51
|
Temporal Effects on Radiation Responses in Nonhuman Primates: Identification of Biofluid Small Molecule Signatures by Gas Chromatography⁻Mass Spectrometry Metabolomics. Metabolites 2019; 9:metabo9050098. [PMID: 31096611 PMCID: PMC6571779 DOI: 10.3390/metabo9050098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/28/2022] Open
Abstract
Whole body exposure to ionizing radiation damages tissues leading to physical symptoms which contribute to acute radiation syndrome. Radiation biodosimetry aims to determine characteristic early biomarkers indicative of radiation exposure and is necessary for effective triage after an unanticipated radiological incident. Radiation metabolomics can address this aim by assessing metabolic perturbations following exposure. Gas chromatography-mass spectrometry (GC-MS) is a standardized platform ideal for compound identification. We performed GC time-of-flight MS for the global profiling of nonhuman primate urine and serum samples up to 60 d after a single 4 Gy γ-ray total body exposure. Multivariate statistical analysis showed higher group separation in urine vs. serum. We identified biofluid markers involved in amino acid, lipid, purine, and serotonin metabolism, some of which may indicate host microbiome dysbiosis. Sex differences were observed for amino acid fold changes in serum samples. Additionally, we explored mitochondrial dysfunction by tricarboxylic acid intermediate analysis in the first week with a GC tandem quadrupole MS platform. By adding this temporal component to our previous work exploring dose effects at 7 d, we observed the highest fold changes occurring at 3 d, returning closer to basal levels by 7 d. These results emphasize the utility of both MS-based metabolomics for biodosimetry and complementary analytical platforms for increased metabolome coverage.
Collapse
|
52
|
Carter CL, Hankey KG, Booth C, Tudor GL, Parker GA, Jones JW, Farese AM, MacVittie TJ, Kane MA. Characterizing the Natural History of Acute Radiation Syndrome of the Gastrointestinal Tract: Combining High Mass and Spatial Resolution Using MALDI-FTICR-MSI. HEALTH PHYSICS 2019; 116:454-472. [PMID: 30681424 PMCID: PMC6384159 DOI: 10.1097/hp.0000000000000948] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The acute radiation syndrome of the gastrointestinal tract has been histologically characterized, but the molecular and functional mechanisms that lead to these cellular alterations remain enigmatic. Mass spectrometry imaging is the only technique that enables the simultaneous detection and cellular or regional localization of hundreds of biomolecules in a single experiment. This current study utilized matrix-assisted laser desorption/ionization mass spectrometry imaging for the molecular characterization of the first natural history study of gastrointestinal acute radiation syndrome in the nonhuman primate. Jejunum samples were collected at days 4, 8, 11, 15, and 21 following 12-Gy partial-body irradiation with 2.5% bone marrow sparing. Mass spectrometry imaging investigations identified alterations in lipid species that further understanding of the functional alterations that occur over time in the different cellular regions of the jejunum following exposure to high doses of irradiation. Alterations in phosphatidylinositol species informed on dysfunctional epithelial cell differentiation and maturation. Differences in glycosphingolipids of the villi epithelium that would influence the absorptive capacity and functional structure of the brush border membrane were detected. Dichotomous alterations in cardiolipins indicated altered structural and functional integrity of mitochondria. Phosphatidylglycerol species, known regulators of toll-like receptors, were detected and localized to regions in the lamina propria that contained distinct immune cell populations. These results provide molecular insight that can inform on injury mechanism in a nonhuman primate model of the acute radiation syndrome of the gastrointestinal tract. Findings may contribute to the identification of therapeutic targets and the development of new medical countermeasures.
Collapse
Affiliation(s)
- Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Kim G. Hankey
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | | | | | - George A. Parker
- Charles River Laboratories, Pathology Associates, Raleigh-Durham, North Carolina, USA
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| |
Collapse
|
53
|
Farese AM, Bennett AW, Gibbs AM, Hankey KG, Prado K, Jackson W, MacVittie TJ. Efficacy of Neulasta or Neupogen on H-ARS and GI-ARS Mortality and Hematopoietic Recovery in Nonhuman Primates After 10-Gy Irradiation With 2.5% Bone Marrow Sparing. HEALTH PHYSICS 2019; 116:339-353. [PMID: 30281533 PMCID: PMC6349470 DOI: 10.1097/hp.0000000000000878] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A nonhuman primate model of acute, partial-body, high-dose irradiation with minimal (2.5%) bone marrow sparing was used to assess endogenous gastrointestinal and hematopoietic recovery and the ability of Neulasta (pegylated granulocyte colony-stimulating factor) or Neupogen (granulocyte colony-stimulating factor) to enhance recovery from myelosuppression when administered at an increased interval between exposure and initiation of treatment. A secondary objective was to assess the effect of Neulasta or Neupogen on mortality and morbidity due to the hematopoietic acute radiation syndrome and concomitant gastrointestinal acute radiation syndrome. Nonhuman primates were exposed to 10.0 Gy, 6 MV, linear accelerator-derived photons delivered at 0.80 Gy min. All nonhuman primates received subject-based medical management. Nonhuman primates were dosed daily with control article (5% dextrose in water), initiated on day 1 postexposure; Neulasta (300 μg kg), administered on days 1, 8, and 15 or days 3, 10, and 17 postexposure; or Neupogen (10 μg kg), administered daily postexposure following its initiation on day 1 or day 3 until neutrophil recovery (absolute neutrophil count ≥1,000 cells μL for 3 consecutive days). Mortality in the irradiated cohorts suggested that administration of Neulasta or Neupogen on either schedule did not affect mortality due to gastrointestinal acute radiation syndrome or mitigate mortality due to hematopoietic acute radiation syndrome (plus gastrointestinal damage). Following 10.0 Gy partial-body irradiation with 2.5% bone marrow sparing, the mean duration of neutropenia (absolute neutrophil count <500 cells μL) was 22.4 d in the control cohort vs. 13.0 and 15.3 d in the Neulasta day 1, 8, 15 and day 3, 10, 17 cohorts, relative to 16.2 and 17.4 d in the Neupogen cohorts initiated on day 1 and day 3, respectively. The absolute neutrophil count nadirs were 48 cells μL in the controls; 117 cells μL and 40 cells μL in the Neulasta days 1, 8, and 15 or days 3, 10, and 17 cohorts, respectively; and 75 cells μL and 37 cells μL in the Neupogen day 1 and day 3 cohorts, respectively. Therefore, the earlier administration of Neulasta or Neupogen was more effective in this model of marginal 2.5% bone marrow sparing. The approximate 2.5% bone marrow sparing may approach the threshold for efficacy of the lineage-specific medical countermeasure. The partial-body irradiation with 2.5% bone marrow sparing model can be used to assess medical countermeasure efficacy in the context of the concomitant gastrointestinal and hematopoietic acute radiation syndrome sequelae.
Collapse
Affiliation(s)
- Ann M. Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | | | | - Kim G. Hankey
- University of Maryland School of Medicine, Baltimore, MD
| | - Karl Prado
- University of Maryland Medical System, Department of Radiation Oncology, Baltimore, MD
| | | | | |
Collapse
|
54
|
MacVittie TJ, Farese AM, Kane MA. ARS, DEARE, and Multiple-organ Injury: A Strategic and Tactical Approach to Link Radiation Effects, Animal Models, Medical Countermeasures, and Biomarker Development to Predict Clinical Outcome. HEALTH PHYSICS 2019; 116:297-304. [PMID: 30608246 PMCID: PMC8439279 DOI: 10.1097/hp.0000000000001045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | - Maureen A Kane
- University of Maryland School of Pharmacy, Baltimore, MD
| |
Collapse
|
55
|
MacVittie TJ, Farese AM, Parker GA, Jackson W. The Time Course of Radiation-induced Lung Injury in a Nonhuman Primate Model of Partial-body Irradiation With Minimal Bone Marrow Sparing: Clinical and Radiographic Evidence and the Effect of Neupogen Administration. HEALTH PHYSICS 2019; 116:366-382. [PMID: 30624350 DOI: 10.1097/hp.0000000000000968] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The primary objectives of two companion manuscripts were to assess the natural history of delayed radiation-induced lung injury in a nonhuman primate model of acute high-dose, partial-body irradiation with 5% bone marrow sparing, to include the clinical, radiographic, and histopathological evidence and the effect of Neupogen administration on the morbidity and mortality. Nonhuman primates were exposed to 10.0 or 11.0 Gy with 6 MV linac-derived photons at approximately 0.80 Gy min. All nonhuman primates received subject-based, medical management. Subsets of nonhuman primates were administered Neupogen (10 μg kg) starting on day 1, day 3, or day 5 until recovery (absolute neutrophil count ≥ 1,000 cells μL for three consecutive days). Mortality due to multiple organ injury at 180 d study duration: Mortality at 180 d post either 10.0 Gy or 11.0 Gy was the consequence of concurrent injury due to the acute radiation syndrome (gastrointestinal and hematological) and delayed radiation-induced lung injury. The 180-d all-cause mortality observed in the control cohorts at 10.0 Gy (53%) or 11.0 Gy (86%) did not vary from cohorts that received Neupogen at any administration schedule. Mortality ranged from 43-50% (10 Gy) to 75-100% (11.0 Gy) in the Neupogen-treated cohorts. The study, however, was not powered to detect statistical significant differences between mortality in the control and Neupogen-treated cohorts. Clinical and radiographic evidence of radiation-induced lung injury: The mean nonsedated respiratory rate in the control cohorts exposed to 10 or 11 Gy increased from a baseline value of 37 breaths min to >60 breaths min within 103 d and 94 d postexposure, and the incidence of nonsedated respiratory rate > 80 breaths min was 50% and 70%, respectively. The mean duration of latency to development of clinical pneumonitis and/or fibrosis (nonsedated respiratory rate > 80 breaths min) was not significantly different between the 10.0-Gy or 11.0 Gy-cohorts (range 100-107 d). Neupogen (granulocyte colony-stimulating factor) administration had no apparent effect of the latency, incidence, or severity of nonsedated respiratory rate within either radiation dose or administration schedule. Computed tomography scans were obtained and images were analyzed for evidence of lung injury, e.g., pneumonitis and/or fibrosis, pleural and pericardial effusion. A quantitative, semiautomated method was developed based on differences in radiodensity (Hounsfield units) and lung morphology to extract the volume of pneumonitis/fibrosis and pleural effusion as indexed against total lung at each time point obtained. At both irradiation doses, 100% of the nonhuman primates surviving acute radiation syndrome manifested radiographic evidence of radiation-induced lung injury as pneumonitis and/or fibrosis. There was no apparent effect of Neupogen administration on the latency, incidence, severity, or progression of pneumonitis/fibrosis:total lung volume or pleural effusion:total lung volume at either exposure. A comparative review of the data illustrated the concomitant time course of increased mortality, nonsedated respiratory rate, and pneumonitis/fibrosis:total lung volume and pleural effusion:total lung volume consequent to 10.0-Gy or 11.0-Gy partial-body irradiation with 5% bone marrow sparing. All key parameters proceeded from a latent period of approximately 60 d followed by an increase in all three indices of clinical and radiographic evidence of radiation-induced lung injury within the next 60 d to 120 d postexposure. The subsequent time course and longitudinal analysis was influenced by the persistent progression of radiation-induced lung injury, administration of dexamethasone, and loss of nonhuman primates due to lethality. Companion paper: Lung and Heart Injury in a Nonhuman Primate Model of Partial-body Irradiation With Minimal Bone Marrow Sparing: Histopathological Evidence of Lung and Heart Injury (Parker et al. 2019): Note that the computed tomography-based radiodensity data do not permit differentiation of pneumonitis and fibrosis. The companion paper employed Masson's trichrome, collagen 1, and selected staining to identify the key time and incidence parameters relative to excessive collagen deposition indicative of fibrosis and associated histopathology in the lung. This histological database provided valuable longitudinal analysis in support of the clinical and radiographic evidence associated with the time course of radiation-induced lung injury.
Collapse
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | | | |
Collapse
|
56
|
MacVittie TJ, Farese AM, Parker GA, Jackson W, Booth C, Tudor GL, Hankey KG, Potten CS. The Gastrointestinal Subsyndrome of the Acute Radiation Syndrome in Rhesus Macaques: A Systematic Review of the Lethal Dose-response Relationship With and Without Medical Management. HEALTH PHYSICS 2019; 116:305-338. [PMID: 30624353 PMCID: PMC9446380 DOI: 10.1097/hp.0000000000000903] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Well-characterized animal models that mimic the human response to potentially lethal doses of radiation are required to assess the efficacy of medical countermeasures under the criteria of the US Food and Drug Administration's Animal Rule. Development of a model for the gastrointestinal acute radiation syndrome requires knowledge of the radiation dose-response relationship and time course of mortality and morbidity across the acute and prolonged gastrointestinal radiation syndrome. The nonhuman primate, rhesus macaque, is a relevant animal model that has been used to determine the efficacy of medical countermeasures to mitigate major signs of morbidity and mortality relative to the hematopoietic acute radiation syndrome, gastrointestinal acute radiation syndrome, and lung injury. It can be used to assess the natural history of gastrointestinal damage, concurrent multiple organ injury, and aspects of the mechanism of action for acute radiation exposure and treatment. A systematic review of relevant studies that determined the dose-response relationship for the gastrointestinal acute and prolonged radiation syndrome in the rhesus macaque relative to radiation dose, quality, dose rate, exposure uniformity, and use of medical management has never been performed.
Collapse
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | | | | | | | | - Kim G Hankey
- University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
57
|
Thrall KD, Mahendra S, Jackson MK, Jackson W, Farese AM, MacVittie TJ. A Comparative Dose-response Relationship Between Sexes for Mortality and Morbidity of Radiation-induced Lung Injury in the Rhesus Macaque. HEALTH PHYSICS 2019; 116:354-365. [PMID: 30688697 DOI: 10.1097/hp.0000000000000925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Radiation-induced lung injury is a characteristic, dose- and time-dependent sequela of potentially lethal, delayed effects of acute radiation exposure. Understanding of these delayed effects to include development of medical countermeasures requires well-characterized and validated animal models that mimic the human response to acute radiation and adhere to the criteria of the US Food and Drug Administration Animal Rule. The objective herein was to establish a nonhuman primate model of whole-thorax lung irradiation in female rhesus macaques. Definition of the dose-response relationship to include key signs of morbidity and mortality in the female macaque served to independently validate the recent model performed with male macaques and importantly, to establish the lack of sex and institutional bias across the dose-response relationship for radiation-induced lung injury. The study design was similar to that described previously, with the exception that female rhesus macaques were utilized. In brief, a computed tomography scan was conducted prior to irradiation and used for treatment planning. Animals in 5 cohorts (n = 8 per cohort) were exposed to a single 6-MV photon exposure focused on the lung as determined by the computed tomography scan and treatment planning at a dose of 9.5, 10, 10.5, 11, or 11.5 Gy. Subject-based supportive care, including administration of dexamethasone, was based on trigger-to-treat criteria. Clearly defined euthanasia criteria were used to determine a moribund condition over the 180-day study duration post-whole-thorax lung irradiation. Percent mortality per radiation dose was 12.5% at 9.5 Gy, 25% at 10 Gy, 62.5% at 10.5 Gy, 87.5% at 11 Gy, and 100% at 11.5 Gy. The resulting probit plot for the whole-thorax lung irradiation model estimated an LD50/180 of 10.28 Gy, which was not significantly different from the published estimate of 10.27 Gy for the male rhesus. The key parameters of morbidity and mortality support the conclusion that there is an absence of a sex influence on the radiation dose-response relationship for whole-thorax lung irradiation in the rhesus macaque. This work also provides a significant interlaboratory validation of the previously published model.
Collapse
Affiliation(s)
| | - S Mahendra
- Northwest Medical Physics Center, Lynnwood, WA
| | | | | | - Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| |
Collapse
|
58
|
Hale LP, Rajam G, Carlone GM, Jiang C, Owzar K, Dugan G, Caudell D, Chao N, Cline JM, Register TC, Sempowski GD. Late effects of total body irradiation on hematopoietic recovery and immune function in rhesus macaques. PLoS One 2019; 14:e0210663. [PMID: 30759098 PMCID: PMC6373904 DOI: 10.1371/journal.pone.0210663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/28/2018] [Indexed: 12/29/2022] Open
Abstract
While exposure to radiation can be lifesaving in certain settings, it can also potentially result in long-lasting adverse effects, particularly to hematopoietic and immune cells. This study investigated hematopoietic recovery and immune function in rhesus macaques Cross-sectionally (at a single time point) 2 to 5 years after exposure to a single large dose (6.5 to 8.4 Gray) of total body radiation (TBI) derived from linear accelerator-derived photons (2 MeV, 80 cGy/minute) or Cobalt 60-derived gamma irradiation (60 cGy/min). Hematopoietic recovery was assessed through measurement of complete blood counts, lymphocyte subpopulation analysis, and thymus function assessment. Capacity to mount specific antibody responses against rabies, Streptococcus pneumoniae, and tetanus antigens was determined 2 years after TBI. Irradiated macaques showed increased white blood cells, decreased platelets, and decreased frequencies of peripheral blood T cells. Effects of prior radiation on production and export of new T cells by the thymus was dependent on age at the time of analysis, with evidence of interaction with radiation dose for CD8+ T cells. Irradiated and control animals mounted similar mean antibody responses to proteins from tetanus and rabies and to 10 of 11 serotype-specific pneumococcal polysaccharides. However, irradiated animals uniformly failed to make antibodies against polysaccharides from serotype 5 pneumococci, in contrast to the robust responses of non-irradiated controls. Trends toward decreased serum levels of anti-tetanus IgM and slower peak antibody responses to rabies were also observed. Taken together, these data show that dose-related changes in peripheral blood cells and immune responses to both novel and recall antigens can be detected 2 to 5 years after exposure to whole body radiation. Longer term follow-up data on this cohort and independent validation will be helpful to determine whether these changes persist or whether additional changes become evident with increasing time since radiation, particularly as animals begin to develop aging-related changes in immune function.
Collapse
Affiliation(s)
- Laura P. Hale
- Department of Pathology and Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
- * E-mail:
| | - Gowrisankar Rajam
- Immunobiology Laboratory, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States of America
| | - George M. Carlone
- Immunobiology Laboratory, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States of America
| | - Chen Jiang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States of America
| | - Kouros Owzar
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States of America
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States of America
| | - Greg Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Nelson Chao
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States of America
| | - J. Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Thomas C. Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Gregory D. Sempowski
- Department of Pathology and Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States of America
| |
Collapse
|
59
|
Fish BL, MacVittie TJ, Szabo A, Moulder JE, Medhora M. WAG/RijCmcr rat models for injuries to multiple organs by single high dose ionizing radiation: similarities to nonhuman primates (NHP). Int J Radiat Biol 2019; 96:81-92. [PMID: 30575429 DOI: 10.1080/09553002.2018.1554921] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Defined animal models are needed to pursue the FDA Animal Rule for approval of medical countermeasure for radiation injuries. This study compares WAG/RijCmcr rat and nonhuman primate (NHP) models for acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE).Materials and methods: Irradiation models include total body irradiation, partial body irradiation with bone marrow sparing and whole thorax lung irradiations. Organ-specific sequelae of radiation injuries were compared using dose-response relationships.Results and conclusions: Rats and NHP manifest similar organ dysfunctions after radiation, starting with acute gastrointestinal (GI-ARS) and hematopoietic (H-ARS) syndromes followed by lung, heart and kidney toxicities. Humans also manifest these sequelae. Latencies for injury were earlier in rats than in NHP. After whole thorax lung irradiations (WTLI) up to 13 Gy, there was recovery of lung function from pneumonitis in rats. This has not been evaluated in NHP. The latency, incidence, severity and progression of radiation pneumonitis was not influenced by early multi-organ injury from ARS in rats or NHP. Rats developed more severe radiation nephropathy than NHP, and also progressed more rapidly. Dosimetry, anesthesia, environment, supportive care, euthanasia criteria etc., may account for the alterations in radiation sensitivity observed between species.
Collapse
Affiliation(s)
- Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA.,Charles River Laboratories, Durham, NC, USA
| | - Aniko Szabo
- Division of Biostatistics, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.,Department of Pulmonary Medicine, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Cardiovascular Research Center, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| |
Collapse
|
60
|
King GL, Sandgren DJ, Mitchell JM, Bolduc DL, Blakely WF. System for Scoring Severity of Acute Radiation Syndrome Response in Rhesus Macaques ( Macaca mulatta). Comp Med 2018; 68:474-488. [PMID: 30305197 PMCID: PMC6310201 DOI: 10.30802/aalas-cm-17-000106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 03/17/2018] [Indexed: 11/05/2022]
Abstract
We developed a clinical assessment tool for use in an NHP radiation model to 1) quantify severity responses for subsyndromes of the acute radiation syndrome (ARS; that is, hematopoietic and others) and 2) identify animals that required enhanced monitoring. Our assessment tool was based primarily on the MEdical TREatment ProtocOLs for Radiation Accident Victims (METREPOL) scoring system but was adapted for NHP to include additional indices (for example, behaviors) for use in NHP studies involving limited medical intervention. Male (n = 16) and female (n = 12) rhesus macaques (Macaca mulatta; 5 groups: sham and 1.0, 3.5, 6.5, and 8.5 Gy; n = 6 per group) received sham- or bilateral 60Co γ-irradiation at approximately 0.6 Gy/mn. Clinical signs of ARS and blood analysis were obtained before and serially for clinical assessment during the period of 6 h to 60 d after sham or 60Co irradiation. Minimal supportive care (that is, supplemental nutrition, subcutaneous fluid, loperamide, acetaminophen, and topical antibiotic ointment) was prescribed based on clinical observations. Results from clinical signs and assays for assessment of relevant organ systems in individual animals were stratified into ARS severity scores of normal (0), mild (1), moderate (2), and severe (3 or 4). Individual NHP were scored for maximal subsyndrome ARS severity in multiple organ systems by using the proposed ARS scoring system to obtain an overall ARS response category. One NHP died unexpectedly. The multiple-parameter ARS severity scoring tool aided in the identification of animals in the high-dose (6.5 and 8.5 Gy) groups that required enhanced monitoring.
Collapse
Affiliation(s)
- Gregory L King
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - David J Sandgren
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jennifer M Mitchell
- Departments of Veterinary Sciences, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David L Bolduc
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - William F Blakely
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| |
Collapse
|
61
|
Yeddanapudi N, Clay MA, Durham DP, Hoffman CM, Homer MJ, Appler JM. Informing CONOPS and medical countermeasure deployment strategies after an improvised nuclear device detonation: the importance of delayed treatment efficacy data. Int J Radiat Biol 2018; 96:4-11. [PMID: 30403905 DOI: 10.1080/09553002.2018.1532618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purpose: In the wake of a nuclear detonation, individuals with acute radiation syndrome will be a significant source of morbidity and mortality. Mathematical modeling can compare response strategies developed for real-world chaotic conditions after a nuclear blast in order to identify optimal strategies for administering effective treatment to these individuals. To maximize responders' abilities to save lives it is critical to understand how treatment efficacy is impacted by real-world conditions and levels of supportive care. To illustrate the importance of these factors, we developed a mathematical model of cytokine administration 24 h after the blast with varying levels of supportive care described in the primary literature.Conclusion: The results highlight the proportionally higher life-saving benefit of administering cytokines to individuals with a moderate to high dose of radiation exposure, compared to those with a lower dose. However, the fidelity of mathematical models is dependent on the primary data informing them. We describe the data needed to fully explore the impact of timing, dosage, and fractional benefit of cytokines and supportive care treatment in non-optimal situations that could be seen after a nuclear detonation. Studies addressing these types of knowledge gaps are essential to evaluating the relative efficacy of countermeasures to refine existing plans and help develop new strategies and priorities.
Collapse
Affiliation(s)
- N Yeddanapudi
- Supporting Department of Health and Human Services (HHS)/Assistant Secretary for Preparedness and Response (ASPR), Leidos Inc., Alexandria, VA, USA
| | - M A Clay
- Supporting Department of Health and Human Services (HHS)/Assistant Secretary for Preparedness and Response (ASPR), Leidos Inc., Alexandria, VA, USA
| | - D P Durham
- Supporting Department of Health and Human Services (HHS)/Assistant Secretary for Preparedness and Response (ASPR), Leidos Inc., Alexandria, VA, USA
| | | | | | | |
Collapse
|
62
|
DiCarlo AL, Cassatt DR, Dowling WE, Esker JL, Hewitt JA, Selivanova O, Williams MS, Price PW. Challenges and Benefits of Repurposing Products for Use during a Radiation Public Health Emergency: Lessons Learned from Biological Threats and other Disease Treatments. Radiat Res 2018; 190:659-676. [PMID: 30160600 DOI: 10.1667/rr15137.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The risk of a radiological or nuclear public health emergency is a major growing concern of the U.S. government. To address a potential incident and ensure that the government is prepared to respond to any subsequent civilian or military casualties, the U.S. Department of Health and Human Services and the Department of Defense have been charged with the development of medical countermeasures (MCMs) to treat the acute and delayed injuries that can result from radiation exposure. Because of the limited budgets in research and development and the high costs associated with bring promising approaches from the bench through advanced product development activities, and ultimately, to regulatory approval, the U.S. government places a priority on repurposing products for which there already exists relevant safety and other important information concerning their use in humans. Generating human data can be a costly and time-consuming process; therefore, the U.S. government has interest in drugs for which such relevant information has been established (e.g., products for another indication), and in determining if they could be repurposed for use as MCMs to treat radiation injuries as well as chemical and biological insults. To explore these possibilities, the National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop including U.S. government, industry and academic subject matter experts, to discuss the challenges and benefits of repurposing products for a radiation indication. Topics covered included a discussion of U.S. government efforts (e.g. funding, stockpiling and making products available for study), as well unique regulatory and other challenges faced when repurposing patent protected or generic drugs. Other discussions involved lessons learned from industry on repurposing pre-license, pipeline products within drug development portfolios. This report reviews the information presented, as well as an overview of discussions from the meeting.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R Cassatt
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - William E Dowling
- b Office of Biodefense Research Resources and Translational Research (OBRRTR), Division of Microbiology and Infectious Diseases (DMID), NIAID, NIH, Rockville, Maryland
| | - John L Esker
- c Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Judith A Hewitt
- b Office of Biodefense Research Resources and Translational Research (OBRRTR), Division of Microbiology and Infectious Diseases (DMID), NIAID, NIH, Rockville, Maryland
| | - Oxana Selivanova
- c Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Mark S Williams
- b Office of Biodefense Research Resources and Translational Research (OBRRTR), Division of Microbiology and Infectious Diseases (DMID), NIAID, NIH, Rockville, Maryland
| | - Paul W Price
- d Office of Regulatory Affairs (ORA), DAIT, NIAID, NIH, Rockville, Maryland
| |
Collapse
|
63
|
Chen Z, Coy SL, Pannkuk EL, Laiakis EC, Fornace AJ, Vouros P. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1650-1664. [PMID: 29736597 PMCID: PMC6287943 DOI: 10.1007/s13361-018-1977-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 05/21/2023]
Abstract
High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. Graphical Abstract.
Collapse
Affiliation(s)
- Zhidan Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Stephen L Coy
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| | - Evan L Pannkuk
- Tumor Biology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Evagelia C Laiakis
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Paul Vouros
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
64
|
Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells. PLoS One 2018; 13:e0191402. [PMID: 29351567 PMCID: PMC5774773 DOI: 10.1371/journal.pone.0191402] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Abstract
We investigated the cytogenetic and gene expression responses of peripheral blood cells of non-human primates (NHP, Macaca mulatta) that were whole-thorax irradiated with a single dose of 10 Gy. In this model, partial irradiation of NHPs in the thoracic region (Whole Thorax Lung Irradiation, WTLI) allows the study of late radiation-induced lung injury, while avoiding acute radiation syndromes related to hematopoietic and gastrointestinal injury. A transient drop in circulating lymphocytes and platelets was seen by 9 days, followed by elevations in respiratory rate, circulating neutrophils, lymphocytes, and monocytes at 60-100 days, corresponding to computed tomography (CT) and histologic evidence of pneumonitis, and elective euthanasia of four animals. To evaluate long-term DNA damage in NHP peripheral blood lymphocytes after 10 Gy WTLI, we used the cytokinesis-block micronucleus (CBMN) assay to measure chromosomal aberrations as post-mitotic micronuclei in blood samples collected up to 8 months after irradiation. Regression analysis showed significant induction of micronuclei in NHP blood cells that persisted with a gradual decline over the 8-month study period, suggesting long-term DNA damage in blood lymphocytes after WTLI. We also report transcriptomic changes in blood up to 30 days after WTLI. We isolated total RNA from peripheral blood at 3 days before and then at 2, 5 and 30 days after irradiation. We identified 1187 transcripts that were significantly changed across the 30-day time course. From changes in gene expression, we identified biological processes related to immune responses, which persisted across the 30-day study. Response to oxygen-containing compounds and bacteria were implicated by gene-expression changes at the earliest day 2 and latest, day 30 time-points. Gene expression changes suggest a persistent altered state of the immune system, specifically response to infection, for at least a month after WTLI.
Collapse
|
65
|
Samet JM, Berrington de González A, Dauer LT, Hatch M, Kosti O, Mettler FA, Satyamitra MM. Gilbert W. Beebe Symposium on 30 Years after the Chernobyl Accident: Current and Future Studies on Radiation Health Effects. Radiat Res 2017; 189:5-18. [PMID: 29136393 DOI: 10.1667/rr14791.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This commentary summarizes the presentations and discussions from the 2016 Gilbert W. Beebe symposium "30 years after the Chernobyl accident: Current and future studies on radiation health effects." The symposium was hosted by the National Academies of Sciences, Engineering, and Medicine (the National Academies). The symposium focused on the health consequences of the Chernobyl accident, looking retrospectively at what has been learned and prospectively at potential future discoveries using emerging 21st Century research methodologies.
Collapse
Affiliation(s)
- Jonathan M Samet
- a Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | - Ourania Kosti
- d National Academies of Sciences, Engineering, and Medicine, Washington, DC
| | - Fred A Mettler
- e University of New Mexico School of Medicine, Albuquerque, New Mexico
| | | |
Collapse
|
66
|
Prado C, MacVittie TJ, Bennett AW, Kazi A, Farese AM, Prado K. Organ Doses Associated with Partial-Body Irradiation with 2.5% Bone Marrow Sparing of the Non-Human Primate: A Retrospective Study. Radiat Res 2017; 188:615-625. [PMID: 28985133 DOI: 10.1667/rr14804.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A partial-body irradiation model with approximately 2.5% bone marrow sparing (PBI/BM2.5) was established to determine the radiation dose-response relationships for the prolonged and delayed multi-organ effects of acute radiation exposure. Historically, doses reported to the entire body were assumed to be equal to the prescribed dose at some defined calculation point, and the dose-response relationship for multi-organ injury has been defined relative to the prescribed dose being delivered at this point, e.g., to a point at mid-depth at the level of the xiphoid of the non-human primate (NHP). In this retrospective-dose study, the true distribution of dose within the major organs of the NHP was evaluated, and these doses were related to that at the traditional dose-prescription point. Male rhesus macaques were exposed using the PBI/BM2.5 protocol to a prescribed dose of 10 Gy using 6-MV linear accelerator photons at a rate of 0.80 Gy/min. Point and organ doses were calculated for each NHP from computed tomography (CT) scans using heterogeneous density data. The prescribed dose of 10.0 Gy to a point at midline tissue assuming homogeneous media resulted in 10.28 Gy delivered to the prescription point when calculated using the heterogeneous CT volume of the NHP. Respective mean organ doses to the volumes of nine organs, including the heart, lung, bowel and kidney, were computed. With modern treatment planning systems, utilizing a three-dimensional reconstruction of the NHP's CT images to account for the variations in body shape and size, and using density corrections for each of the tissue types, bone, water, muscle and air, accurate determination of the differences in dose to the NHP can be achieved. Dose and volume statistics can be ascertained for any body structure or organ that has been defined using contouring tools in the planning system. Analysis of the dose delivered to critical organs relative to the total-body target dose will permit a more definitive analysis of organ-specific effects and their respective influence in multiple organ injury.
Collapse
Affiliation(s)
- C Prado
- a Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - T J MacVittie
- a Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - A W Bennett
- a Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - A Kazi
- b Veterans Administration, Maryland Health Care System, Baltimore, Maryland
| | - A M Farese
- a Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - K Prado
- a Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
67
|
Carter CL, Jones JW, Farese AM, MacVittie TJ, Kane MA. Lipidomic dysregulation within the lung parenchyma following whole-thorax lung irradiation: Markers of injury, inflammation and fibrosis detected by MALDI-MSI. Sci Rep 2017; 7:10343. [PMID: 28871103 PMCID: PMC5583385 DOI: 10.1038/s41598-017-10396-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/08/2017] [Indexed: 12/23/2022] Open
Abstract
Radiation-induced lung injury (RILI) is a delayed effect of acute radiation exposure that can limit curative cancer treatment therapies and cause lethality following high-dose whole-thorax lung irradiation (WTLI). To date, the exact mechanisms of injury development following insult remain ill-defined and there are no FDA approved pharmaceutical agents or medical countermeasures. Traditionally, RILI development is considered as three phases, the clinically latent period, the intermediate acute pneumonitis phase and the later fibrotic stage. Utilizing matrix-assisted laser desorption ionization mass spectrometry imaging, we identified a number of lipids that were reflective of disease state or injury. Lipids play central roles in metabolism and cell signaling, and thus reflect the phenotype of the tissue environment, making these molecules pivotal biomarkers in many disease processes. We detected decreases in specific surfactant lipids irrespective of the different pathologies that presented within each sample at 180 days post whole-thorax lung irradiation. We also detected regional increases in ether-linked phospholipids that are the precursors of PAF, and global decreases in lipids that were reflective of severe fibrosis. Taken together our results provide panels of lipids that can differentiate between naïve and irradiated samples, as well as providing potential markers of inflammation and fibrosis.
Collapse
Affiliation(s)
- Claire L Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 21201, Baltimore, MD, USA
| | - Jace W Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 21201, Baltimore, MD, USA
| | - Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, 21201, Baltimore, MD, USA
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, 21201, Baltimore, MD, USA
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 21201, Baltimore, MD, USA.
| |
Collapse
|
68
|
Xiao M, Bolduc DL, Li X, Cui W, Hieber KP, Bünger R, Ossetrova NI. Urine Interleukin-18 (IL-18) as a Biomarker of Total-Body Irradiation: A Preliminary Study in Nonhuman Primates. Radiat Res 2017. [PMID: 28650775 DOI: 10.1667/rr14768.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have reported that circulating IL-18 can be used as a radiation biomarker in mice, minipigs and nonhuman primates (NHPs, Macaca mulatta). Here, we report the levels of IL-18 in individual NHP's urine before and at 6 h-7 days after 5.0, 6.5 and 8.5 Gy 60Co total-body irradiation (TBI) using enzyme linked immunosorbent assay (ELISA). Six animals (3.5-5.5 kg, 3-4 years old) per radiation dose were investigated. Correlation values between urine IL-18 and blood cell counts and serum chemistry parameters including lactate dehydrogenase (LDH), lipase, and serum total protein (TP), as well as between urine IL-18 and 60-day survival, were analyzed. Our data, to the best of our knowledge, for the first time, demonstrate that concentrations of urine IL-18 from irradiated NHPs were increased in a radiation dose-dependent manner compared to pre-TBI levels in samples from these animal (N = 18, 11.02 ± 1.3 pg/ml). A 5.0 Gy low dose of radiation (∼LD10/60) did not increase urine IL-18 levels. In contrast, high-dose TBI significantly increased urine IL-18 at day 1 to day 5 in a bell-shaped time course, reaching a peak of 5- to 10-fold of control levels on day 3 after 6.5 Gy (∼LD50/60) and 8.5 Gy (∼LD90/60), respectively. Statistical analysis using receiver operator characteristic (ROC) and MultiROC analysis indicated that white blood cell and platelet counts, serum LDH, lipase and TP, when combined with urine IL-18, provide discriminatory predictors of total-body radiation injury with a very high ROC area of 0.98. Urine IL-18 measurement, as an early prognostic indicator of survival, may facilitate rapid detection of lethal doses of radiation, based on the currently available data set.
Collapse
Affiliation(s)
- Mang Xiao
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David L Bolduc
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - XiangHong Li
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Wanchang Cui
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Kevin P Hieber
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Natalia I Ossetrova
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
69
|
Singh VK, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part I. Radiation sub-syndromes, animal models and FDA-approved countermeasures. Int J Radiat Biol 2017. [PMID: 28650707 DOI: 10.1080/09553002.2017.1332438] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The increasing global risk of nuclear and radiological accidents or attacks has driven renewed research interest in developing medical countermeasures to potentially injurious exposures to acute irradiation. Clinical symptoms and signs of a developing acute radiation injury, i.e. the acute radiation syndrome, are grouped into three sub-syndromes named after the dominant organ system affected, namely the hematopoietic, gastrointestinal, and neurovascular systems. The availability of safe and effective countermeasures against the above threats currently represents a significant unmet medical need. This is the first article within a three-part series covering the nature of the radiation sub-syndromes, various animal models for radiation countermeasure development, and the agents currently approved by the United States Food and Drug Administration for countering the medical consequences of several of these prominent radiation exposure-associated syndromes. CONCLUSIONS From the U.S. and global perspectives, biomedical research concerning medical countermeasure development is quite robust, largely due to increased government funding following the 9/11 incidence and subsequent rise of terrorist-associated threats. A wide spectrum of radiation countermeasures for specific types of radiation injuries is currently under investigation. However, only a few radiation countermeasures have been fully approved by regulatory agencies for human use during radiological/nuclear contingencies. Additional research effort, with additional funding, clearly will be needed in order to fill this significant, unmet medical health problem.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | |
Collapse
|
70
|
Singh VK, Olabisi AO. Nonhuman primates as models for the discovery and development of radiation countermeasures. Expert Opin Drug Discov 2017; 12:695-709. [PMID: 28441902 DOI: 10.1080/17460441.2017.1323863] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite significant scientific advances over the past six decades toward the development of safe and effective radiation countermeasures for humans using animal models, only two pharmaceutical agents have been approved by United States Food and Drug Administration (US FDA) for hematopoietic acute radiation syndrome (H-ARS). Additional research efforts are needed to further develop large animal models for improving the prediction of clinical safety and effectiveness of radiation countermeasures for ARS and delayed effects of acute radiation exposure (DEARE) in humans. Area covered: The authors review the suitability of animal models for the development of radiation countermeasures for ARS following the FDA Animal Rule with a special focus on nonhuman primate (NHP) models of ARS. There are seven centers in the United States currently conducting studies with irradiated NHPs, with the majority of studies being conducted with rhesus monkeys. Expert opinion: The NHP model is considered the gold standard animal model for drug development and approval by the FDA. The lack of suitable substitutes for NHP models for predicting response in humans serves as a bottleneck for the development of radiation countermeasures. Additional large animal models need to be characterized to support the development and FDA-approval of new radiation countermeasures.
Collapse
Affiliation(s)
- Vijay K Singh
- a Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Ayodele O Olabisi
- b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
71
|
Goans RE, Iddins CJ, Ossetrova NI, Ney PH, Dainiak N. The Pseudo-Pelger HuËt Cell-A New Permanent Radiation Biomarker. HEALTH PHYSICS 2017; 112:252-257. [PMID: 28121725 DOI: 10.1097/hp.0000000000000618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using archival peripheral blood slides obtained from patients in the 1958 Y-12 criticality accident, the authors have recently described the pseudo-Pelger Huët anomaly (PHA) in neutrophils as a new radiation-induced biomarker. The current work provides additional evidence that PHA is also a permanent biomarker, potentially useful in retrospective dosimetry. In the Y-12 cohort, the high dose group (n = 5, 2.98-4.61 Gy-Eq) exhibited 13.0 ± 0.85 % Pelger Huët cells (mean ± SEM) in the neutrophil population compared to 6.8 ± 1.6 % in the low dose group (n = 3, 0.29-0.86 Gy-Eq; p = 0.008). An age and gender-matched control group (n = 8) exhibited 3.6 ± 0.9 % PH cells. Results of a one-way ANOVA show that the high dose group is statistically different from both the low dose group and the control group (p = 0.002). In the Y-12 cohort, PHA appears <12 h post-accident and is permanent for more than 16 y. Similar long-term persistence of the PHA mutation has been obtained from examination of peripheral blood slides from the 1971 Co accident at the Variable Dose Rate Irradiation Facility (VDRIF) in Oak Ridge, TN. In order to investigate the pseudo-PH cell as a biomarker in animal studies under well controlled dosimetry, peripheral blood slides were obtained from animals in a nonhuman primate (NHP) (Macaca mulatta) total-body irradiation (TBI) model (Co γ rays at 0.6 Gy min; dose range 1-8.5 Gy, LD50/60 6.44 Gy). In the NHP studies, the first measurement of PHA is taken at 5 h post-irradiation, then daily for days 1-5 and every 5-10 d thereafter. In the TBI model, the PH cell appears quickly (<5 h) post-irradiation, and the dose-dependent PH percentage is constant from 1 d over the 60-d monitoring period of the experiments. Using the average of data from 1-60 d, a linear dose response (PHA % slope = 0.49 ± 0.07 % Gy, r = 0.92) is obtained over the dose range 0-8.5 Gy. The authors conclude that ionizing radiation induces dose-dependent internuclear bridges in circulating neutrophils, and this morphological change can be used both as an acute phase biomarker and as a tool for retrospective dosimetry.
Collapse
Affiliation(s)
- Ronald E Goans
- *MJW Corporation, Amherst, NY; †Radiation Emergency Assistance Center/Training Site (REAC/TS), Oak Ridge, TN; ‡Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD; §Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT
| | | | | | | | | |
Collapse
|
72
|
Ossetrova NI, Blakely WF, Nagy V, McGann C, Ney PH, Christensen CL, Koch AL, Gulani J, Sigal GB, Glezer EN, Hieber KP. Non-human Primate Total-body Irradiation Model with Limited and Full Medical Supportive Care Including Filgrastim for Biodosimetry and Injury Assessment. RADIATION PROTECTION DOSIMETRY 2016; 172:174-191. [PMID: 27473690 DOI: 10.1093/rpd/ncw176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An assessment of multiple biomarkers from radiation casualties undergoing limited- or full-supportive care including treatment with filgrastim is critical to develop rapid and effective diagnostic triage strategies. The efficacy of filgrastim with full-supportive care was compared with results with limited-supportive care by analyzing survival, necropsy, histopathology and serial blood samples for hematological, serum chemistry and protein profiles in a non-human primate (Macaca mulatta, male and female) model during 60-d post-monitoring period following sham- and total-body irradiation with 6.5 Gy 60Co gamma-rays at 0.6 Gy min-1 Filgrastim (10 μg kg-1) was administered beginning on Day 1 post-exposure and continued daily until neutrophil counts were ≥2,000 μL-1 for two consecutive days. Filgrastim and full-supportive care significantly decreased the pancytopenia duration and resulted in improved animal survival and recovery compared to animals with a limited-supportive care. These findings also identified and validated a multiparametric biomarker panel to support radiation diagnostic device development.
Collapse
Affiliation(s)
- Natalia I Ossetrova
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - Vitaly Nagy
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - Camille McGann
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - Patrick H Ney
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - Christine L Christensen
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
- Tri-Service Research Laboratory (TRSL), 4141 Petroleum Road, JBSA-Fort Sam Houston, TX 78234, USA
| | - Amory L Koch
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
- Tripler Army Medical Center, Honolulu, HI 96859, USA
| | - Jatinder Gulani
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - George B Sigal
- Meso Scale Diagnostics, LLC. (MSD), 1601 Research Boulevard, Rockville, MD 20850, USA
| | - Eli N Glezer
- Meso Scale Diagnostics, LLC. (MSD), 1601 Research Boulevard, Rockville, MD 20850, USA
| | - Kevin P Hieber
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| |
Collapse
|
73
|
Yu JZ, Lindeblad M, Lyubimov A, Neri F, Smith B, Szilagyi E, Halliday L, MacVittie T, Nanda J, Bartholomew A. Response to the "Letter to the Editor" by Dant, Stricklin and Millage on our Article: "Subject-Based versus Population- Based Care after Radiation Exposure". Radiat Res 2016; 186:323. [PMID: 27636192 DOI: 10.1667/rr14487.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Tom MacVittie
- e Radiation Oncology at University of Maryland School of Medicine, Baltimore, Maryland 21702; and
| | - Joy Nanda
- f Johns Hopkins School of Public Health, Baltimore, Maryland 21206
| | - Amelia Bartholomew
- a Departments of Surgery.,g UIC Cancer Center, and.,h Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612
| |
Collapse
|
74
|
Homer MJ, Raulli R, DiCarlo-Cohen AL, Esker J, Hrdina C, Maidment BW, Moyer B, Rios C, Macchiarini F, Prasanna PG, Wathen L. UNITED STATES DEPARTMENT OF HEALTH AND HUMAN SERVICES BIODOSIMETRY AND RADIOLOGICAL/NUCLEAR MEDICAL COUNTERMEASURE PROGRAMS. RADIATION PROTECTION DOSIMETRY 2016; 171:85-98. [PMID: 27590469 PMCID: PMC6280724 DOI: 10.1093/rpd/ncw226] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The United States Department of Health and Human Services (HHS) is fully committed to the development of medical countermeasures to address national security threats from chemical, biological, radiological, and nuclear agents. Through the Public Health Emergency Medical Countermeasures Enterprise, HHS has launched and managed a multi-agency, comprehensive effort to develop and operationalize medical countermeasures. Within HHS, development of medical countermeasures includes the National Institutes of Health (NIH), (led by the National Institute of Allergy and Infectious Diseases), the Office of the Assistant Secretary of Preparedness and Response/Biomedical Advanced Research and Development Authority (BARDA); with the Division of Medical Countermeasure Strategy and Requirements, the Centers for Disease Control and Prevention, and the Food and Drug Administration as primary partners in this endeavor. This paper describes various programs and coordinating efforts of BARDA and NIH for the development of medical countermeasures for radiological and nuclear threats.
Collapse
Affiliation(s)
- Mary J Homer
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services , 330 Independence Ave., SW, Room G644, Washington, DC 20201, USA
| | - Robert Raulli
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services , 330 Independence Ave., SW, Room G644, Washington, DC 20201, USA
| | - Andrea L DiCarlo-Cohen
- Radiation Nuclear Countermeasures Program, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, 5601 Fishers Lane, Rockville, MD 20892-9828, USA
| | - John Esker
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services , 330 Independence Ave., SW, Room G644, Washington, DC 20201, USA
| | - Chad Hrdina
- Medical Utilization and Response Integration, Division of Medical Countermeasure Strategy and Requirements, Office of Policy and Planning, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services , 330 Independence Ave., SW, Room G644, Washington, DC 20201, USA
| | - Bert W Maidment
- Radiation Nuclear Countermeasures Program, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, 5601 Fishers Lane, Rockville, MD 20892-9828, USA
| | - Brian Moyer
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services , 330 Independence Ave., SW, Room G644, Washington, DC 20201, USA
| | - Carmen Rios
- Radiation Nuclear Countermeasures Program, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, 5601 Fishers Lane, Rockville, MD 20892-9828, USA
| | - Francesca Macchiarini
- Radiation Nuclear Countermeasures Program, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, 5601 Fishers Lane, Rockville, MD 20892-9828, USA
| | - Pataje G Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute; National Institutes of Health, US Department of Health and Human Services , 9608 Medical Center Drive, Room 3W230, MSC9727 , Bethesda, MD 20892-9727, USA
| | - Lynne Wathen
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services , 330 Independence Ave., SW, Room G644, Washington, DC 20201, USA
| |
Collapse
|
75
|
Koch A, Gulani J, King G, Hieber K, Chappell M, Ossetrova N. Establishment of Early Endpoints in Mouse Total-Body Irradiation Model. PLoS One 2016; 11:e0161079. [PMID: 27579862 PMCID: PMC5007026 DOI: 10.1371/journal.pone.0161079] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/29/2016] [Indexed: 01/31/2023] Open
Abstract
Acute radiation sickness (ARS) following exposure to ionizing irradiation is characterized by radiation-induced multiorgan dysfunction/failure that refers to progressive dysfunction of two or more organ systems, the etiological agent being radiation damage to cells and tissues over time. Radiation sensitivity data on humans and animals has made it possible to describe the signs associated with ARS. A mouse model of total-body irradiation (TBI) has previously been developed that represents the likely scenario of exposure in the human population. Herein, we present the Mouse Intervention Scoring System (MISS) developed at the Veterinary Sciences Department (VSD) of the Armed Forces Radiobiology Research Institute (AFRRI) to identify moribund mice and decrease the numbers of mice found dead, which is therefore a more humane refinement to death as the endpoint. Survival rates were compared to changes in body weights and temperatures in the mouse (CD2F1 male) TBI model (6–14 Gy, 60Co γ-rays at 0.6 Gy min-1), which informed improvements to the Scoring System. Individual tracking of animals via implanted microchips allowed for assessment of criteria based on individuals rather than by group averages. From a total of 132 mice (92 irradiated), 51 mice were euthanized versus only four mice that were found dead (7% of non-survivors). In this case, all four mice were found dead after overnight periods between observations. Weight loss alone was indicative of imminent succumbing to radiation injury, however mice did not always become moribund within 24 hours while having weight loss >30%. Only one survivor had a weight loss of greater than 30%. Temperature significantly dropped only 2–4 days before death/euthanasia in 10 and 14 Gy animals. The score system demonstrates a significant refinement as compared to using subjective assessment of morbidity or death as the endpoint for these survival studies.
Collapse
Affiliation(s)
- Amory Koch
- Veterinary Science Department, Armed Forces Radiobiology Research Institute (AFRRI) Uniformed Services University (USU), Bethesda, Maryland, United States of America
- * E-mail:
| | - Jatinder Gulani
- Veterinary Science Department, Armed Forces Radiobiology Research Institute (AFRRI) Uniformed Services University (USU), Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Gregory King
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU), Bethesda, Maryland, United States of America
| | - Kevin Hieber
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU), Bethesda, Maryland, United States of America
| | - Mark Chappell
- Veterinary Science Department, Armed Forces Radiobiology Research Institute (AFRRI) Uniformed Services University (USU), Bethesda, Maryland, United States of America
| | - Natalia Ossetrova
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU), Bethesda, Maryland, United States of America
| |
Collapse
|
76
|
Dant T, Stricklin D, Millage K. Comments on "Subject-Based versus Population-Based Care after Radiation Exposure" by Yu et al. (Radiation Research 184, 46-55, 2015). Radiat Res 2016; 186:322. [PMID: 27541950 DOI: 10.1667/rr14487.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tyler Dant
- Applied Research Associates, Inc., Arlington, Virginia 22203
| | | | - Kyle Millage
- Applied Research Associates, Inc., Arlington, Virginia 22203
| |
Collapse
|
77
|
Abstract
Massive radiation-induced inflammatory factors released from injured cells may cause innate and acquired immune reactions that can further result in stress response signal activity-induced local and systemic damage. IL-1 family members IL-1β, IL-18, and IL-33 play key roles in inflammatory and immune responses and have been recognized to have significant influences on the pathogenesis of diseases. IL-1β, IL-18, and IL-33 share similarities of cytokine biology, but differences exist in signaling pathways. A key component of the inflammatory reaction is the inflammasome, which is a caspase-1-containing multiprotein oligomer. Pathological stimuli such as radiation can induce inflammasome and caspase-1 activation, and subsequently cause maturation (activation) of pro-forms of IL-1 and IL-18 upon caspase-1 cleavage. This caspase-1 dependent and IL-1 and IL-18 associated cell damage is defined as pyroptosis. Activated IL-1 and IL-18 as proinflammatory cytokines drive pathology at different immune and inflammatory disorders through Toll-like receptor (TLR) signaling. While the mechanisms of IL-1β-induced pathophysiology of diseases have been well studied, IL-18 has received less attention. The author recently reported that gamma radiation highly increased IL-1β, IL-18 and IL-33 expression in mouse thymus, spleen and/or bone marrow cells; also circulating IL-18 can be used as a radiation biomarker to track radiation injury in mice, minipigs, and nonhuman primates. This mini-review focuses on the role of IL-18 in response to gamma radiation-induced injury.
Collapse
Affiliation(s)
- Mang Xiao
- *Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD
| |
Collapse
|
78
|
DeBo RJ, Lees CJ, Dugan GO, Caudell DL, Michalson KT, Hanbury DB, Kavanagh K, Cline JM, Register TC. Late Effects of Total-Body Gamma Irradiation on Cardiac Structure and Function in Male Rhesus Macaques. Radiat Res 2016; 186:55-64. [PMID: 27333082 PMCID: PMC5068576 DOI: 10.1667/rr14357.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heart disease is an increasingly recognized, serious late effect of radiation exposure, most notably among breast cancer and Hodgkin's disease survivors, as well as the Hiroshima and Nagasaki atomic bomb survivors. The purpose of this study was to evaluate the late effects of total-body irradiation (TBI) on cardiac morphology, function and selected circulating biomarkers in a well-established nonhuman primate model. For this study we used male rhesus macaques that were exposed to a single total-body dose of ionizing gamma radiation (6.5-8.4 Gy) 5.6-9.7 years earlier at ages ranging from ∼3-10 years old and a cohort of nonirradiated controls. Transthoracic echocardiography was performed annually for 3 years on 20 irradiated and 11 control animals. Myocardium was examined grossly and histologically, and myocardial fibrosis/collagen was assessed microscopically and by morphometric analysis of Masson's trichrome-stained sections. Serum/plasma from 27 irradiated and 13 control animals was evaluated for circulating biomarkers of cardiac damage [N-terminal pro B-type natriuretic protein (nt-proBNP) and troponin-I], inflammation (CRP, IL-6, MCP-1, sICAM) and microbial translocation [LPS-binding protein (LBP) and sCD14]. A higher prevalence of histological myocardial fibrosis was observed in the hearts obtained from the irradiated animals (9/14) relative to controls (0/3) (P = 0.04, χ(2)). Echocardiographically determined left ventricular end diastolic and systolic diameters were significantly smaller in irradiated animals (repeated measures ANOVA, P < 0.001 and P < 0.008, respectively). Histomorphometric analysis of trichrome-stained sections of heart tissue demonstrated ∼14.9 ± 1.4% (mean ± SEM) of myocardial area staining for collagen in irradiated animals compared to 9.1 ± 0.9 % in control animals. Circulating levels of MCP-1 and LBP were significantly higher in irradiated animals (P < 0.05). A high incidence of diabetes in the irradiated animals was associated with higher plasma triglyceride and lower HDLc but did not appear to be associated with cardiovascular phenotypes. These results demonstrate that single total-body doses of 6.5-8.4 Gy produced long-term effects including a high incidence of myocardial fibrosis, reduced left ventricular diameter and elevated systemic inflammation. Additional prospective studies are required to define the time course and mechanisms underlying radiation-induced heart disease in this model.
Collapse
Affiliation(s)
| | - Cynthia J. Lees
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Greg O. Dugan
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - David L. Caudell
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kris T. Michalson
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - David B. Hanbury
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Mark Cline
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
79
|
Cui W, Bennett AW, Zhang P, Barrow KR, Kearney SR, Hankey KG, Taylor-Howell C, Gibbs AM, Smith CP, MacVittie TJ. A non-human primate model of radiation-induced cachexia. Sci Rep 2016; 6:23612. [PMID: 27029502 PMCID: PMC4814846 DOI: 10.1038/srep23612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/10/2016] [Indexed: 12/25/2022] Open
Abstract
Cachexia, or muscle wasting, is a serious health threat to victims of radiological accidents or patients receiving radiotherapy. Here, we propose a non-human primate (NHP) radiation-induced cachexia model based on clinical and molecular pathology findings. NHP exposed to potentially lethal partial-body irradiation developed symptoms of cachexia such as body weight loss in a time- and dose-dependent manner. Severe body weight loss as high as 20–25% was observed which was refractory to nutritional intervention. Radiographic imaging indicated that cachectic NHP lost as much as 50% of skeletal muscle. Histological analysis of muscle tissues showed abnormalities such as presence of central nuclei, inflammation, fatty replacement of skeletal muscle, and muscle fiber degeneration. Biochemical parameters such as hemoglobin and albumin levels decreased after radiation exposure. Levels of FBXO32 (Atrogin-1), ActRIIB and myostatin were significantly changed in the irradiated cachectic NHP compared to the non-irradiated NHP. Our data suggest NHP that have been exposed to high dose radiation manifest cachexia-like symptoms in a time- and dose-dependent manner. This model provides a unique opportunity to study the mechanism of radiation-induced cachexia and will aid in efficacy studies of mitigators of this disease.
Collapse
Affiliation(s)
- Wanchang Cui
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Alexander W Bennett
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Pei Zhang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Kory R Barrow
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Sean R Kearney
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Kim G Hankey
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Cheryl Taylor-Howell
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Allison M Gibbs
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Cassandra P Smith
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| |
Collapse
|
80
|
MacVittie TJ, Bennett AW, Farese AM, Taylor-Howell C, Smith CP, Gibbs AM, Prado K, Jackson W. The Effect of Radiation Dose and Variation in Neupogen® Initiation Schedule on the Mitigation of Myelosuppression during the Concomitant GI-ARS and H-ARS in a Nonhuman Primate Model of High-dose Exposure with Marrow Sparing. HEALTH PHYSICS 2015; 109:427-39. [PMID: 26425903 PMCID: PMC9442798 DOI: 10.1097/hp.0000000000000350] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A nonhuman primate (NHP) model of acute high-dose, partial-body irradiation with 5% bone marrow (PBI/BM5) sparing was used to assess the effect of Neupogen® [granulocyte colony stimulating factor (G-CSF)] to mitigate the associated myelosuppression when administered at an increasing interval between exposure and initiation of treatment. A secondary objective was to assess the effect of Neupogen® on the mortality or morbidity of the hematopoietic (H)- acute radiation syndrome (ARS) and concurrent acute gastrointestinal radiation syndrome (GI-ARS). NHP were exposed to 10.0 or 11.0 Gy with 6 MV LINAC-derived photons at approximately 0.80 Gy min. All NHP received medical management. NHP were dosed daily with control article (5% dextrose in water) initiated on day 1 post-exposure or Neupogen® (10 μg kg) initiated on day 1, day 3, or day 5 until recovery [absolute neutrophil count (ANC) ≥ 1,000 cells μL for three consecutive days]. Mortality in both the 10.0 Gy and 11.0 Gy cohorts suggested that early administration of Neupogen® at day 1 post exposure may affect acute GI-ARS mortality, while Neupogen® appeared to mitigate mortality due to the H-ARS. However, the study was not powered to detect statistically significant differences in survival. The ability of Neupogen® to stimulate granulopoiesis was assessed by evaluating key parameters for ANC recovery: the depth of nadir, duration of neutropenia (ANC < 500 cells μL) and recovery time to ANC ≥ 1,000 cells μL. Following 10.0 Gy PBI/BM5, the mean duration of neutropenia was 11.6 d in the control cohort vs. 3.5 d and 4.6 d in the day 1 and day 3 Neupogen® cohorts, respectively. The respective ANC nadirs were 94 cells μL, 220 cells μL, and 243 cells μL for the control and day 1 and day 3 Neupogen® cohorts. Following 11.0 Gy PBI/BM5, the duration of neutropenia was 10.9 d in the control cohort vs. 2.8 d, 3.8 d, and 4.5 d in the day 1, day 3, and day 5 Neupogen® cohorts, respectively. The respective ANC nadirs for the control and day 1, day 3, and day 5 Neupogen® cohorts were 131 cells μL, 292 cells μL, 236 cells μL, and 217 cells μL, respectively. Therefore, the acceleration of granulopoiesis by Neupogen® in this model is independent of the time interval between radiation exposure and treatment initiation up to 5 d post-exposure. The PBI/BM5 model can be used to assess medical countermeasure efficacy in the context of the concurrent GI- and H-ARS.
Collapse
Affiliation(s)
- Thomas J MacVittie
- *University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD; †University of Maryland Medical Center, Department of Radiation Oncology, Baltimore, MD; ‡Statistician, Rockville, MD
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Zhang P, Cui W, Hankey KG, Gibbs AM, Smith CP, Taylor-Howell C, Kearney SR, MacVittie TJ. Increased Expression of Connective Tissue Growth Factor (CTGF) in Multiple Organs After Exposure of Non-Human Primates (NHP) to Lethal Doses of Radiation. HEALTH PHYSICS 2015; 109:374-90. [PMID: 26425899 PMCID: PMC4593333 DOI: 10.1097/hp.0000000000000343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Exposure to sufficiently high doses of ionizing radiation is known to cause fibrosis in many different organs and tissues. Connective tissue growth factor (CTGF/CCN2), a member of the CCN family of matricellular proteins, plays an important role in the development of fibrosis in multiple organs. The aim of the present study was to quantify the gene and protein expression of CTGF in a variety of organs from non-human primates (NHP) that were previously exposed to potentially lethal doses of radiation. Tissues from non-irradiated NHP and NHP exposed to whole thoracic lung irradiation (WTLI) or partial-body irradiation with 5% bone marrow sparing (PBI/BM5) were examined by real-time quantitative reverse transcription PCR, western blot, and immunohistochemistry. Expression of CTGF was elevated in the lung tissues of NHP exposed to WTLI relative to the lung tissues of the non-irradiated NHP. Increased expression of CTGF was also observed in multiple organs from NHP exposed to PBI/BM5 compared to non-irradiated NHP; these included the lung, kidney, spleen, thymus, and liver. These irradiated organs also exhibited histological evidence of increased collagen deposition compared to the control tissues. There was significant correlation of CTGF expression with collagen deposition in the lung and spleen of NHP exposed to PBI/BM5. Significant correlations were observed between spleen and multiple organs on CTGF expression and collagen deposition, respectively, suggesting possible crosstalk between spleen and other organs. These data suggest that CTGF levels are increased in multiple organs after radiation exposure and that inflammatory cell infiltration may contribute to the elevated levels of CTGF in multiple organs.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201
| | - Wanchang Cui
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201
- Corresponding authors: Wanchang Cui, ; Phone: 410-706-5282; Fax: 410-706-5270. Thomas J. MacVittie, ; Phone: 410-706-5274; Fax: 410-706-5270
| | - Kim G. Hankey
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201
| | - Allison M. Gibbs
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201
| | - Cassandra P. Smith
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201
| | - Cheryl Taylor-Howell
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201
| | - Sean R. Kearney
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201
- Corresponding authors: Wanchang Cui, ; Phone: 410-706-5282; Fax: 410-706-5270. Thomas J. MacVittie, ; Phone: 410-706-5274; Fax: 410-706-5270
| |
Collapse
|
82
|
Farese AM, Hankey KG, Cohen MV, MacVittie TJ. Lymphoid and Myeloid Recovery in Rhesus Macaques Following Total Body X-Irradiation. HEALTH PHYSICS 2015; 109:414-26. [PMID: 26425902 PMCID: PMC4593069 DOI: 10.1097/hp.0000000000000348] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recovery from severe immunosuppression requires hematopoietic stem cell reconstitution and effective thymopoiesis to restore a functional immune cell repertoire. Herein, a model of immune cell reconstitution consequent to potentially lethal doses of irradiation is described, which may be valuable in evaluating potential medical countermeasures. Male rhesus macaques were total body irradiated by exposure to 6.00 Gy 250 kVp x-radiation (midline tissue dose, 0.13 Gy min), resulting in an approximate LD10/60 (n = 5/59). Animals received medical management, and hematopoietic and immune cell recovery was assessed (n ≤ 14) through 370 d post exposure. A subset of animals (n ≤ 8) was examined through 700 d. Myeloid recovery was assessed by neutrophil and platelet-related parameters. Lymphoid recovery was assessed by the absolute lymphocyte count and FACS-based phenotyping of B- and T-cell subsets. Recent thymic emigrants were identified by T cell receptor excision circle quantification. Severe neutropenia, lymphopenia, and thrombocytopenia resolved within 30 d. Total CD3+ cells μL required 60 d to reach values 60% of normal, followed by subsequent slow recovery to approximately normal by 180 d post irradiation. Recovery of CD3+4+ and CD3+8+ cell memory and naïve subsets were markedly different. Memory populations were ≥ 100% of normal by day 60, whereas naïve populations were only 57% normal at 180 d and never fully recovered to baseline post irradiation. Total (CD20+) B cells μL were within normal levels by 77 d post exposure. This animal model elucidates the variable T- and B-cell subset recovery kinetics after a potentially lethal dose of total-body irradiation that are dependent on marrow-derived stem and progenitor cell recovery, peripheral homeostatic expansion, and thymopoiesis.
Collapse
Affiliation(s)
- Ann M. Farese
- University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD
| | - Kim G. Hankey
- University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD
| | | | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD
| |
Collapse
|
83
|
Graessle DH, Dörr H, Bennett A, Shapiro A, Farese AM, MacVittie TJ, Meineke V. Comparing the Hematopoetic Syndrome Time Course in the NHP Animal Model to Radiation Accident Cases From the Database Search. HEALTH PHYSICS 2015; 109:493-501. [PMID: 26425908 DOI: 10.1097/hp.0000000000000355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Since controlled clinical studies on drug administration for the acute radiation syndrome are lacking, clinical data of human radiation accident victims as well as experimental animal models are the main sources of information. This leads to the question of how to compare and link clinical observations collected after human radiation accidents with experimental observations in non-human primate (NHP) models. Using the example of granulocyte counts in the peripheral blood following radiation exposure, approaches for adaptation between NHP and patient databases on data comparison and transformation are introduced. As a substitute for studying the effects of administration of granulocyte-colony stimulating factor (G-CSF) in human clinical trials, the method of mathematical modeling is suggested using the example of G-CSF administration to NHP after total body irradiation.
Collapse
Affiliation(s)
- Dieter H Graessle
- *Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany; †University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD; ‡U.S. Food and Drug Administration (FDA), Counter-Terrorism and Emergency Coordination Staff, FDA-CDER, 10001 New Hampshire Ave, Mail Stop 2163, Silver Spring, MD
| | | | | | | | | | | | | |
Collapse
|
84
|
Carter CL, Jones JW, Barrow K, Kieta K, Taylor-Howell C, Kearney S, Smith CP, Gibbs A, Farese AM, MacVittie TJ, Kane MA. A MALDI-MSI Approach to the Characterization of Radiation-Induced Lung Injury and Medical Countermeasure Development. HEALTH PHYSICS 2015; 109:466-78. [PMID: 26425906 PMCID: PMC4745118 DOI: 10.1097/hp.0000000000000353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Radiation-induced lung injury is highly complex and characterized by multiple pathologies, which occur over time and sporadically throughout the lung. This complexity makes biomarker investigations and medical countermeasure screenings challenging. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has the ability to resolve differences spatially in molecular profiles within the lung following radiation exposure and can aid in biomarker identification and pharmaceutical efficacy investigations. MALDI-MSI was applied to the investigation of a whole-thorax lung irradiation model in non-human primates (NHP) for lipidomic analysis and medical countermeasure distribution.
Collapse
Affiliation(s)
- Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences
| | - Kory Barrow
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Kaitlyn Kieta
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Cheryl Taylor-Howell
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Sean Kearney
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Cassandra P. Smith
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Allison Gibbs
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences
| |
Collapse
|
85
|
Yu JZ, Lindeblad M, Lyubimov A, Neri F, Smith B, Szilagyi E, Halliday L, MacVittie T, Nanda J, Bartholomew A. Subject-Based versus Population-Based Care after Radiation Exposure. Radiat Res 2015; 184:46-55. [PMID: 26121229 DOI: 10.1667/rr13918.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In a mass casualty radiation event situation, individualized therapy may overwhelm available resources and feasibility issues suggest a need for the development of population-based strategies. To investigate the efficacy of a population-based strategy, Chinese macaques (n = 46) underwent total-body irradiation and received preemptive antibiotics, IV hydration on predetermined postirradiation days and were then compared to macaques (n = 48) that received subject-based care in which blood transfusions, IV hydration, nutritional supplementation and antibiotic supportive measures were provided. Estimated radiation doses for LD30/60, LD50/60 and LD70/60 of animals with subject-based care: 6.83 Gy (6.21, 7.59), 7.44 Gy (6.99, 7.88) and 8.05 Gy (7.46, 8.64), respectively, and for population-based care: 5.61 Gy (5.28, 6.17), 6.62 Gy (6.13, 7.18) and 7.63 Gy (7.21, 8.20), respectively. Analysis of four time periods, 0-9, 10-15, 16-25 and 26-60 days postirradiation, identified significant mortality differences during the period of 10-15 days. A subset analysis of higher radiation doses (6.75-7.20 Gy, n = 32) indicated hydration, nutrition and septic status were not significantly different between treatments. Whole blood transfusion treatment, administered only in subject-supportive care, was associated with significantly higher platelet and absolute neutrophil counts. Median platelet counts greater than 5,670 cells/μl and absolute neutrophil counts greater than 26 cells/μl during this period correlated with survival. We observed that the population-based treatment increased the LD50/60 compared to nontreatment (6.62 Gy vs. 4.92 Gy) and may be further optimized during days 10-15, where strategic blood transfusions or other strategies to achieve increases in neutrophil and platelet counts may further increase survival rates in subjects exposed to high doses of radiation.
Collapse
Affiliation(s)
- Jiang-Zhou Yu
- a Department of Surgery, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Matt Lindeblad
- b Department of harmacology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Alex Lyubimov
- b Department of harmacology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Flavia Neri
- a Department of Surgery, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Brett Smith
- c Department of Radiation Oncology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Erzsebet Szilagyi
- a Department of Surgery, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Lisa Halliday
- d Department of Veterinary Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Tom MacVittie
- e Department of Radiation Oncology at University of Maryland School of Medicine, Baltimore, Maryland 21702; and
| | - Joy Nanda
- f Johns Hopkins School of Public Health, Baltimore, Maryland 21206
| | - Amelia Bartholomew
- a Department of Surgery, University of Illinois at Chicago, Chicago, Illinois 60612;,g Department of UIC Cancer Center, University of Illinois at Chicago, Chicago, Illinois 60612;,h Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612
| |
Collapse
|
86
|
Hankey KG, Farese AM, Blaauw EC, Gibbs AM, Smith CP, Katz BP, Tong Y, Prado KL, MacVittie TJ. Pegfilgrastim Improves Survival of Lethally Irradiated Nonhuman Primates. Radiat Res 2015; 183:643-55. [DOI: 10.1667/rr13940.1] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
87
|
DeBo RJ, Register TC, Caudell DL, Sempowski GD, Dugan G, Gray S, Owzar K, Jiang C, Bourland JD, Chao NJ, Cline JM. Molecular and cellular profiling of acute responses to total body radiation exposure in ovariectomized female cynomolgus macaques. Int J Radiat Biol 2015; 91:510-8. [PMID: 25786585 DOI: 10.3109/09553002.2015.1028597] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The threat of radiation exposure requires a mechanistic understanding of radiation-induced immune injury and recovery. The study objective was to evaluate responses to ionizing radiation in ovariectomized (surgically post-menopausal) female cynomolgus macaques. MATERIALS AND METHODS Animals received a single total-body irradiation (TBI) exposure at doses of 0, 2 or 5 Gy with scheduled necropsies at 5 days, 8 weeks and 24 weeks post-exposure. Blood and lymphoid tissues were evaluated for morphologic, cellular, and molecular responses. RESULTS Irradiated animals developed symptoms of acute hematopoietic syndrome, and reductions in thymus weight, thymopoiesis, and bone marrow cellularity. Acute, transient increases in plasma monocyte chemoattractant protein 1 (MCP-1) were observed in 5 Gy animals along with dose-dependent alterations in messenger ribonucleic acid (mRNA) signatures in thymus, spleen, and lymph node. Expression of T cell markers was lower in thymus and spleen, while expression of macrophage marker CD68 (cluster of differentiation 68) was relatively elevated in lymphoid tissues from irradiated animals. CONCLUSIONS Ovariectomized female macaques exposed to moderate doses of radiation experienced increased morbidity, including acute, dose-dependent alterations in systemic and tissue-specific biomarkers, and increased macrophage/T cell ratios. The effects on mortality exceeded expectations based on previous studies in males, warranting further investigation.
Collapse
Affiliation(s)
- Ryne J DeBo
- Department of Pathology, Wake Forest School of Medicine , Winston-Salem, NC , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Singh VK, Newman VL, Berg AN, MacVittie TJ. Animal models for acute radiation syndrome drug discovery. Expert Opin Drug Discov 2015; 10:497-517. [DOI: 10.1517/17460441.2015.1023290] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
89
|
Dugan G, O'Donnell L, Hanbury DB, Cline JM, Caudell DL. Assessment of Multiplate platelet aggregometry using citrate, heparin or hirudin in Rhesus macaques. Platelets 2014; 26:730-5. [PMID: 25549285 DOI: 10.3109/09537104.2014.988694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Electrical impedance aggregometry (EIA) has gained popularity in clinical and research applications. Nonhuman primates are used to study disease and drug-related mechanisms that affect hemostasis, therefore establishing normal EIA parameters are necessary. The anticoagulants sodium heparin, hirudin and sodium citrate and three agonists, ADP, ASPI, and collagen were evaluated. Whole blood from 12 adult male rhesus macaques was collected to evaluate anticoagulants, sodium heparin, hirudin and sodium citrate using three agonists (ADP, ASPI and collagen), on the Multiplate® 5.0 Analyzer. Platelet function was reported for three parameters: Area under the curve (AUC), aggregation, and aggregation velocity. There was a significant difference in mean AUC between citrate and heparin samples, and citrate and hirudin samples regardless of the agonist used. There was no difference in AUC between heparin and hirudin. ADP-activated samples showed an increase in impedance with hirudin samples compared to citrate. Furthermore, heparin and hirudin out-perform citrate as the anticoagulant for EIA in the macaque. Finally, this study demonstrates the utility of the Multiplate® system in this model and provides important insight into anticoagulant choice when using EIA.
Collapse
Affiliation(s)
- Greg Dugan
- a Department of Pathology , Center for Comparative Medicine Research, Wake Forest School of Medicine , Winston-Salem, NC , USA
| | - Lisa O'Donnell
- a Department of Pathology , Center for Comparative Medicine Research, Wake Forest School of Medicine , Winston-Salem, NC , USA
| | - David B Hanbury
- a Department of Pathology , Center for Comparative Medicine Research, Wake Forest School of Medicine , Winston-Salem, NC , USA
| | - J Mark Cline
- a Department of Pathology , Center for Comparative Medicine Research, Wake Forest School of Medicine , Winston-Salem, NC , USA
| | - David L Caudell
- a Department of Pathology , Center for Comparative Medicine Research, Wake Forest School of Medicine , Winston-Salem, NC , USA
| |
Collapse
|
90
|
Ha CT, Li XH, Fu D, Moroni M, Fisher C, Arnott R, Srinivasan V, Xiao M. Circulating interleukin-18 as a biomarker of total-body radiation exposure in mice, minipigs, and nonhuman primates (NHP). PLoS One 2014; 9:e109249. [PMID: 25290447 PMCID: PMC4188589 DOI: 10.1371/journal.pone.0109249] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/04/2014] [Indexed: 12/21/2022] Open
Abstract
We aim to develop a rapid, easy-to-use, inexpensive and accurate radiation dose-assessment assay that tests easily obtained samples (e.g., blood) to triage and track radiological casualties, and to evaluate the radioprotective and therapeutic effects of radiation countermeasures. In the present study, we evaluated the interleukin (IL)-1 family of cytokines, IL-1β, IL-18 and IL-33, as well as their secondary cytokines’ expression and secretion in CD2F1 mouse bone marrow (BM), spleen, thymus and serum in response to γ-radiation from sublethal to lethal doses (5, 7, 8, 9, 10, or 12 Gy) at different time points using the enzyme-linked immune sorbent assay (ELISA), immunoblotting, and cytokine antibody array. Our data identified increases of IL-1β, IL-18, and/or IL-33 in mouse thymus, spleen and BM cells after total-body irradiation (TBI). However, levels of these cytokines varied in different tissues. Interestingly, IL-18 but not IL-1β or IL-33 increased significantly (2.5–24 fold) and stably in mouse serum from day 1 after TBI up to 13 days in a radiation dose-dependent manner. We further confirmed our finding in total-body γ-irradiated nonhuman primates (NHPs) and minipigs, and demonstrated that radiation significantly enhanced IL-18 in serum from NHPs 2–4 days post-irradiation and in minipig plasma 1–3 days post-irradiation. Finally, we compared circulating IL-18 with the well known hematological radiation biomarkers lymphocyte and neutrophil counts in blood of mouse, minipigs and NHPs and demonstrated close correlations between these biomarkers in response to radiation. Our results suggest that the elevated levels of circulating IL-18 after radiation proportionally reflect radiation dose and severity of radiation injury and may be used both as a potential biomarker for triage and also to track casualties after radiological accidents as well as for therapeutic radiation exposure.
Collapse
Affiliation(s)
- Cam T. Ha
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Xiang-Hong Li
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Dadin Fu
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Maria Moroni
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Carolyn Fisher
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Robert Arnott
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Venkataraman Srinivasan
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
91
|
Hofer M, Pospíšil M, Komůrková D, Hoferová Z. Granulocyte colony-stimulating factor in the treatment of acute radiation syndrome: a concise review. Molecules 2014; 19:4770-8. [PMID: 24743934 PMCID: PMC6270858 DOI: 10.3390/molecules19044770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/17/2014] [Accepted: 04/11/2014] [Indexed: 02/07/2023] Open
Abstract
This article concisely summarizes data on the action of one of the principal and best known growth factors, the granulocyte colony-stimulating factor (G-CSF), in a mammalian organism exposed to radiation doses inducing acute radiation syndrome. Highlighted are the topics of its real or anticipated use in radiation accident victims, the timing of its administration, the possibilities of combining G-CSF with other drugs, the ability of other agents to stimulate endogenous G-CSF production, as well as of the capability of this growth factor to ameliorate not only the bone marrow radiation syndrome but also the gastrointestinal radiation syndrome. G-CSF is one of the pivotal drugs in the treatment of radiation accident victims and its employment in this indication can be expected to remain or even grow in the future.
Collapse
Affiliation(s)
- Michal Hofer
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ-612 65, Czech Republic.
| | - Milan Pospíšil
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ-612 65, Czech Republic.
| | - Denisa Komůrková
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ-612 65, Czech Republic.
| | - Zuzana Hoferová
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ-612 65, Czech Republic.
| |
Collapse
|
92
|
Kim JH, Thimmulappa RK, Kumar V, Cui W, Kumar S, Kombairaju P, Zhang H, Margolick J, Matsui W, Macvittie T, Malhotra SV, Biswal S. NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation. J Clin Invest 2014; 124:730-41. [PMID: 24463449 PMCID: PMC3904618 DOI: 10.1172/jci70812] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022] Open
Abstract
A nuclear disaster may result in exposure to potentially lethal doses of ionizing radiation (IR). Hematopoietic acute radiation syndrome (H-ARS) is characterized by severe myelosuppression, which increases the risk of infection, bleeding, and mortality. Here, we determined that activation of nuclear factor erythroid-2-related factor 2 (NRF2) signaling enhances hematopoietic stem progenitor cell (HSPC) function and mitigates IR-induced myelosuppression and mortality. Augmenting NRF2 signaling in mice, either by genetic deletion of the NRF2 inhibitor Keap1 or by pharmacological NRF2 activation with 2-trifluoromethyl-2'-methoxychalone (TMC), enhanced hematopoietic reconstitution following bone marrow transplantation (BMT). Strikingly, even 24 hours after lethal IR exposure, oral administration of TMC mitigated myelosuppression and mortality in mice. Furthermore, TMC administration to irradiated transgenic Notch reporter mice revealed activation of Notch signaling in HSPCs and enhanced HSPC expansion by increasing Jagged1 expression in BM stromal cells. Administration of a Notch inhibitor ablated the effects of TMC on hematopoietic reconstitution. Taken together, we identified a mechanism by which NRF2-mediated Notch signaling improves HSPC function and myelosuppression following IR exposure. Our data indicate that targeting this pathway may provide a countermeasure against the damaging effects of IR exposure.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Rajesh K. Thimmulappa
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Vineet Kumar
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Wanchang Cui
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Sarvesh Kumar
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Ponvijay Kombairaju
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Hao Zhang
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Joseph Margolick
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - William Matsui
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Thomas Macvittie
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Sanjay V. Malhotra
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Shyam Biswal
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
93
|
Dörr H, Lamkowski A, Graessle DH, Bennett A, Shapiro A, Farese AM, Garofalo M, MacVittie TJ, Meineke V. Linking the human response to unplanned radiation and treatment to the nonhuman primate response to controlled radiation and treatment. HEALTH PHYSICS 2014; 106:129-34. [PMID: 24276556 PMCID: PMC3843145 DOI: 10.1097/hp.0b013e3182a12de0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A key difficulty in developing countermeasures against radiation-induced health impairments is the clear lack of controlled clinical studies, due to the relatively low number of radiation victims worldwide. Instead, established and accepted animal models, as well as the recommendations of national and international expert panels and committees, are the main sources of information. Therefore, the development of countermeasures requires comparison of data from many sources and accumulation of information consistent with the U. S. Food and Drug Administration's "Animal Rule." A new approach is the comparative analysis of human data from the SEARCH (System for Evaluation and Archiving of Radiation Accidents based on Case Histories) database and data from nonhuman primate (NHP) animal model studies. The SEARCH database contains 824 clinical cases from 81 radiation accidents in 19 countries. This exceptional collection of clinical data from accidentally radiation-exposed persons is analyzed regarding clinical signs and symptoms of radiation-induced health impairments. To analyze the time course of radiation syndromes, clinical parameters common to the SEARCH and NHP databases have to be assigned into comparable categories of clinical severity for each species. The goal is to establish a method for comparison of human and NHP data, validate the NHP data as a surrogate for human efficacy/clinical studies, and open a way for the extraction of diagnostic and treatment methods for humans after radiation exposure according to relevant regulations.
Collapse
Affiliation(s)
- Harald Dörr
- *Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany; †University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD; ‡U.S. Food and Drug Administration (FDA), Silver Spring, MD
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Plett PA, Chua HL, Sampson CH, Katz BP, Fam CM, Anderson LJ, Cox G, Orschell CM. PEGylated G-CSF (BBT-015), GM-CSF (BBT-007), and IL-11 (BBT-059) analogs enhance survival and hematopoietic cell recovery in a mouse model of the hematopoietic syndrome of the acute radiation syndrome. HEALTH PHYSICS 2014; 106:7-20. [PMID: 24276546 PMCID: PMC3843149 DOI: 10.1097/hp.0b013e3182a4dd4e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hematopoietic growth factors (HGF) are recommended therapy for high dose radiation exposure, but unfavorable administration schedules requiring early and repeat dosing limit the logistical ease with which they can be used. In this report, using a previously described murine model of H-ARS, survival efficacy and effect on hematopoietic recovery of unique PEGylated HGF were investigated. The PEGylated-HGFs possess longer half-lives and more potent hematopoietic properties than corresponding non-PEGylated-HGFs. C57BL/6 mice underwent single dose lethal irradiation (7.76-8.72 Gy, Cs, 0.62-1.02 Gy min) and were treated with various dosing regimens of 0.1, 0.3, and 1.0 mg kg of analogs of human PEG-G-CSF, murine PEG-GM-CSF, or human PEG-IL-11. Mice were administered one of the HGF analogs at 24-28 h post irradiation, and in some studies, additional doses given every other day (beginning with the 24-28 h dose) for a total of three or nine doses. Thirty-day (30 d) survival was significantly increased with only one dose of 0.3 mg kg of PEG-G-CSF and PEG-IL-11 or three doses of 0.3 mg kg of PEG-GM-CSF (p ≤ 0.006). Enhanced survival correlated with consistently and significantly enhanced WBC, NE, RBC, and PLT recovery for PEG-G- and PEG-GM-CSF, and enhanced RBC and PLT recovery for PEG-IL-11 (p ≤ 0.05). Longer administration schedules or higher doses did not provide a significant additional survival benefit over the shorter, lower dose, schedules. These data demonstrate the efficacy of BBT's PEG-HGF to provide significantly increased survival with fewer injections and lower drug doses, which may have significant economic and logistical value in the aftermath of a radiation event.
Collapse
Affiliation(s)
| | - Hui Lin Chua
- Indiana University School of Medicine, Indianapolis, IN
| | | | - Barry P. Katz
- Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | | |
Collapse
|
95
|
Garofalo M, Bennett A, Farese AM, Harper J, Ward A, Taylor-Howell C, Cui W, Gibbs A, Lasio G, Jackson W, MacVittie TJ. The delayed pulmonary syndrome following acute high-dose irradiation: a rhesus macaque model. HEALTH PHYSICS 2014; 106:56-72. [PMID: 24276550 DOI: 10.1097/hp.0b013e3182a32b3f] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Several radiation dose- and time-dependent tissue sequelae develop following acute high-dose radiation exposure. One of the recognized delayed effects of such exposures is lung injury, characterized by respiratory failure as a result of pneumonitis that may subsequently develop into lung fibrosis. Since this pulmonary subsyndrome may be associated with high morbidity and mortality, comprehensive treatment following high-dose irradiation will ideally include treatments that mitigate both the acute hematologic and gastrointestinal subsyndromes as well as the delayed pulmonary syndrome. Currently, there are no drugs approved by the Food and Drug Administration to counteract the effects of acute radiation exposure. Moreover, there are no relevant large animal models of radiation-induced lung injury that permit efficacy testing of new generation medical countermeasures in combination with medical management protocols under the FDA animal rule criteria. Herein is described a nonhuman primate model of delayed lung injury resulting from whole thorax lung irradiation. Rhesus macaques were exposed to 6 MV photon radiation over a dose range of 9.0-12.0 Gy and medical management administered according to a standardized treatment protocol. The primary endpoint was all-cause mortality at 180 d. A comparative multiparameter analysis is provided, focusing on the lethal dose response relationship characterized by a lethal dose50/180 of 10.27 Gy [9.88, 10.66] and slope of 1.112 probits per linear dose. Latency, incidence, and severity of lung injury were evaluated through clinical and radiographic parameters including respiratory rate, saturation of peripheral oxygen, corticosteroid requirements, and serial computed tomography. Gross anatomical and histological analyses were performed to assess radiation-induced injury. The model defines the dose response relationship and time course of the delayed pulmonary sequelae and consequent morbidity and mortality. Therefore, it may provide an effective platform for the efficacy testing of candidate medical countermeasures against the delayed pulmonary syndrome.
Collapse
Affiliation(s)
- Michael Garofalo
- *University of Maryland, School of Medicine, Department of Radiation Oncology; †Statistician, Rockville, MD
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Affiliation(s)
- Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| |
Collapse
|
97
|
Kazi AM, MacVittie TJ, Lasio G, Lu W, Prado KL. The MCART radiation physics core: the quest for radiation dosimetry standardization. HEALTH PHYSICS 2014; 106:97-105. [PMID: 24276553 PMCID: PMC3899940 DOI: 10.1097/hp.0b013e3182a2a987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Dose-related radiobiological research results can only be compared meaningfully when radiation dosimetry is standardized. To this purpose, the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Medical Countermeasures Against Radiological Threats (MCART) consortium recently created a Radiation Physics Core (RPC) as an entity to assume responsibility of standardizing radiation dosimetry practices among its member laboratories. The animal research activities in these laboratories use a variety of ionizing photon beams from several irradiators such as 250-320 kVp x-ray generators, Cs irradiators, Co teletherapy machines, and medical linear accelerators (LINACs). In addition to this variety of sources, these centers use a range of irradiation techniques and make use of different dose calculation schemes to conduct their experiments. An extremely important objective in these research activities is to obtain a Dose Response Relationship (DRR) appropriate to their respective organ-specific models of acute and delayed radiation effects. A clear and unambiguous definition of the DRR is essential for the development of medical countermeasures. It is imperative that these DRRs are transparent between centers. The MCART RPC has initiated the establishment of standard dosimetry practices among member centers and is introducing a Remote Dosimetry Monitoring Service (RDMS) to ascertain ongoing quality assurance. This paper will describe the initial activities of the MCART RPC toward implementing these standardization goals. It is appropriate to report a summary of initial activities with the intent of reporting the full implementation at a later date.
Collapse
Affiliation(s)
- Abdul M. Kazi
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Giovanni Lasio
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Wei Lu
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Karl L. Prado
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| |
Collapse
|
98
|
MacVittie TJ, Bennett AW, V Cohen M, Farese AM, Higgins A, Hankey KG. Immune cell reconstitution after exposure to potentially lethal doses of radiation in the nonhuman primate. HEALTH PHYSICS 2014; 106:84-96. [PMID: 24276552 DOI: 10.1097/hp.0b013e3182a2a9b2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Delayed immune reconstitution remains a major cause of morbidity associated with myelosuppression induced by cytotoxic therapy or myeloablative conditioning for stem cell transplant, as well as potentially lethal doses of total- or partial-body irradiation. Restoration of a functional immune cell repertoire requires hematopoietic stem cell reconstitution for all immune cells and effective thymopoiesis for T cell recovery. There are no medical countermeasures available to mitigate damage consequent to high-dose, potentially lethal irradiation, and there are no well characterized large animal models of prolonged immunosuppression to assess efficacy of potential countermeasures. Herein, the authors describe a model of T and B cell reconstitution following lethal doses of partial-body irradiation with 5% bone marrow sparing that includes full exposure of the thymus. Rhesus macaques (n = 31 male, 5.5-11.3 kg body weight) were exposed to midline tissue doses of 9.0-12.0 Gy using 6 MV LINAC-derived photons at a dose rate of 0.80 Gy min, sparing approximately 5% of bone marrow (tibiae, ankles, and feet). All animals received medical management and were monitored for myeloid and lymphoid suppression and recovery through 180 d post-exposure. Myeloid recovery was assessed by neutrophil and platelet-related hematological parameters. Reconstitution of B and T cell subsets was assessed by flow cytometric immunophenotyping, and recent thymic emigrants were identified by RT-PCR of T cell receptor excision circles. Mortality was recorded through 180 d post-exposure. Acute myelo-suppression was characterized by severe neutropenia and thrombocytopenia, followed by recovery 30-60 d post-exposure. Total T (CD3+) and B (CD20+) cells were reduced significantly following exposure and exhibited differential recovery patterns post-exposure. Both CD4+ and CD8+ subsets of naïve T cells and total CD4+ T cell counts remained significantly lower than baseline through 180 d post-exposure. The failure of recent thymic emigrants and naïve T cell subsets to recover to normal baseline values reflects the severe radiation effects on the recovery of marrow-derived stem and early thymic progenitor cells, their mobilization and seeding of receptive thymic niches, and slow endogenous thymic regeneration.
Collapse
Affiliation(s)
- Thomas J MacVittie
- *University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD; †Integrated Research Facility, Frederick, MD; ‡Naval Medical Research Center, Silver Spring, MD
| | | | | | | | | | | |
Collapse
|
99
|
Farese AM, Brown CR, Smith CP, Gibbs AM, Katz BP, Johnson CS, Prado KL, MacVittie TJ. The ability of filgrastim to mitigate mortality following LD50/60 total-body irradiation is administration time-dependent. HEALTH PHYSICS 2014; 106:39-47. [PMID: 24276548 PMCID: PMC3888641 DOI: 10.1097/hp.0b013e3182a4dd2c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The identification of the optimal administration schedule for an effective medical countermeasure is critical for the effective treatment of individuals exposed to potentially lethal doses of radiation. The efficacy of filgrastim (Neupogen®), a potential medical countermeasure, to improve survival when initiated at 48 h following total body irradiation in a non-human primate model of the hematopoietic syndrome of the acute radiation syndrome was investigated. Animals were exposed to total body irradiation, antero-posterior exposure, total midline tissue dose of 7.5 Gy, (target lethal dose 50/60) delivered at 0.80 Gy min, using linear accelerator-derived 6 MV photons. All animals were administered medical management. Following irradiation on day 0, filgrastim (10 μg kg d) or the control (5% dextrose in water) was administered subcutaneously daily through effect (absolute neutrophil count ≥ 1,000 cells μL for three consecutive days). The study (n = 80) was powered to demonstrate a 25% improvement in survival following the administration of filgrastim or control beginning at 48 ± 4 h post-irradiation. Survival analysis was conducted on the intention-to-treat population using a two-tailed null hypothesis at a 5% significance level. Filgrastim, initiated 48 h after irradiation, did not improve survival (2.5% increase, p = 0.8230). These data demonstrate that efficacy of a countermeasure to mitigate lethality in the hematopoietic syndrome of the acute radiation syndrome can be dependent on the interval between irradiation and administration of the medical countermeasure.
Collapse
Affiliation(s)
- Ann M Farese
- *Radiation Oncology Department, University of Maryland, School of Medicine, Baltimore, MD; †Department of Biostatistics, Indiana University, Indianapolis, IN
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Chua HL, Plett PA, Sampson CH, Katz BP, Carnathan GW, MacVittie TJ, Lenden K, Orschell CM. Survival efficacy of the PEGylated G-CSFs Maxy-G34 and neulasta in a mouse model of lethal H-ARS, and residual bone marrow damage in treated survivors. HEALTH PHYSICS 2014; 106:21-38. [PMID: 24276547 PMCID: PMC3843155 DOI: 10.1097/hp.0b013e3182a4df10] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In an effort to expand the worldwide pool of available medical countermeasures (MCM) against radiation, the PEGylated G-CSF (PEG-G-CSF) molecules Neulasta and Maxy-G34, a novel PEG-G-CSF designed for increased half-life and enhanced activity compared to Neulasta, were examined in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS), along with the lead MCM for licensure and stockpiling, G-CSF. Both PEG-G-CSFs were shown to retain significant survival efficacy when administered as a single dose 24 h post-exposure, compared to the 16 daily doses of G-CSF required for survival efficacy. Furthermore, 0.1 mg kg of either PEG-G-CSF affected survival of lethally-irradiated mice that was similar to a 10-fold higher dose. The one dose/low dose administration schedules are attractive attributes of radiation MCM given the logistical challenges of medical care in a mass casualty event. Maxy-G34-treated mice that survived H-ARS were examined for residual bone marrow damage (RBMD) up to 9 mo post-exposure. Despite differences in Sca-1 expression and cell cycle position in some hematopoietic progenitor phenotypes, Maxy-G34-treated mice exhibited the same degree of hematopoietic stem cell (HSC) insufficiency as vehicle-treated H-ARS survivors in competitive transplantation assays of 150 purified Sca-1+cKit+lin-CD150+cells. These data suggest that Maxy-G34, at the dose, schedule, and time frame examined, did not mitigate RBMD but significantly increased survival from H-ARS at one-tenth the dose previously tested, providing strong support for advanced development of Maxy-G34, as well as Neulasta, as MCM against radiation.
Collapse
Affiliation(s)
- Hui Lin Chua
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - P. Artur Plett
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Barry P. Katz
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|