51
|
Kim H, Khanna V, Kucaba TA, Zhang W, Ferguson DM, Griffith TS, Panyam J. Combination of Sunitinib and PD-L1 Blockade Enhances Anticancer Efficacy of TLR7/8 Agonist-Based Nanovaccine. Mol Pharm 2019; 16:1200-1210. [PMID: 30620878 DOI: 10.1021/acs.molpharmaceut.8b01165] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer vaccines composed of tumor-associated antigens (TAAs) and toll-like receptor (TLR) agonists have shown promising antitumor efficacy in preclinical studies by generating antigen-specific CD8 T cells, but translation of cancer vaccines to the clinic has been limited due to variables responses and development of resistance. The tumor microenvironment deploys various immune escape mechanisms that neutralize CD8 T cell-mediated tumor rejection. Therefore, we hypothesized that modulation of the tumor microenvironment can augment CD8 T cell activation and enhance therapeutic efficacy of cancer vaccines. To accomplish this, we aimed to eliminate immune suppressive cells and block their inhibitory signaling. Combination of the tyrosine kinase inhibitor (TKI) sunitinib with a nanoparticle-based cancer vaccine (nanovaccine) resulted in the reduction of immune-suppressive myeloid-derived suppressive cells (MDSCs) and regulatory T cells (Tregs). Blockade of programmed death-ligand 1 (PD-L1) using anti-PD-L1 antibody was used to reduce CD8 T cell exhaustion. Combination of nanovaccine+sunitinib+PD-L1 antibody treatment reduced PD-L1high M2 macrophages and MDSCs and upregulated activation of CD8 T cells in the tumor. Nanovaccine+sunitinib+PD-L1 antibody treatment also stimulated antigen-specific CD8 T cell response, which led to improved therapeutic efficacy in MB49 and B16F10 murine tumor models. These results suggest that modulation of tumor microenvironment using sunitinib and PD-L1 blockade can significantly enhance the antitumor efficacy of cancer nanovaccine.
Collapse
|
52
|
Kell SA, Kachura MA, Renn A, Traquina P, Coffman RL, Campbell JD. Preclinical development of the TLR9 agonist DV281 as an inhaled aerosolized immunotherapeutic for lung cancer: Pharmacological profile in mice, non-human primates, and human primary cells. Int Immunopharmacol 2018; 66:296-308. [PMID: 30502651 DOI: 10.1016/j.intimp.2018.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022]
Abstract
CpG-motif-containing oligodeoxynucleotides (CpG-ODN) activate innate immunity through Toll-Like Receptor (TLR) 9 signaling and generate local immune responses when delivered directly to the lung. Herein we describe pharmacological studies in mice, cynomolgus monkeys, and in human primary cells which support the development of DV281, a C-class CpG-ODN, as an inhaled aerosolized immunotherapeutic for lung cancer to be combined with an inhibitor of the anti-programmed cell death protein 1 (PD‑1) immune checkpoint. In vitro, DV281 potently induced Interferon (IFN)‑α from monkey and human peripheral blood mononuclear cells (PBMCs), stimulated interleukin‑6 production and proliferation in human B cells, and induced TLR9-dependent cytokine responses from mouse splenocytes. Intranasal delivery of DV281 to mice led to substantial but transient cytokine and chemokine responses in the lung. Lung responses to repeated intranasal DV281 were partially to fully reversible 2 weeks after the final dose and were absent in TLR9-deficient mice. Single escalating doses of aerosolized DV281 in monkeys induced dose-dependent induction of IFN-regulated genes in bronchoalveolar lavage cells and blood. In a repeat-dose safety study in monkeys, inhaled DV281 was well-tolerated, and findings were mechanism of action-related and non-adverse. Co-culture of human PBMC with DV281 and anti-PD‑1 antibody did not augment cytokine or cellular proliferation responses compared to DV281 alone, indicating that the combination did not lead to dysregulated cytokine responses. These studies support clinical development of inhaled aerosolized DV281 as a combination therapy with anti-PD‑1 antibody for lung cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Alex Renn
- Dynavax Technologies, Berkeley, CA, USA
| | | | | | | |
Collapse
|
53
|
Zhang X, Hu F, Li C, Zheng X, Zhang B, Wang H, Tao G, Xu J, Zhang Y, Han B. OCT4&SOX2-specific cytotoxic T lymphocytes plus programmed cell death protein 1 inhibitor presented with synergistic effect on killing lung cancer stem-like cells in vitro and treating drug-resistant lung cancer mice in vivo. J Cell Physiol 2018; 234:6758-6768. [PMID: 30382588 DOI: 10.1002/jcp.27423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
This study aimed to investigate the synergistic effect of octamer-binding transcription factor 4 and sex determining region Y-box 2 (OCT4&SOX2)-specific cytotoxic T lymphocytes (CTLs) and programmed cell death protein 1 (PD-1) inhibitor on killing lung cancer stem-like cells (LCSCs) and their efficacy in treating drug-resistant lung cancer (DRLC) mice. OCT4&SOX2-specific CTLs and PD-1 inhibitor with differed doses were applied to treat PC9 cells and PC9 LCSCs. Cell counting kit-8 (CCK8) assay and flow cytometry (FCM) assay with carboxyfluorescein diacetate/succinimidyl ester staining target cells before treatment and propidium iodide (PI) staining dead cells after treatment were conducted to detect the cytotoxic activity. DRLC mice were constructed by injection of PC9 LCSCs suspension and Matrigel into left lung of SD mice. DRLC mice were randomly divided into five groups: control group, cytomegalovirus (CMV) pp65 CTLs group, OCT4&SOX2 CTLs group, PD-1 inhibitor group, and OCT4&SOX2 CTLs + PD-1 inhibitor group. In vitro, both CCK8 assay and FCM assay disclosed that OCT4&SOX2-specific CTLs plus PD-1 inhibitor presented with elevated cytotoxic activity on PC9 cells and PC9 LCSCs. In vivo, tumor volume and tumor weight were decreased, while tumor necrosis and tumor apoptosis were increased in OCT4&SOX2 CTLs group than CMV pp65 CTLs group and control group, and in OCT4&SOX2 CTLs + PD-1 inhibitor group than OCT4&SOX2 CTLs group and PD-1 inhibitor group. In addition, CD8 expression was increased while OCT4&SOX2 expressions were decreased in OCT4&SOX2 CTLs + PD-1 inhibitor group than OCT4&SOX2 CTLs group and PD-1 inhibitor group. In conclusion, OCT4&SOX2-specific CTLs and PD-1 inhibitor presented with the synergistic effect on killing LCSCs in vitro and treating DRLC mice in vivo.
Collapse
Affiliation(s)
- Xueyan Zhang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Hu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Changhui Li
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxuan Zheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Wang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyu Tao
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianlin Xu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanwei Zhang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Baohui Han
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
54
|
Seo JW, Tavaré R, Mahakian LM, Silvestrini MT, Tam S, Ingham ES, Salazar FB, Borowsky AD, Wu AM, Ferrara KW. CD8 + T-Cell Density Imaging with 64Cu-Labeled Cys-Diabody Informs Immunotherapy Protocols. Clin Cancer Res 2018; 24:4976-4987. [PMID: 29967252 PMCID: PMC6215696 DOI: 10.1158/1078-0432.ccr-18-0261] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/06/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023]
Abstract
Purpose: Noninvasive and quantitative tracking of CD8+ T cells by PET has emerged as a potential technique to gauge response to immunotherapy. We apply an anti-CD8 cys-diabody, labeled with 64Cu, to assess the sensitivity of PET imaging of normal and diseased tissue.Experimental Design: Radiolabeling of an anti-CD8 cys-diabody (169cDb) with 64Cu was developed. The accumulation of 64Cu-169cDb was evaluated with PET/CT imaging (0, 5, and 24 hours) and biodistribution (24 hours) in wild-type mouse strains (n = 8/group studied with imaging and IHC or flow cytometry) after intravenous administration. Tumor-infiltrating CD8+ T cells in tumor-bearing mice treated with CpG and αPD-1 were quantified and mapped (n = 6-8/group studied with imaging and IHC or flow cytometry).Results: We demonstrate the ability of immunoPET to detect small differences in CD8+ T-cell distribution between mouse strains and across lymphoid tissues, including the intestinal tract of normal mice. In FVB mice bearing a syngeneic HER2-driven model of mammary adenocarcinoma (NDL), 64Cu-169cDb PET imaging accurately visualized and quantified changes in tumor-infiltrating CD8+ T cells in response to immunotherapy. A reduction in the circulation time of the imaging probe followed the development of treatment-related liver and splenic hypertrophy and provided an indication of off-target effects associated with immunotherapy protocols.Conclusions: 64Cu-169cDb imaging can spatially map the distribution of CD8+ T cells in normal organs and tumors. ImmunoPET imaging of tumor-infiltrating cytotoxic CD8+ T cells detected changes in T-cell density resulting from adjuvant and checkpoint immunotherapy protocols in our preclinical evaluation. Clin Cancer Res; 24(20); 4976-87. ©2018 AACR.
Collapse
Affiliation(s)
- Jai Woong Seo
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Richard Tavaré
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Matthew T Silvestrini
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Sarah Tam
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Felix B Salazar
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, California
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katherine W Ferrara
- Department of Biomedical Engineering, University of California, Davis, Davis, California.
| |
Collapse
|
55
|
Erman A, Kapun G, Novak S, Pavlin M, Dražić G, Drobne D, Veranič P. How cancer cells attach to urinary bladder epithelium in vivo: study of the early stages of tumorigenesis in an orthotopic mouse bladder tumor model. Histochem Cell Biol 2018; 151:263-273. [PMID: 30280243 DOI: 10.1007/s00418-018-1738-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2018] [Indexed: 12/17/2022]
Abstract
The majority of bladder cancers in humans are non-muscle-invasive cancers that recur frequently after standard treatment procedures. Mouse models are widely used to develop anti-tumor treatments. The purpose of our work was to establish an orthotopic mouse bladder tumor model and to explore early stages of implantation of cancerous MB49 cells in vivo using various labeling and microscopic techniques. To distinguish cancer cells from normal urothelial cells in mouse urinary bladders, we performed molecular characterization of MB49 cells before intravesical injection experiments. In this new approach we applied internalized metal nanoparticles to unequivocally discriminate cancer cells from normal cells. This method revealed that cancer cells attached to the urothelium or basal lamina within just 1 hour of intravesical injection, whereas small tumors and localized hyperplastic urothelial regions developed within two days. We found that cancer cells initially adhere to normal urothelial cells through filopodia and by focal contacts with basal lamina. This is the first in vivo characterization of intercellular contacts between cancerous and normal urothelial cells in the bladder. Our study yields new data about poorly known early events of tumorigenesis in vivo, which could be helpful for the translation into clinic.
Collapse
Affiliation(s)
- Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Gregor Kapun
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Novak
- Department of Biology, Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Pavlin
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Goran Dražić
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
56
|
Webb ES, Liu P, Baleeiro R, Lemoine NR, Yuan M, Wang Y. Immune checkpoint inhibitors in cancer therapy. J Biomed Res 2018; 32:317-326. [PMID: 28866656 PMCID: PMC6163118 DOI: 10.7555/jbr.31.20160168] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
In recent years immune checkpoint inhibitors have garnered attention as being one of the most promising types of immunotherapy on the horizon. There has been particular focus on the immune checkpoint molecules, cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1) which have been shown to have potent immunomodulatory effects through their function as negative regulators of T cell activation. CTLA-4, through engagement with its ligands B7-1 (CD80) and B7-2 (CD86), plays a pivotal role in attenuating the activation of naïve and memory T cells. In contrast, PD-1 is primarily involved in modulating T cell activity in peripheral tissues via its interaction with PD-L1 and PD-L2. The discovery of these negative regulators of the immune response was crucial in the development of checkpoint inhibitors. This shifted the focus from developing therapies that targeted activation of the host immune system against cancer to checkpoint inhibitors, which aimed to mediate tumor cell destruction through the removal of coinhibitory signals blocking anti-tumor T cell responses.
Collapse
Affiliation(s)
- Eika S. Webb
- . Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK
| | - Peng Liu
- . Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK
| | - Renato Baleeiro
- . Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK
| | - Nicholas R. Lemoine
- . Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK
- . Sino-British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, Zhengzhou University, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Ming Yuan
- . Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK
| | - Yaohe Wang
- . Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK
- . Sino-British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, Zhengzhou University, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450002, China
| |
Collapse
|
57
|
Hahn NM, Necchi A, Loriot Y, Powles T, Plimack ER, Sonpavde G, Roupret M, Kamat AM. Role of Checkpoint Inhibition in Localized Bladder Cancer. Eur Urol Oncol 2018; 1:190-198. [DOI: 10.1016/j.euo.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 01/05/2023]
|
58
|
Di Nunno V, De Luca E, Buttigliero C, Tucci M, Vignani F, Gatto L, Zichi C, Ardizzoni A, Di Maio M, Massari F. Immune-checkpoint inhibitors in previously treated patients with advanced or metastatic urothelial carcinoma: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2018; 129:124-132. [PMID: 30097230 DOI: 10.1016/j.critrevonc.2018.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022] Open
Abstract
Immunotherapy represents a new hope for patients with advanced urothelial carcinoma (UC). However, to date, only one of two randomized studies showed a clear survival advantage with these treatments. Aimed to investigate the role of immune-checkpoint inhibitors in patients with platinum progressed metastatic UC we performed a systematic review and meta-analysis of clinical trials to evaluate the efficacy and activity, in terms of Overall Survival (OS) and Objective Response Rate (ORR). Immune checkpoint inhibitors have showed to improve OS compared to chemotherapy in unselected patients (HR 0.80, 95% CI 0.69-0.93, p = 0.003), while the difference was not significant in patients selected for PD-L1 expression (HR 0.72, 95% CI 0.48-1.09, p = 0.12). Pooled probability of response was 0.18 (95% CI 0.16-0.20) in unselected patients and 0.27 (95% CI 0.25-0.32) in PD-L1 selected patients. Immunotherapy results in a significant survival advantage in PD-L1 unselected patients suggesting that PD-L1 expression may not be a reliable marker in previously platinum treated patients.
Collapse
Affiliation(s)
| | - Emmanuele De Luca
- Division of Medical Oncology, "Ordine Mauriziano" Hospital, Turin, Italy; Department of Oncology, University of Turin, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, Italy; Division of Medical Oncology, "San Luigi Gonzaga" Hospital, Orbassano, Turin, Italy
| | - Marcello Tucci
- Department of Oncology, University of Turin, Italy; Division of Medical Oncology, "San Luigi Gonzaga" Hospital, Orbassano, Turin, Italy
| | - Francesca Vignani
- Division of Medical Oncology, "Ordine Mauriziano" Hospital, Turin, Italy; Department of Oncology, University of Turin, Italy
| | - Lidia Gatto
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Clizia Zichi
- Division of Medical Oncology, "Ordine Mauriziano" Hospital, Turin, Italy; Department of Oncology, University of Turin, Italy
| | - Andrea Ardizzoni
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Massimo Di Maio
- Division of Medical Oncology, "Ordine Mauriziano" Hospital, Turin, Italy; Department of Oncology, University of Turin, Italy
| | | |
Collapse
|
59
|
Jacqueline C, Bonnefoy N, Charrière GM, Thomas F, Roche B. Personal history of infections and immunotherapy: Unexpected links and possible therapeutic opportunities. Oncoimmunology 2018; 7:e1466019. [PMID: 30221066 PMCID: PMC6136881 DOI: 10.1080/2162402x.2018.1466019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 01/17/2023] Open
Abstract
The recent breakthroughs in the understanding of tumor immune biology have given rise to a new generation of immunotherapies, harnessing the immune system to eliminate tumors. As the typology and frequency of encountered infections are susceptible to shape the immune system, it could also impact the efficiency of immunotherapy. In this review, we report evidences for an indirect link between personal history of infection and different strategies of immunotherapy. In the current context of interest rise for personalized medicine, we discuss the potential medical applications of considering personal history of infection to design immunotherapeutic strategies.
Collapse
Affiliation(s)
- Camille Jacqueline
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Nathalie Bonnefoy
- IRCM, INSERM, Université de Montpellier, ICM, F-34298, Montpellier, France
| | - Guillaume M. Charrière
- IHPE, UMR 5244, CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Montpellier, 34095, France
| | - Frédéric Thomas
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Benjamin Roche
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- UMMISCO, IRD/ Sorbonne Université, Bondy, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
60
|
Li Z, Li B, Peng D, Xing H, Wang G, Li P, Wang J, Ye G, Chen J. Expression and clinical significance of PD‑1 in hepatocellular carcinoma tissues detected by a novel mouse anti-human PD‑1 monoclonal antibody. Int J Oncol 2018; 52:2079-2092. [PMID: 29620156 PMCID: PMC6929674 DOI: 10.3892/ijo.2018.4358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and causes of death worldwide. Research investigating novel therapeutic strategies for the treatment of HCC is urgently required. Monoclonal antibodies (mAbs) that target the programmed cell death‑1 (PD‑1/PDCD1)/programmed death-ligand 1 (PD-L1) immune checkpoint have demonstrated substantial clinical benefit for a variety of solid tumors; however, these mAbs have not been well studied in HCC. In the present study, Sp2/0-Ag14 myeloma cells and spleen cells derived from BALB/c mice immunized with the recombinant human PD‑1/PDCD1 protein were fused for the production of novel antibodies. The 9E11 mAb, which exhibited the highest specificity for PD‑1 in HCC tissues in western blot and immunohistochemical staining analyses, was used to investigate the clinical significance of PD‑1 expression in HCC tissues from 77 cases, which were collected and examined histologically. Overexpression of PD‑1 was identified in peritumoral tissues, primarily in the liver portal region. Importantly, by analyzing the clinical data from 77 HCC patients, the expression of PD‑1 was observed to be significantly correlated with larger tumor size (>5 cm) and poorly differentiated tumors. In addition, PD‑1 expression was moderately correlated with venous thrombosis, but not correlated with patient sex or age, liver cirrhosis, hepatitis B, tumor, node and metastasis (TNM) stage or tumor location. The results of the present study suggest that high-level PD‑1 expression may be an important factor associated with the immune checkpoint pathway in HCC. The results suggest that PD‑1 serves an important role in tumor immune evasion and may be a valuable immunodiagnostic marker. In addition, PD‑1 may serve as a therapeutic target for patients presenting with poorly differentiated HCC, thus indicating the potential application of a PD‑1 inhibitor for the treatment of HCC patients.
Collapse
Affiliation(s)
- Ziwei Li
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Bin Li
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Dan Peng
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Haiyan Xing
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Guanying Wang
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Pan Li
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jiming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - George Ye
- Yes Biotech Laboratories Ltd., Mississauga, ON L5S 1V6, Canada
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
61
|
Liu HJ, Lizotte PH, Du H, Speranza MC, Lam HC, Vaughan S, Alesi N, Wong KK, Freeman GJ, Sharpe AH, Henske EP. TSC2-deficient tumors have evidence of T cell exhaustion and respond to anti-PD-1/anti-CTLA-4 immunotherapy. JCI Insight 2018; 3:98674. [PMID: 29669930 DOI: 10.1172/jci.insight.98674] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an incurable multisystem disease characterized by mTORC1-hyperactive tumors. TSC1/2 mutations also occur in other neoplastic disorders, including lymphangioleiomyomatosis (LAM) and bladder cancer. Whether TSC-associated tumors will respond to immunotherapy is unknown. We report here that the programmed death 1 coinhibitory receptor (PD-1) is upregulated on T cells in renal angiomyolipomas (AML) and pulmonary lymphangioleiomyomatosis (LAM). In C57BL/6J mice injected with syngeneic TSC2-deficient cells, anti-PD-1 alone decreased 105K tumor growth by 67% (P < 0.0001); the combination of PD-1 and CTLA-4 blockade was even more effective in suppressing tumor growth. Anti-PD-1 induced complete rejection of TSC2-deficient 105K tumors in 37% of mice (P < 0.05). Double blockade of PD-1 and CTLA-4 induced rejection in 62% of mice (P < 0.01). TSC2 reexpression in TSC2-deficient TMKOC cells enhanced antitumor immunity by increasing T cell infiltration and production of IFN-γ/TNF-α by T cells, suggesting that TSC2 and mTORC1 play specific roles in the induction of antitumor immunity. Finally, 1 month of anti-PD-1 blockade reduced renal tumor burden by 53% (P < 0.01) in genetically engineered Tsc2+/- mice. Taken together, these data demonstrate for the first time to our knowledge that checkpoint blockade may have clinical efficacy for TSC and LAM, and possibly other benign tumor syndromes, potentially yielding complete and durable clinical responses.
Collapse
Affiliation(s)
- Heng-Jia Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick H Lizotte
- Belfer Center for Applied Cancer Science, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Heng Du
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria C Speranza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Hilaire C Lam
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Spencer Vaughan
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicola Alesi
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Belfer Center for Applied Cancer Science, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
62
|
Agrawal U, Kumari N, Mishra AK, Vasudeva P, Kumar A, Mohanty NK, Saxena S. Immune signature of urothelial cancer associated with grade, recurrence, and invasion. Urol Oncol 2018; 34:418.e17-26. [PMID: 27554791 DOI: 10.1016/j.urolonc.2016.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 04/19/2016] [Accepted: 04/23/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Urothelial carcinoma (UC) is one of most common genitourinary malignancy and the spectrum of disease ranges from in situ lesions to muscle-invasive cancers. The non-muscle-invasive lesions have tendency to recur or progress to muscle-invasive disease. The study of the immune profile may identify immune determinants associated with high-grade, recurrence, and invasion in patients with UC. METHODS Pathway-focused RT(2) profiler arrays were used to screen patients with UC for dysregulation of candidate genes of Th1-Th2-Th3 and NFκB pathways, which were then validated by real-time polymerase chain reaction on tumor samples and correlated with grade, recurrence, and invasion of tumors to identify their role in predicting behavior of the tumor. The cytokines found associated with recurrence were then validated in urine of patients with UC. RESULTS IFNγ, IL2, IL4, IL10, IL17, CCL7, CTLA4, and SPP1 of the cytokine pathway and TLR4, TLR3, RELA, NFκB1, and MYD88 of the NFκB pathway were found differentially expressed in patients with urothelial cancer by array and quantative real-time polymerase chain reaction. Among these, IL10 and SPP1 were found consistently up-regulated in high-grade, invasive, and recurrent cases and up-regulated IL10 and CTLA4 were found associated with a short recurrence-free survival time (P = 0.001 and P = 0.065). Urinary IL10 concentration was significantly higher in both patients with cancer and cystitis compared with healthy controls, but the difference in concentration between patients with cancer and cystitis patients was not statistically significant. However, urinary CTLA4 concentrations were found to be significantly higher in urothelial cancer patients compared with healthy controls and cystitis cases and found to be associated with poor recurrence-free survival. CONCLUSION The study indicates that high urinary CTLA4 concentration raises the index of suspicion of recurrence in a known case of urothelial cancer and may be used as a surveillance marker.
Collapse
Affiliation(s)
- Usha Agrawal
- National Institute of Pathology, Indian Council of Medical Research, New Delhi, India; Symbiosis International University, Lavale, Pune, India
| | - Nitu Kumari
- National Institute of Pathology, Indian Council of Medical Research, New Delhi, India; BITS, Pilani, Rajasthan, India
| | | | - Pawan Vasudeva
- Deptartment of Urology, VMMC and Safdarjung Hospital, New Delhi, India
| | - Anup Kumar
- Deptartment of Urology, VMMC and Safdarjung Hospital, New Delhi, India
| | | | - Sunita Saxena
- National Institute of Pathology, Indian Council of Medical Research, New Delhi, India.
| |
Collapse
|
63
|
Abstract
The promising results of clinical trials using immune checkpoint inhibitors revived interests in cancer immunotherapy. However, it also became apparent that efficacy of immune checkpoint blockade can benefit from combining it with immunostimulatory strategies. Here, we review prior and re-emerging approaches using Toll-like Receptor 9 (TLR9) agonists, CpG oligodeoxynucleotides (ODNs), focused on the generation of antitumor immune responses in cancer patients. While numerous early clinical trials using TLR9 ligands in monotherapies provided evidence of CpG ODNs tolerability and safety, they failed to demonstrate sufficient antitumor efficacy. Recent studies unraveled multiple levels of negative regulation of immunostimulatory TLR9 signaling in immune cells by the tumor microenvironment that can stifle immune activity in cancer patients. Therefore, CpG ODNs-based strategies can greatly benefit from combination with strategies targeting immune checkpoint regulation. The most recent clinical trials of CpG ODNs together with immune checkpoint inhibitors have a chance to generate novel, more effective and safer cancer immunotherapies.
Collapse
|
64
|
PD-1 and its ligands are important immune checkpoints in cancer. Oncotarget 2018; 8:2171-2186. [PMID: 27974689 PMCID: PMC5356790 DOI: 10.18632/oncotarget.13895] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022] Open
Abstract
Checkpoint programmed death-1 (PD-1)/programmed cell death ligands (PD-Ls) have been identified as negative immunoregulatory molecules that promote immune evasion of tumor cells. The interaction of PD-1 and PD-Ls inhibits the function of T cells and tumor-infiltrating lymphocytes (TIL) while increasing the function of immunosuppressive regulatory T cells (Tregs). This condition causes the tumor cells to evade immune response. Thus, the blockade of PD-1/PD-L1 enhances anti-tumor immunity by reducing the number and/or the suppressive activity of Tregs and by restoring the activity of effector T cells. Furthermore, some monoclonal antibodies blockading PD-1/PD-Ls axis have achieved good effect and received Food and Drug Administration approval. The role of PD-1/PD-Ls in tumors has been well studied, but little is known on the mechanism by which PD-1 blocks T-cell activation. In this study, we provide a brief overview on the discovery and regulatory mechanism of PD-1 and PD-L1 dysregulation in tumors, as well as the function and signaling pathway of PD-1 and its ligands; their roles in tumor evasion and clinical treatment were also studied.
Collapse
|
65
|
Yin P, Liu X, Mansfield AS, Harrington SM, Li Y, Yan Y, Dong H. CpG-induced antitumor immunity requires IL-12 in expansion of effector cells and down-regulation of PD-1. Oncotarget 2018; 7:70223-70231. [PMID: 27602959 PMCID: PMC5342548 DOI: 10.18632/oncotarget.11833] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/24/2016] [Indexed: 12/29/2022] Open
Abstract
CpG oligodeoxynucleotides, as a ligand of toll-like receptor (TLR)-9, have demonstrated promising antitumor effects in some clinical trials; however, its toxicity and low efficacy as a systemic therapy has limited its therapeutic applications. In order to improve its therapeutic efficacy, we investigated the mechanisms of CpG-induced antitumor immunity in the context of CD8+ T cell responses. We show that IL-12 is required for the expansion of IFN-γ producing tumor-reactive CD8+ T cells capable of rejecting tumors. In addition, CpGs reduced PD-1 expression by effector CD8+ T cells via the IL-12 pathway. The combination of CpG and PD-1 blockade show a synergistic effect in generation of systemic antitumor immunity. Our studies define a critical role of IL-12 in CpG-induced antitumor immunity and provide a rationale for combined therapy with TLR agonists and immune checkpoint blockade in cancer treatment.
Collapse
Affiliation(s)
- Peng Yin
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - Xin Liu
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Yinghua Li
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Yiyi Yan
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
66
|
Shi L, Meng T, Zhao Z, Han J, Zhang W, Gao F, Cai J. CRISPR knock out CTLA-4 enhances the anti-tumor activity of cytotoxic T lymphocytes. Gene 2017; 636:36-41. [PMID: 28888577 DOI: 10.1016/j.gene.2017.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/12/2017] [Accepted: 09/05/2017] [Indexed: 01/24/2023]
Abstract
T cell-mediated anti-tumor immunity plays a pivotal role in cancer immune surveillance. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a protein receptor mainly expressed in activated T cells and regulatory T cells. CTLA-4 competes with CD28 for ligand binding and generates inhibitory signals to attenuate T cell activation. The blockade of CTLA-4 mediated immune inhibitory checkpoint has been associated with enhanced anti-tumor immunity. In this study, we use CRISPR-Cas9 system to knock out (KO) CTLA-4 from cytotoxic T lymphocytes (CTLs) and evaluate its effect on the anti-tumor activity of the CTLs. CTLA-4 KO CTLs robustly enhanced tumor cell death by 40% compared to the control and facilitated apoptosis and caspase activities in tumor cells. The knockout of CTLA-4 also increased TNF-α and IFN-γ secretion of the CTLs by approximately 2-fold. The effectiveness of CTLA-4 KO in enhancing anti-tumor activity of the CTLs was verified in vivo using mouse xenograft model. The xenografted mice treated with CTLA-4 KO CTLs demonstrated repressed tumor growth and prolonged survival compared to the control group. Our data suggest that CRISPR targeting CTLA-4 immune checkpoint could significantly improve the anti-tumor activity of CTLs.
Collapse
Affiliation(s)
- Long Shi
- Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Tongyu Meng
- Department of Gynecologic Oncology, The First Hospital of SJZ, Shijiazhuang, Hebei 050000, China
| | - Zhilong Zhao
- Department of Surgery, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Jinsheng Han
- Department of Surgery, Cangzhou Hospital of Traditional Chinese Medicine and Western Medicine Integrated Hebei, Cangzhou, Hebei 601000, China
| | - Wei Zhang
- Department of Surgery, HanDan Central Hospital, Handan, Hebei 056001, China
| | - Fei Gao
- Department of Surgery & Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050000, China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Department of Surgery & Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
67
|
Galsky MD, Wang H, Hahn NM, Twardowski P, Pal SK, Albany C, Fleming MT, Starodub A, Hauke RJ, Yu M, Zhao Q, Sonpavde G, Donovan MJ, Patel VG, Sfakianos JP, Domingo-Domenech J, Oh WK, Akers N, Losic B, Gnjatic S, Schadt EE, Chen R, Kim-Schulze S, Bhardwaj N, Uzilov AV. Phase 2 Trial of Gemcitabine, Cisplatin, plus Ipilimumab in Patients with Metastatic Urothelial Cancer and Impact of DNA Damage Response Gene Mutations on Outcomes. Eur Urol 2017; 73:751-759. [PMID: 29248319 DOI: 10.1016/j.eururo.2017.12.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/01/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Chemotherapy may exert immunomodulatory effects, thereby combining favorably with the immune checkpoint blockade. The pharmacodynamic effects of such combinations, and potential predictive biomarkers, remain unexplored. OBJECTIVE To determine the safety, efficacy, and immunomodulatory effects of gemcitabine and cisplatin (GC) plus ipilimumab and explore the impact of somatic DNA damage response gene alterations on antitumor activity. DESIGN, SETTING, AND PARTICIPANTS Multicenter single arm phase 2 study enrolling 36 chemotherapy-naïve patients with metastatic urothelial cancer. Peripheral blood flow cytometry was performed serially on all patients and whole exome sequencing of archival tumor tissue was performed on 28/36 patients. INTERVENTION Two cycles of GC followed by four cycles of GC plus ipilimumab. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was 1-yr overall survival (OS). Secondary endpoints included safety, objective response rate, and progression-free survival. RESULTS AND LIMITATIONS Grade ≥3 adverse events occurred in 81% of patients, the majority of which were hematologic. The objective response rate was 69% and 1-yr OS was 61% (lower bound 90% confidence interval: 51%). On exploratory analysis, there were no significant changes in the composition and frequency of circulating immune cells after GC alone. However, there was a significant expansion of circulating CD4 cells with the addition of ipilimumab which correlated with improved survival. The response rate was significantly higher in patients with deleterious somatic DNA damage response mutations (sensitivity=47.6%, specificity=100%, positive predictive value=100%, and negative predictive value=38.9%). Limitations are related to the sample size and single-arm design. CONCLUSIONS GC+ipilimumab did not achieve the primary endpoint of a lower bound of the 90% confidence interval for 1-yr OS of >60%. However, within the context of a small single-arm trial, the results may inform current approaches combining chemotherapy plus immunotherapy from the standpoint of feasibility, appropriate cytotoxic backbones, and potential predictive biomarkers. TRIAL REGISTRATION ClinicalTrials.gov NCT01524991. PATIENT SUMMARY Combining chemotherapy and immune checkpoint blockade in patients with metastatic urothelial cancer is feasible. Further studies are needed to refine optimal combinations and evaluate tests that might identify patients most likely to benefit.
Collapse
Affiliation(s)
- Matthew D Galsky
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Huan Wang
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Sema4, a Mount Sinai venture, Stamford, CT, USA
| | - Noah M Hahn
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Sumanta K Pal
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Costantine Albany
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Mark T Fleming
- US Oncology Research, Virginia Oncology Associates, Hampton, VA, USA
| | - Alexander Starodub
- Indiana University Health Goshen Center for Cancer Care, Goshen, IN, USA
| | | | - Menggang Yu
- Department of Biostatistics & Medical Informatics, University of Wisconsin Madison, WI, USA
| | - Qianqian Zhao
- Department of Biostatistics & Medical Informatics, University of Wisconsin Madison, WI, USA
| | - Guru Sonpavde
- University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL, USA
| | - Michael J Donovan
- Department of Pathology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vaibhav G Patel
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John P Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josep Domingo-Domenech
- Department of Pathology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William K Oh
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas Akers
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bojan Losic
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Sema4, a Mount Sinai venture, Stamford, CT, USA
| | - Rong Chen
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Sema4, a Mount Sinai venture, Stamford, CT, USA
| | - Seunghee Kim-Schulze
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew V Uzilov
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Sema4, a Mount Sinai venture, Stamford, CT, USA
| |
Collapse
|
68
|
Horn LA, Long TM, Atkinson R, Clements V, Ostrand-Rosenberg S. Soluble CD80 Protein Delays Tumor Growth and Promotes Tumor-Infiltrating Lymphocytes. Cancer Immunol Res 2017; 6:59-68. [PMID: 29122838 DOI: 10.1158/2326-6066.cir-17-0026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 08/10/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022]
Abstract
Tumor cells use various immune-suppressive strategies to overcome antitumor immunity. One such method is tumor expression of programmed death ligand-1 (PD-L1), which triggers apoptotic death or anergy upon binding programmed death-1 (PD-1) on T cells. Our previous in vitro cellular studies with human and mouse PD-L1+ tumor cells demonstrated that a soluble form of the costimulatory molecule CD80 prevented PD-L1-mediated immune suppression and restored T-cell activation by binding PD-L1 and blocking interaction with PD-1. We now report that in vivo treatment of established syngeneic PD-L1+ CT26 colon carcinoma and B16F10 melanoma tumors with CD80-Fc delays tumor growth and promotes tumor-infiltrating T cells. Studies with PD-1-/- and CD28-/- mice demonstrate that soluble CD80 acts in vivo by simultaneously neutralizing PD-1 suppression and activating through CD28. We also report that soluble CD80 mediates its effects by activating transcription factors EGR1-4, NF-κB, and MAPK, downstream signaling components of the CD28 and T-cell receptor pathways. Soluble CD80 binds to CTLA-4 on activated human peripheral blood mononuclear cells. However, increasing quantities of CTLA-4 antagonist antibodies do not increase T-cell activation. These results indicate that soluble CD80 does not suppress T-cell function through CTLA-4 and suggest that CTLA-4 acts as a decoy receptor for CD80, rather than functioning as a suppressive signaling receptor. Collectively, these studies demonstrate that soluble CD80 has therapeutic efficacy in vivo in mouse tumor systems and that its effects are due to its ability to inhibit PD-1-mediated suppression while concurrently activating T cells through CD28. Cancer Immunol Res; 6(1); 59-68. ©2017 AACR.
Collapse
Affiliation(s)
- Lucas A Horn
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Tiha M Long
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Ryan Atkinson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Virginia Clements
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | | |
Collapse
|
69
|
Carignan D, Herblot S, Laliberté-Gagné MÈ, Bolduc M, Duval M, Savard P, Leclerc D. Activation of innate immunity in primary human cells using a plant virus derived nanoparticle TLR7/8 agonist. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2317-2327. [PMID: 29128662 DOI: 10.1016/j.nano.2017.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 12/23/2022]
Abstract
Rod-shaped virus-like nanoparticles (VLNP) made of papaya mosaic virus (PapMV) coat proteins (CP) self-assembled around a single stranded RNA (ssRNA) were showed to be a TLR7 agonist. Their utilization as an immune modulator in cancer immunotherapy was shown to be promising. To establish a clinical relevance in human for PapMV VLNP, we showed that stimulation of human peripheral blood mononuclear cells (PBMC) with VLNP induces the secretion of interferon alpha (IFNα) and other pro-inflammatory cytokines and chemokines. Plasmacytoid dendritic cells (pDCs) were activated and secreted IFN-α upon VLNP exposure. Monocyte-derived dendritic cells upregulate maturation markers and produce IL-6 in response to PapMV VLNP stimulation, which suggests the activation of TLR8. Finally, when co-cultured with NK cells, PapMV induced pDCs promoted the NK cytolytic activity against cancer cells. These data obtained with primary human immune cells further strengthen the clinical relevance of PapMV VLNPs as a cancer immunotherapy agent.
Collapse
Affiliation(s)
- Damien Carignan
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada
| | - Sabine Herblot
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Marie-Ève Laliberté-Gagné
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada
| | - Marilène Bolduc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada
| | - Michel Duval
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Pierre Savard
- Neurosciences, Laval University, Québec City, PQ, Canada
| | - Denis Leclerc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada.
| |
Collapse
|
70
|
Wang Z, Zhang Y, Liu Z, Dong K, Liu C, Ran X, Pu F, Ju E, Ren J, Qu X. A bifunctional nanomodulator for boosting CpG-mediated cancer immunotherapy. NANOSCALE 2017; 9:14236-14247. [PMID: 28914317 DOI: 10.1039/c7nr04396a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) oligonucleotides (ODNs) possess high immunostimulatory activity and represent attractive tools for cancer treatment. However, their success in eliminating large solid tumors was hampered by the immunosuppressive tumor microenvironment. Herein, we report that the design of a novel MnO2-CpG-silver nanoclusters (AgNCs)-doxorubicin (DOX) conjugate for enhanced cancer immunotherapy, in which MnO2 nanosheets function as unique supports to integrate the chemotherapy drug DOX and the immunotherapeutic agent CpG-AgNCs. Importantly, DOX could be conjugated with MnO2 nanosheets through π-π interactions to serve as a bifunctional modulator of the tumor microenvironment to activate a tumor-specific immune response by inducing immunogenic cell death, and reverse the immunosuppressive tumor microenvironment via abrogating the immune-suppressive activity of regulatory T cells, both of which would greatly improve the immune response of CpG-AgNCs. In this way, the T-cell immune responses of CpG-AgNCs which are linked to MnO2 nanosheets were significantly enhanced and could exhibit remarkable antitumor activity against large solid tumors. Our study may guide the rational design of immunotherapeutic boosters for improving cancer treatment.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Hu-Lieskovan S, Ribas A. New Combination Strategies Using Programmed Cell Death 1/Programmed Cell Death Ligand 1 Checkpoint Inhibitors as a Backbone. Cancer J 2017; 23:10-22. [PMID: 28114250 PMCID: PMC5844278 DOI: 10.1097/ppo.0000000000000246] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of immune checkpoints and subsequent clinical development of checkpoint inhibitors have revolutionized the field of oncology. The durability of the antitumor immune responses has raised the hope for long-term patient survival and potential cure; however, currently, only a minority of patients respond. Combination strategies to help increase antigen release and T-cell priming, promote T-cell activation and homing, and improve the tumor immune microenvironment, all guided by predictive biomarkers, can help overcome the tumor immune-evasive mechanisms and maximize efficacy to ultimately benefit the majority of patients. Great challenges remain because of the complex underlying biology, unpredictable toxicity, and accurate assessment of response. Carefully designed clinical trials guided by translational studies of paired biopsies will be key to develop reliable predictive biomarkers to choose which patients would most likely benefit from each strategy.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- From the Division of Hematology-Oncology, Department of Medicine, Jonsson Comprehensive Cancer Center at the University of California Los Angeles, Los Angeles, CA
| | | |
Collapse
|
72
|
Kyi C, Postow MA. Immune checkpoint inhibitor combinations in solid tumors: opportunities and challenges. Immunotherapy 2017; 8:821-37. [PMID: 27349981 DOI: 10.2217/imt-2016-0002] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The emergence of immune 'checkpoint inhibitors' such as cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death receptor 1 (PD-1) has revolutionized treatment of solid tumors including melanoma, lung cancer, among many others. The goal of checkpoint inhibitor combination therapy is to improve clinical response and minimize toxicities. Rational design of checkpoint combinations considers immune-mediated mechanisms of antitumor activity: immunogenic cell death, antigen release and presentation, activation of T-cell responses, lymphocytic infiltration into tumors and depletion of immunosuppression. Potential synergistic combinations include checkpoint blockade with conventional (radiation, chemotherapy and targeted therapies) and newer immunotherapies (cancer vaccines, oncolytic viruses, among others). Reliable biomarkers are necessary to define patients who will achieve best clinical benefit with minimal toxicity in combination therapy.
Collapse
Affiliation(s)
- Chrisann Kyi
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1079, NY 10029, USA
| | - Michael A Postow
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, NY 10065, USA.,Weill Cornell Medical College, 525 E 68th Street, NY 10065, USA
| |
Collapse
|
73
|
Ursu R, Carpentier A, Metellus P, Lubrano V, Laigle-Donadey F, Capelle L, Guyotat J, Langlois O, Bauchet L, Desseaux K, Tibi A, Chinot O, Lambert J, Carpentier AF. Intracerebral injection of CpG oligonucleotide for patients with de novo glioblastoma-A phase II multicentric, randomised study. Eur J Cancer 2017; 73:30-37. [PMID: 28142059 DOI: 10.1016/j.ejca.2016.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/28/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Immunostimulating oligodeoxynucleotides containing unmethylated cytosine-guanosine motifs (CpG-ODN) have shown a promising efficacy in several cancer models when injected locally. A previous phase II study of CpG-ODN in patients with recurrent glioblastoma (GBM) has suggested some activity and has shown a limited toxicity. This multicentre single-blinded randomised phase II trial was designed to study the efficacy of a local treatment by CpG-ODN in patients with de novo glioblastomas. PATIENTS AND METHODS Patients with a newly diagnosed glioblastoma underwent large surgical resection and CpG-ODN was randomly administrated locally around the surgical cavity. The patients were then treated according to standard of care (SOC) with radiotherapy and temozolomide. The primary objective was 2-year survival. Secondary outcomes were progression free survival (PFS), and tolerance. RESULTS Eighty-one (81) patients were randomly assigned to receive CpG-ODN plus SOC (39 patients) or SOC (42 patients). The 2-year overall survival was 31% (19%; 49%) in the CpG-ODN arm and 26% (16%; 44%) in the SOC arm. The median PFS was 9 months in the CpG-ODN arm and 8.5 months in the SOC arm. The incidence of adverse events was similar in both arms; although fever and post-operative haematoma were more frequent in the CpG-ODN arm. CONCLUSIONS Local immunotherapy with CpG-ODN injected into the surgical cavity after tumour removal and followed by SOC, although well tolerated, does not improve survival of patients with newly diagnosed GBM.
Collapse
Affiliation(s)
- Renata Ursu
- Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, Service de Neurologie, Bobigny, France.
| | - Alexandre Carpentier
- Assistance Publique-Hôpitaux de Paris, Pitie Salpetriere Hospital, Department of Neurosurgery, Paris, France
| | | | - Vincent Lubrano
- Department of Neurosurgery, Centre Hospitalier Universitaire, Toulouse, France
| | - Florence Laigle-Donadey
- Assistance Publique-Hopitaux de Paris, Department of Neurology Mazarin, Hôpital Pitié-Salpêtrière, Paris, France
| | - Laurent Capelle
- Assistance Publique-Hôpitaux de Paris, Pitie Salpetriere Hospital, Department of Neurosurgery, Paris, France
| | - Jacques Guyotat
- Neurosurgical Department D, Neurological Hospital, Lyon, France
| | | | - Luc Bauchet
- Department of Neurosurgery, CHU Gui de Chauliac, Montpellier, France
| | | | - Annick Tibi
- Agence Générale des Equipements et Produits de Santé (AGEPS), Paris, France
| | - Olivier Chinot
- Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Department of Neuro-Oncology, CHU Timone, Marseille, France
| | - Jérôme Lambert
- Department of Biostatistics, Hospital Saint-Louis, Paris, France
| | - Antoine F Carpentier
- Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, Service de Neurologie, Bobigny, France; Université Paris 13, UFR de Santé, Médecine et Biologie Humaine, Bobigny, France
| |
Collapse
|
74
|
Rakhmilevich AL, Felder M, Lever L, Slowinski J, Rasmussen K, Hoefges A, Van De Voort TJ, Loibner H, Korman AJ, Gillies SD, Sondel PM. Effective Combination of Innate and Adaptive Immunotherapeutic Approaches in a Mouse Melanoma Model. THE JOURNAL OF IMMUNOLOGY 2017; 198:1575-1584. [PMID: 28062694 DOI: 10.4049/jimmunol.1601255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/02/2016] [Indexed: 01/06/2023]
Abstract
Most cancer immunotherapies include activation of either innate or adaptive immune responses. We hypothesized that the combined activation of both innate and adaptive immunity will result in better antitumor efficacy. We have previously shown the synergy of an agonistic anti-CD40 mAb (anti-CD40) and CpG-oligodeoxynucleotides in activating macrophages to induce tumor cell killing in mice. Separately, we have shown that a direct intratumoral injection of immunocytokine (IC), an anti-GD2 Ab linked to IL-2, can activate T and NK cells resulting in antitumor effects. We hypothesized that activation of macrophages with anti-CD40/CpG, and NK cells with IC, would cause innate tumor destruction, leading to increased presentation of tumor Ags and adaptive T cell activation; the latter could be further augmented by anti-CTLA-4 Ab to achieve tumor eradication and immunological memory. Using the mouse GD2+ B78 melanoma model, we show that anti-CD40/CpG treatment led to upregulation of T cell activation markers in draining lymph nodes. Anti-CD40/CpG + IC/anti-CTLA-4 synergistically induced regression of advanced s.c. tumors, resulting in cure of some mice and development of immunological memory against B78 and wild type B16 tumors. Although the antitumor effect of anti-CD40/CpG did not require T cells, the antitumor effect of IC/anti-CTLA-4 was dependent on T cells. The combined treatment with anti-CD40/CpG + IC/anti-CTLA-4 reduced T regulatory cells in the tumors and was effective against distant solid tumors and lung metastases. We suggest that a combination of anti-CD40/CpG and IC/anti-CTLA-4 should be developed for clinical testing as a potentially effective novel immunotherapy strategy.
Collapse
Affiliation(s)
- Alexander L Rakhmilevich
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705; .,Paul P. Carbone Comprehensive Cancer Center, Madison, WI 53705
| | - Mildred Felder
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53705
| | - Lauren Lever
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705
| | - Jacob Slowinski
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705
| | - Kayla Rasmussen
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705
| | - Anna Hoefges
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705
| | | | | | - Alan J Korman
- Bristol-Myers Squibb Company, Redwood City, CA 94063
| | | | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705.,Paul P. Carbone Comprehensive Cancer Center, Madison, WI 53705.,Department of Pediatrics, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
75
|
Derer A, Spiljar M, Bäumler M, Hecht M, Fietkau R, Frey B, Gaipl US. Chemoradiation Increases PD-L1 Expression in Certain Melanoma and Glioblastoma Cells. Front Immunol 2016; 7:610. [PMID: 28066420 PMCID: PMC5177615 DOI: 10.3389/fimmu.2016.00610] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy approaches currently make their way into the clinics to improve the outcome of standard radiochemotherapy (RCT). The programed cell death receptor ligand 1 (PD-L1) is one possible target that, upon blockade, allows T cell-dependent antitumor immune responses to be executed. To date, it is unclear which RCT protocol and which fractionation scheme leads to increased PD-L1 expression and thereby renders blockade of this immune suppressive pathway reasonable. We therefore investigated the impact of radiotherapy (RT), chemotherapy (CT), and RCT on PD-L1 surface expression on tumor cells of tumor entities with differing somatic mutation prevalence. Murine melanoma (B16-F10), glioblastoma (GL261-luc2), and colorectal (CT26) tumor cells were treated with dacarbazine, temozolomide, and a combination of irinotecan, oxaliplatin, and fluorouracil, respectively. Additionally, they were irradiated with a single dose [10 Gray (Gy)] or hypo-fractionated (2 × 5 Gy), respectively, norm-fractionated (5 × 2 Gy) radiation protocols were used. PD-L1 surface and intracellular interferon (IFN)-gamma expression was measured by flow cytometry, and IL-6 release was determined by ELISA. Furthermore, tumor cell death was monitored by AnnexinV-FITC/7-AAD staining. For first in vivo analyses, the B16-F10 mouse melanoma model was chosen. In B16-F10 and GL261-luc2 cells, particularly norm-fractionated and hypo-fractionated radiation led to a significant increase of surface PD-L1, which could not be observed in CT26 cells. Furthermore, PD-L1 expression is more pronounced on vital tumor cells and goes along with increased levels of IFN-gamma in the tumor cells. In melanoma cells CT was the main trigger for IL-6 release, while in glioblastoma cells it was norm-fractionated RT. In vivo, fractionated RT only in combination with dacarbazine induced PD-L1 expression on melanoma cells. Our results suggest a tumor cell-mediated upregulation of PD-L1 expression following in particular chemoradiation that is not only dependent on the somatic mutation prevalence of the tumor entity.
Collapse
Affiliation(s)
- Anja Derer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Martina Spiljar
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Monika Bäumler
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
76
|
van Hooren L, Sandin LC, Moskalev I, Ellmark P, Dimberg A, Black P, Tötterman TH, Mangsbo SM. Local checkpoint inhibition of CTLA-4 as a monotherapy or in combination with anti-PD1 prevents the growth of murine bladder cancer. Eur J Immunol 2016; 47:385-393. [PMID: 27873300 DOI: 10.1002/eji.201646583] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/14/2016] [Accepted: 11/18/2016] [Indexed: 12/15/2022]
Abstract
Checkpoint blockade of CTLA-4 results in long-lasting survival benefits in metastatic cancer patients. However, patients treated with CTLA-4 blockade have suffered from immune-related adverse events, most likely due to the breadth of the induced T-cell activation. Here, we investigated the efficacy of a local low-dose anti-CTLA-4 administration for treatment of subcutaneous or orthotopic murine bladder 49 (MB49) bladder carcinoma in C57BL/6 mice. When MB49 tumors were grown s.c., peritumoral (p.t.) injection of anti-CTLA-4 treatment was equally effective as intravenous or s.c. (nontumor bearing flank) administration. Notably, p.t. injection was associated with lower circulating antibody levels and decreased IL-6 serum levels as compared to systemic treatment. Ultrasound-guided intratumoral anti-CTLA-4 antibody treatment of orthotopically growing MB49 tumors resulted in tumor regression, with more than tenfold reduction in systemic antibody levels as compared to i.v. or s.c. administration, in line with the compartmentally restrained nature of the bladder. Local anti-CTLA-4 therapy in combination with anti-PD-1 therapy resulted in complete responses, superior to each therapy alone. In addition, p.t. anti-CTLA-4 therapy was potentiated by depletion of regulatory T cells. Our results demonstrate that local anti-CTLA-4 antibody therapy is equally effective as systemic administration, but reduces systemic antibody levels and cytokine release, and enhances the response to anti-PD1 therapy.
Collapse
Affiliation(s)
- Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Linda C Sandin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Igor Moskalev
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Peter Ellmark
- Alligator Bioscience AB, Lund, Sweden.,Department of Immunotechnology, Lund University, Lund, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Thomas H Tötterman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sara M Mangsbo
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
77
|
Huang RY, Francois A, McGray AR, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology 2016; 6:e1249561. [PMID: 28197366 PMCID: PMC5283642 DOI: 10.1080/2162402x.2016.1249561] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/28/2022] Open
Abstract
Tumor-associated or -infiltrating lymphocytes (TALs or TILs) co-express multiple immune inhibitory receptors that contribute to immune suppression in the ovarian tumor microenvironment (TME). Dual blockade of PD-1 along with LAG-3 or CTLA-4 has been shown to synergistically enhance T-cell effector function, resulting in a delay in murine ovarian tumor growth. However, the mechanisms underlying this synergy and the relative contribution of other inhibitory receptors to immune suppression in the ovarian TME are unknown. Here, we report that multiple immune checkpoints are expressed in TALs and TILs isolated from ovarian tumor-bearing mice. Importantly, blockade of PD-1, LAG-3, or CTLA-4 alone using genetic ablation or blocking antibodies conferred a compensatory upregulation of the other checkpoint pathways, potentiating their capacity for local T-cell suppression that, in turn, could be overcome through combinatorial blockade strategies. Whereas single-agent blockade led to tumor outgrowth in all animals, dual antibody blockade against PD-1/CTLA-4 or triple blockade against PD-1/LAG-3/CTLA-4 resulted in tumor-free survival in 20% of treated mice. In contrast, dual blockade of LAG-3 and CTLA-4 pathways using PD-1 knockout mice led to tumor-free survival in 40% of treated mice, suggesting a hierarchical ordering of checkpoint function. Durable antitumor immunity was most strongly associated with increased numbers of CD8+ T cells, the frequency of cytokine-producing effector T cells, reduced frequency of Tregs and arginine-expressing monocytic myeloid-derived suppressor cells in the peritoneal TME. These data provide a basis for combinatorial checkpoint blockade in clinical intervention for ovarian cancer.
Collapse
Affiliation(s)
- Ruea-Yea Huang
- Center for Immunotherapy, Roswell Park Cancer Institute , Buffalo, NY, USA
| | - Ariel Francois
- Center for Immunotherapy, Roswell Park Cancer Institute , Buffalo, NY, USA
| | - Aj Robert McGray
- Center for Immunotherapy, Roswell Park Cancer Institute , Buffalo, NY, USA
| | - Anthony Miliotto
- Center for Immunotherapy, Roswell Park Cancer Institute , Buffalo, NY, USA
| | - Kunle Odunsi
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, USA; Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA; Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
78
|
Singh P, Black P. Emerging role of checkpoint inhibition in localized bladder cancer. Urol Oncol 2016; 34:548-555. [PMID: 27776977 DOI: 10.1016/j.urolonc.2016.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/27/2016] [Accepted: 09/17/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Checkpoint inhibitors have rapidly become a standard treatment option for metastatic urothelial carcinoma. A wave of enthusiasm for these drugs has pushed them also into the setting of localized bladder cancer, including both non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive disease bladder cancer (MIBC). Here, we aimed to review the emerging role of checkpoint inhibition in localized bladder cancer. METHODS We reviewed the current treatment landscape for both NMIBC and MIBC and established a significant unmet clinical need for novel therapies. We have compiled the evidence that supports the investigation of checkpoint blockade in localized bladder cancer and have reviewed the corresponding clinical trial׳s landscape. RESULTS The success of checkpoint inhibitors in metastatic bladder cancer offers the most compelling rationale for testing checkpoint blockade in localized disease. The established benefit of intravesical Bacillus Calmette-Guérin provides precedent for immune therapy in bladder cancer. Immune dysfunction has been described in bladder cancer, and we know that checkpoint molecules are expressed in these tumors. Furthermore, the high neoantigen burden of bladder cancer and results from preclinical studies suggest that checkpoint blockade deserves testing in earlier stage disease. Multiple trials are either planned or underway in almost all bladder cancer disease states. CONCLUSION Ongoing trials would determine in the next several years whether checkpoint inhibitors can have a similar effect in localized disease as they have had in metastatic bladder cancer. They would also determine if patients with earlier disease would tolerate the toxicity of systemic therapy. The future holds promise for predictive biomarkers to guide individualized use of these agents and for effective combination therapies to overcome resistances.
Collapse
Affiliation(s)
- Parminder Singh
- Division of Hematology and Oncology , Mayo clinic, Phoenix, AZ.
| | - Peter Black
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
79
|
Huang RY, Eppolito C, Lele S, Shrikant P, Matsuzaki J, Odunsi K. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget 2016; 6:27359-77. [PMID: 26318293 PMCID: PMC4694995 DOI: 10.18632/oncotarget.4751] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/10/2015] [Indexed: 12/21/2022] Open
Abstract
The immune co-inhibitory receptors lymphocyte activation gene-3 (LAG3) and programmed cell death 1 (PD1) synergistically contribute to autoimmunity and tumor evasion. Here we demonstrate how they collaborate and interact to regulate T cell function. We first show that LAG3 and PD1 are co-expressed on both OVA-specific and non-specific T cells infiltrating murine ovarian tumors. Dual antibody blockade or genetic knockout of LAG3 and PD1 significantly enhanced T effector function and delayed tumor growth. LAG3 and PD1 co-localized in activated CD8+ T cells in vitro at the trans-Golgi vesicles, early/recycling endosomal compartments, lysosomes, and microtubule organizing center. Importantly, LAG3 and PD1 cluster with pLck at the immunological synapse. Reciprocal immunoprecipitation of T cell extracts revealed physical interaction between LAG3 and PD1. Mutational analyses indicate that the cytoplasmic domain of LAG3 is not absolutely required for its association with PD1, while the ITIM and ITSM of PD1 are necessary for its association with LAG3. Finally, LAG3 protein also associates with the Src-homology-2 domain-containing phosphatases (SHP1/2) which are known to be recruited by PD1 during T cell signaling. Our data indicate that the association of LAG3 with PD1 contributes to their rapid trafficking to the immunological synapse, leading to a synergistic inhibitory effect on T cell signaling.
Collapse
Affiliation(s)
- Ruea-Yea Huang
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Cheryl Eppolito
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Shashikant Lele
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Protul Shrikant
- Department of Research, Mayo Clinic, Scottsdale, Arizona, USA
| | - Junko Matsuzaki
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
80
|
Shi LZ, Fu T, Guan B, Chen J, Blando JM, Allison JP, Xiong L, Subudhi SK, Gao J, Sharma P. Interdependent IL-7 and IFN-γ signalling in T-cell controls tumour eradication by combined α-CTLA-4+α-PD-1 therapy. Nat Commun 2016; 7:12335. [PMID: 27498556 PMCID: PMC4979067 DOI: 10.1038/ncomms12335] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/23/2016] [Indexed: 01/09/2023] Open
Abstract
Combination therapy with α-CTLA-4 and α-PD-1 has shown significant clinical responses in different types of cancer. However, the underlying mechanisms remain elusive. Here, combining detailed analysis of human tumour samples with preclinical tumour models, we report that concomitant blockade of CTLA-4 and PD-1 improves anti-tumour immune responses and synergistically eradicates tumour. Mechanistically, combination therapy relies on the interdependence between IL-7 and IFN-γ signalling in T cells, as lack of either pathway abrogates the immune-boosting and therapeutic effects of combination therapy. Combination treatment increases IL-7Rα expression on tumour-infiltrating T cells in an IFN-γ/IFN-γR signalling-dependent manner, which may serve as a potential biomarker for clinical trials with immune checkpoint blockade. Our data suggest that combining immune checkpoint blockade with IL-7 signalling could be an effective modality to improve immunotherapeutic efficacy. Taken together, we conclude that combination therapy potently reverses immunosuppression and eradicates tumours via an intricate interplay between IFN-γ/IFN-γR and IL-7/IL-7R pathways.
Collapse
Affiliation(s)
- Lewis Zhichang Shi
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tihui Fu
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Baoxiang Guan
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jorge M Blando
- The Immunotherapy Platform, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - James P Allison
- The Immunotherapy Platform, MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Immunology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Liangwen Xiong
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
- The Immunotherapy Platform, MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Immunology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
81
|
Akiyama Y, Nonomura C, Kondou R, Miyata H, Ashizawa T, Maeda C, Mitsuya K, Hayashi N, Nakasu Y, Yamaguchi K. Immunological effects of the anti-programmed death-1 antibody on human peripheral blood mononuclear cells. Int J Oncol 2016; 49:1099-107. [PMID: 27573705 DOI: 10.3892/ijo.2016.3586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/30/2016] [Indexed: 11/06/2022] Open
Abstract
Immune checkpoint antibody-mediated blockade has gained attention as a new cancer immunotherapy strategy. Accumulating evidence suggests that this therapy imparts a survival benefit to metastatic melanoma and non-small cell lung cancer patients. A substantial amount of data on immune checkpoint antibodies has been collected from clinical trials; however, the direct effect of the antibodies on human peripheral blood mononuclear cells (PBMCs) has not been exclusively investigated. In this study, we developed an anti-programmed death-1 (PD-1) antibody (with biosimilarity to nivolumab) and examined the effects of the antibody on PBMCs derived from cancer patients. Specifically, we investigated the effects of the anti-PD-1 antibody on proliferation, cytokine production, cytotoxic T lymphocytes (CTL) and regulatory T cells. These investigations yielded several important results. First, the anti-PD-1 antibody had no obvious effect on resting PBMCs; however, high levels of the anti-PD-1 antibody partly stimulated PBMC proliferation when accompanied by an anti-CD3 antibody. Second, the anti-PD-1 antibody restored the growth inhibition of anti-CD3 Ab-stimulated PBMCs mediated by PD-L1. Third, the anti-PD-1 antibody exhibited a moderate inhibitory effect on the induction of myeloid-derived suppressor cells (MDSCs) by anti-CD3 antibody stimulation. Additionally, the presence of the anti-PD-1 antibody promoted antigen-specific CTL induction, which suggests that combining anti-PD-1 antibody and conventional immunotherapy treatments may have beneficial effects. These results indicate that specific cellular immunological mechanisms are partly responsible for the antitumor effect exhibited by the anti-PD-1 antibody against advanced cancers in clinical trials.
Collapse
Affiliation(s)
- Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan
| | - Chizu Nonomura
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan
| | - Ryota Kondou
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan
| | - Haruo Miyata
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan
| | - Tadashi Ashizawa
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan
| | - Chie Maeda
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan
| | - Koichi Mitsuya
- Division of Neurosurgery, Shizuoka Cancer Center Hospital, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan
| | - Nakamasa Hayashi
- Division of Neurosurgery, Shizuoka Cancer Center Hospital, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan
| | - Yoko Nakasu
- Division of Neurosurgery, Shizuoka Cancer Center Hospital, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan
| | - Ken Yamaguchi
- Office of The President, Shizuoka Cancer Center Hospital, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan
| |
Collapse
|
82
|
Wang SD, Li HY, Li BH, Xie T, Zhu T, Sun LL, Ren HY, Ye ZM. The role of CTLA-4 and PD-1 in anti-tumor immune response and their potential efficacy against osteosarcoma. Int Immunopharmacol 2016; 38:81-9. [PMID: 27258185 DOI: 10.1016/j.intimp.2016.05.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/02/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022]
Abstract
Immunotherapy is proved to be a promising therapeutic strategy against human malignancies. Evasion of immune surveillance is considered to be a major factor of malignant progression. Inhibitory receptors, especially CTLA-4 and PD-1, are found to play critical roles in the mediation of anti-tumor immune efficacy. Thus, antibodies targeting these immune checkpoints have emerged as the attractive treatment approaches to those patients with cancer. Osteosarcoma is highly malignant and current treatment remains a challenge, especially for those patients with metastasis. Despite some achievements, the effect of immunotherapy against osteosarcoma is still unsatisfactory. The present review attempts to show the role and mechanism of CTLA-4 and PD-1 in immune response and summarize the recent findings related to the effect of inhibitory receptor antibodies on the immune response against tumors, especially osteosarcoma, and the correlation between PD-1 or/and CTLA-4 expression and outcome of osteosarcoma patients. We further discuss the utilization of the combination therapy against osteosarcoma.
Collapse
Affiliation(s)
- Sheng-Dong Wang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Heng-Yuan Li
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Bing-Hao Li
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Tao Xie
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Ting Zhu
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Ling-Ling Sun
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Hai-Yong Ren
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Zhao-Ming Ye
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
83
|
Oliveira PA, Gil da Costa RM, Vasconcelos-Nóbrega C, Arantes-Rodrigues R, Pinto-Leite R. Challenges within vitroandin vivoexperimental models of urinary bladder cancer for novel drug discovery. Expert Opin Drug Discov 2016; 11:599-607. [DOI: 10.1080/17460441.2016.1174690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
84
|
Konstorum A, Hillen T, Lowengrub J. Feedback Regulation in a Cancer Stem Cell Model can Cause an Allee Effect. Bull Math Biol 2016; 78:754-785. [PMID: 27113934 DOI: 10.1007/s11538-016-0161-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/15/2016] [Indexed: 12/24/2022]
Abstract
The exact mechanisms of spontaneous tumor remission or complete response to treatment are phenomena in oncology that are not completely understood. We use a concept from ecology, the Allee effect, to help explain tumor extinction in a model of tumor growth that incorporates feedback regulation of stem cell dynamics, which occurs in many tumor types where certain signaling molecules, such as Wnts, are upregulated. Due to feedback and the Allee effect, a tumor may become extinct spontaneously or after therapy even when the entire tumor has not been eradicated by the end of therapy. We quantify the Allee effect using an 'Allee index' that approximates the area of the basin of attraction for tumor extinction. We show that effectiveness of combination therapy in cancer treatment may occur due to the increased probability that the system will be in the Allee region after combination treatment versus monotherapy. We identify therapies that can attenuate stem cell self-renewal, alter the Allee region and increase its size. We also show that decreased response of tumor cells to growth inhibitors can reduce the size of the Allee region and increase stem cell densities, which may help to explain why this phenomenon is a hallmark of cancer.
Collapse
Affiliation(s)
- Anna Konstorum
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| | - Thomas Hillen
- Centre for Mathematical Biology, University of Alberta, Edmonton, AB, Canada
| | - John Lowengrub
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
85
|
Jang JK, Khawli LA, Canter DC, Hu P, Zhu TH, Wu BW, Angell TE, Li Z, Epstein AL. Systemic delivery of chTNT-3/CpG immunoconjugates for immunotherapy in murine solid tumor models. Cancer Immunol Immunother 2016; 65:511-23. [PMID: 26960932 DOI: 10.1007/s00262-016-1813-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/19/2016] [Indexed: 12/25/2022]
Abstract
CpG oligodeoxynucleotides (CpG) potently activate the immune system by mimicking microbial DNA. Conjugation of CpG to chTNT-3, an antibody targeting the necrotic centers of tumors, enabled CpG to accumulate in tumors after systemic delivery, where it can activate the immune system in the presence of tumor antigens. CpG chemically conjugated to chTNT-3 (chTNT-3/CpG) were compared to free CpG in their ability to stimulate the immune system in vitro and reduce tumor burden in vivo. In subcutaneous Colon 26 adenocarcinoma and B16-F10 melanoma models in BALB/c and C57BL/6 mice, respectively, chTNT-3/CpG, free CpG, or several different control constructs were administered systemically. Intraperitoneal injections of chTNT-3/CpG delayed tumor growth and improved survival and were comparable to intratumorally administered CpG. Compared to saline-treated mice, chTNT-3/CpG-treated mice had smaller average tumor volumes by as much as 72% in Colon 26-bearing mice and 79% in B16-bearing mice. Systemically delivered free CpG and CpG conjugated to an isotype control antibody did not reduce tumor burden or improve survival. In this study, chTNT-3/CpG retained immunostimulatory activity of the CpG moiety and enabled delivery to tumors. Because systemically administered CpG rapidly clear the body and do not accumulate into tumors, chTNT-3/CpG provide a solution to the limitations observed in preclinical and clinical trials.
Collapse
Affiliation(s)
- Julie K Jang
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Leslie A Khawli
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - David C Canter
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Peisheng Hu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Tian H Zhu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Brian W Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Trevor E Angell
- Department of Endocrinology, Metabolism, and Hypertension, Thyroid Section, Brigham and Women's Hospital, Boston, MA, USA
| | - Zhongjun Li
- Department of Blood Transfusion, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA.
| |
Collapse
|
86
|
Collazo-Lorduy A, Galsky MD. Systemic therapy for metastatic bladder cancer in 2016 and beyond. Future Oncol 2016; 12:1179-92. [PMID: 26922914 DOI: 10.2217/fon-2015-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Metastatic urothelial cancer is generally associated with poor outcomes. In the first-line setting, platinum-based chemotherapy is the standard of care but resistance rapidly develops and the vast majority of patients ultimately experience disease progression. Despite several decades of clinical drug development focused on the treatment of platinum-resistant metastatic urothelial cancer, as of late 2015 there are no standard therapies approved by the US FDA in this setting. However, preliminary results from a series of recent trials exploring innovative approaches forecast a 'sea change' in the management of this difficult to treat malignancy. Herein, we review new approaches for the management of patients with metastatic urothelial cancer focused on three key therapeutic target areas: recurrent somatic alterations, the tumor neovasculature and tumor-associated immune escape.
Collapse
Affiliation(s)
- Ana Collazo-Lorduy
- Icahn School of Medicine at Mount Sinai, Department of Pathology, 1 Gustave L Levy Place, New York, NY 10029, USA.,Spanish Society of Medical Oncology, Velazquez 7, Madrid 28001, Spain
| | - Matthew D Galsky
- Icahn School of Medicine at Mount Sinai, Division of Hematology & Medical Oncology, Tisch Cancer Institute, 1 Gustave L Levy Place, New York, NY 10029, USA
| |
Collapse
|
87
|
Abstract
The discovery of immune inhibitory checkpoints has revolutionized the approach to the systemic treatment of cancer. The programmed death 1 (PD-1) inhibitory checkpoint, in particular, has played a key role in understanding how certain cancers can evade immune surveillance. Blocking the interaction between the PD-1 receptor and its primary ligand (PD-L1) has demonstrated remarkable anti-cancer activity, and has led to the recent accelerated approval of two anti-PD-1 drugs for use in unresectable and metastatic melanoma in the USA. Results of these therapeutic advances have solidified the role of immunotherapy in the treatment of melanoma, results that may be applicable to the treatment of other cancers. In this review, we discuss the role of the PD-1 pathway in the immune system and the anti-cancer mechanism of action of inhibiting the PD-1/PD-L1 interaction. We also review the efficacy and safety data of currently approved and in-development anti-PD-1 agents, and explore the next steps to further improve patient outcomes.
Collapse
|
88
|
Smith SG, Zaharoff DA. Future directions in bladder cancer immunotherapy: towards adaptive immunity. Immunotherapy 2016; 8:351-65. [PMID: 26860539 DOI: 10.2217/imt.15.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The clinical management of bladder cancer has not changed significantly in several decades. In particular, intravesical bacillus Calmette-Guérin (BCG) immunotherapy has been a mainstay for high-risk nonmuscle invasive bladder cancer since the late 1970s/early 1980s. This is despite the fact that bladder cancer has the highest recurrence rates of any cancer and BCG immunotherapy has not been shown to induce a tumor-specific immune response. We and others have hypothesized that immunotherapies capable of inducing tumor-specific adaptive immunity are needed to impact bladder cancer morbidity and mortality. This article summarizes the preclinical and clinical development of bladder cancer immunotherapies with an emphasis on the last 5 years. Expected progress in the near future is also discussed.
Collapse
Affiliation(s)
- Sean G Smith
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - David A Zaharoff
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
89
|
Abstract
Immunotherapy with immune checkpoint inhibition has been improving the outcomes of patients with many different types of malignancies. Immune checkpoint inhibition has been most extensively studied in patients with advanced melanoma and there are three FDA approved antibodies already widely used in clinical practice (ipilimumab, nivolumab, and pembrolizumab). In this chapter, we review the mechanistic basis behind the development of immune checkpoint blocking antibodies. We then discuss specifics regarding each agent, unique clinical considerations in treating patients with this approach, and future directions, including combination strategies. This chapter is focused on melanoma, but the principles related to this immunotherapy approach are applicable to patients with many types of malignancies.
Collapse
|
90
|
Xiang JF, Liu L. Immune contexture and classification in human digestive malignant tumors: A novel way to evaluate tumors and impact on clinical outcome and therapy. Shijie Huaren Xiaohua Zazhi 2016; 24:3666. [DOI: 10.11569/wcjd.v24.i25.3666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
91
|
Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles. Viruses 2015; 7:5780-91. [PMID: 26561829 PMCID: PMC4664972 DOI: 10.3390/v7112899] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 01/07/2023] Open
Abstract
Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.
Collapse
|
92
|
Dalgleish AG. Vaccines versus immunotherapy: overview of approaches in deciding between options. Hum Vaccin Immunother 2015; 10:3369-74. [PMID: 25625932 DOI: 10.4161/21645515.2014.980707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review compares the optimal use of vaccines vs. other forms of immunotherapy, which includes cytokines, such as IL-2, monoclonal antibodies, such as the 'checkpoint inhibitors', against CTLA-4 and PD-1. The review includes both prophylactic and therapeutic vaccines using a variety of technologies. It is already established that vaccines can be enhanced by other immunotherapies, such as cytokines (IL-2) and there is scope for combining both of these with the 'checkpoint' antibodies. Moreover, both can be enhanced with other modalities, such as radiotherapy, ablative therapy and both high and low dose chemotherapies.
Collapse
Key Words
- BCG, Bacillus Colmette Guerin
- CpG, cytosine-phosphate-guanosine
- GM-CSF, Granulocyte-macrophage colony-stimulating factor
- HBV, Human hepatitis virus
- HPV, Human papilloma virus
- IL-2, Interleukin-2
- PFS, progression free survival
- PSA, Prostate-specific antigen
- TGFβ, Tumour growth factor beta
- TLR, Toll-like receptor
- antibodies
- checkpoint inhibitors
- cytokines
- immune modulators
- immunotherapy
- therapeutic vaccines
Collapse
Affiliation(s)
- Angus G Dalgleish
- a Institute of Infection and Immunity ; St George's University of London ; Tooting , London, UK
| |
Collapse
|
93
|
Emerging immunotherapies in the treatment of non-small cell lung cancer (NSCLC): the role of immune checkpoint inhibitors. Am J Clin Oncol 2015; 38:422-30. [PMID: 24685885 DOI: 10.1097/coc.0000000000000059] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immune checkpoint inhibition as a new treatment approach is undergoing extensive investigation in non-small cell lung cancer (NSCLC) and other malignancies. Unlike standard chemotherapy or targeted agents, which act directly on the tumor cells, immune checkpoint inhibitors work by restoring the immune system's capacity to eradicate tumors. Agents currently in active clinical development for lung cancer include ipilimumab, which modulates the cytotoxic T-lymphocyte-associated antigen 4 pathway, and multiple agents targeting the programmed death protein 1 (PD-1) pathway, both anti-PD-1 compounds (nivolumab, pembrolizumab [MK-3475]) and those that target programmed death ligand 1 (PD-L1), a key ligand for PD-1 (BMS-936559, MPDL3280A). Preliminary evidence shows activity for these agents in NSCLC as monotherapy or in combination with chemotherapy. This article reviews the immune checkpoint inhibitors and the available data to date on their use in lung cancer. Clinical implications for the use of these therapies in NSCLC are discussed as they relate to their novel mechanisms of action, response patterns, and safety profiles.
Collapse
|
94
|
Vences-Catalán F, Rajapaksa R, Srivastava MK, Marabelle A, Kuo CC, Levy R, Levy S. Tetraspanin CD81 promotes tumor growth and metastasis by modulating the functions of T regulatory and myeloid-derived suppressor cells. Cancer Res 2015; 75:4517-26. [PMID: 26329536 DOI: 10.1158/0008-5472.can-15-1021] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/10/2015] [Indexed: 11/16/2022]
Abstract
Tumor cells counteract innate and adaptive antitumor immune responses by recruiting regulatory T cells (Treg) and innate myeloid-derived suppressor cells (MDSC), which facilitate immune escape and metastatic dissemination. Here we report a role in these recruitment processes for CD81, a member of the tetraspanin family of proteins that have been implicated previously in cancer progression. We found that genetic deficiency in CD81 reduced tumor growth and metastasis in two genetic mouse backgrounds and multiple tumor models. Mechanistic investigations revealed that CD81 was not required for normal development of Treg and MDSC but was essential for immunosuppressive functions. Notably, adoptive transfer of wild-type Treg into CD81-deficient mice was sufficient to promote tumor growth and metastasis. Our findings suggested that CD81 modulates adaptive and innate immune responses, warranting further investigation of CD81 in immunomodulation in cancer and its progression.
Collapse
Affiliation(s)
- Felipe Vences-Catalán
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, California
| | - Ranjani Rajapaksa
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, California
| | - Minu K Srivastava
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, California
| | - Aurelien Marabelle
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, California
| | - Chiung-Chi Kuo
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, California
| | - Ronald Levy
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, California
| | - Shoshana Levy
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, California.
| |
Collapse
|
95
|
Hahn NM, Dinney CP, Sonpavde G. Multi-targeted agents in the treatment of urothelial carcinoma. Bladder Cancer 2015. [DOI: 10.1002/9781118674826.ch31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
96
|
Kobold S, Wiedemann G, Rothenfußer S, Endres S. Modes of action of TLR7 agonists in cancer therapy. Immunotherapy 2015; 6:1085-95. [PMID: 25428647 DOI: 10.2217/imt.14.75] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
From the numerous Toll-like receptor agonists, only TLR7 agonists have been approved for cancer treatment, although they are current restricted to topical application. The main target cells of TLR7 agonists are plasmacytoid dendritic cells, producing IFN-α and thus acting on other immune cells. Thereby dendritic cells acquire enhanced costimulatory and antigen-presenting capacity, priming an adaptive immune response. Besides NK cells, antigen-specific T cells are the main terminal effectors of TLR7 agonists in tumor therapy. This qualifies TLR7 agonists as vaccine adjuvants, which is currently being tested in clinical trials. However, the systemic application of TLR7 agonists shows insufficient efficacy, most likely owing to toxicity-limited dosing. The use of TLR7 agonists in combinational therapy holds the promise of synergistic activity and lower required doses.
Collapse
Affiliation(s)
- Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) & Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
97
|
Abstract
Tumor is one of the most common lethal diseases in the world. Current progress of therapy remains insufficient survival benefit. Tumor immunotherapies have been proposed for more than a century. With the improvement in the understanding of the role of the immune system in the tumorigenesis and immune response to tumor, immunotherapy has obtained a rapid development and plays the significant role in tumor therapy nowadays. This review designs to provide a general overview of immunotherapy in tumors. We will introduce the landmark events in the past research of immunotherapy and elaborate a range of strategies using different immune response mechanism, which have been demonstrated successfully and even some of them have been approved by US Food and Drug Administration (FDA) to certain tumor therapy. Finally, we will discuss the future direction of immunotherapy so that we can predict the possible and valuable strategies for future tumor therapy.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
98
|
Abstract
PURPOSE OF REVIEW Over the last 18 months, substantial progress has been made in demonstrating the clinical efficacy of harnessing the immune system to treat a variety of both solid and hematologic malignancies. This review summarizes and evaluates these seminal studies. RECENT FINDINGS The two treatment modalities most responsible for the success of immune based therapies in cancer are adoptive T-cell therapy and immunoregulatory antibodies. Specifically, immunotherapy is generating responses in malignancies that would otherwise have no traditional curative options such as CD19-targeted chimeric antigen receptors to treat relapsed/refractory acute lymphocytic leukemia and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and PD-1 blockade alone or in combination to treat metastatic melanoma and other solid tumors. SUMMARY We are at a turning point for the field of cancer immunotherapy. The scientific community is now, after decades of research, proving that these treatments have great promise for patients. Ongoing preclinical research and clinical trials over the next few years will determine the extent of impact cancer immunotherapy will have on the treatment of the general population.
Collapse
|
99
|
Winograd R, Byrne KT, Evans RA, Odorizzi PM, Meyer ARL, Bajor DL, Clendenin C, Stanger BZ, Furth EE, Wherry EJ, Vonderheide RH. Induction of T-cell Immunity Overcomes Complete Resistance to PD-1 and CTLA-4 Blockade and Improves Survival in Pancreatic Carcinoma. Cancer Immunol Res 2015; 3:399-411. [PMID: 25678581 PMCID: PMC4390506 DOI: 10.1158/2326-6066.cir-14-0215] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/06/2015] [Indexed: 11/16/2022]
Abstract
Disabling the function of immune checkpoint molecules can unlock T-cell immunity against cancer, yet despite remarkable clinical success with monoclonal antibodies (mAb) that block PD-1 or CTLA-4, resistance remains common and essentially unexplained. To date, pancreatic carcinoma is fully refractory to these antibodies. Here, using a genetically engineered mouse model of pancreatic ductal adenocarcinoma in which spontaneous immunity is minimal, we found that PD-L1 is prominent in the tumor microenvironment, a phenotype confirmed in patients; however, tumor PD-L1 was found to be independent of IFNγ in this model. Tumor T cells expressed PD-1 as prominently as T cells from chronically infected mice, but treatment with αPD-1 mAbs, with or without αCTLA-4 mAbs, failed in well-established tumors, recapitulating clinical results. Agonist αCD40 mAbs with chemotherapy induced T-cell immunity and reversed the complete resistance of pancreatic tumors to αPD-1 and αCTLA-4. The combination of αCD40/chemotherapy plus αPD-1 and/or αCTLA-4 induced regression of subcutaneous tumors, improved overall survival, and conferred curative protection from multiple tumor rechallenges, consistent with immune memory not otherwise achievable. Combinatorial treatment nearly doubled survival of mice with spontaneous pancreatic cancers, although no cures were observed. Our findings suggest that in pancreatic carcinoma, a nonimmunogenic tumor, baseline refractoriness to checkpoint inhibitors can be rescued by the priming of a T-cell response with αCD40/chemotherapy.
Collapse
Affiliation(s)
- Rafael Winograd
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katelyn T Byrne
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rebecca A Evans
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Pamela M Odorizzi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anders R L Meyer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David L Bajor
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cynthia Clendenin
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - E John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
100
|
Kim JE, Lim M. The role of checkpoints in the treatment of GBM. J Neurooncol 2015; 123:413-23. [PMID: 25749875 DOI: 10.1007/s11060-015-1747-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/16/2015] [Indexed: 12/18/2022]
Abstract
Targeted immunotherapy is founded on the principle that augmentation of effector T cell activity in the tumor microenvironment can translate to tumor regression. Targeted checkpoint inhibitors in the form of agonist or antagonist monoclonal antibodies have come to the fore as a promising strategy to activate systemic immunity and enhance T cell activity by blocking negative signals, enhancing positive signals, or altering the cytokine milieu. This review will examine several immune checkpoints and checkpoint modulators that play a role in cancer pathogenesis, with an emphasis on malignant gliomas.
Collapse
Affiliation(s)
- Jennifer E Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|