tissue injury outcome of focal ischemia and a potential therapeutic target for ischemic stroke. In this review, we examine the evidence that angiogenesis can contribute to beneficial outcomes following focal ischemia in model systems. Several studies have shown that, following cerebral ischemia, endothelial proliferation and subsequent angiogenesis can be detected beginning four days after cerebral ischemia in the border of the ischemic core, or in the ischemic periphery, in rodent and non-human primate models, although initial signals appear within hours of ischemia onset. Components of the neurovascular unit, its participation in new vessel formation, and the nature of the core and penumbra responses to experimental focal cerebral ischemia, are considered here. The potential co-localization of vascular remodeling and axonal outgrowth following focal cerebral ischemia based on the definition of tissue remodeling and the processes that follow ischemic stroke are also considered. The region of angiogenesis in the ischemic core and its surrounding tissue (ischemic periphery) may be a novel target for treatment. We summarize issues that are relevant to model studies of focal cerebral ischemia looking ahead to potential treatments.
Collapse
Affiliation(s)
- Masato Kanazawa
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tetsuya Takahashi
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masanori Ishikawa
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takayoshi Shimohata
- 2 Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Gregory J Del Zoppo
- 3 Department of Medicine (Division of Hematology), University of Washington, Seattle, WA, USA.,4 Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
73
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
74
|
Kim R, Kim P, Lee CY, Lee S, Yun H, Lee MY, Kim J, Baek K, Chang W. Multiple Combination of Angelica gigas Extract and Mesenchymal Stem Cells Enhances Therapeutic Effect. Biol Pharm Bull 2019; 41:1748-1756. [PMID: 30504677 DOI: 10.1248/bpb.b18-00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alternative medicines attract attention because stroke is rarely expected to make a full recovery with the most advanced medical technology. Angelica gigas (AG) is a well-known herbal medicine as a neuroprotective agent. The present study introduced mesenchymal stem cells (MSCs) to identify for the advanced treatment of the cerebrovascular disease. The objective of this research is validation of the enhanced effects of multiple combined treatment of AG extract with MSCs on stroke through angiogenesis. Our results confirmed that AG extract with MSCs improved the neovascularization increasing expression of angiogenesis-regulated molecules. The changes of brain and the behavioral ability showed the increased effects of AG extract with MSCs. As a result, AG extract and MSCs may synergistically increase the therapeutic potential by enhancing neovascularization. This mixed approach provides a new experimental protocol of herbal medicine therapy for the treatment of a variety of diseases including stroke, trauma, and spinal cord injury.
Collapse
Affiliation(s)
- Ran Kim
- Department of Biology Education, College of Education, Pusan National University
| | - Pilseog Kim
- Department of Biology Education, College of Education, Pusan National University
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University
| | - Seokyeon Lee
- Department of Biology Education, College of Education, Pusan National University
| | | | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University
| | - Kyungmin Baek
- Department of Cardiovascular and Neurologic Disease, College of Oriental Medicine, Daegu Hanny University
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University
| |
Collapse
|
75
|
Chen H, Chen X, Luo Y, Shen J. Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic Res 2018; 52:1220-1239. [PMID: 30468092 DOI: 10.1080/10715762.2018.1521519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| | - Xi Chen
- Department of Core Facility, the People’s Hospital of Bao-an Shenzhen, Shenzhen, PR China
- The 8th People’s Hospital of Shenzhen, the Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, PR China
| | - Yunhao Luo
- School of Chinese Medicine, the University of Hong Kong, PR China
| | - Jiangang Shen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
76
|
He Q, Li S, Li L, Hu F, Weng N, Fan X, Kuang S. Total Flavonoids in Caragana (TFC) Promotes Angiogenesis and Enhances Cerebral Perfusion in a Rat Model of Ischemic Stroke. Front Neurosci 2018; 12:635. [PMID: 30258350 PMCID: PMC6143657 DOI: 10.3389/fnins.2018.00635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/23/2018] [Indexed: 02/02/2023] Open
Abstract
Previous studies have demonstrated that total flavonoid extracts from Caragana sinica (TFC) exert multiple therapeutic effects, promote blood flow, and exhibit anti-inflammatory and antioxidant properties. The present study aimed to investigate whether TFC promotes angiogenesis and exerts neuroprotective effects in a rat model of transient middle cerebral artery occlusion (tMCAO). Male Wistar rats were subjected to tMCAO for 1.5 h, followed by 24 h of reperfusion. TFC (15, 30, 60 mg/kg) was administered for 14 days. Evaluations of neurological function were performed following reperfusion, and infarct volumes were assessed in brain slices stained with 2,3,5-triphenyltetrazolium chloride (TTC). Our results indicated that TFC significantly attenuated cerebral infarct volume and neurological deficits following tMCAO. Laser Doppler, micro-PET/CT, and MRI analyses further demonstrated that TFC reduced infarct volume and enhanced cerebral blood flow in a dose-dependent manner, with the most significant effects occurring at a concentration of 60 mg/kg. Significant up-regulation of CD31, VEGF, Ang-1, HIF-1α, delta-like 4 (Dll4), and Notch1 expression was also observed in the experimental groups, relative to that in the vehicle group. In summary, the results of the present study indicate that TFC (15, 30, 60 mg/kg) attenuates neurological deficits, reduces infarct volume, and promotes angiogenesis following MCAO in a concentration-dependent manner, likely via increases in the expression of CD31, VEGF, Ang-1, HIF-1α, Dll4, and Notch1. Further studies are required to determine the clinical usefulness and potential mechanisms of TFC in patients with cerebral focal ischemic stroke.
Collapse
Affiliation(s)
- Qiansong He
- Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Shirong Li
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lailai Li
- Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Feiran Hu
- Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Ning Weng
- Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Xiaodi Fan
- Department of Experimental Research Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Shixiang Kuang
- Guiyang College of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
77
|
Sabirzhanov B, Faden AI, Aubrecht T, Henry R, Glaser E, Stoica BA. MicroRNA-711-Induced Downregulation of Angiopoietin-1 Mediates Neuronal Cell Death. J Neurotrauma 2018; 35:2462-2481. [PMID: 29774773 DOI: 10.1089/neu.2017.5572] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Angiopoietin-1 (Ang-1) is a well-known endothelial growth factor, but its effects on neurons have yet to be elucidated. We show that Ang-1 is rapidly downregulated in the injured brain after controlled cortical impact (CCI), a mouse experimental traumatic brain injury (TBI) model and in etoposide-induced neuronal apoptosis in vitro. Ang-1 treatment inhibits etoposide-induced upregulation of proapoptotic B-cell lymphoma 2 (Bcl-2) family members Noxa, p53 upregulated modulator of apoptosis (Puma), Bcl-2 interacting mediator of cell death (Bim), and Bcl-2-associated X protein (Bax); reduces markers of caspase-dependent (cytochrome c release/caspase activation) and caspase-independent (apoptosis-inducing factor release) pathways; and limits neuronal cell death. Ang-1 treatment phosphorylates receptors Tunica interna endothelial cell kinase 2 (Tie2), and β1-integrin and limits the etoposide-induced decrease in protein kinase B (Akt) activity. Blocking Tie2 and β1-integrin signaling reduces Ang-1 neuroprotective effects. After both TBI and etoposide treatment microRNA (miR)-711 are upregulated, consistent with its putative role as a negative regulator of Ang-1. We show that miR-711 directly targets the Ang-1 messenger RNA (mRNA), decreasing Ang-1 expression. Increased levels of miR-711 and Ang-1 mRNA are found in the RNA-induced silencing complex complex site of miR-mediated degradation of target mRNAs after etoposide treatment and the miR-711mimic downregulates Ang-1. Administration of miR-711 inhibitor elevates Ang-1 after TBI whereas Ang-1 administration increases Akt activation; reduces Puma, Noxa, Bim, and Bax levels; and attenuates caspase-dependent and -independent neuronal apoptosis 24 h after TBI. Ang-1 also attenuates neuronal degeneration, increases gene expression of molecules that maintain blood-brain barrier integrity, and reduces post-traumatic lesion volume/edema 24 h after TBI. Although we only observed short-term neuroprotective effects after Ang-1 administration, miR-711-dependent downregulation of Ang-1, followed by Akt pathway inhibition, may play a role in neuronal cell death after neuronal injury in vitro and after experimental TBI.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland , School of Medicine, Baltimore, Maryland
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland , School of Medicine, Baltimore, Maryland
| | - Taryn Aubrecht
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland , School of Medicine, Baltimore, Maryland
| | - Rebecca Henry
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland , School of Medicine, Baltimore, Maryland
| | - Ethan Glaser
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland , School of Medicine, Baltimore, Maryland
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland , School of Medicine, Baltimore, Maryland
| |
Collapse
|
78
|
Kim R, Lee S, Lee CY, Yun H, Lee H, Lee MY, Kim J, Jeong JY, Baek K, Chang W. Salvia miltiorrhiza enhances the survival of mesenchymal stem cells under ischemic conditions. ACTA ACUST UNITED AC 2018; 70:1228-1241. [PMID: 29943504 PMCID: PMC6099286 DOI: 10.1111/jphp.12950] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Objectives To validate the enhanced therapeutic effect of Salvia miltiorrhiza Bunge (SM) for brain ischemic stroke through the anti‐apoptotic and survival ability of mesenchymal stem cells (MSCs). Methods The viability and the expression level of cell apoptotic and survival‐related proteins in MSCs by treatment of SM were assessed in vitro. In addition, the infarcted brain region and the behavioural changes after treatment of MSCs with SM were confirmed in rat middle cerebral artery occlusion (MCAo) models. Key findings We demonstrated that SM attenuates apoptosis and improves the cell viability of MSCs. In the rat MCAo model, the recovery of the infarcted region and positive changes of behaviour are observed after treatment of MSCs with SM. Conclusions The therapy using SM enhances the therapeutic effect for brain ischemic stroke by promoting the survival of MSCs. This synergetic effect thereby proposes a new experimental approach of traditional Chinese medicine and stem cell‐based therapies for patients suffering from a variety of diseases.
Collapse
Affiliation(s)
- Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan, Korea
| | - Seokyeon Lee
- Department of Biology Education, College of Education, Pusan National University, Busan, Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, Korea
| | - Hojin Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu, Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Busan, Korea
| | - Kyungmin Baek
- Department of Cardiovascular and Neurologic Disease, College of Oriental Medicine, Daegu Hanny University, Daegu, Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, Korea
| |
Collapse
|
79
|
George PM, Oh B, Dewi R, Hua T, Cai L, Levinson A, Liang X, Krajina BA, Bliss TM, Heilshorn SC, Steinberg GK. Engineered stem cell mimics to enhance stroke recovery. Biomaterials 2018; 178:63-72. [PMID: 29909038 DOI: 10.1016/j.biomaterials.2018.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022]
Abstract
Currently, no medical therapies exist to augment stroke recovery. Stem cells are an intriguing treatment option being evaluated, but cell-based therapies have several challenges including developing a stable cell product with long term reproducibility. Since much of the improvement observed from cellular therapeutics is believed to result from trophic factors the stem cells release over time, biomaterials are well-positioned to deliver these important molecules in a similar fashion. Here we show that essential trophic factors secreted from stem cells can be effectively released from a multi-component hydrogel system into the post-stroke environment. Using our polymeric system to deliver VEGF-A and MMP-9, we improved recovery after stroke to an equivalent degree as observed with traditional stem cell treatment in a rodent model. While VEGF-A and MMP-9 have many unique mechanisms of action, connective tissue growth factor (CTGF) interacts with both VEGF-A and MMP-9. With our hydrogel system as well as with stem cell delivery, the CTGF pathway is shown to be downregulated with improved stroke recovery.
Collapse
Affiliation(s)
- Paul M George
- Department of Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| | - Byeongtaek Oh
- Department of Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruby Dewi
- Department of Material Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Thuy Hua
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Cai
- Department of Material Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Levinson
- Department of Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Xibin Liang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Brad A Krajina
- Department of Material Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Tonya M Bliss
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Material Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary K Steinberg
- Department of Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
80
|
Geiseler SJ, Morland C. The Janus Face of VEGF in Stroke. Int J Mol Sci 2018; 19:ijms19051362. [PMID: 29734653 PMCID: PMC5983623 DOI: 10.3390/ijms19051362] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
The family of vascular endothelial growth factors (VEGFs) are known for their regulation of vascularization. In the brain, VEGFs are important regulators of angiogenesis, neuroprotection and neurogenesis. Dysregulation of VEGFs is involved in a large number of neurodegenerative diseases and acute neurological insults, including stroke. Stroke is the main cause of acquired disabilities, and normally results from an occlusion of a cerebral artery or a hemorrhage, both leading to focal ischemia. Neurons in the ischemic core rapidly undergo necrosis. Cells in the penumbra are exposed to ischemia, but may be rescued if adequate perfusion is restored in time. The neuroprotective and angiogenic effects of VEGFs would theoretically make VEGFs ideal candidates for drug therapy in stroke. However, contradictory to what one might expect, endogenously upregulated levels of VEGF as well as the administration of exogenous VEGF is detrimental in acute stroke. This is probably due to VEGF-mediated blood–brain-barrier breakdown and vascular leakage, leading to edema and increased intracranial pressure as well as neuroinflammation. The key to understanding this Janus face of VEGF function in stroke may lie in the timing; the harmful effect of VEGFs on vessel integrity is transient, as both VEGF preconditioning and increased VEGF after the acute phase has a neuroprotective effect. The present review discusses the multifaceted action of VEGFs in stroke prevention and therapy.
Collapse
Affiliation(s)
- Samuel J Geiseler
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0371 Oslo, Norway.
| | - Cecilie Morland
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0371 Oslo, Norway.
- Institute for Behavioral Sciences, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0166 Oslo, Norway.
| |
Collapse
|
81
|
Meng ZY, Kang HL, Duan W, Zheng J, Li QN, Zhou ZJ. MicroRNA-210 Promotes Accumulation of Neural Precursor Cells Around Ischemic Foci After Cerebral Ischemia by Regulating the SOCS1-STAT3-VEGF-C Pathway. J Am Heart Assoc 2018; 7:JAHA.116.005052. [PMID: 29478968 PMCID: PMC5866312 DOI: 10.1161/jaha.116.005052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Neural precursor cell (NPC) migration toward lesions is key for neurological functional recovery. The neovasculature plays an important role in guiding NPC migration. MicroRNA‐210 (miR‐210) promotes angiogenesis and neurogenesis in the subventricular zone and hippocampus after cerebral ischemia; however, whether miR‐210 regulates NPC migration and the underlying mechanism is still unclear. This study investigated the role of miR‐210 in NPC migration. Methods and Results Neovascularization and NPC accumulation was detected around ischemic foci in a mouse model of middle cerebral artery occlusion (MCAO) and reperfusion. Bone marrow–derived endothelial progenitor cells (EPCs) were found to participate in neovascularization. miR‐210 was markedly upregulated after focal cerebral ischemia/reperfusion. Overexpressed miR‐210 enhanced neovascularization and NPC accumulation around the ischemic lesion and vice versa, strongly suggesting that miR‐210 might be involved in neovascularization and NPC accumulation after focal cerebral ischemia/reperfusion. In vitro experiments were conducted to explore the underlying mechanism. The transwell assay showed that EPCs facilitated NPC migration, which was further promoted by miR‐210 overexpression in EPCs. In addition, miR‐210 facilitated VEGF‐C (vascular endothelial growth factor C) expression both in vitro and in vivo. Moreover, the luciferase reporter assay demonstrated that miR‐210 directly targeted the 3′ untranslated region of SOCS1 (suppressor of cytokine signaling 1), and miR‐210 overexpression in HEK293 cells or EPCs decreased SOCS1 and increased STAT3 (signal transducer and activator of transcription 3) and VEGF‐C expression. When EPCs were simultaneously transfected with miR‐210 mimics and SOCS1, the expression of STAT3 and VEGF‐C was reversed. Conclusions miR‐210 promoted neovascularization and NPC migration via the SOCS1–STAT3–VEGF‐C pathway.
Collapse
Affiliation(s)
- Zhao-You Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hua-Li Kang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Duan
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Zheng
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian-Ning Li
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhu-Juan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
82
|
Wang J, Zhang Y, Xia J, Cai T, Du J, Chen J, Li P, Shen Y, Zhang A, Fu B, Gao X, Miao F, Zhang J, Teng G. Neuronal PirB Upregulated in Cerebral Ischemia Acts as an Attractive Theranostic Target for Ischemic Stroke. J Am Heart Assoc 2018; 7:JAHA.117.007197. [PMID: 29378731 PMCID: PMC5850238 DOI: 10.1161/jaha.117.007197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Ischemic stroke is a complex disease with multiple etiologies and clinical manifestations. Paired immunoglobulin-like receptor B (PirB), which is originally thought to function exclusively in the immune system, is now also known to be expressed by neurons. A growing number of studies indicate that PirB can inhibit neurite outgrowth and restrict neuronal plasticity. The aim of the study is to investigate whether PirB can be an attractive theranostic target for ischemic stroke. METHODS AND RESULTS First, we investigated the spatial-temporal expression of PirB in multiple ischemic stroke models, including transient middle cerebral artery occlusion, photothrombotic cerebral cortex ischemia, and the neuronal oxygen glucose deprivation model. Then, anti-PirB immunoliposome nanoprobe was developed by thin-film hydration method and investigated its specific targeting in vitro and in vivo. Finally, soluble PirB ectodomain (sPirB) protein delivered by polyethylene glycol-modified nanoliposome was used as a therapeutic reagent for ischemic stroke by blocking PirB binding to its endogenous ligands. These results showed that PirB was significantly upregulated after cerebral ischemic injury in ischemic stroke models. Anti-PirB immunoliposome nanoprobe was successfully developed and specifically bound to PirB in vitro. There was accumulation of anti-PirB immunoliposome nanoprobe in the ischemic hemisphere in vivo. Soluble PirB ectodomains remarkably improved ischemic stroke model recovery by liposomal delivery system. CONCLUSIONS These data indicated that PirB was a significant element in the pathological process of cerebral ischemia. Therefore, PirB may act as a novel theranostic target for ischemic stroke.
Collapse
Affiliation(s)
- Jie Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China.,Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, China
| | - Ying Zhang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Jing Xia
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Tingting Cai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Jiawei Du
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Jinpeng Chen
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Ping Li
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Yuqing Shen
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Bo Fu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xueren Gao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Fenqin Miao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China .,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital Medical School Southeast University, Nanjing, China
| |
Collapse
|
83
|
Zong X, Wu S, Li F, Lv L, Han D, Zhao N, Yan X, Hu S, Xu T. Transplantation of VEGF-mediated bone marrow mesenchymal stem cells promotes functional improvement in a rat acute cerebral infarction model. Brain Res 2017; 1676:9-18. [DOI: 10.1016/j.brainres.2017.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 11/25/2022]
|
84
|
Zhao Z, Ong LK, Johnson S, Nilsson M, Walker FR. Chronic stress induced disruption of the peri-infarct neurovascular unit following experimentally induced photothrombotic stroke. J Cereb Blood Flow Metab 2017; 37:3709-3724. [PMID: 28304184 PMCID: PMC5718325 DOI: 10.1177/0271678x17696100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How stress influences brain repair is an issue of considerable importance, as patients recovering from stroke are known to experience high and often unremitting levels of stress post-event. In the current study, we investigated how chronic stress modified the key cellular components of the neurovascular unit. Using an experimental model of focal cortical ischemia in male C57BL/6 mice, we examined how exposure to a persistently aversive environment, induced by the application of chronic restraint stress, altered the cortical remodeling post-stroke. We focused on systematically investigating changes in the key components of the neurovascular unit (i.e. neurons, microglia, astrocytes, and blood vessels) within the peri-infarct territories using both immunohistochemistry and Western blotting. The results from our study indicated that exposure to chronic stress exerted a significant suppressive effect on each of the key cellular components involved in neurovascular remodeling. Co-incident with these cellular changes, we observed that chronic stress was associated with an exacerbation of motor impairment 42 days post-event. Collectively, these results highlight the vulnerability of the peri-infarct neurovascular unit to the negative effects of chronic stress.
Collapse
Affiliation(s)
- Zidan Zhao
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Lin Kooi Ong
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Sarah Johnson
- 4 School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Frederick R Walker
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| |
Collapse
|
85
|
Fang X, Li Y, Qiao J, Guo Y, Miao M. Neuroprotective effect of total flavonoids from Ilex pubescens against focal cerebral ischemia/reperfusion injury in rats. Mol Med Rep 2017; 16:7439-7449. [PMID: 28944915 PMCID: PMC5865877 DOI: 10.3892/mmr.2017.7540] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
Ilex pubescens is commonly used in traditional Chinese medicine to treat cardiovascular and cerebrovascular diseases, such as coronary artery disease and stroke. However, the underlying mechanisms remain to be fully elucidated. The aim of the present study was to investigate the effects of Ilex pubescens total flavonoids (IPTF) on neuroprotection and the potential mechanisms in a rat model of focal cerebral ischemia/reperfusion (I/R) injury. Rats were pretreated with intragastric administration of IPTF at doses of 200 and 100 mg/kg for 5 days; middle cerebral artery occlusion surgery was then performed to induce cerebral I/R injury. Neurological deficits were determined using the 5‑point neurological function score evaluation system, brain infarct sizes were determined by 2,3,5‑triphenyltetrazolium chloride staining and alterations in brain histology were determined by hematoxylin and eosin staining. The neurological deficit score, the infarcted area and the brain tissue pathological injury were significantly reduced when the rats were pretreated with IPTF. In addition, inflammatory mediators and neurotrophic factors in the brain were investigated. IPTF pretreatment decreased the activities of total nitric oxide synthase (TNOS), induced NOS (iNOS) and constitutive NOS (cNOS), and the levels of nitric oxide (NO), interleukin‑1β (IL‑1β) and tumor necrosis factor‑α (TNF‑α), however, it increased the levels of IL‑10 in brain tissues. Furthermore, pretreatment with IPTF also increased the protein expressions of brain‑derived neurotrophic factor, glial cell‑derived neurotrophic factor and vascular endothelial growth factor, when compared with the model group. In conclusion, the results of the present study demonstrated that IPTF has a neuroprotective effect against focal cerebral I/R injury in rats. The mechanism may be associated with the decreased production of certain proinflammatory cytokines including NO, IL‑1β, TNF‑α, TNOS, iNOS and cNOS, the increased production of the anti‑inflammatory cytokine IL‑10 and the increased secretion of neurotrophic factors.
Collapse
Affiliation(s)
- Xiaoyan Fang
- Department of Pharmacology, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Yujie Li
- Pharmacology Laboratory, School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Jingyi Qiao
- Science and Technology Division, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Ying Guo
- Institute of Bioengineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Mingsan Miao
- Science and Technology Division, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
86
|
Lugo-Hernandez E, Squire A, Hagemann N, Brenzel A, Sardari M, Schlechter J, Sanchez-Mendoza EH, Gunzer M, Faissner A, Hermann DM. 3D visualization and quantification of microvessels in the whole ischemic mouse brain using solvent-based clearing and light sheet microscopy. J Cereb Blood Flow Metab 2017; 37:3355-3367. [PMID: 28350253 PMCID: PMC5624395 DOI: 10.1177/0271678x17698970] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The visualization of cerebral microvessels is essential for understanding brain remodeling after stroke. Injection of dyes allows for the evaluation of perfused vessels, but has limitations related either to incomplete microvascular filling or leakage. In conventional histochemistry, the analysis of microvessels is limited to 2D structures, with apparent limitations regarding the interpretation of vascular circuits. Herein, we developed a straight-forward technique to visualize microvessels in the whole ischemic mouse brain, combining the injection of a fluorescent-labeled low viscosity hydrogel conjugate with 3D solvent clearing followed by automated light sheet microscopy. We performed transient middle cerebral artery occlusion in C57Bl/6j mice and acquired detailed 3D vasculature images from whole brains. Subsequent image processing, rendering and fitting of blood vessels to a filament model was employed to calculate vessel length density, resulting in 0.922 ± 0.176 m/mm3 in healthy tissue and 0.329 ± 0.131 m/mm3 in ischemic tissue. This analysis showed a marked loss of capillaries with a diameter ≤ 10 µm and a more moderate loss of microvessels in the range > 10 and ≤ 20 µm, whereas vessels > 20 µm were unaffected by focal cerebral ischemia. We propose that this protocol is highly suitable for studying microvascular injury and remodeling post-stroke.
Collapse
Affiliation(s)
- Erlen Lugo-Hernandez
- 1 Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,2 Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany.,3 Department of Physiology and Biochemistry, School of Medicine, Faculty of Health Sciences, University of Carabobo, La Morita, Venezuela
| | - Anthony Squire
- 4 Institute for Experimental Immunology and Imaging and Imaging Center Essen (IMCES), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nina Hagemann
- 1 Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Brenzel
- 4 Institute for Experimental Immunology and Imaging and Imaging Center Essen (IMCES), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maryam Sardari
- 1 Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jana Schlechter
- 1 Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Matthias Gunzer
- 4 Institute for Experimental Immunology and Imaging and Imaging Center Essen (IMCES), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Faissner
- 2 Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Dirk M Hermann
- 1 Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
87
|
Fan Y, Ding S, Sun Y, Zhao B, Pan Y, Wan J. MiR-377 Regulates Inflammation and Angiogenesis in Rats After Cerebral Ischemic Injury. J Cell Biochem 2017; 119:327-337. [PMID: 28569430 DOI: 10.1002/jcb.26181] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/31/2017] [Indexed: 01/11/2023]
Abstract
Ischemic stroke is the leading cause of disabilities worldwide. MicroRNA-377 (miR-377) plays important roles in ischemic injury. The present study focused on the mechanisms of miR-377 in protecting ischemic brain injury in rats. Cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in rats. Primary rat microglial cells and brain microvascular endothelial cells (BMECs) were exposed to oxygen-glucose deprivation (OGD). The concentrations of cytokines (TNF-α, IL-1β, IL-6, IFN-γ, TGF-β, MMP2, COX2, and iNOS) in the culture medium were measured by specific ELISA. Tube formation assay was for the in vitro study of angiogenesis. Luciferase reporter assay was performed to confirm whether VEGF and EGR2 were direct targets of miR-377. The MCAO rats were intracerebroventricular (ICV) injection of miR-377 inhibitor to assess its protective effects in vivo. MiR-377 levels were decreased in the rat brain tissues at 1, 3, and 7 d after MCAO. Both microglia cells and BMECs under OGD showed markedly lower expression levels of miR-377 while higher expression levels of EGR2 and VEGF compared to those under normoxia conditions. Knockdown of miR-377 inhibited microglial activation and the release of pro-inflammatory cytokines after OGD. Suppression of miR-377 promoted the capillary-like tube formation and cell proliferation and migration of BMECs. The anti-inflammation effect of EGR2 and the angiogenesis effect of VEGF were regulated by miR-377 after OGD. Inhibition of miR-377 decreased cerebral infarct volume and suppressed cerebral inflammation but promoted angiogenesis in MCAO rats. Knockdown of miR-377 lessened the ischemic brain injury through promoting angiogenesis and suppressing cerebral inflammation. J. Cell. Biochem. 119: 327-337, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yiling Fan
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Shenghao Ding
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yameng Sun
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yaohua Pan
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jieqing Wan
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
88
|
Li Y, Zhang X, Cui L, Chen R, Zhang Y, Zhang C, Zhu X, He T, Shen Z, Dong L, Zhao J, Wen Y, Zheng X, Li P. Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK2/STAT3 signaling pathway after ischemic stroke in mice. J Neurochem 2017; 143:87-99. [PMID: 28771727 DOI: 10.1111/jnc.14140] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Yaoru Li
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xiangjian Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Lili Cui
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Rong Chen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Ye Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Cong Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xingyuan Zhu
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Tingting He
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Zuyuan Shen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Lipeng Dong
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Jingru Zhao
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Ya Wen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xiufen Zheng
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Pan Li
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| |
Collapse
|
89
|
Xu Z, Han K, Chen J, Wang C, Dong Y, Yu M, Bai R, Huang C, Hou L. Vascular endothelial growth factor is neuroprotective against ischemic brain injury by inhibiting scavenger receptor A expression on microglia. J Neurochem 2017. [PMID: 28632969 DOI: 10.1111/jnc.14108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zheng Xu
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Kaiwei Han
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Jigang Chen
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Chunhui Wang
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Yan Dong
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Mingkun Yu
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Rulin Bai
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Chenguang Huang
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Lijun Hou
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| |
Collapse
|
90
|
Li J, Li C, Yuan W, Wu J, Li J, Li Z, Zhao Y. Therapeutic hypothermia attenuates brain edema in a pig model of cardiac arrest: Possible role of the angiopoietin-Tie-2 system. Am J Emerg Med 2017; 35:993-999. [DOI: 10.1016/j.ajem.2017.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 12/18/2022] Open
|
91
|
Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab 2017; 37:2320-2339. [PMID: 28378621 PMCID: PMC5531360 DOI: 10.1177/0271678x17701460] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The critical role of the vasculature and its repair in neurological disease states is beginning to emerge particularly for stroke, dementia, epilepsy, Parkinson's disease, tumors and others. However, little attention has been focused on how the cerebral vasculature responds following traumatic brain injury (TBI). TBI often results in significant injury to the vasculature in the brain with subsequent cerebral hypoperfusion, ischemia, hypoxia, hemorrhage, blood-brain barrier disruption and edema. The sequalae that follow TBI result in neurological dysfunction across a host of physiological and psychological domains. Given the importance of restoring vascular function after injury, emerging research has focused on understanding the vascular response after TBI and the key cellular and molecular components of vascular repair. A more complete understanding of vascular repair mechanisms are needed and could lead to development of new vasculogenic therapies, not only for TBI but potentially vascular-related brain injuries. In this review, we delineate the vascular effects of TBI, its temporal response to injury and putative biomarkers for arterial and venous repair in TBI. We highlight several molecular pathways that may play a significant role in vascular repair after brain injury.
Collapse
Affiliation(s)
- Arjang Salehi
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- 3 Department of Physiology and Pharmacology Loma Linda University School of Medicine, CA, USA.,4 Department of Anesthesiology Loma Linda University School of Medicine, CA, USA.,5 Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Andre Obenaus
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA.,6 Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
92
|
Elevated Markers of Vascular Remodeling and Arterial Stiffness Are Associated With Neurocognitive Function in Older HIV+ Adults on Suppressive Antiretroviral Therapy. J Acquir Immune Defic Syndr 2017; 74:134-141. [PMID: 27828873 DOI: 10.1097/qai.0000000000001230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND HIV is associated with elevated markers of vascular remodeling that may contribute to arterial fibrosis and stiffening and changes in pulse pressure (PP). These changes may, in turn, deleteriously affect autoregulation of cerebral blood flow and neurocognitive function. METHODS To evaluate these mechanisms, we studied markers of vascular remodeling, PP, and neurocognitive function among older (≥50 years of age) HIV-infected (HIV+, n = 72) and HIV-seronegative (HIV-, n = 36) adults. Participants completed standardized neurobehavioral and neuromedical assessments. Neurocognitive functioning was evaluated using a well-validated comprehensive battery. Three plasma biomarkers of vascular remodeling (ie, angiopoietin 2, Tie-2, and vascular endothelial growth factor, VEGF) were collected. RESULTS HIV+ and HIV- participants had similar levels of plasma angiopoietin 2 (P = 0.48), Tie-2 (P = 0.27), VEGF (P = 0.18), and PP (P = 0.98). In a multivariable regression model, HIV interacted with Tie-2 (β = 0.41, P < 0.01) and VEGF (β = -0.43, P = 0.01) on neurocognitive function, such that lower Tie-2 and higher VEGF values were associated with worse neurocognitive function for HIV+ participants. Greater Tie-2 values were associated with increased PP (r = 0.31, P < 0.01). In turn, PP demonstrated a quadratic association with neurocognitive function (β = -0.33, P = 0.01), such that lower and higher, relative to mean sample, PP values were associated with worse neurocognitive function. CONCLUSIONS These findings indicate that vascular remodeling and altered cerebral blood flow autoregulation contribute to neurocognitive function. Furthermore, HIV moderates the association between vascular remodeling and neurocognitive function but not the association between PP and neurocognitive function.
Collapse
|
93
|
Khoshnam SE, Winlow W, Farzaneh M. The Interplay of MicroRNAs in the Inflammatory Mechanisms Following Ischemic Stroke. J Neuropathol Exp Neurol 2017; 76:548-561. [DOI: 10.1093/jnen/nlx036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
94
|
Zhao J, Bai Y, Jin L, Weng Y, Wang Y, Wu H, Li X, Huang Y, Wang S. A functional variant in the 3'-UTR of VEGF predicts the 90-day outcome of ischemic stroke in Chinese patients. PLoS One 2017; 12:e0172709. [PMID: 28234972 PMCID: PMC5325536 DOI: 10.1371/journal.pone.0172709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/08/2017] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) plays critical roles in angiogenesis and vasculogenesis, which are associated with post-stroke functional recovery. However, the effects of the VEGFA polymorphisms on the outcome of ischemic stroke (IS) have been rarely reported. We therefore investigated the associations of +936C/T variant (rs3025039) with the susceptibilities and the 90-day outcomes from 494 IS patients and 337 healthy controls in Chinese population through the establishment of logistic multivariate regression model. Stroke severity at admission and outcome of 90 days were respectively assessed according to the National Institutes of Health Stroke Scale and the modified Rankin Scale. The analysis showed that there were no significant associations of the rs3025039 genotypes with the susceptibility (P = 0.229) and the severity (P = 0.734). However, when we divided the 308 IS patients into two groups according to the different outcomes, we found that the rs3025039 TC+TT genotype significantly increased the risk of poor recovery [adjusted odds ratio (OR), 1.99; 95% confidence interval (CI), 1.18–3.37]. Interestingly, we observed another 3ˈUTR variant, +1451C/T (rs3025040), exhibited strong linkage disequilibrium (r2 = 1.0) with +936C/T and was located in a predicted microRNA-binding site. The rs3025040 T allele significantly decreased the luciferase activities in four cell lines, which indicated a potential disruption of the miRNA-mRNA interaction that would result in lower VEGF expression levels. Our data suggested that the +936C/T variants significantly increased the risk of poorer stroke outcome by affecting the bindings of miR-199a and miR-199b to VEGF mRNA at the rs30250340 polymorphic site.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neurology, Minhang district central hospital, Shanghai, China
| | - Yun Bai
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
- * E-mail: (SW); (YB)
| | - Lei Jin
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yingfeng Weng
- Department of Neurology, Minhang district central hospital, Shanghai, China
| | - Yujie Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Hui Wu
- Department of Neurology, Minhang district central hospital, Shanghai, China
| | - Xia Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Ying Huang
- Luoxin Biotechnology Company at Shanghai, Pudong New Area, Shanghai, China
| | - Shengyue Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
- * E-mail: (SW); (YB)
| |
Collapse
|
95
|
Hui Z, Sha DJ, Wang SL, Li CS, Qian J, Wang JQ, Zhao Y, Zhang JH, Cheng HY, Yang H, Yu LJ, Xu Y. Panaxatriol saponins promotes angiogenesis and enhances cerebral perfusion after ischemic stroke in rats. Altern Ther Health Med 2017; 17:70. [PMID: 28114983 PMCID: PMC5259846 DOI: 10.1186/s12906-017-1579-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
Abstract
Background Panaxatriol saponins (PTS), an extract from the traditional Chinese herb Panax notoginseng, which has been used to treat ischemic stroke for many years in China. However, the mechanism underlying the effects of PTS remains unclear. This study aimed to determine whether PTS can protect against ischemic brain injury by promoting angiogenesis and to explore the possible mechanism by which it promotes angiogenesis. Methods Middle cerebral artery occlusion (MCAO) was induced in rats, and neurological deficit scores and brain infarct volumes were assessed. Micro-Positron emission tomography (PET) was adopted to assess cerebral perfusion, and real-time PCR and western blotting were used to evaluate vascular growth factor and Sonic hedgehog (Shh) pathway component levels. Immunofluorescence staining was used to determine capillary densities in ischemic penumbrae. Results We showed that PTS improved neurological function and reduced infarct volumes in MCAO rats. Micro-PET indicated that PTS can significantly increase 18F-fluorodeoxyglucose (18F-PDG) uptake by ischemic brain tissue and enhance cerebral perfusion after MCAO surgery. Moreover, PTS was able to increase capillary densities and enhance angiogenesis in ischemic boundary zones and up-regulate vascular endothelial growth factor (VEGF) and Angiopoietin-1 (Ang-1) expression by activating the Shh signaling pathway. Conclusion These findings indicate that PTS exerts protective effects against cerebral ischemic injury by enhancing angiogenesis and improving microperfusion. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1579-5) contains supplementary material, which is available to authorized users.
Collapse
|
96
|
Chen HS, Qi SH, Shen JG. One-Compound-Multi-Target: Combination Prospect of Natural Compounds with Thrombolytic Therapy in Acute Ischemic Stroke. Curr Neuropharmacol 2017; 15:134-156. [PMID: 27334020 PMCID: PMC5327453 DOI: 10.2174/1570159x14666160620102055] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/21/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022] Open
Abstract
Tissue plasminogen activator (t-PA) is the only FDA-approved drug for acute ischemic stroke treatment, but its clinical use is limited due to the narrow therapeutic time window and severe adverse effects, including hemorrhagic transformation (HT) and neurotoxicity. One of the potential resolutions is to use adjunct therapies to reduce the side effects and extend t-PA's therapeutic time window. However, therapies modulating single target seem not to be satisfied, and a multitarget strategy is warranted to resolve such complex disease. Recently, large amount of efforts have been made to explore the active compounds from herbal supplements to treat ischemic stroke. Some natural compounds revealed both neuro- and bloodbrain- barrier (BBB)-protective effects by concurrently targeting multiple cellular signaling pathways in cerebral ischemia-reperfusion injury. Thus, those compounds are potential to be one-drug-multi-target agents as combined therapy with t-PA for ischemic stroke. In this review article, we summarize current progress about molecular targets involving in t-PA-mediated HT and neurotoxicity in ischemic brain injury. Based on these targets, we select 23 promising compounds from currently available literature with the bioactivities simultaneously targeting several important molecular targets. We propose that those compounds merit further investigation as combined therapy with t-PA. Finally, we discuss the potential drawbacks of the natural compounds' studies and raise several important issues to be addressed in the future for the development of natural compound as an adjunct therapy.
Collapse
Affiliation(s)
- Han-Sen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R, P. R China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Su-Hua Qi
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Jian-Gang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R, P. R China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| |
Collapse
|
97
|
Rud'ko AS, Efendieva MK, Budzinskaya MV, Karpilova MA. [Influence of vascular endothelial growth factor on angiogenesis and neurogenesis]. Vestn Oftalmol 2017; 133:75-81. [PMID: 28745660 DOI: 10.17116/oftalma2017133375-80] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vascular endothelial growth factor (VEGF) is known as a key mediator of angiogenesis, but there is also evidence of its broad significance in neurogenesis and neuroprotection. Cytokines of the VEGF family affect neovascularization and neural development in the brain, particularly during cerebral ischemia, in which there is a coordinated interaction of angiogenesis and neurogenesis that contributes to rapid functional recovery. This review examines the involvement of VEGF family members and their receptors in physiological and pathophysiological processes as well as the relationship between VEGF-A plasma levels and ischemic stroke.
Collapse
Affiliation(s)
- A S Rud'ko
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| | - M Kh Efendieva
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| | - M V Budzinskaya
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| | - M A Karpilova
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| |
Collapse
|
98
|
Stem Cells as a Promising Tool for the Restoration of Brain Neurovascular Unit and Angiogenic Orientation. Mol Neurobiol 2016; 54:7689-7705. [DOI: 10.1007/s12035-016-0286-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
|
99
|
Zhang X, Chen XP, Lin JB, Xiong Y, Liao WJ, Wan Q. Effect of enriched environment on angiogenesis and neurological functions in rats with focal cerebral ischemia. Brain Res 2016; 1655:176-185. [PMID: 27818208 DOI: 10.1016/j.brainres.2016.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to investigate the effect of enriched environment (EE) on cerebral angiogenesis after ischemia-reperfusion injury. Middle cerebral artery occlusion (MCAO) followed by reperfusion was performed in rats to set up an animal model of ischemia-reperfusion injury. In a set of behavioral tests, we demonstrated that the animals in the IEE (ischemia + enriched environment) group exhibited significantly improved neurological functions compared to those in the standard housing condition group. In consistent with the functional tests, smaller infarction volumes were observed in the animals of IEE group. Laser scanning confocal microscopy and 3D quantitative analysis of cerebral microvessels revealed that EE treatment increased the total vessel surface area and number of branch point in the ischemic boundary zone. IgG extraction assay showed that the blood brain barrier (BBB) leakage in the ischemic brain was attenuated after EE treatment. EE treatment also enhanced endothelial cells (ECs) proliferation and increased the expression levels of VEGF and its receptor Flk-1 after ischemia-reperfusion injury. Analyses of Spearman's correlation coefficients indicated a correlation of mNSS scores with enhanced cerebral angiogenesis. Together, the results suggest that EE treatment-induced cerebral angiogenesis may contribute to the improved neurological outcome of stroke animals after ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiu-Ping Chen
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jun-Bin Lin
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Xiong
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei-Jing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Qi Wan
- Department of Physiology, Center for Brain Clinic, Zhongnan Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
100
|
Role of Hypoxia Inducible Factor 1 in Hyperglycemia-Exacerbated Blood-Brain Barrier Disruption in Ischemic Stroke. Neurobiol Dis 2016; 95:82-92. [PMID: 27425889 DOI: 10.1016/j.nbd.2016.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a major stroke risk factor and is associated with poor functional recovery after stroke. Accumulating evidence indicates that the worsened outcomes may be due to hyperglycemia-induced cerebral vascular complications, especially disruption of the blood-brain barrier (BBB). The present study tested a hypothesis that the activation of hypoxia inducible factor-1 (HIF-1) was involved in hyperglycemia-aggravated BBB disruption in an ischemic stroke model. Non-diabetic control and Streptozotocin-induced type I diabetic mice were subjected to 90min transient middle cerebral artery occlusion (MCAO) followed by reperfusion. Our results demonstrated that hyperglycemia induced higher expression of HIF-1α and vascular endothelial growth factor (VEGF) in brain microvessels after MCAO/reperfusion. Diabetic mice showed exacerbated BBB damage and tight junction disruption, increased infarct volume as well as worsened neurological deficits. Furthermore, suppressing HIF-1 activity by specific knock-out endothelial HIF-1α ameliorated BBB leakage and brain infarction in diabetic animals. Moreover, glycemic control by insulin abolished HIF-1α up-regulation in diabetic animals and reduced BBB permeability and brain infarction. These findings strongly indicate that HIF-1 plays an important role in hyperglycemia-induced exacerbation of BBB disruption in ischemic stroke. Endothelial HIF-1 inhibition warrants further investigation as a therapeutic target for the treatment of stroke patients with diabetes.
Collapse
|