51
|
Chung S, Gebre AK, Seo J, Shelness GS, Parks JS. A novel role for ABCA1-generated large pre-β migrating nascent HDL in the regulation of hepatic VLDL triglyceride secretion. J Lipid Res 2010. [DOI: 10.1194/jlr.m900083-jlr200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
52
|
Chung S, Timmins JM, Duong M, Degirolamo C, Rong S, Sawyer JK, Singaraja RR, Hayden MR, Maeda N, Rudel LL, Shelness GS, Parks JS. Targeted deletion of hepatocyte ABCA1 leads to very low density lipoprotein triglyceride overproduction and low density lipoprotein hypercatabolism. J Biol Chem 2010; 285:12197-209. [PMID: 20178985 DOI: 10.1074/jbc.m109.096933] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss of ABCA1 activity in Tangier disease (TD) is associated with abnormal apoB lipoprotein (Lp) metabolism in addition to the complete absence of high density lipoprotein (HDL). We used hepatocyte-specific ABCA1 knock-out (HSKO) mice to test the hypothesis that hepatic ABCA1 plays dual roles in regulating Lp metabolism and nascent HDL formation. HSKO mice recapitulated the TD lipid phenotype with postprandial hypertriglyceridemia, markedly decreased LDL, and near absence of HDL. Triglyceride (TG) secretion was 2-fold higher in HSKO compared with wild type mice, primarily due to secretion of larger TG-enriched VLDL secondary to reduced hepatic phosphatidylinositol 3-kinase signaling. HSKO mice also displayed delayed clearance of postprandial TG and reduced post-heparin plasma lipolytic activity. In addition, hepatic LDLr expression and plasma LDL catabolism were increased 2-fold in HSKO compared with wild type mice. Last, adenoviral repletion of hepatic ABCA1 in HSKO mice normalized plasma VLDL TG and hepatic phosphatidylinositol 3-kinase signaling, with a partial recovery of HDL cholesterol levels, providing evidence that hepatic ABCA1 is involved in the reciprocal regulation of apoB Lp production and HDL formation. These findings suggest that altered apoB Lp metabolism in TD subjects may result from hepatic VLDL TG overproduction and increased hepatic LDLr expression and highlight hepatic ABCA1 as an important regulatory factor for apoB-containing Lp metabolism.
Collapse
Affiliation(s)
- Soonkyu Chung
- Department of Pathology/Section on Lipid Sciences, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Krapivner S, Iglesias MJ, Silveira A, Tegnér J, Björkegren J, Hamsten A, van't Hooft FM. DGAT1 participates in the effect of HNF4A on hepatic secretion of triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol 2010; 30:962-7. [PMID: 20167659 DOI: 10.1161/atvbaha.109.201426] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Hepatocyte nuclear factor-4alpha (HNF4A) is a transcription factor that influences plasma triglyceride metabolism via an as of yet unknown mechanism. In this study, we searched for the critical protein that mediates this effect using different human model systems. METHODS AND RESULTS Up- and downregulation of HNF4A in human hepatoma Huh7 and HepG2 cells was associated with marked changes in the secretion of triglyceride-rich lipoproteins (TRLs). Short interfering RNA (siRNA) inhibition of HNF4A influenced the expression of several genes, including acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1). siRNA knockdown of DGAT1 reduced DGAT1 activity and decreased the secretion of TRLs. No additive effects of combined siRNA inhibition of HNF4A and DGAT1 were found on the secretion of TRLs, whereas the increase in TRL secretion induced by HNF4A overexpression was largely abolished by DGAT1 siRNA inhibition. A putative binding site for HNF4A was defined by in silico and in vitro methods. HNF4A and DGAT1 expressions were analyzed in 80 human liver samples, and significant relationships were observed between HNF4A and DGAT1 mRNA levels (r(2)=0.50, P<0.0001) and between DGAT1 mRNA levels and plasma triglyceride concentration (r(2)=0.09, P<0.01). CONCLUSION This study identified DGAT1 as an important protein that participates in the effect of HNF4A on hepatic secretion of TRLs.
Collapse
Affiliation(s)
- Sergey Krapivner
- Cardiovascular Genetics Group, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
54
|
Syed GH, Amako Y, Siddiqui A. Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol Metab 2010; 21:33-40. [PMID: 19854061 PMCID: PMC2818172 DOI: 10.1016/j.tem.2009.07.005] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 07/17/2009] [Accepted: 07/24/2009] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) enhances its replication by modulating host cell lipid metabolism. HCV circulates in the blood in association with lipoproteins. HCV infection is associated with enhanced lipogenesis, reduced secretion, and beta-oxidation of lipids. HCV-induced imbalance in lipid homeostasis leads to steatosis. Many lipids are crucial for the virus life cycle, and inhibitors of cholesterol/fatty acid biosynthetic pathways inhibit virus replication, maturation and secretion. HCV negatively modulates the synthesis and secretion of very low-density lipoproteins (VLDL). Components involved in VLDL assembly are also required for HCV morphogenesis/secretion, suggesting that HCV co-opts the VLDL secretory pathway for its own secretion. This review highlights HCV-altered lipid metabolic events that aid the virus life cycle and ultimately promote liver disease.
Collapse
|
55
|
Cheng D, MacArthur PS, Rong S, Parks JS, Shelness GS. Alternative splicing attenuates transgenic expression directed by the apolipoprotein E promoter-enhancer based expression vector pLIV11. J Lipid Res 2009; 51:849-55. [PMID: 19965599 DOI: 10.1194/jlr.d002709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The plasmid vector pLIV11 is used commonly to achieve liver-specific expression of genes of interest in transgenic mice and rabbits. Expression is driven by the human apolipoprotein (apo)E 5' proximal promoter, which includes 5 kb of upstream sequence, exon 1, intron 1, and 5 bp of exon 2. A 3.8 kb 3' hepatic control region, derived from a region approximately 18 kb downstream of the apoE gene, enhances liver-specific expression. Here, we report that cDNA sequences inserted into the multiple cloning site (MCS) of pLIV11, which is positioned just downstream of truncated exon 2, can cause exon 2 skipping. Hence, splicing is displaced to downstream cryptic 3' splice acceptor sites causing deletion of cloned 5' untranslated mRNA sequences and, in some cases, deletion of the 5' end of an open reading frame. To prevent use of cryptic splice sites, the pLIV11 vector was modified with an engineered 3' splice acceptor site inserted immediately downstream of truncated apoE exon 2. Presence of this sequence fully shifted splicing of exon 1 from the native intron 1-exon 2 splice acceptor site to the engineered site. This finding confirmed that sequences inserted into the MCS of the vector pLIV11 can affect exon 2 recognition and provides a strategy to protect cloned sequences from alternative splicing and possible attenuation of transgenic expression.
Collapse
Affiliation(s)
- Dongmei Cheng
- Department of Pathology Section on Lipid Sciences, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
56
|
Zhao Y, Su B, Jacobs RL, Kennedy B, Francis GA, Waddington E, Brosnan JT, Vance JE, Vance DE. Lack of phosphatidylethanolamine N-methyltransferase alters plasma VLDL phospholipids and attenuates atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2009; 29:1349-55. [PMID: 19520976 DOI: 10.1161/atvbaha.109.188672] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Impaired hepatic phosphatidylcholine (PC) synthesis lowers plasma lipids. We, therefore, tested the hypothesis that lack of phosphatidylethanolamine N-methyltransferase (PEMT), a hepatic enzyme catalyzing PC biosynthesis, attenuates the development of atherosclerosis. METHODS AND RESULTS Mice deficient in both PEMT and low-density lipoprotein receptors (Pemt(-/-)/Ldlr(-/-) mice) were fed a high-fat/high-cholesterol diet for 16 weeks. Atherosclerotic lesion area was approximately 80% lower (P<0.01) in Pemt(-/-)/Ldlr(-/-) mice than in Pemt(+/+)/Ldlr(-/-) mice, consistent with the atheroprotective plasma lipoprotein profile (ie, significant reduction in very low-density lipoprotein [VLDL]/intermediate-density lipoprotein/low-density lipoprotein-associated phospholipids [approximately 45%], triacylglycerols [approximately 65%], cholesterol [approximately 58%], and cholesteryl esters [approximately 68%]). Plasma apoB was decreased by 40% to 60%, whereas high-density lipoprotein levels were not altered. In addition, PEMT deficiency reduced plasma homocysteine by 34% to 52% in Pemt(-/-)/Ldlr(-/-) mice. The molar ratio of PC/phosphatidylethanolamine in nascent VLDLs produced by Pemt(-/-)/Ldlr(-/-) mice was lower than in VLDLs in Pemt(+/+)/Ldlr(-/-) mice. Furthermore, deletion of PEMT modestly reduced hepatic VLDL secretion in Ldlr(-/-) mice and altered the rate of VLDL clearance from plasma. CONCLUSIONS This is the first report showing that inhibition of hepatic phospholipid biosynthesis attenuates atherosclerosis.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Van der Horst DJ, Roosendaal SD, Rodenburg KW. Circulatory lipid transport: lipoprotein assembly and function from an evolutionary perspective. Mol Cell Biochem 2009; 326:105-19. [PMID: 19130182 DOI: 10.1007/s11010-008-0011-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 06/05/2008] [Indexed: 02/07/2023]
Abstract
Circulatory transport of neutral lipids (fat) in animals relies on members of the large lipid transfer protein (LLTP) superfamily, including mammalian apolipoprotein B (apoB) and insect apolipophorin II/I (apoLp-II/I). Latter proteins, which constitute the structural basis for the assembly of various lipoproteins, acquire lipids through microsomal triglyceride transfer protein (MTP)--another LLTP family member--and bind them by means of amphipathic structures. Comparative research reveals that LLTPs have evolved from the earliest animals and additionally highlights the structural and functional adaptations in these lipid carriers. For instance, in contrast to mammalian apoB, the insect apoB homologue, apoLp-II/I, is post-translationally cleaved by a furin, resulting in their appearance of two non-exchangeable apolipoproteins in the insect low-density lipoprotein (LDL) homologue, high-density lipophorin (HDLp). An important difference between mammalian and insect lipoproteins relates to the mechanism of lipid delivery. Whereas in mammals, endocytic uptake of lipoprotein particles, mediated via members of the LDL receptor (LDLR) family, results in their degradation in lysosomes, the insect HDLp was shown to act as a reusable lipid shuttle which is capable of reloading lipid. Although the recent identification of a lipophorin receptor (LpR), a homologue of LDLR, reveals that endocytic uptake of HDLp may constitute an additional mechanism of lipid delivery, the endocytosed lipoprotein appears to be recycled in a transferrin-like manner. Binding studies indicate that the HDLp-LpR complex, in contrast to the LDL-LDLR complex, is resistant to dissociation at endosomal pH as well as by treatment with EDTA mimicking the drop in Ca(2+) concentration in the endosome. This remarkable stability of the ligand-receptor complex may provide a crucial key to the recycling mechanism. Based on the binding and dissociation capacities of mutant and hybrid receptors, the specific binding interaction of the ligand-binding domain of the receptor with HDLp was characterized. These structural similarities and functional adaptations of the lipid transport systems operative in mammals and insects are discussed from an evolutionary perspective.
Collapse
Affiliation(s)
- Dick J Van der Horst
- Division of Endocrinology and Metabolism, Department of Biology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | |
Collapse
|
58
|
Ledford AS, Cook VA, Shelness GS, Weinberg RB. Structural and dynamic interfacial properties of the lipoprotein initiating domain of apolipoprotein B. J Lipid Res 2009; 50:108-15. [PMID: 18711207 PMCID: PMC2602867 DOI: 10.1194/jlr.m800324-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/25/2008] [Indexed: 11/20/2022] Open
Abstract
To better understand the earliest steps in the assembly of triglyceride (TG)-rich lipoproteins, we compared the biophysical and interfacial properties of two closely related apolipoprotein B (apoB) truncation mutants, one of which contains the complete lipoprotein initiating domain (apoB20.1; residues 1-912), and one of which, by virtue of a 50 amino acid C-terminal truncation, is incapable of forming nascent lipoproteins (apoB19; residues 1-862). Spectroscopic studies detected no major differences in secondary structure, and only minor differences in conformation and thermodynamic stability, between the two truncation mutants. Monolayer studies revealed that both apoB19 and apoB20.1 bound to and penetrated egg phosphatidylcholine (EPC) monolayers; however, the interfacial exclusion pressure of apoB20.1 was higher than apoB19 (25.1 mN/m vs. 22.8 mN/m). Oil drop tensiometry revealed that both proteins bound rapidly to the hydrophobic triolein/water interface, reducing interfacial tension by approximately 20 mN/m. However, when triolein drops were first coated with phospholipids (PL), apoB20.1 bound with faster kinetics than apoB19 and also displayed greater interfacial elasticity (26.9 +/- 0.8 mN/m vs. 22.9 +/- 0.8 mN/m). These data establish that the transition of apoB to assembly competence is accompanied by increases in surface activity and elasticity, but not by significant changes in global structure.
Collapse
Affiliation(s)
- Aubrey S Ledford
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
59
|
Babin PJ, Gibbons GF. The evolution of plasma cholesterol: direct utility or a "spandrel" of hepatic lipid metabolism? Prog Lipid Res 2008; 48:73-91. [PMID: 19049814 DOI: 10.1016/j.plipres.2008.11.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 02/07/2023]
Abstract
Fats provide a concentrated source of energy for multicellular organisms. The efficient transport of fats through aqueous biological environments raises issues concerning effective delivery to target tissues. Furthermore, the utilization of fatty acids presents a high risk of cytotoxicity. Improving the efficiency of fat transport while simultaneously minimizing the cytotoxic risk confers distinct selective advantages. In humans, most of the plasma cholesterol is associated with low-density lipoprotein (LDL), a metabolic by-product of very-low-density lipoprotein (VLDL), which originates in the liver. However, the functions of VLDL are not clear. This paper reviews the evidence that LDL arose as a by-product during the natural selection of VLDL. The latter, in turn, evolved as a means of improving the efficiency of diet-derived fatty acid storage and utilization, as well as neutralizing the potential cytotoxicity of fatty acids while conserving their advantages as a concentrated energy source. The evolutionary biology of lipid transport processes has provided a fascinating insight into how and why these VLDL functions emerged during animal evolution. As causes of historical origin must be separated from current utilities, our spandrel-LDL theory proposes that LDL is a spandrel of VLDL selection, which appeared non-adaptively and may later have become crucial for vertebrate fitness.
Collapse
Affiliation(s)
- Patrick J Babin
- Université Bordeaux 1, Génomique et Physiologie des Poissons, UMR NuAGe, 33405 Talence, France
| | | |
Collapse
|
60
|
Yen CLE, Stone SJ, Koliwad S, Harris C, Farese RV. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 2008; 49:2283-301. [PMID: 18757836 PMCID: PMC3837458 DOI: 10.1194/jlr.r800018-jlr200] [Citation(s) in RCA: 810] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 08/29/2008] [Indexed: 12/18/2022] Open
Abstract
Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases.
Collapse
Affiliation(s)
- Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
53706
| | - Scot J. Stone
- Department of Biochemistry, University of Saskatchewan, Saskatoon,
Saskatchewan, Canada
| | - Suneil Koliwad
- Gladstone Institute of Cardiovascular Disease, University of California, San
Francisco, San Francisco, CA 94141
- Cardiovascular Research Institute, University of California, San
Francisco, San Francisco, CA 94141
- Department of Medicine, University of California, San Francisco,
San Francisco, CA 94141
| | - Charles Harris
- Gladstone Institute of Cardiovascular Disease, University of California, San
Francisco, San Francisco, CA 94141
- Cardiovascular Research Institute, University of California, San
Francisco, San Francisco, CA 94141
- Department of Medicine, University of California, San Francisco,
San Francisco, CA 94141
| | - Robert V. Farese
- Gladstone Institute of Cardiovascular Disease, University of California, San
Francisco, San Francisco, CA 94141
- Cardiovascular Research Institute, University of California, San
Francisco, San Francisco, CA 94141
- Department of Medicine, University of California, San Francisco,
San Francisco, CA 94141
- Department of Biochemistry and Biophysics, University of
California, San Francisco, San Francisco, CA 94141
| |
Collapse
|
61
|
Biogenesis of cytoplasmic lipid droplets: from the lipid ester globule in the membrane to the visible structure. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:399-407. [PMID: 18996222 DOI: 10.1016/j.bbalip.2008.10.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/09/2008] [Accepted: 10/06/2008] [Indexed: 01/22/2023]
Abstract
The cytoplasmic lipid droplet (CLD) and very low-density lipoprotein are generated from the lipid ester synthesized in the endoplasmic reticulum. The lipid ester deposited between the two membrane leaflets is supposed to bulge toward the cytoplasm to make a nascent CLD, but its size must be below the resolution limit of conventional techniques and the detectable CLD should only form after acquisition of additional lipid esters. The CLD is different from vesicular organelles in that the internal content is highly hydrophobic and the shape is invariably spherical. Due to its unique characteristics, quantitative discordance between the surface and the volume may occur in the growth and/or involution processes of the CLD. The possibility that these processes may give rise to the structural and functional diversities of the CLD is discussed.
Collapse
|
62
|
Silvain M, Bligny D, Aparicio T, Laforêt P, Grodet A, Peretti N, Ménard D, Djouadi F, Jardel C, Bégué JM, Walker F, Schmitz J, Lachaux A, Aggerbeck LP, Samson-Bouma ME. Anderson’s disease (chylomicron retention disease): a new mutation in the SARA2 gene associated with muscular and cardiac abnormalities. Clin Genet 2008; 74:546-52. [DOI: 10.1111/j.1399-0004.2008.01069.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Serino JC, Almenara DP, Penha-Scarabotto C, de Moura JP, Winter CE. Vitellin-binding proteins in the nematode Oscheius tipulae (Nematoda, Rhabditida). Comp Biochem Physiol B Biochem Mol Biol 2008; 151:330-5. [PMID: 18725312 DOI: 10.1016/j.cbpb.2008.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/24/2008] [Accepted: 07/29/2008] [Indexed: 01/07/2023]
Abstract
We describe the first application of a non-radioactive ligand-blotting technique to the characterization of proteins interacting with nematode vitellins. Chromatographically purified vitellins from the free-living nematode Oscheius tipulae were labeled with fluorescein in vitro. Ligand-blotting assays with horseradish peroxidase-conjugated anti-fluorescein antibodies showed that labeled vitellins reacted specifically with a polypeptide of approximately 100 kDa, which we named P100. This polypeptide is a specific worm's vitellin-binding protein that is present only in adult worms. Blots containing purified O. tipulae vitellin preparations showed no detectable signal in the 100 kDa region, ruling out any possibility of yolk polypeptides self-assembling under the conditions used in our assay. Experiments done in the presence of alpha-methyl mannoside ruled out the possibility of vitellins binding to P100 through mannose residues. Triton X-114 fractionation of whole worm extracts showed that P100 is either a membrane protein or has highly hydrophobic regions.
Collapse
Affiliation(s)
- João Carlos Serino
- Department of Parasitology, Instituto de Ciências Biomédicas - Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, 05508-900 São Paulo - SP, Brazil
| | | | | | | | | |
Collapse
|
64
|
Allister EM, Mulvihill EE, Barrett PHR, Edwards JY, Carter LP, Huff MW. Inhibition of apoB secretion from HepG2 cells by insulin is amplified by naringenin, independent of the insulin receptor. J Lipid Res 2008; 49:2218-29. [PMID: 18587069 DOI: 10.1194/jlr.m800297-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hepatic overproduction of apolipoprotein B (apoB)-containing lipoproteins is characteristic of the dyslipidemia associated with insulin resistance. Recently, we demonstrated that the flavonoid naringenin, like insulin, decreased apoB secretion from HepG2 cells by activation of both the phosphoinositide-3-kinase (PI3-K) pathway and the mitogen-activated protein kinase/extracellular-regulated kinase (MAPK(erk)) pathway. In the present study, we determined whether naringenin-induced signaling required the insulin receptor (IR) and sensitized the cell to the effects of insulin, and whether the kinetics of apoB assembly and secretion in cells exposed to naringenin were similar to those of insulin. Immunoblot analysis revealed that insulin stimulated maximal phosphorylation of IR and IR substrate-1 after 10 min, whereas naringenin did not affect either at any time point up to 60 min. The combination of naringenin and submaximal concentrations of insulin potentiated extracellular-regulated kinase 1/2 activation and enhanced upregulation of the LDL receptor, downregulation of microsomal triglyceride transfer protein expression, and inhibition of apoB-100 secretion. Multicompartmental modeling of apoB pulse-chase studies revealed that attenuation of secreted radiolabeled apoB in naringenin- or insulin-treated cells was similar under lipoprotein-deficient or oleate-stimulated conditions. Naringenin and insulin both stimulated intracellular apoB degradation via a kinetically defined rapid pathway. Therefore, naringenin, like insulin, inhibits apoB secretion through activation of both PI3-K and MAPK(erk) signaling, resulting in similar kinetics of apoB secretion. However, the mechanism for naringenin-induced signaling is independent of the IR. Naringenin represents a possible strategy for reduction of hepatic apoB secretion, particularly in the setting of insulin resistance.
Collapse
Affiliation(s)
- Emma M Allister
- Robarts Research Institute, Departments of Medicine and Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
65
|
Ohsaki Y, Cheng J, Suzuki M, Fujita A, Fujimoto T. Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J Cell Sci 2008; 121:2415-22. [PMID: 18577578 DOI: 10.1242/jcs.025452] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Apolipoprotein B-100 (ApoB) is a major component of very-low-density lipoproteins, and is deposited in a region around lipid droplets (LDs) called the ;ApoB-crescent'. The ApoB-crescent is thought to be related to ApoB degradation because it drastically increases when proteasome or autophagy is inhibited. In the present study, we found that ApoB-crescents were significantly reduced when ApoB lipidation was suppressed by either the inhibition or knockdown of the microsomal triglyceride-transfer protein. By contrast, ApoB-crescents increased under conditions that are presumed to cause lipidated ApoB abnormalities in secretory compartments. By electron microscopic analyses, we identified the ApoB-crescent as a thin cholesterol-rich ER cistern fused to an LD, and - topologically - this structure is equivalent to a lipid-ester globule between the two leaflets of the ER membrane. ApoB localized in the thin cisternal lumen, and its binding to LDs was resistant to alkaline treatment. Overexpression of ADRP or TIP47 suppressed the increase in the number of ApoB-crescents, whereas knockdown of these proteins had the opposite effect. From these results, we inferred that the ApoB-crescent is formed by an LD that is arrested in the ER membrane by tight binding of lipidated ApoB to its luminal surface. We suggest that ApoB processing and LD formation are closely linked.
Collapse
Affiliation(s)
- Yuki Ohsaki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | |
Collapse
|
66
|
Jin UH, Kang YJ, Chang YC, Kim CH. Secretion of atherogenic risk factor apolipoprotein B-100 is increased by a potential mechanism of JNK/PKC-mediated insulin resistance in liver cells. J Cell Biochem 2008; 103:908-19. [PMID: 17647275 DOI: 10.1002/jcb.21462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apolipoprotein B-100 (ApoB) is the main protein of the atherogenic lipoproteins and plasma ApoB levels reflect the total numbers of atherogenic lipoproteins. Induction of insulin resistance was accompanied by a considerable rise in the production of hepatic very low density lipoprotein (VLDL) containing ApoB and triglyceride. Increased plasma levels of ApoB and triglyceride in VLDL are common characteristics of the dyslipidemia associated with insulin resistance and type 2 diabetes mellitus. Thus, we investigate whether phorbol 12-myristate-13-acetate (PMA)-induced insulin resistance affects the increase of ApoB secretion. PMA increased ApoB secretion and transcriptional level of microsomal triglyceride transfer protein (MTP). PMA treatment also resulted in increase of insulin receptor substrate 1 (IRS1) serine312 (Ser312) and serine1101 (Ser1101) phosphorylation and induction of IRS1 degradation. Additionally, PMA induced activation of c-jun N-terminal kinase (JNK) and protein kinase C (PKC) isoforms (alpha, betaI, delta, zeta, theta), and reduced AKT8 virus oncogene cellular homolog (AKT) activation in a time dependent manner. PMA-induced ApoB secretion, MTP promoter activities, and IRS1 degradation was significantly decreased by treatment of JNK and PKCs inhibitors. Orthovanadate, a potent tyrosine phosphatase inhibitor, increased tyrosine phosphorylation of IRS1 and decreased ApoB secretion of Chang liver cells although PMA was co-treated. From the results, it was concluded that PMA-induced insulin resistance, through induction of serine phosphorylation of IRS1 mediated by activated JNK and PKCs, increases ApoB secretion in Chang liver cells.
Collapse
Affiliation(s)
- Un-Ho Jin
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Suwon, Kyunggi-Do 440-746, Korea
| | | | | | | |
Collapse
|
67
|
Willnow TE, Hammes A, Eaton S. Lipoproteins and their receptors in embryonic development: more than cholesterol clearance. Development 2007; 134:3239-49. [PMID: 17720693 DOI: 10.1242/dev.004408] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previously, the relevance of lipoproteins and their receptors has mainly been discussed in terms of cholesterol clearance in the adult organism. Now, findings from nematodes to fruit flies to mammals all point towards novel and unexpected roles for lipoprotein metabolism in the control of key regulatory pathways in the developing embryo, including signaling through steroid hormones and throughout the hedgehog and Wnt signaling pathways. Here, we discuss the emerging view of how lipoproteins and their receptors regulate embryogenesis.
Collapse
Affiliation(s)
- Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, D-13125 Berlin, Germany.
| | | | | |
Collapse
|
68
|
Rava P, Hussain MM. Acquisition of triacylglycerol transfer activity by microsomal triglyceride transfer protein during evolution. Biochemistry 2007; 46:12263-74. [PMID: 17924655 PMCID: PMC2536605 DOI: 10.1021/bi700762z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microsomal triglyceride transfer protein (MTP) is essential for the assembly of neutral-lipid-rich apolipoprotein B (apoB) lipoproteins. Previously we reported that the Drosophila MTP transfers phospholipids but does not transfer triglycerides. In contrast, human MTP transfers both lipids. To explore the acquisition of triglyceride transfer activity by MTP, we evaluated amino acid sequences, protein structures, and the biochemical and cellular properties of various MTP orthologues obtained from species that diverged during evolution. All MTP orthologues shared similar secondary and tertiary structures, associated with protein disulfide isomerase, localized to the endoplasmic reticulum, and supported apoB secretion. While vertebrate MTPs transferred triglyceride, invertebrate MTPs lacked this activity. Thus, triglyceride transfer activity was acquired during the transition from invertebrates to vertebrates. Within vertebrates, fish, amphibians, and birds displayed 27%, 40%, and 100% triglyceride transfer activity compared to mammals. We conclude that MTP triglyceride transfer activity first appeared in fish and speculate that the acquisition of triglyceride transfer activity by MTP provided for a significant advantage in the evolution of larger and more complex organisms.
Collapse
Affiliation(s)
- Paul Rava
- Molecular and Cellular Biology Program, School of Graduate Studies, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | | |
Collapse
|
69
|
Brown JM, Chung S, Das A, Shelness GS, Rudel LL, Yu L. CGI-58 facilitates the mobilization of cytoplasmic triglyceride for lipoprotein secretion in hepatoma cells. J Lipid Res 2007; 48:2295-305. [PMID: 17664529 DOI: 10.1194/jlr.m700279-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative Gene Identification-58 (CGI-58) is a member of the alpha/beta-hydrolase family of proteins. Mutations in the human CGI-58 gene are associated with Chanarin-Dorfman syndrome, a rare autosomal recessive genetic disease in which excessive triglyceride (TG) accumulation occurs in multiple tissues. In this study, we investigated the role of CGI-58 in cellular lipid metabolism in several cell models and discovered a role for CGI-58 in promoting the packaging of cytoplasmic TG into secreted lipoprotein particles in hepatoma cells. Using both gain-of-function and loss-of-function approaches, we demonstrate that CGI-58 facilitates the depletion of cellular TG stores without altering cellular cholesterol or phospholipid accumulation. This depletion of cellular TG is attributable solely to augmented hydrolysis, whereas TG synthesis was not affected by CGI-58. Furthermore, CGI-58-mediated TG hydrolysis can be completely inhibited by the known lipase inhibitors diethylumbelliferyl phosphate and diethyl-p-nitrophenyl phosphate, but not by p-chloro-mercuribenzoate. Intriguingly, CGI-58-driven TG hydrolysis was coupled to increases in both fatty acid oxidation and secretion of TG. Collectively, this study reveals a role for CGI-58 in coupling lipolytic degradation of cytoplasmic TG to oxidation and packaging into TG-rich lipoproteins for secretion in hepatoma cells.
Collapse
Affiliation(s)
- J Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | | | | | | | | | | |
Collapse
|
70
|
Hihi AK, Beauchamp MC, Branicky R, Desjardins A, Casanova I, Guimond MP, Carroll M, Ethier M, Kianicka I, McBride K, Hekimi S. Evolutionary conservation of drug action on lipoprotein metabolism-related targets. J Lipid Res 2007; 49:74-83. [PMID: 17901468 DOI: 10.1194/jlr.m700167-jlr200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic analysis has shown that the slower than normal rhythmic defecation behavior of the clk-1 mutants of Caenorhabditis elegans is the result of altered lipoprotein metabolism. We show here that this phenotype can be suppressed by drugs that affect lipoprotein metabolism, including drugs that affect HMG-CoA reductase activity, reverse cholesterol transport, or HDL levels. These pharmacological effects are highly specific, as these drugs affect defecation only in clk-1 mutants and not in the wild-type and do not affect other behaviors of the mutants. Furthermore, drugs that affect processes not directly related to lipid metabolism show no or minimal activity. Based on these findings, we carried out a compound screen that identified 190 novel molecules that are active on clk-1 mutants, 15 of which also specifically decrease the secretion of apolipoprotein B (apoB) from HepG2 hepatoma cells. The other 175 compounds are potentially active on lipid-related processes that cannot be targeted in cell culture. One compound, CHGN005, was tested and found to be active at reducing apoB secretion in intestinal Caco-2 cells as well as in HepG2 cells. This compound was also tested in a mouse model of dyslipidemia and found to decrease plasma cholesterol and triglyceride levels. Thus, target processes for pharmacological intervention on lipoprotein synthesis, transport, and metabolism are conserved between nematodes and vertebrates, which allows the use of C. elegans for drug discovery.
Collapse
|
71
|
Smolenaars MMW, de Morrée A, Kerver J, Van der Horst DJ, Rodenburg KW. Insect lipoprotein biogenesis depends on an amphipathic β cluster in apolipophorin II/I and is stimulated by microsomal triglyceride transfer protein. J Lipid Res 2007; 48:1955-65. [PMID: 17568063 DOI: 10.1194/jlr.m600434-jlr200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoproteins transport lipids in the circulation of an evolutionally wide diversity of animals. The pathway for lipoprotein biogenesis has been revealed to a large extent in mammals only, in which apolipoprotein B (apoB) acquires lipids via the assistance of microsomal triglyceride transfer protein (MTP) and binds them by means of amphipathic protein structures. To investigate whether this is a common mechanism for lipoprotein biogenesis in animals, we studied the structural elements involved in the assembly of the insect lipoprotein, lipophorin. LOCATE sequence analysis predicted that the insect lipoprotein precursor, apolipophorin II/I (apoLp-II/I), contains clusters of amphipathic alpha-helices and beta-strands, organized along the protein as N-alpha(1)-beta-alpha(2)-C, reminiscent of a truncated form of apoB. Recombinant expression of a series of C-terminal truncation variants of Locusta migratoria apoLp-II/I in an insect cell (Sf9) expression system revealed that the formation of a buoyant high density lipoprotein requires the amphipathic beta cluster. Coexpression of apoLp-II/I with the MTP homolog of Drosophila melanogaster affected insect lipoprotein biogenesis quantitatively as well as qualitatively, as the secretion of apoLp-II/I proteins was increased several-fold and the buoyant density of the secreted lipoprotein decreased concomitantly, indicative of augmented lipidation. Based on these findings, we propose that, despite specific modifications, the assembly of lipoproteins involves MTP as well as amphipathic structures in the apolipoprotein carrier, both in mammals and insects. Thus, lipoprotein biogenesis in animals appears to rely on structural elements that are of early metazoan origin.
Collapse
Affiliation(s)
- Marcel M W Smolenaars
- Division of Endocrinology and Metabolism, Department of Biology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
72
|
Leng S, Lu S, Yao Y, Kan Z, Morris GS, Stair BR, Cherny MA, Black DD. Hepatocyte nuclear factor-4 mediates apolipoprotein A-IV transcriptional regulation by fatty acid in newborn swine enterocytes. Am J Physiol Gastrointest Liver Physiol 2007; 293:G475-83. [PMID: 17556588 DOI: 10.1152/ajpgi.00072.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte nuclear factor-4alpha (HNF-4alpha) regulates transcription of several genes involved in lipid metabolism, including that of apolipoprotein (apo) A-IV, which is tightly regulated by lipid absorption and enhances enterocyte chylomicron secretion. Studies were performed to define the role of HNF-4alpha in the regulation of apo A-IV gene transcription by dietary fatty acid in neonatal swine small intestine. HNF-4alpha mRNA was expressed in liver > intestine > kidney in suckling, weanling, and weaned pigs. Jejunal HNF-4alpha mRNA and protein and apo A-IV and swine microsomal triglyceride transfer protein (MTP) large subunit mRNA expression were induced in parallel in 2-day-old swine by a 24-h high-fat intraduodenal infusion. In IPEC-1 cells, incubation with oleic acid (OA) resulted in coordinate induction of both HNF-4alpha, apo A-IV, and MTP mRNA, similar to that observed in vivo. When HNF-4alpha expression was driven by doxycycline by using the TET-On system in the absence of OA to observe the effect of HNF-4alpha directly on apo A-IV and MTP mRNA levels in the absence of other factors that might be concomitantly induced by fatty acid absorption, apo A-IV and MTP expression were increased. In luciferase reporter gene assays in IPEC-1 cells using apo A-IV/C-III intergenic region constructs, TET-On-regulated HNF-4alpha expression without OA increased luciferase activity, and incubation with OA did not further increase activity. These data suggest that acute induction of the apo A-IV and MTP genes by dietary lipid in newborn intestine occurs, at least in part, via ligand-independent transactivation by HNF-4alpha that is itself induced by a lipid-mediated mechanism.
Collapse
Affiliation(s)
- Shuangying Leng
- Children's Foundation Research Center of Memphis, Le Bonheur Children's Medical Center, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Caldwell SH, Ikura Y, Iezzoni JC, Liu Z. Has natural selection in human populations produced two types of metabolic syndrome (with and without fatty liver)? J Gastroenterol Hepatol 2007; 22 Suppl 1:S11-S19. [PMID: 17567458 DOI: 10.1111/j.1440-1746.2006.04639.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fatty liver is closely related to the development of the insulin resistance syndrome that largely results from abnormal insulin signaling in three major organs: (i) skeletal muscle in which insulin sensitivity depends on fat content and metabolic activity (exercise); (ii) adipose tissue, which serves as a reservoir of energy in the form of triglycerides; and (iii) the liver, which variably serves as a source or storage site of carbohydrates and lipids. In many respects, the fatty liver resembles a mixture of brown adipose tissue (microvesicular steatosis) and white adipose tissue (macrovesicular steatosis) including the stages of fatty droplet accumulation, and the expression of uncoupling proteins and perilipin-like substances. Furthermore, the development of an inflammatory infiltrate and the increased production of cytokines as occurs in adipose tissue, suggest that the liver in some individuals serves as an extension of adipose tissue. Moreover, current evidence indicates that these morphological changes represent altered gene expression similar to that of adipocytes. However, fatty liver does not appear to be a uniform feature of the metabolic syndrome and there is substantial variation in humans in the development of fatty liver independent of insulin resistance. In this regard, the variable development of fatty liver in Palmipedes (migratory fowl) and its close relationship to skeletal muscle utilization of fatty acids, lipoprotein metabolism and thermoregulation are instructive. The predilection to non-alcoholic fatty liver disease among some varieties of Palmipedes suggests that the development of fatty liver represents an adaptive process, closely integrated with skeletal muscle fat utilization and adipose tissue distribution, and facilitates survival in a very cold, resource-scarce environment. Variation in human populations with metabolic syndrome likewise suggests that the trait evolved in populations exposed in ancient times to different environmental challenges and, because the liver plays a central role in lipid metabolism, the presence or absence of fatty liver is likely to be integrated with insulin sensitivity in other target organs and with lipoprotein metabolism.
Collapse
Affiliation(s)
- Stephen H Caldwell
- Division of GI/Hepatology, Digestive Health Center of Excellence, University of Virginia, Charlottesville, Virginia 22908-0708, USA.
| | | | | | | |
Collapse
|
74
|
Abstract
Obesity is associated with an increased risk of coronary heart disease, in part due to its strong association with atherogenic dyslipidemia, characterized by high triglycerides and low high-density lipoprotein (HDL) cholesterol. There has been substantial research effort focused on the mechanisms of the link between obesity and atherogenic dyslipidemia, both in the absence and presence of insulin resistance. After a brief overview of the epidemiology of atherogenic dyslipidemia, this article details the known molecular mechanisms of adipocyte function and its relationship to apoB-containing lipoprotein assembly and metabolism, both in the healthy as well as in the obese states. We also discuss the pathophysiology of low HDL cholesterol in obesity and the implications for cardiovascular disease risk.
Collapse
Affiliation(s)
- Vaneeta Bamba
- Division of Endocrinology, Children's Hospital of Philadelphia, USA
| | | |
Collapse
|
75
|
Kang SK, Jin UH, Kim KW, Lee YC, Park YG, Kim CH. Disialoganglioside GD3 increases in the secretion of apoB-containing lipoproteins. Biochem Biophys Res Commun 2007; 356:418-23. [PMID: 17368571 DOI: 10.1016/j.bbrc.2007.02.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 02/26/2007] [Indexed: 11/25/2022]
Abstract
The function of gangliosides, sialic acid-containing glycolipids, on the secretion and assembly of apoB-containing lipoproteins is poorly understood. Here, we report that the GD3 synthase is involved in apoB secretion in retinoic acid (RA)-treated Chang liver cells via transcriptional induction of microsomal triglyceride transfer protein (MTP). The overexpression of GD3 synthase in Chang liver cells increases the expression of the MTP gene, but GM3 synthase-transfected cells did not. The levels of GM3 and GD3 gangliosides in each of the transfected cells were increased in the cell extract as well as the medium. In addition, GD3 synthase-transfected cells showed an increased secretion of triglyceride-enriched apoB. In contrast, the triglyceride content in GM3 synthase-transfected cells was relatively lower. Treatment with small interfering RNAs (siRNAs) and GD3 antibody decreased apoB secretion. These results indicate that plasma membrane associated GD3 play important roles in apoB secretion, and that an enhancement in GD3 levels might be a risk factor for the development of atherosclerosis by increasing the secretion of triglyceride-enriched apoB containing lipoproteins.
Collapse
Affiliation(s)
- Sung-Koo Kang
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong Suwon City, Kyunggi-Do 440-746, Republic of Korea
| | | | | | | | | | | |
Collapse
|
76
|
Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 2007; 6:231-48. [PMID: 17330072 DOI: 10.1038/nrd2197] [Citation(s) in RCA: 1281] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Highly potent, but poorly water-soluble, drug candidates are common outcomes of contemporary drug discovery programmes and present a number of challenges to drug development - most notably, the issue of reduced systemic exposure after oral administration. However, it is increasingly apparent that formulations containing natural and/or synthetic lipids present a viable means for enhancing the oral bioavailability of some poorly water-soluble, highly lipophilic drugs. This Review details the mechanisms by which lipids and lipidic excipients affect the oral absorption of lipophilic drugs and provides a perspective on the possible future applications of lipid-based delivery systems. Particular emphasis has been placed on the capacity of lipids to enhance drug solubilization in the intestinal milieu, recruit intestinal lymphatic drug transport (and thereby reduce first-pass drug metabolism) and alter enterocyte-based drug transport and disposition.
Collapse
Affiliation(s)
- Christopher J H Porter
- Department of Pharmaceutics, Victorian College of Pharmacy, Monash University, Parkville campus, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
77
|
Abstract
Cell surface proteins containing covalently linked lipids associate with specialized membrane domains. Morphogens like Hedgehog and Wnt use their lipid anchors to bind to lipoprotein particles and employ lipoproteins to travel through tissues. Removal of their lipid anchors or decreasing lipoprotein levels give rise to adverse Hedgehog and Wnt signaling. Some parasites can also transfer their glycosylphosphatidylinositol-anchored surface proteins to host lipoprotein particles. These antigen-loaded lipoproteins spread throughout the circulation, and probably hamper an adequate immune response by killing neutrophils. Together, these findings imply a widespread role for lipoproteins in intercellular transfer of lipid-anchored surface proteins, and may have various physiological consequences. Here, we discuss how lipid-modified proteins may be transferred to and from lipoproteins at the cellular level.
Collapse
Affiliation(s)
- Sylvia Neumann
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
78
|
Avarre JC, Lubzens E, Babin PJ. Apolipocrustacein, formerly vitellogenin, is the major egg yolk precursor protein in decapod crustaceans and is homologous to insect apolipophorin II/I and vertebrate apolipoprotein B. BMC Evol Biol 2007; 7:3. [PMID: 17241455 PMCID: PMC1783640 DOI: 10.1186/1471-2148-7-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 01/22/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In animals, the biogenesis of some lipoprotein classes requires members of the ancient large lipid transfer protein (LLTP) superfamily, including the cytosolic large subunit of microsomal triglyceride transfer protein (MTP), vertebrate apolipoprotein B (apoB), vitellogenin (Vtg), and insect apolipophorin II/I precursor (apoLp-II/I). In most oviparous species, Vtg, a large glycolipoprotein, is the main egg yolk precursor protein. RESULTS This report clarifies the phylogenetic relationships of LLTP superfamily members and classifies them into three families and their related subfamilies. This means that the generic term Vtg is no longer a functional term, but is rather based on phylogenetic/structural criteria. In addition, we determined that the main egg yolk precursor protein of decapod crustaceans show an overall greater sequence similarity with apoLp-II/I than other LLTP, including Vtgs. This close association is supported by the phylogenetic analysis, i.e. neighbor-joining, maximum likelihood and Bayesian inference methods, of conserved sequence motifs and the presence of three common conserved domains: an N-terminal large lipid transfer module marker for LLTP, a DUF1081 domain of unknown function in their central region exclusively shared with apoLp-II/I and apoB, and a von Willebrand-factor type D domain at their C-terminal end. Additionally, they share a conserved functional subtilisin-like endoprotease cleavage site with apoLp-II/I, in a similar location. CONCLUSION The structural and phylogenetic data presented indicate that the major egg yolk precursor protein of decapod crustaceans is surprisingly closely related to insect apoLp-II/I and vertebrate apoB and should be known as apolipocrustacein (apoCr) rather than Vtg. These LLTP may arise from an ancient duplication event leading to paralogs of Vtg sequences. The presence of LLTP homologs in one genome may facilitate redundancy, e.g. involvement in lipid metabolism and as egg yolk precursor protein, and neofunctionalization and subfunctionalization, e.g. involvement in clotting cascade and immune response, of extracellular LLTP members. These protein-coding nuclear genes may be used to resolve phylogenetic relationships among the major arthropod groups, especially the Pancrustacea-major splits.
Collapse
Affiliation(s)
- Jean-Christophe Avarre
- Israel Oceanographic and Limnological Research, P.O. Box 8030, Haifa 31080, Israel
- Genewave XTEC, Ecole Polytechnique, 91128 Palaiseau, France
| | - Esther Lubzens
- Israel Oceanographic and Limnological Research, P.O. Box 8030, Haifa 31080, Israel
| | - Patrick J Babin
- Génomique et Physiologie des Poissons, Université Bordeaux 1, UMR NuAGe, 33405 Talence cedex, France
| |
Collapse
|
79
|
Stepanyan Z, Hughes B, Cliche DO, Camp D, Hekimi S. Genetic and molecular characterization of CLK-1/mCLK1, a conserved determinant of the rate of aging. Exp Gerontol 2006; 41:940-51. [PMID: 16889924 DOI: 10.1016/j.exger.2006.06.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 05/29/2006] [Accepted: 06/08/2006] [Indexed: 11/29/2022]
Abstract
The clk-1 gene of the nematode Caenorhabditis elegans encodes an evolutionarily conserved enzyme that is necessary for ubiquinone biosynthesis. Loss-of-function mutations in clk-1, as well as in its mouse orthologue mclk1, increase lifespan in both organisms. In nematodes, clk-1 extends lifespan by a mechanism that is distinct from the insulin signaling-like pathway but might have similarities to calorie restriction. The evolutionary conservation of the effect of clk-1/mclk1 on lifespan suggests that the gene affects a fundamental mechanism of aging. The clk-1/mclk1 system could allow for the understanding of this mechanism by combining genetic and molecular investigations in worms with studies in mice, where age-dependent disease processes relevant to human health can be modeled.
Collapse
Affiliation(s)
- Zaruhi Stepanyan
- Department of Biology, McGill University, Montréal, Que., Canada
| | | | | | | | | |
Collapse
|
80
|
Abstract
The field of nanoscience is extending the applications of physics, chemistry and biology into previously unapproached infinitesimal length scales. Understanding the behavior and manipulating the positions and properties of single atoms and molecules hold great potential to improve areas of science as disparate as medicine and computation, and communication and orbiting satellites. Yet, in the race to develop novel, previously unavailable nanoparticles, there is an opportunity for scientists in this field to digress and to apply their growing understanding of nanoscience and the tools of nanotechnology to one of the most pressing problems in all of human biology-diseases related to lipoproteins. Although not appreciated outside the field of lipoprotein biology, variations in the compositions, structures and properties of these nanoscale-sized, blood-borne particles are responsible for most of the variations in health, morbidity and mortality in the Western world. If the lipoproteins could be understood at the nanometer length scale with precise details of their structures and functions, scientists could understand a wide range of perplexing physiological processes and also address the dysfunctions in normal lipoprotein biology that lead to such diseases as hypercholesterolemia, heart disease, stroke and neurodegenerative diseases. Furthermore, if the capabilities of nanoscience to assemble and manipulate nanometer-sized particles could be recruited to studies of lipoproteins, these biological particles would provide a new dimension to therapeutic agents, and these natural particles could be designed to carry out many specialized beneficial tasks.
Collapse
Affiliation(s)
- J. Bruce German
- Department of Food Science and Technology, University of California Davis, 1 Shields Avenue, Davis, CA 95616, United States
- Nestle Research Center, Lausanne, Switzerland
| | - Jennifer T. Smilowitz
- Department of Food Science and Technology, University of California Davis, 1 Shields Avenue, Davis, CA 95616, United States
| | - Angela M. Zivkovic
- Department of Food Science and Technology, University of California Davis, 1 Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
81
|
Rava P, Ojakian GK, Shelness GS, Hussain MM. Phospholipid Transfer Activity of Microsomal Triacylglycerol Transfer Protein Is Sufficient for the Assembly and Secretion of Apolipoprotein B Lipoproteins. J Biol Chem 2006; 281:11019-27. [PMID: 16478722 DOI: 10.1074/jbc.m512823200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human microsomal triacylglycerol transfer protein (hMTP) is essential for apolipoprotein B (apoB)-lipoprotein assembly and secretion and is known to transfer triacylglycerols, cholesterol esters, and phospholipids. To understand the relative importance of each lipid transfer activity, we compared the ability of hMTP and its Drosophila ortholog (dMTP) to assemble apoB lipoproteins and to transfer various lipids. apoB48 secretion was induced when co-expressed with either hMTP or dMTP in COS cells, and oleic acid supplementation further augmented secretion without altering particle density. C-terminal epitope-tagged dMTP (dMTP-FLAG) facilitated the secretion of apoB polypeptides in the range of apoB48 to apoB72 but was approximately 50% as efficient as hMTP-FLAG. Comparison of lipid transfer activities revealed that although phospholipid transfer was similar in both orthologs, dMTP was unable to transfer neutral lipids. We conclude that the phospholipid transfer activity of MTP is sufficient for the assembly and secretion of primordial apoB lipoproteins and may represent its earliest function evolved for the mobilization of lipid in invertebrates. Identification of MTP inhibitors, which selectively affect transfer of a specific lipid class, may have therapeutic potential.
Collapse
Affiliation(s)
- Paul Rava
- Department of Anatomy and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | |
Collapse
|
82
|
Ledford AS, Weinberg RB, Cook VR, Hantgan RR, Shelness GS. Self-association and lipid binding properties of the lipoprotein initiating domain of apolipoprotein B. J Biol Chem 2006; 281:8871-6. [PMID: 16407215 DOI: 10.1074/jbc.m507657200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino-terminal 20.1% of apolipoprotein B (apoB20.1; residues 1-912) is sufficient to initiate and direct the formation of nascent apoB-containing lipoprotein particles. To investigate the mechanism of initial lipid acquisition by apoB, we examined the lipid binding and interfacial properties of a carboxyl-terminal His6-tagged form of apoB20.1 (apoB20.1H). ApoB20.1H was expressed in Sf9 cells and purified by nickel affinity chromatography. ApoB20.1H was produced in a folded state as characterized by formation of intramolecular disulfide bonds and resistance to chemical reduction. Dynamic light scattering in physiological buffer indicated that purified apoB20.1H formed multimers, which were readily dissociable upon the addition of nonionic detergent (0.1% Triton X-100). ApoB20.1H was incapable of binding dimyristoylphosphatidylcholine multilamellar vesicles, unless its multimeric structure was first disrupted by guanidine hydrochloride. However, apoB20.1H multimers spontaneously dissociated and bound to the interface of naked and phospholipid-coated triolein droplets. These data reveal that the initiating domain of apoB contains solvent-accessible hydrophobic sequences, which, in the absence of a hydrophobic lipid interface or detergent, engage in self-association. The high affinity of apoB20.1H for neutral lipid is consistent with the membrane binding and desorption model of apoB-containing lipoprotein assembly.
Collapse
Affiliation(s)
- Aubrey S Ledford
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040, USA
| | | | | | | | | |
Collapse
|
83
|
Maric J, Kiss RS, Franklin V, Marcel YL. Intracellular Lipidation of Newly Synthesized Apolipoprotein A-I in Primary Murine Hepatocytes. J Biol Chem 2005; 280:39942-9. [PMID: 16204232 DOI: 10.1074/jbc.m507733200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocytes, which are the main site of apolipoprotein (apo)A-I and ATP-binding cassette transporter A1 (ABCA1) expression, are also the main source of circulating high density lipoprotein. Here we have characterized the intracellular lipidation of newly synthesized apoA-I, in primary hepatocytes cultured with [3H]choline to label choline-phospholipids, low density lipoprotein-[3H]cholesterol to label the cell surface, or [3H]mevalonate to label de novo synthesized cholesterol. Phospholipidation of apoA-I is significant and most evident in endoplasmic reticulum (ER) and medial Golgi, both in the lumen and on the membrane fractions of the ER and medial Golgi. In the presence of cycloheximide, endogenous apoA-I is substantially phospholipidated intracellularly but acquires some additional lipid after export out of the cell. In cells labeled with low density lipoprotein-[3H]cholesterol, intracellular cholesterol lipidation of apoA-I is entirely absent, but the secreted apoA-I rapidly accumulates cholesterol after secretion from the cell in the media. On the other hand, de novo synthesized cholesterol can lipidate apoA-I intracellularly. We also showed the interaction between apoA-I and ABCA1 in ER and Golgi fractions. In hepatocytes lacking ABCA1, lipidation by low density lipoprotein-cholesterol was significantly reduced at the plasma membrane, phospholipidation and lipidation by de novo synthesized sterols were both reduced in Golgi compartments, whereas ER lipidation remained mostly unchanged. Therefore, the early lipidation in ER is ABCA1 independent, but in contrast, the lipidation of apoA-I in Golgi and at the plasma membrane requires ABCA1. Thus, we demonstrated that apoA-I phospholipidation starts early in the ER and is partially dependent on ABCA1, with the bulk of lipidation by phospholipids and cholesterol occurring in the Golgi and at the plasma membrane, respectively. Finally, we showed that the previously reported association of newly synthesized apoA-I and apoB (Zheng, H., Kiss, R. S., Franklin, V., Wang, M. D., Haidar, B., and Marcel, Y. L. (2005) J. Biol. Chem. 280, 21612-21621) occurs after secretion at the cell surface.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Apolipoprotein A-I/chemistry
- Blotting, Western
- Cell Membrane/metabolism
- Cells, Cultured
- Cholesterol/metabolism
- Cholesterol, LDL/chemistry
- Choline/chemistry
- Chromatography, Gas
- Chromatography, Thin Layer
- Cycloheximide/pharmacology
- Endoplasmic Reticulum/metabolism
- Golgi Apparatus/metabolism
- Hepatocytes/cytology
- Hepatocytes/metabolism
- Immunoprecipitation
- Iohexol/pharmacology
- Lipid Metabolism
- Lipids/chemistry
- Lipoproteins/chemistry
- Lipoproteins, HDL/chemistry
- Lipoproteins, LDL/chemistry
- Lipoproteins, LDL/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphatidylcholines/chemistry
- Protein Synthesis Inhibitors/pharmacology
- Sphingomyelins/chemistry
- Subcellular Fractions/metabolism
- Time Factors
Collapse
Affiliation(s)
- Jovana Maric
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | |
Collapse
|